WO1996009264A1 - Dielectric porcelain composition and process for producing the same - Google Patents
Dielectric porcelain composition and process for producing the same Download PDFInfo
- Publication number
- WO1996009264A1 WO1996009264A1 PCT/JP1995/001851 JP9501851W WO9609264A1 WO 1996009264 A1 WO1996009264 A1 WO 1996009264A1 JP 9501851 W JP9501851 W JP 9501851W WO 9609264 A1 WO9609264 A1 WO 9609264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- compounds containing
- mno
- composition
- value
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 108
- 229910052573 porcelain Inorganic materials 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims description 59
- 238000005245 sintering Methods 0.000 claims abstract description 44
- 238000010304 firing Methods 0.000 claims abstract description 42
- 239000000843 powder Substances 0.000 claims description 69
- 239000000919 ceramic Substances 0.000 claims description 54
- 150000001875 compounds Chemical class 0.000 claims description 35
- 229910052749 magnesium Inorganic materials 0.000 claims description 31
- 229910052725 zinc Inorganic materials 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 239000002994 raw material Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 229910052788 barium Inorganic materials 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 11
- 238000001354 calcination Methods 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- 229910018663 Mn O Inorganic materials 0.000 claims description 6
- 229910052715 tantalum Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- 229910002971 CaTiO3 Inorganic materials 0.000 abstract 1
- 229910017676 MgTiO3 Inorganic materials 0.000 abstract 1
- 229910002370 SrTiO3 Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000011777 magnesium Substances 0.000 description 31
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 239000000395 magnesium oxide Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910007541 Zn O Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- -1 BaC0 3 Substances 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/47—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
Definitions
- the present invention relates to a dielectric porcelain composition for an electronic component, and more particularly to a dielectric porcelain composition having a large no-load Q and a relative permittivity, and having a small temperature coefficient of a resonance frequency, and a method for producing the same.
- antenna duplexers used in wireless communication devices such as automobile packs, mobile phones, and cordless phones
- resonators used in voltage-controlled oscillators
- filters used in CATV tuners
- high-frequency dielectric porcelain is often used.
- 1 ⁇ epsilon r of a wavelength in vacuum of a wavelength of an electromagnetic wave in the high-frequency dielectric ceramic epsilon r: relative dielectric constant, Incidentally, the epsilon tau represents the square root of £ r
- electronic parts such as resonators can be miniaturized using such dielectric ceramics.
- the characteristics required for such high-frequency dielectric porcelain include the following three characteristics.
- the relative permittivity is as large as possible. That is, since the wavelength of the ⁇ frequency is reduced to ( ⁇ r: relative permittivity) in the dielectric, the larger the relative permittivity is, the easier it is to reduce the size of the resonator and the like at the same resonance frequency.
- the present invention solves the above-mentioned problems, and provides easy sintering properties that satisfy all of the characteristics required for high-frequency dielectric porcelain.
- ⁇ (s r) is, in particular, has a high value of 25 or more on not ever material having a high Q value, the temperature coefficient of resonant frequency (f Te) is + 20-1 1
- the object of the present invention is to provide a dielectric ceramic composition which exhibits a value of 0 ppmZt: and has a firing temperature of 1650: or lower, which is lower than the conventional firing temperature range, and which can obtain stable dielectric properties, and a method for producing the same. Disclosure of the invention
- the present inventors have repeatedly studied to solve the above-mentioned problems, and have obtained the following findings.
- the present invention has been made based on the above findings, and the gist of the invention lies in the following dielectric ceramic compositions (1) to (9) and methods for producing them.
- S i O2 and means Roh or B 2 0 3) is represented by the composition formula, x, dielectric ceramic composition characterized in that y and z is a value satisfying the respective equations below, respectively.
- Powders selected from compounds containing Ba, Zn or Mg, Ta, Ca and Ti as raw material powders, and containing Si and Z or B as sintering aids Add a powder selected from the compounds and calcine it to obtain B a (! / 3, T aa / a) 0 3 C a ⁇ i Oa
- M is Zn or Mg
- S i 0 2 / B 2 0 3 means S I_ ⁇ 2 Contact and / or B 2 O a.
- x, y, z respectively 0.9 ⁇ X ⁇ 1.1, 0 ⁇ y ⁇ 0.3, and 0 ⁇ z ⁇ 0.05 in the air. Or in an oxygen atmosphere at 1200 to 1600.
- (6) Mix calcined powder of powder selected from compounds containing Ba, Zn or Mg, and Ta, and calcined powder of powder selected from compounds containing Ca and Ti, respectively. Then, a powder selected from compounds containing Si and No or B as a sintering aid is added, followed by firing.
- Powders selected from compounds containing Ba, Zn or Mg, Ta, Mg and / or Sr, and Ti as raw material powders, and Mn and / or Z as sintering aids Add powder selected from compounds containing n and bake
- M is Zn or Mg
- Roh S rT i 0 3 is M gT i 0 3 and Z or S a r T i 0 3
- Mn OZZ n O is Mn O you spare or Z x, y, and z are each 0.
- the powder is mixed and molded so as to have a composition represented by the formula Is fired at 1300 to 1600 in an oxygen atmosphere, wherein the method for producing a dielectric ceramic composition according to the above (7) is performed.
- the powder calcined powder is mixed, and a powder selected from Mn and Z or a compound containing Zn is added as a sintering aid.
- FIG. 5 Ba (M 1/3, T a 2/3) O a + y C a T i 0 3 + zMnO Roh Z dielectric ceramic composition represented by ⁇ (M is Zn Or Mg), the firing temperature, and the manufacturing conditions, and the measurement results of the electrical properties (no-load Q, relative permittivity £ r and temperature coefficient of resonance frequency r ). It is a figure showing a result.
- FIG. 6 is a diagram schematically showing a main part of an apparatus used for measuring the unloaded Q of the dielectric ceramic composition, the specific permittivity £ r) and the temperature coefficient of the resonance frequency (f).
- a) is a plan view and (b) is a front view.
- the dielectric porcelain composition of the present invention (the invention of the above (1)) is preferably composed of Ba (M./3, Ta 2/3) Oa + yCa Ti Oa + zMnO / Z ⁇ (where M is (Zn or Mg, y is greater than 0 and 0.3 or less, and z is 0 to 0.05).
- y is 0 (zero), i.e., if not contain C aT i 0 3, the firing temperature is ⁇ Ku, the relative dielectric constant (epsilon ') is lower than 25, ⁇ characteristics of the Q value, etc. not stable.
- y exceeds 0.3, that is, B a (M. / 3. T 2/3) 0 3 for the molar ratio of C aT i 0 3 exceeds 0.3 mol.
- Q value at 8 GHz is less than 10000 and has specified characteristics The resulting dielectric ceramic composition cannot be obtained. Therefore, the range of y is 0 ⁇ y ⁇ 0.3.
- z may be 0, that is, MnO and sintering aid or Zn 0 may not be included. However, when Mn 0 and no or Zn 0 are contained within the range where z does not exceed 0.05, uniform firing is promoted. On the other hand, when z is greater than 0.05, the Q value at 8 GHz is less than 10000, and the temperature coefficient of the resonance frequency ( ⁇ f ) is outside the range of +20 to 1-10 ppm, and any of the present inventions Out of the target range.
- the above-described dielectric ceramic composition of the present invention has a high Q value (10000 or more at 8 GHz), and has a relative dielectric constant ( ⁇ ) of 25 or more, which is unprecedented for a material having a particularly high Q value.
- the temperature coefficient of resonance frequency ( f ) is also within the range of +20 to -10 ppmZ.
- the inventions of (2) and (3) are a method for producing the dielectric ceramic composition of (1). First, the method (2) will be described in the order of the manufacturing steps.
- the powder of 3 and / or ZriO is accurately weighed to have the composition described in (2) above, and mixed with an appropriate amount of cobblestone, a dispersant and pure water in a bot mill. Mixing is preferably performed for about 24 hours. Note that MnCOa and Z or Z ⁇ as sintering aids may not be added.
- a firing plate made of, for example, magnesium, and fire in a temperature range of 1300 to 1650.
- the firing may be performed in the air or in an oxygen atmosphere by a usual method.
- the firing temperature is lower than 1300 shin, a dense fired body cannot be obtained, and the Q value deteriorates to 5000 or less at 8 GHz.
- the sintering temperature is 1650, the shape of the sintered body collapses at higher swords and the Q value cannot be measured.
- the method (3) is, BaC0 3, ZnO or MgO, and Ta
- the raw materials are not limited to the above oxides and carbonates as long as the target dielectric porcelain composition can be obtained after firing, such as oxalate and nitrate. Any compound may be used.
- a method ((method 2) and (3)) the has a high unloaded Q and high dielectric constant than conventional (1), the temperature coefficient of resonant frequency (r f) is less
- the dielectric ceramic composition exhibiting the above values can be easily produced at a lower firing temperature (at 1300 to 1650) than before.
- B a / (M 1/3, Ta 2/3) ratio i.e. the x in the above composition formula, 0. 9 ⁇ x ⁇ 1. had a 1, X a high Q value if it is within this range Outside of this range, the Q at 8 GHz will be as low as 5000 or less.
- the range of y is 0 ⁇ y ⁇ 0. 3, i.e. Ba x (M. / 3, T a 2 / a) 0 3 C a T i 0 3 molar ratio of relative is 0.3 mol or less (however, 0 is not included).
- y is 0 (zero), i.e., if not contain C a T i 0 3, the firing temperature is ⁇ Ku, the relative dielectric constant (£ r) is smaller than 28, the dielectric properties of the Q value and the like stable do not do.
- the Q value at 8 GHz becomes smaller than 10,000, and a dielectric ceramic composition having predetermined characteristics cannot be obtained.
- z in the range of 0 ⁇ z ⁇ 0. 05, i.e. Ba x (M. / 3, T a 2/3) 0 3 S i 0 2 and the molar ratio of Z or B 2 03 is 0.05 moles or less with respect to ( However, 0 is not included).
- the relative dielectric constant (£ r) is less than 28, and particularly when the firing temperature is 1400 or less, the Q value and the specific compressibility (£ r ) are not stable.
- z exceeds 0.05 the Q value at 8 GHz falls below 10000, and the temperature coefficient ( ⁇ r) of the resonance frequency does not fall within the range of +20 to ⁇ 10 ppmZt.
- the above-described dielectric ceramic composition of the present invention has a higher Q value (10,000 or more at 8 GHz) than ever before, and also has a relatively high dielectric constant ( ⁇ r ), especially for materials having a higher Q value than before. More than 28 It has a high value, the temperature coefficient (r f) for the + 20-1 1 0 p pmZt resonance frequency: shows a value within the range of.
- the inventions of (5) and (6) are the method for producing the dielectric ceramic composition of (4).
- the method (5) is the same as the method (2) above except for the preparation of the raw materials and the firing conditions, so only the differences will be described.
- the symbols ⁇ to 1 at the beginning of each step correspond to the symbols 1 to 1 in the description of the method (2).
- the as sintering aid (5 ) Accurately weigh to the composition described in) and mix in a pot mill with the appropriate cobblestone, dispersant and pure water. Mixing is preferably performed for about 24 hours.
- a fired plate made of magnesia, for example, and fire in a temperature range of 1200-1600.
- the firing may be performed in the air or in an oxygen atmosphere by a usual method.
- the raw materials are not limited to the above-mentioned oxides and carbonates as long as the desired dielectric ceramic composition can be obtained after firing. Any compound such as nitrate may be used.
- the firing temperature can be further reduced (at 1200 to 1600), and the unloaded Q and the high ratio of (4) are higher than in the prior art. It is possible to easily produce a dielectric ceramic composition having a dielectric constant and a small value of a temperature coefficient ( f ) of the resonance frequency.
- B a / (Mi / a, Ta 2/3) ratio i.e. the x in the above composition formula, was a 0. 9 ⁇ x ⁇ 1.
- X is a high Q value if it is within this range If it is out of this range, the Q value at 8 GHz will be as low as 5000 or less.
- the range of y is 0 ⁇ y ⁇ 0. 3, i.e. Ba x (M. / 3, T a 2 ⁇ 3) MgT for 0 3 i Oa and Roh or S r T i 0 3 is the molar ratio of 0. 3 mol or less (however, 0 is not included).
- y is 0 (zero), i.e., if the MgT i 0 3, S r T i none of Oa included not, the firing temperature is high, the relative dielectric constant (£ r) is rather smaller than 28.
- the Q value at 8 GHz becomes smaller than 10,000, and a dielectric ceramic composition having predetermined characteristics cannot be obtained.
- MgT i 0 3 and had Z or by the addition of S rT i 0 3 the temperature coefficient of resonant frequency (r r) Can be controlled to a value within the range of +20 to 1 1 Op pmZ:.
- z may be 0 as in the case of the dielectric ceramic composition of (1). However, when MnO and Z or Z ⁇ are contained within the range where z does not exceed 0.05, uniform firing is promoted. On the other hand, when z exceeds 0.05, the Q value at 8 GHz falls below 10,000, and the temperature coefficient of the resonance frequency ( f ) does not fall within the range of +20 to -10 ppmZ.
- the above-described dielectric ceramic composition of the present invention has a high Q value (10,000 or more at 8 GHz) and a relative dielectric constant ( ⁇ “) which cannot be achieved with a material having a particularly high Q value.
- the temperature coefficient ( ⁇ ⁇ ) of the resonance frequency is in the range of +20 to 11 OppmZt :.
- the inventions (8) and (9) are the method for producing the dielectric ceramic composition according to the above (7).
- the method (8) will be described in the order of the manufacturing process. However, this method is the same as the method (2) except for the adjustment of the raw materials and the firing conditions, so only the differences will be described.
- the symbols 1 to 1 at the beginning of each process correspond to the symbols 1 to 1 in the description of the method (2).
- a magnesia fired plate for example, 1300 to 160 Bake in the temperature range of 0.
- the firing may be performed in the air or in an oxygen atmosphere by a usual method.
- the firing temperature is lower than 1300, a dense fired body cannot be obtained, and the Q value deteriorates to 5000 or less at 8 GHz.
- the firing temperature is higher than 1600, the shape of the sintered body collapses, and the Q value cannot be measured.
- the raw materials are not limited to the above oxides and carbonates as long as the target dielectric porcelain composition can be obtained after firing. Any compound may be used. According to the above method of the present invention (the method of (8) and (9)), it has the high unloaded Q and the high relative dielectric constant of the above (7), and the temperature coefficient (r f ) of the resonance frequency is small.
- the dielectric ceramic composition shown can be easily manufactured at a lower firing temperature (1300 to 1600 ") than before.
- FIGS. 1 to 5 The values of y and z, the sintering temperature (the sintering time is 4 hours in each case) of the above composition, and the production conditions are shown in FIGS. 1 to 5.
- 1 the ⁇ the base sample a B a (Z n! / 3 , Ta 2/3) 0 3, represents B a (Mg ./a, Ta 2 /3) 0 3.
- a in the column of the manufacturing conditions indicates that the raw materials for obtaining the predetermined composition were all prepared using the raw material powder, and then calcined, granulated, molded, and sintered.
- B a Z n ./3, T a 2/3) 0 3 or B a (Mg ⁇ / 3, T a 2/3) calcining the C aT i 0 3 with respect to the calcined powder Oa This is done by mixing powder, then granulation, molding and sintering.
- a corresponds to the method of (2)
- b corresponds to the method of (3).
- the Q value, the relative permittivity (£ r ) and the temperature coefficient of the resonance frequency (r r ) were measured by the Post Resonance Technique (short-ended dielectric resonator method) proposed by Hakki-Coleman.
- FIG. 6 is a diagram schematically showing a main part of the apparatus used for the measurement, (a) is a plan view, and (b) is a front view (enlarged view).
- reference numeral 1 denotes a dielectric ceramic composition (sample) to be measured, which is sandwiched between two parallel metal plates 2.
- the no-load Q is obtained by calculating the induced loss of this metal plate from the surface resistivity of the metal plate 2 measured in advance using a standard sample, and subtracting that value from the value of the dielectric loss measured using the sample. I asked for it.
- the relative permittivity (£ r ) is calculated from the TE01 1 mode resonance frequency peak and the sample size obtained by measuring the frequency characteristics of the sample by transmitting a high frequency from one probe 4 of the network analyzer.
- the Q value was determined to be good if it was 10,000 or more at 8 GHz and the specific inductive capacity ( ⁇ “) was 25 or more.
- the temperature coefficient of resonance frequency (rf) is the measurement of the resonance frequency The temperature was changed by changing the temperature from 30 to +85 "C.
- the temperature coefficient (T!) Of the resonance frequency was determined to be good if it was within the range of +20 to 110 ppmZt :.
- the measurement results are also shown in FIGS. 1 to 5.
- the number of samples is 50 for each sample number, and the values shown in Fig. 1 to Fig. 5 are their average values.
- the unloaded Q is high, and the relative dielectric constant ( ⁇ ") is a high value of 25 or more.
- the temperature coefficient of resonance frequency ( f ) was also good within the range of +20 to one IOPP mZ :.
- FIGS. 7 to 13 The values of x, y and z, the firing temperature, and the manufacturing conditions of the above composition are shown in FIGS. 7 to 13.
- c in the column of the manufacturing conditions indicates that the raw materials for obtaining the predetermined composition were all prepared using the raw material powder, and then calcined, granulated, molded and sintered, and d was the raw material.
- B a x of (Z n l / 3, T a 2 c) Oa or the B a x (Mg i / 3 , T 2/3) C a T i Oa against 0 3 calcined powder By mixing the calcined powders, followed by granulation, molding and sintering.
- c corresponds to the method of (5)
- d corresponds to the method of (6).
- the method of obtaining the Q value, the specific induction ratio (£ r ), and the temperature coefficient of the resonance frequency (r f ) is the same as in the first embodiment.
- the measurement results are also shown in FIGS. 7 to 13.
- the number of samples is 20 for each sample No. 0, and the values shown in Fig. 7 to Fig. 13 are their average values.
- the dielectric ceramic composition obtained by applying the method of the present invention maintains a Q value of 10,000 or more at 8 GHz and a relative dielectric constant (£ r) of 28 or more. It has a high value, and the temperature coefficient of the resonance frequency (r r ) also shows a value within the range of +20 to -1 Oppmz.
- E in the column of manufacturing conditions indicates that the preparation of the raw materials to obtain the prescribed composition was performed using all the raw material powders, and then calcined, granulated, molded and sintered, and f represents the preparation of the raw materials.
- e corresponds to the method of (8)
- f corresponds to the method of (9).
- the method of obtaining the Q value, the relative dielectric constant (£ r ), and the temperature coefficient ( te ) of the resonance frequency is the same as in the first embodiment.
- the measurement results are also shown in FIGS. 14 to 18.
- the number of samples is 50 for each sample number, and the values shown in Fig. 14 to Fig. 18 are their average values.
- the Q value is maintained at 10,000 or more at 8 GIIz, the relative dielectric constant) is as high as 28 or more, and the resonance frequency is high.
- the temperature coefficient (rr) of the sample showed a value in the range of +20 to 1 10 ppmZ "C. Industrial applicability
- the dielectric ceramic composition of the present invention has a high unloaded Q and a high relative dielectric constant ( ⁇ r), and has a temperature coefficient of resonance frequency (r f ) in the range of +20 to ⁇ 10 ppmZ′C. Shows the value of By using this dielectric ceramic composition, it is possible to provide a porcelain element having higher versatility than before, for use as a compress, for electric equipment circuits, and the like.
- This dielectric porcelain composition has a lower firing temperature range than conventional ones, and can be easily manufactured by applying the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/809,073 US5733831A (en) | 1994-09-20 | 1995-09-14 | Ceramic dielectrics and methods for forming them |
EP95931429A EP0782976A4 (en) | 1994-09-20 | 1995-09-14 | DIELECTRIC PORCELAIN COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF |
FI971138A FI971138A0 (fi) | 1994-09-20 | 1997-03-18 | Keraamisia eristeitä ja menetelmiä niiden muodostamiseksi |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6/225007 | 1994-09-20 | ||
JP22500794 | 1994-09-20 | ||
JP11084695 | 1995-05-09 | ||
JP7/110846 | 1995-05-09 | ||
JP7/110575 | 1995-05-09 | ||
JP11057595 | 1995-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996009264A1 true WO1996009264A1 (en) | 1996-03-28 |
Family
ID=27311768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/001851 WO1996009264A1 (en) | 1994-09-20 | 1995-09-14 | Dielectric porcelain composition and process for producing the same |
Country Status (5)
Country | Link |
---|---|
US (1) | US5733831A (ja) |
EP (1) | EP0782976A4 (ja) |
CN (1) | CN1158599A (ja) |
FI (1) | FI971138A0 (ja) |
WO (1) | WO1996009264A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000043366A1 (fr) * | 1999-01-22 | 2000-07-27 | Kirin Beer Kabushiki Kaisha | Derives de quinoline et derives de quinazoline |
CN106045513A (zh) * | 2016-08-08 | 2016-10-26 | 苏州博恩希普新材料科技有限公司 | 一种中介电常数、高品质因子的微波介质陶瓷及制备方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69738011D1 (de) * | 1996-10-25 | 2007-09-27 | Ngk Spark Plug Co | Dielektrisches Material, Verfahren zu dessen Herstellung und dieses Material enthaltende dielektrische Resonatorvorrichtung |
CN1072628C (zh) * | 1997-12-05 | 2001-10-10 | 中国科学院上海硅酸盐研究所 | 高频用介质陶瓷组成及制备工艺 |
CN1063733C (zh) * | 1998-04-19 | 2001-03-28 | 浙江大学 | 高介电常数微波介质陶瓷及其制备方法 |
US7557055B2 (en) * | 2004-09-20 | 2009-07-07 | Paratek Microwave, Inc. | Tunable low loss material composition |
EP2530851A3 (en) * | 2011-06-03 | 2015-07-08 | Samsung Electronics Co., Ltd. | Repeater connected to a gateway and a client device via the Wi-Fi protocol with filtering of different frequency bands |
EP2530850A3 (en) | 2011-06-03 | 2015-07-08 | Samsung Electronics Co., Ltd. | Repeater connected to a gateway and a client device via the Wi-Fi protocol with filtering of different frequency bands. |
JP6565377B2 (ja) * | 2015-06-29 | 2019-08-28 | Tdk株式会社 | 誘電体組成物および電子部品 |
JP6455343B2 (ja) * | 2015-06-29 | 2019-01-23 | Tdk株式会社 | 誘電体組成物および電子部品 |
CN106316395B (zh) * | 2016-08-08 | 2019-09-13 | 苏州博恩希普新材料科技有限公司 | 一种高介电常数、高品质因子的微波介质陶瓷及制备方法 |
CN110407579B (zh) * | 2018-04-28 | 2021-04-16 | 中国科学院上海硅酸盐研究所 | 一种具有超高q值微波介质材料及其制备方法 |
CN115340374B (zh) * | 2022-08-16 | 2023-04-21 | 无锡市高宇晟新材料科技有限公司 | MgTiO3基复合微波介质陶瓷及其制备方法、应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5477000A (en) * | 1977-11-30 | 1979-06-20 | Matsushita Electric Ind Co Ltd | Dielectric porcelain material |
JPS5696769A (en) * | 1980-12-10 | 1981-08-05 | Matsushita Electric Ind Co Ltd | Dielectric material |
JPS6119004A (ja) * | 1984-07-04 | 1986-01-27 | 松下電器産業株式会社 | 誘電体磁器組成物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5948484A (ja) * | 1982-09-14 | 1984-03-19 | Kitasato Inst:The | 抗生物質OM−173α↓2およびβ↓2物質ならびにその製造方法 |
US5525562A (en) * | 1994-01-25 | 1996-06-11 | Matsushita Electric Industrial Co., Ltd. | Dielectric ceramic compound |
US5484753A (en) * | 1994-03-08 | 1996-01-16 | Matsushita Electric Industrial Co., Ltd. | Dielectric ceramic compositions |
US5629252A (en) * | 1995-06-15 | 1997-05-13 | Matsushita Electric Industrial Co., Ltd. | Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device |
-
1995
- 1995-09-14 WO PCT/JP1995/001851 patent/WO1996009264A1/ja not_active Application Discontinuation
- 1995-09-14 EP EP95931429A patent/EP0782976A4/en not_active Withdrawn
- 1995-09-14 US US08/809,073 patent/US5733831A/en not_active Expired - Fee Related
- 1995-09-14 CN CN95195188A patent/CN1158599A/zh active Pending
-
1997
- 1997-03-18 FI FI971138A patent/FI971138A0/fi unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5477000A (en) * | 1977-11-30 | 1979-06-20 | Matsushita Electric Ind Co Ltd | Dielectric porcelain material |
JPS5696769A (en) * | 1980-12-10 | 1981-08-05 | Matsushita Electric Ind Co Ltd | Dielectric material |
JPS6119004A (ja) * | 1984-07-04 | 1986-01-27 | 松下電器産業株式会社 | 誘電体磁器組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0782976A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000043366A1 (fr) * | 1999-01-22 | 2000-07-27 | Kirin Beer Kabushiki Kaisha | Derives de quinoline et derives de quinazoline |
US7169789B2 (en) | 1999-01-22 | 2007-01-30 | Kirin Beer Kabushiki Kaisha | Quinoline derivatives and quinazoline derivatives |
KR100787254B1 (ko) * | 1999-01-22 | 2007-12-20 | 기린 홀딩스 가부시키가이샤 | 퀴놀린유도체 및 퀴나졸린유도체 |
CN106045513A (zh) * | 2016-08-08 | 2016-10-26 | 苏州博恩希普新材料科技有限公司 | 一种中介电常数、高品质因子的微波介质陶瓷及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US5733831A (en) | 1998-03-31 |
FI971138L (fi) | 1997-03-18 |
FI971138A0 (fi) | 1997-03-18 |
EP0782976A1 (en) | 1997-07-09 |
CN1158599A (zh) | 1997-09-03 |
EP0782976A4 (en) | 1998-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100434422B1 (ko) | 고주파 세라믹 콤팩트, 그 이용 및 그 제조방법 | |
WO1996009264A1 (en) | Dielectric porcelain composition and process for producing the same | |
WO1998043924A1 (fr) | Composition ceramique dielectrique et resonateur dielectrique conçu a partir de cette composition | |
JPH05211007A (ja) | マイクロ波用誘電体磁器組成物 | |
JPH1171173A (ja) | 誘電体材料及びその製造方法 | |
JPH08295561A (ja) | 誘電体磁器組成物 | |
WO1996008019A1 (en) | Dielectric procelain composition and its manufacture | |
JPH0542762B2 (ja) | ||
JP2003146752A (ja) | 誘電体磁器組成物 | |
US5977005A (en) | Microwave dielectric porcelain composition | |
JP2000327412A (ja) | 高周波用誘電体セラミック組成物及び誘電体共振器 | |
JPH0377146B2 (ja) | ||
JP3398281B2 (ja) | 高周波用誘電体磁器組成物および誘電体共振器 | |
JP2004143033A (ja) | 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信機装置 | |
JPH0877828A (ja) | 誘電体磁器組成物及びその製造方法 | |
JP4830286B2 (ja) | 高周波用誘電体磁器組成物、誘電体共振器、誘電体フィルタ、誘電体デュプレクサ、および通信機装置 | |
JPH0850813A (ja) | 誘電体磁器組成物 | |
JPH0580764B2 (ja) | ||
KR0162873B1 (ko) | 고주파용 유전체 자기 조성물 | |
JPH033628B2 (ja) | ||
JPH11214812A (ja) | 高周波用配線基板 | |
JPH05205520A (ja) | 誘電体磁器組成物 | |
JPH09110518A (ja) | 誘電体磁器組成物 | |
JP2004107153A (ja) | 高周波用誘電体磁器、誘電体共振器、誘電体フィルタ、誘電体デュプレクサおよび通信機装置 | |
JPH08301656A (ja) | 高周波用誘電体磁器組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95195188.2 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN FI JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 08809073 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 971138 Country of ref document: FI |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995931429 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995931429 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995931429 Country of ref document: EP |