WO1996008521A1 - Polymerization process - Google Patents
Polymerization process Download PDFInfo
- Publication number
- WO1996008521A1 WO1996008521A1 PCT/US1995/011594 US9511594W WO9608521A1 WO 1996008521 A1 WO1996008521 A1 WO 1996008521A1 US 9511594 W US9511594 W US 9511594W WO 9608521 A1 WO9608521 A1 WO 9608521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- range
- polymer
- accordance
- ethylene
- metallocene catalyst
- Prior art date
Links
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 62
- 239000012968 metallocene catalyst Substances 0.000 claims abstract description 32
- 150000001336 alkenes Chemical class 0.000 claims abstract description 5
- 239000003054 catalyst Substances 0.000 claims description 49
- 239000000178 monomer Substances 0.000 claims description 31
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 26
- 239000005977 Ethylene Substances 0.000 claims description 25
- 239000012190 activator Substances 0.000 claims description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims description 21
- 150000001993 dienes Chemical class 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 12
- 239000004711 α-olefin Substances 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 239000002516 radical scavenger Substances 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 7
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 239000003446 ligand Substances 0.000 description 24
- -1 benzindenyl Chemical group 0.000 description 23
- 239000007789 gas Substances 0.000 description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 16
- 150000003624 transition metals Chemical class 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 14
- 229910052723 transition metal Inorganic materials 0.000 description 13
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 10
- 238000012685 gas phase polymerization Methods 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 9
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 7
- 239000003607 modifier Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 4
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 4
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 4
- 229920002943 EPDM rubber Polymers 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 3
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 3
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229920000034 Plastomer Polymers 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 150000005840 aryl radicals Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 150000003623 transition metal compounds Chemical class 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- KEMUGHMYINTXKW-NQOXHWNZSA-N (1z,5z)-cyclododeca-1,5-diene Chemical compound C1CCC\C=C/CC\C=C/CC1 KEMUGHMYINTXKW-NQOXHWNZSA-N 0.000 description 1
- GDDAJHJRAKOILH-QFXXITGJSA-N (2e,5e)-octa-2,5-diene Chemical compound CC\C=C\C\C=C\C GDDAJHJRAKOILH-QFXXITGJSA-N 0.000 description 1
- HITROERJXNWVOI-SOFGYWHQSA-N (5e)-octa-1,5-diene Chemical compound CC\C=C\CCC=C HITROERJXNWVOI-SOFGYWHQSA-N 0.000 description 1
- RJUCIROUEDJQIB-GQCTYLIASA-N (6e)-octa-1,6-diene Chemical compound C\C=C\CCCC=C RJUCIROUEDJQIB-GQCTYLIASA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- PPWUTZVGSFPZOC-UHFFFAOYSA-N 1-methyl-2,3,3a,4-tetrahydro-1h-indene Chemical compound C1C=CC=C2C(C)CCC21 PPWUTZVGSFPZOC-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical compound C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 1
- IZLXZVWFPZWXMZ-UHFFFAOYSA-N 5-cyclohexylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2=C1CCCCC1 IZLXZVWFPZWXMZ-UHFFFAOYSA-N 0.000 description 1
- BDEXHIMNEUYKBS-UHFFFAOYSA-N 5-cyclopent-2-en-1-ylbicyclo[2.2.1]hept-2-ene Chemical compound C1=CCCC1C1C(C=C2)CC2C1 BDEXHIMNEUYKBS-UHFFFAOYSA-N 0.000 description 1
- VSQLAQKFRFTMNS-UHFFFAOYSA-N 5-methylhexa-1,4-diene Chemical compound CC(C)=CCC=C VSQLAQKFRFTMNS-UHFFFAOYSA-N 0.000 description 1
- CJQNJRMLJAAXOS-UHFFFAOYSA-N 5-prop-1-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=CC)CC1C=C2 CJQNJRMLJAAXOS-UHFFFAOYSA-N 0.000 description 1
- UGJBFMMPNVKBPX-UHFFFAOYSA-N 5-propan-2-ylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C(C)C)CC1C=C2 UGJBFMMPNVKBPX-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 150000004856 boroles Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 239000004746 geotextile Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910001504 inorganic chloride Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 150000002848 norbornenes Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920003053 polystyrene-divinylbenzene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920006300 shrink film Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920006302 stretch film Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- NDUUEFPGQBSFPV-UHFFFAOYSA-N tri(butan-2-yl)alumane Chemical compound CCC(C)[Al](C(C)CC)C(C)CC NDUUEFPGQBSFPV-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- FKZRUNLXHXCDRT-UHFFFAOYSA-N tritert-butylalumane tris(2-methylpropyl)alumane Chemical compound CC(C)C[Al](CC(C)C)CC(C)C.CC(C)(C)[Al](C(C)(C)C)C(C)(C)C FKZRUNLXHXCDRT-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
- C08F210/18—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/34—Polymerisation in gaseous state
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
- C08F4/65922—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
- C08F4/65925—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
Definitions
- the present invention relates to a gas phase polymerization process for producing polymers having a very low density, such as rubbers, elastomers and plastomers.
- U.S. Patent No. 4,994,534 describes a process for producing polymers, referred to as "sticky polymers", such as ethylene/propylene rubber where carbon black, silica or clay is added to the reactor during polymerization. Addition of these materials to the reactor not only results in polymer that cannot be used in many applications, but can result in the fouling of heat exchangers, compressors and other like parts of reactor systems.
- U.S. Patent No. 5,017,665 describes a gas phase polymerization process of ethylene, butene-1 and 1 ,4-hexadiene in the presence of a metallocene/alumoxane catalyst system to produce a polymer having a low density and very high melt index indicative of a very low molecular weight polymer. Therefore, it would be highly desirable to provide a commercially useful gas phase polymerization process for producing, a relatively high molecular weight polymer having a low density
- This invention relates to a gas phase polymerization process for producing elastomeric or plastomeric polymers in the presence of a metallocene polymerization catalyst
- the polymers having a density less than 0 90g/cc and a melt index less than 20 dg/min and/or a density less than 0 88 g/cc and a melt index less than about 30 dg/min
- the invention provides for a polymerization process for polymerizing two or more olefins, optionally with at least one diene monomer, in the presence of a metallocene catalyst system to produce a polymer having a relatively high molecular weight and a density less than 0 90 g/cc
- a metallocene catalyst system to produce a polymer having a relatively high molecular weight and a density less than 0 90 g/cc
- the polymers of the invention are useful in a variety of end-use applications, particularly in film applications
- the invention is directed to a gas phase polymerization for producing polymers having a very low density sometimes referred to as rubbers, elastomers or plastomers It has been discovered that these polymers can be produced commercially in a gas phase process using a metallocene catalyst with excellent operability In addition it was surprising that the process could be operated at a temperature very close to the melting temperature of the polymer, thus maximizing the production capabilities of the process
- Metallocene catalysts are typically those bulky ligand transition metal compounds derivable from the formula [L] m M[A] n where L is a bulky ligand, A is leaving group, M is a transition metal and m and n are such that the total ligand valency corresponds to the transition metal valency
- the catalyst is four co-ordinate such that the compound is ionizable to a 1 + charge state.
- the ligands L and A may be bridged to each other, and if two ligands L and/or A are present, they may be bridged.
- the metallocene compound may be full-sandwich compounds having two or more ligands L, which may be cyclopentadienyl ligands or cyclopentadiene derived ligands, or half-sandwich compounds having one ligand L, which is a cyclopentadienyl ligand or derived ligand.
- At least one ligand L has a multiplicity of bonded atoms, preferably 4 to 20 carbon atoms, that typically is a cyclic structure or ring system such as a ligand, which may be substituted or unsubstituted.
- ligands include a cyclopentadienyl ligand, or a cyclopentadienyl derived ligand such as an indenyl ligand, a benzindenyl ligand or a fluorenyl ligand and the like or any other ligand capable of ⁇ -5 bonding to a transition metal atom.
- a cyclopentadienyl ligand or a cyclopentadienyl derived ligand such as an indenyl ligand, a benzindenyl ligand or a fluorenyl ligand and the like or any other ligand capable of ⁇ -5 bonding to a transition metal atom.
- the transition metal atom may be a Group 4, 5 or 6 transition metal and/or a metal from the lanthanide and actinide series, preferably the transition metal is of Group 4.
- Other ligands may be bonded to the transition metal, such as a leaving group, such as but not limited to hydrocarbyl, hydrogen, or any other univalent anionic ligand.
- Non-limiting examples of metallocene catalysts and catalyst systems are discussed in for example, U.S. Patent Nos.
- EP-A-0 591 756, EP-A-0 520 732, EP-A- 0 420 436, WO 91/04257 WO 92/00333, WO 93/08221, and WO 93/08199 are all fully incorporated herein by reference.
- the metallocene catalyst component of the invention can be a monocyclopentadienyl heteroatom containing compound. This heteroatom is activated by either an alumoxane, an ionizing activator, a Lewis acid or a combination thereof to form an active polymerization catalyst system.
- alumoxane an ionizing activator
- Lewis acid a Lewis acid
- WO 94/03506 U.S. Patent Nos. 5,057,475, 5,096,867, 5,055,438, 5,198,401, 5,227,440 and 5,264,405 and EP-A-0 420 436, all of which are fully incorporated herein by reference.
- the metallocene catalysts useful in this invention can include non- cyclopentadienyl catalyst components, or ancillary ligands such as boroles or carbollides in combination with a transition metal or can be a bi-metallic transition metal compound. Additionally it is within the scope of this invention that the metallocene catalysts and catalyst systems may be those described in U.S. Patent Nos.
- the preferred transition metal component of the catalyst of the invention are those of Group 4, particularly, zirconium, titanium and hafnium.
- the transition metal may be in any oxidation state, preferably +3 or +4 or a mixture thereof.
- the term "metallocene catalyst” is defined to contain at least one metallocene catalyst component containing one or more cyclopentadienyl moiety in combination with a transition metal.
- the metallocene catalyst component is represented by the general formula (Cp)mMRnR'p wherein at least one Cp is an unsubstituted or, preferably, at least one Cp is a substituted cyclopentadienyl ring or cyclopentadienyl moiety, symmetrical or unsymetrically substituted;
- M is a Group 4, 5 or 6 transition metal;
- R and R' are independently selected halogen, hydrocarbyl group, or hydrocarboxyl groups having 1-20 carbon atoms or combinations thereof;
- the Cp can be substituted with a a combination of substituents, which can be the same or different.
- substituents include hydrogen or a linear, branched or cyclic alkyl, alkenyl or aryl radical having from 1 to 20 carbon atoms.
- the substituent can also be substituted with hydrogen or a linear, branched or cyclic alkyl, alkenyl or aryl radical having from 1 to 20 carbon atoms.
- the Cp can be a substituted or unsubstituted ring system such as an indenyl moiety, a benzindenyl moiety, a fluorenyl moiety or the like.
- the metallocene catalyst component is represented by one of the formulas: (C5R' m )pR"s(C5R , m)MQ3-p- ⁇ and
- cocatalysts and “activators” are used interchangeably and are defined to be any compound or component which can activate a metallocene catalyst as defined above, for example, an electron donor or any other compound that can convert a neutral metallocene catalyst component to a metallocene cation. It is within the scope of this invention to use alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, or compounds such as tri (n-butyl) ammonium tetra bis(pentaflurophenyl) boron or trisperfluoro phenyl boron metalloid precursor, which ionize the neutral metallocene compound.
- Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated or only loosely coordinated to the remaining ion of the ionizing compound.
- Such compounds and the like are described in EP- A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-A-0 426 637, EP-A-500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Patent Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197 and 5,241,025 and U.S. Patent Application Serial No. 08/285,380, filed August 3, 1994 and are all herein fully incorporated by reference.
- Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, WO 94/07928.
- two or more metallocene catalyst components as describe above can be combined to form a catalyst system useful in the invention.
- metallocene catalyst components can be combined to form the blend compositions as described in PCT publication WO 90/03414 published April 5, 1990, fully incorporated herein by reference.
- mixed metallocenes as described in U.S. Patent Nos. 4,937,299 and 4,935,474, both are herein folly incorporated herein by reference, can be used to produce polymers having a broad molecular weight distribution and or a multimodal molecular weight distribution.
- At least one metallocene catalyst can be combined with a non-metallocene or traditional Ziegler-Natta catalyst or catalyst system, non-limiting examples are described in U.S. Patent Nos. 4,701,432, 5,124,418, 5,077,255 and 5,183,867 all of which are incorporated herein by reference.
- carrier or “support” are interchangeable and can be any support material, preferably a porous support material, such as for example, talc, inorganic oxides, inorganic chlorides, for example magnesium chloride and resinous support materials such as polystyrene or polystyrene divinyl benzene polyolefins or polymeric compounds or any other organic support material and the like, or mixtures thereof.
- a porous support material such as for example, talc, inorganic oxides, inorganic chlorides, for example magnesium chloride and resinous support materials such as polystyrene or polystyrene divinyl benzene polyolefins or polymeric compounds or any other organic support material and the like, or mixtures thereof.
- the preferred support materials are inorganic oxide materials, which include those of Groups 2, 3, 4, 5, 13 or 14 metal oxides.
- the catalyst support materials include silica, alumina, silica-alumina, and mixtures thereof.
- Other inorganic oxides that may be employed either alone or in combination with the silica, alumina or silica-alumina are magnesia, titania, zirconia, and the like.
- the carrier of the catalyst of this invention has a surface area in the range of from about 10 to about 700 rn ⁇ /g, pore volume in the range of from about 0.1 to about 4.0 cc/g and average particle size in the range of from about 10 to about 500 ⁇ m. More preferably, the surface area is in the range of from about 50 to about 500 m ⁇ /g, pore volume of from about 0.5 to about 3.5 cc/g and average particle size of from about 20 to about 200 ⁇ m. Most preferably the surface area range is from about 100 to about 400 m ⁇ /g, pore volume from about 0.8 to about 3.0 cc/g and average particle size is from about 10 to about 100 ⁇ m.
- the pore size of the carrier of the invention typically has pore size in the range of from 10 to lOOOA, preferably 50 to about 500 A, and most preferably 75 to about 350 A.
- the metallocene catalyst component is supported on an carrier, optionally with an activator.
- the metallocene catalyst component can be supported on a carrier and the activator added to the reactor, optionally on a support material which can be the same as or different from the carrier.
- the metallocene catalyst component and the activator can be added to the reactor as a spray, see for example U.S. Patent No. 5,317,036 herein fully incorporated by reference.
- the catalyst system which includes the metallocene catalyst component and the activator, is supported on a carrier.
- Non- limiting examples of supporting the catalyst system used in the invention are described in U.S. Patent Nos. 4,937,217, 4,912,075, 4,935,397, 4,937,301, 4,914,253, 5,008,228, 5,086,025, 5,147,949, 4,808,561, 4,897,455, 4,701,432, 5,238,892, 5,240,894, 5,332,706 and WO 95/10542 published April 20, 1995, WO 95/07939 published March 3, 1995, WO 94/26793 published November 24, 1994 and WO 95/12622 published May 1 1, 1995 all of which are herein incorporated by reference.
- the metallocene catalyst component is typically slurried or dissolved in a liquid to form a metallocene solution and a separate solution is formed containing an activator and a liquid.
- the liquid can be any compatible solvent or other liquid capable of forming a solution or the like with at least one metallocene catalyst component and/or at least one activator.
- the liquid is a cyclic aliphatic or aromatic hydrocarbon, most preferably toluene.
- the metallocene and activator solutions are preferably mixed together and added to a porous support such that the total volume of the metallocene solution and the activator solution or the metallocene and activator solution is less than four times the pore volume of the porous support, more preferably less than three times, even more preferably less than two times the pore volume.
- the range for the total volume of the metallocene solution and activator solution or the metallocene/activator solution added to a porous support is between about 1 to about 4 times, preferably greater than 1 times to about 3.5 times the pore volume of the porous support.
- the range of the total volume of the solutions is in the range of from greater than 1.1 to about 3 times, preferably about 1.25 to about 3 times, and most preferably from about 1.4 to about 2.9 times the pore volume of the carrier used to form the catalyst.
- a surface modifier can be added at any stage in the preceding methods of making the catalyst system useful in the process of the invention.
- the surface modifier is added after the solution is added to the porous support. See U.S. Patent Application No. 08/322,675 filed October 13, 1994, folly incorporated herein by reference.
- the supported catalyst is produced by contacting an organometallic compound, such as trimethyl aluminum with silica containing water, absorbed or adsorbed, within the carrier to form an activator, alumoxane for example.
- an organometallic compound such as trimethyl aluminum
- silica containing water absorbed or adsorbed
- the metallocene catalyst component is then added to the carrier and formed activator with or separately from a surface modifier, preferably after the metallocene has been added.
- the catalyst system of the invention can be added in a dry or slurry state to the reactor.
- the catalyst system is prepolymerized in the presence of monomers, ethylene and/or an alpha-olefin monomer having 3 to 20 carbon atoms prior to the main polymerization.
- the prepolymerization can be carried out batchwise or continuously in gas, solution or slurry phase including at elevated pressures.
- the prepolymerization can take place with any monomer or combination thereof and/or in the presence of any molecular weight controlling agent such as hydrogen.
- any molecular weight controlling agent such as hydrogen.
- the mole ratio of the metal of the activator component to the transition metal of the metallocene component is in the range of ratios between 0.3:1 to 1000: 1, preferably 20: 1 to 800: 1, and most preferably 50: 1 to 500: 1.
- the activator is an ionizing activator as previously described
- the mole ratio of the metal of the activator component to the transition metal component is preferably in the range of ratios between 0.3: 1 to 3 : 1.
- the catalysts and catalyst systems described above are suited for the polymerization of monomers in a gas phase polymerization process.
- the invention is directed toward gas phase polymerization reactions involving the polymerization of two or more of the monomers including ethylene and at least one alpha-olefin monomer having from 3 to 20 carbon atoms, preferably 3-12 carbon atoms.
- the invention is particularly well suited to the copolymerization reactions involving the polymerization of one or more of the monomers, for example alpha-olefin monomers of ethylene, propylene, butene-1, pentene-1, 4-methylpentene-l, hexene-1, octene-1, decene-1, and cyclic olefins such as cyclopentene, and styrene or a combination thereof.
- Other monomers can include polar vinyl, diolefins such as dienes, polyenes, norbornene, norbornadiene, acetylene and aldehyde monomers.
- polar vinyl, diolefins such as dienes, polyenes, norbornene, norbornadiene, acetylene and aldehyde monomers.
- a copolymer of ethylene or propylene is produced.
- the comonomer is an alpha-olefin having from 3 to 15 carbon atoms, preferably 4 to 12 carbon atoms and most preferably 4 to 10 carbon atoms.
- ethylene or propylene is polymerized with at least two different comonomers to form a terpolymer and the like
- the preferred comonomers are a combination of alpha-olefin monomers having 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, optionally with at least one diene monomer
- the preferred terpolymers include the combinations such as ethylene/ butene- 1 /hexene- 1 , ethylene/propylene/butene- 1 , propylene/ethylene/butene- 1 , propylene/ethylene/hexene-1, ethylene/propylene/norbornadiene and the like.
- the invention in another embodiment relates to a gas phase process for producing olefin based elastomeric polymers produced by the copolymerization of ethylene, an alpha-olefin having from 3 to 20 carbon atoms and a diene monomer.
- Non-limiting common elastomers include copolymers of ethylene and propylene often referred to as EP elastomers and terpolymers of ethylene, propylene and a diene monomer often referred to as EPDM elastomers.
- EPDM encompasses polymers comprised of ethylene, an alpha-olefin, and one or more non-conjugated diene monomer.
- the non-conjugated diene monomer can be straight chain, branched chain or cyclic hydrocarbon diene having from about 6 to 20 carbon atoms.
- Non- limiting examples of non-conjugated dienes are straight chain acyclic dienes such as 1,4-hexadiene and 1,6-octadiene; branched chain acyclic dienes include 5-methyl- 1 ,4-hexadiene, 3,-7-dimethyl-l,6-octadiene, 3,7-dimethyl-l,7-octadiene and mixed isomers of dihydro myricene and dihydro cinene; single ring alicyclic dienes such as 1,3-cyclopentadiene, 1,4-cyclopentadiene and 1,5-cyclododecadiene; and multi- ring alicyclic methyltetrahydroindene, dicyclopentadiene, bicyclo-(2,2,l)-hepta-2,5
- the dienes typically preferred are 1 ,4-hexadiene (HD), 5-ethylidene-2- norbornene (ENB), 5-vinylidiene-2-norbornene (VNB), 5-methylene-2-norbornene (MNB), and dicyclopentadiene (DCPD), the most preferred dienes are 5- ethylidene-2-norbornene (ENB) and 1 ,4-hexadiene.
- a continuous cycle is employed where in one part of the cycle of a reactor, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization.
- the recycle stream usually contains one or more monomers continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. This heat is removed in another part of the cycle by a cooling system external to the reactor.
- the recycle stream is withdrawn from the fluidized bed and recycled back into the reactor.
- polymer product is withdrawn from the reactor and new or fresh monomer is added to replace the polymerized monomer. See for example U.S. Patent Nos. 4,543,399, 4,588,790, 5,028,670, 5,352,749, 5,405,922 and 5,436,304 all of which are folly incorporated herein by reference.
- the process is a gas phase polymerization process operating in a condensed mode.
- the process of pu ⁇ osefolly introducing a liquid and a gas phase into a reactor such that the weight percent of liquid based on the total weight of the recycle stream is greater than about 2.0 weight percent is defined to be operating a gas phase polymerization process in a "condensed mode".
- the weight percent of liquid in the recycle stream based on the total weight of the recycle stream is in the range of about 2 to about 50 weight percent, preferably greater than 10 weight percent and more preferably greater than 15 weight percent and even more preferably greater than 20 weight percent and most preferably in the range between about 20 and about 40 percent.
- a surface modifier or antistatic agent as described in U.S. Patent No. 5,238,278 can be introduced into the reactor together, separately or apart, from the catalyst system of the invention.
- the process is operated in the absence of or essentially free of a scavenger.
- a "scavenger” is any organometallic compound which is reactive towards oxygen and/or water and/or polar compounds and which does not include the catalyst components of the invention.
- Non-limiting examples of scavengers can be generally represented by the formula R n A, where A is a Group 12 or 13 element, each R, which can be the same or different, is a substituted or unsubstituted, straight or branched alkyl radical, cyclic hydrocarbyl, alkyl-cyclo hydrocarbyl radicals or an alkoxide radical, where n is 2 or 3.
- Typical scavengers include trialkylaluminum compounds such as trimethylaluminum, triethylaluminum, triisopropyl aluminum, tri-sec-butyl aluminum, tri-t-butyl aluminum triisobutyl aluminum, trialkyl boranes and alkoxides and the like.
- the process is essentially free of a scavenger.
- the term "essentially free" means that during the process of the invention no more than 10 ppm of a scavenger based on the total weight of the recycle stream is present at any given point in time during the process of the invention.
- a scavenger is present in an amount less than 300 ppm, preferably less than 250 ppm, more preferably less than 200 ppm, even more preferably less than 150 ppm, still more preferably less than 100 ppm, and most preferably less than 50 ppm based on the total bed weight of a fluidized bed during the first 12 hours from the time the catalyst is placed into the reactor, preferably up to 6 hours, more preferably less than 3 hours, even more preferably less than 2 hours, and most preferably less than 1 hour and then the introduction of the scavenger is halted.
- the reactor utilized in the present invention is capable of producing greater than 500 lbs/hr (227 kg/hr) to about 200,000 lbs/hr (90,900 kg/hr)or higher of polymer, preferably greater than 1000 lbs/hr (455 kg/hr), more preferably greater than 10,000 lbs/hr (4540 kg/hr), even more preferably greater than 25,000 lbs/hr (1 1,300 kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 kg/hr) to greater than 100,000 lbs/hr (45,500 kg/hr).
- the hydrogen content in the gas phase is typically less than 10,000 ppm to less than about 50 ppm, preferably less than 5000 ppm, even more preferably less than 1000 ppm and still even more preferably less than 200 ppm, and most preferably less than 100 ppm
- the reactivity ratios of the catalysts and catalyst systems of this invention are generally less than 2, preferably less than 1 8 and more preferably less than 1.5 and most preferably less than about 1 Reactivity ratio is defined to be the mole ratio of comonomer to monomer in the recycle stream (C x /C v ) divided by the mole ratio of the comonomer to monomer in the polymer product, where C x is the mole percent of comonomer and C v is the mole percent of the monomer
- the preferred mole percent of ethylene in the gas phase is from about 15 to about 75 mole percent
- the reactor pressure may vary from about 100 psig (689 7 kPag) to about 500 psig (3448 3 kPag), preferably in the range of about 200 psig (1379 3 kPag) to about 400 psig (2758 6 kPag) and most preferably in the range of about 250 psig (1724 1 kPag) to about 350 psig (2413 8 kPag)
- reactor temperatures are in the range of about 65°F (18 3°C) to about 185°F (85 °C), preferably in the range of about 70°F (21 °C) to about 185°F (85°C), more preferably in the range of about 75°F (24°C) to about 185°F (85°C), even more preferably in the range of about 80°F (27°C) to about 185°F (85°C) and most preferably in the range of about 90°F (32°C) to about 180°F (82°
- the superficial gas velocity of the gas flow through the reactor generally exceeds the minimum flow required for fluidization which is typically from about 0 2 ft/sec (0 061 m/s) to about 0 5 ft/sec (0 153 m/s)
- the superficial gas velocity is maintained above about 0 7 ft/sec (0 214 m/s), more preferably at not less than 1 0 ft/sec (0 305 m/s) to about 5 ft/sec (1 5 m/s)
- the process is operated at a reactor temperature of within 10°C, preferably 8°C, more preferably within 5°C and most preferably within 3°C of the first melting point of the highest melting peak containing a majority of the polymer measured by Differential Scanning Colorimetry (DSC) methods known in the art using a General V4.1C Dupont 2200 machine.
- DSC Differential Scanning Colorimetry
- the catalyst productivity (grams of catalyst per gram of polymer (g/g)) is typically greater than 4000, more preferably greater than 5000, even more preferably greater than 5500 and most preferably greater than 6000.
- the catalyst has a productivity greater than 1500, preferably greater than 2000, more preferably greater than 2500 and most preferably greater than 3000.
- the polymers of the process of the invention typically have a density in the range of from about 0.85 g/cc to about 0.90 g/cc, preferably in the range of from about 0.86 g/cc to less than 0.900 g/cc, more preferably in the range of from about 0.86 g/cc to about 0.898 g/cc, even more preferably in the range of from about 0.86 g/cc to about 0.90 g/cc, still even more preferably in the range of from about 0.86 g/cc to about 0.88 g/cc and most preferably in the range of from about 0.865 g/cc to about 0.885 g/cc.
- the polymers of the invention have a density in the range of from 0.85 g/cc to about 0.875 g/cc, preferably 0.85 g/cc to about 0.87 g/cc, more preferably 0.85 g/cc to 0.865 g/cc.
- the polymers of the process of the invention have a weight average molecular weight (Mw) greater than about 40,000 to about 650,000, preferably greater than 45,000 and more preferably greater than 50,000 even more preferably greater than 60,000 and most preferably greater than 70,000.
- the melt index (MI) of the polymers of the process of the invention are in the range of from about 0.001 dg/min to about 30 dg/min, preferably in the range of from about 0.01 to about 25 dg/min, more preferably in the range of from about 0.01 dg/min to about 20 dg/min, even more preferably in the range of from at least 0.01 dg/min to about 10 dg/min, still even more preferably from about 0.01 dg/min to about 5 dg/min and most preferably from at least 0.01 dg/min to about 1 dg/min, preferably less than about 1 dg/min. MI as measured herein was determined according to ASTM-D-1238E.
- the polymers of the invention have a Mw/Mn (Mn is the number average molecular weight) generally in the range of from about 1.5 to about 30, preferably in the range of from about 1.8 to about 10, more preferably from about 2 to about 8 and most preferably from about 2.2 to about 6.
- Mn is the number average molecular weight
- CD composition distribution
- CDBI Composition Distribution Breadth Index
- the polymers of the invention have CDBI's generally in the range of 10 to 99%, preferably greater than 20%, most preferably greater than 30%. In another embodiment the polymers of the invention have a CDBI in the range of greater than 50% to 99%, preferably in the range of 55% to 85%, and more preferably 60% to 80%, even more preferably greater than 60%, still even more preferably greater than 65%.
- the preferred monomer is ethylene in combination with one or more other C3 to C20 alpha-olefin monomers, preferably C3 to C J O alpha-olefins.
- the weight percent of ethylene in the polymer is typically in the range of from about 85 weight percent to about 50 weight percent, preferably from about 80 weight percent to about 60 weight percent, and more preferably from about 80 weight percent to about 65 weight percent.
- the lower melting polymer ingredient of the polymer produced by the process of the invention typically has essentially a single melting point (second melt) characteristic with a peak melting point (Tm) as determined by DSC in the range of from about 20°C to about 1 15°C, preferably in the range of about 30°C to about 110°C and even more preferably in the range of from about 40°C to about 105°C and most preferably in the range of from about 40°C to about 100°C.
- Tm peak melting point
- the polymer produced by the process of the invention can have more than one melting peak, it can also have a unimodal, narrow, broad or multimodal molecular weight distribution or combination thereof.
- the bulk density of the polymer produced by the process of the invention is in the range of greater than 0.25 g/cc to about 0.55 g/cc, preferably in the range of 0.30 g/cc to greater than about 0.45 g/cc and most preferably greater than 0.35 g/cc.
- the preferred density range is between about 0.855 g/cc to about 0.880 g/cc and have a melt index in the range of 0.001 dg/min to about 20 dg/min.
- the density is in the range of greater than 0.855 g/cc to about 0.898 g/cc and a melt index in the range of greater than 0.001 dg/min to about 20 dg/min, preferably greater than about 0.05 dg/min to about 10 dg/min.
- the EPDM polymers produced by the invention contain non- conjugated dienes in the EPDM polymers in the range of about 0.1 to about 15 weight percent, preferably from about 0.5 to about 10 weight percent, even more preferably from about 1 to about 5, and most preferably from about 2 to 5 weight percent. More than one of the previously described dienes may be incorporated simultaneously with the total diene incorporating being within the above ranges. See U.S. Patent No. 5,229,478, folly incorporated herein by reference for additional information.
- the polymers produced by the process of the invention are useful in such forming operations include film, sheet, and fiber extrusion and co-extrusion as well as blow molding, injection molding, sheet thermoforming and rotational molding.
- Films include blown or cast films in mono-layer or multilayer constructions formed by coextrusion or by lamination. Such films are useful as shrink film, cling film, stretch film, sealing films, oriented films, snack packaging, heavy duty bags, grocery sacks, baked and frozen food packaging, medical packaging, industrial liners, membranes, etc., in food-contact and non-food contact applications.
- Fiber forming operations include melt spinning, solution spinning and melt blown fiber operations. Such fibers may be used in woven or non-woven form to make filters, diaper fabrics, medical garments, geotextiles, etc.
- General extruded articles include medical tubing, wire and cable coatings, geomembranes, and pond liners.
- Molded articles include single and multi-layered constructions in the form of bottles, tanks, large hollow articles, rigid food containers and toys, etc.
- Some uses for the polymer of this invention are described in U.S. Patent Nos. 5,358,792, 5,246,783, 5,206,075, 5,241,031 and, 5,322,728, all of which are herein folly inco ⁇ orated by reference.
- the polymers of the invention can be used in adhesives, for example hot melt adhesives, pressure sensitive adhesives and the like.
- the polymers can be used as modifiers for example in bitumen.
- the polymers produced by this present invention can be blended or coextruded into single or multilayer films or the like with various other polymers well known in the art, for instance, LLDPE, LDPE, HDPE, polypropylene, PB, EVA and the like and static controlling agents such as sorbitol.
- the properties of the polymer were determined by the following test methods:
- Density is measured in accordance with ASTM-D-1505.
- Bulk Density is measured as follows; the resin is poured via a 7/8" diameter funnel into a fixed volume cylinder of 400 cc; the bulk density is measured as the weight of resin in the cylinder divided by the 400 cc to give a value in g/cc.
- the metallocene catalyst was prepared from 800 lbs (364 kg) of silica (Davison 948 available from W.R. Grace, Davison Chemical Division, Baltimore,
- the catalyst was a commercial scale catalyst prepared in a mixing vessel with an agitator. An initial charge of 1156 pounds
- toluene was added to the mixer. This was followed by mixing 925 pounds (420 kg) of 30 percent by weight methyl alumoxane (MAO) in toluene (available from Albermarie Corporation, Baton Rouge, Louisiana). This was followed with 100 pounds (46 kg) of 20 percent by weight bis(l,3-methyl-n-butyl cyclopentadienyl) zirconium dichloride in toluene (20.4 pounds (9.3 kg) of contained metallocene). An additional 144 pounds (66 kg) of toluene was added to the mixer to rinse the metallocene feed cylinder and allowed to mix for 30 minutes at ambient conditions.
- MAO methyl alumoxane
- the above mixture was added to the silica after which 54.3 pounds (25 kg) of a Kemamine AS-990 in toluene solution, surface modifier solution, containing 5.3 pounds (2.4 kg) of contained Kemamine AS-990 (available from Witco Chemical Co ⁇ oration, Houston, Texas). An additional 100 pounds (46Kg) of toluene rinsed the surface modifier container and was added to the mixer. The total liquid volume was equivalent to 2.4 cc/cc pore volume of the silica. The resulting slurry was vacuum dried at 3.2 psia (22 kPa) at 175°F (79°C) to a free flowing powder. The final catalyst weight was 1093 pounds (497 kg).
- the catalyst had a final zirconium loading of 0.40 weight percent and an aluminum loading of 12.0 weight percent.
- Polymerization The polymerization was conducted in a 16 inch (41 cm) diameter continuous gas phase fluidized bed reactor in the presence of the catalyst prepared above. The fluidized bed is made up of polymer granules. The gaseous feed streams of monomer, ethylene, and hydrogen together with liquid comonomer were mixed together and introduced below the reactor bed into the recycle gas line. The individual flow rates of monomer, hydrogen and comonomer were controlled to maintain fixed composition targets. The ethylene concentration was controlled to maintain a constant ethylene partial pressure. The hydrogen was controlled to maintain a constant hydrogen to ethylene mole ratio. The concentration of all the gases were measured by an on-line gas chromatograph to ensure relatively constant composition in the recycle gas stream.
- the solid catalyst was injected directly into the fluidized bed using purified nitrogen as a carrier. Its rate was adjusted to maintain a constant production rate. No alkyl, for example trialkylaluminum was used.
- the reacting bed of growing polymer particles is maintained in a fluidized state by the continuous flow of the make up feed and recycle gas through the reaction zone.
- the reactor was operated at a total pressure of 300 psig (2069 kPa). To maintain a constant reactor temperature, the temperature of the recycle gas is continuously adjusted up or down to accommodate any changes in the rate of heat generation due to the polymerization.
- the fluidized bed was maintained at a constant height by withdrawing a portion of the bed at a rate equal to the rate of formation of paniculate product.
- the product is removed continuously via a series of valves into a fixed volume chamber, which is simultaneously vented back to the reactor. This allows for the highly efficient removal of the product, while at the same time recycling a large portion of the unreacted gases back to the reactor.
- This product is purged to remove entrained hydrocarbons and treated with a small stream of humidified nitrogen to deactivate any trace quantities of residual catalyst.
- PSIG Pressure
- Runs 1-6 illustrate the process of this invention. In all Runs 1-6 there was no indication of fouling or sheeting. The polymer product produced was dry with good particle mo ⁇ hology.
- the catalyst of the invention can be used in a single reactor or in a series reactor or even in series where one reactor is a slurry reactor and the other being a gas phase reactor. It is contemplated that the catalyst of the invention can be mixed with a traditional Ziegler-Natta catalyst or a catalyst of the invention can be separately introduced with a traditional Ziegler-Natta catalyst or any other metallocene catalyst system. For this reason, then, reference should be made solely to the appended claims for pu ⁇ oses of determining the true scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU35874/95A AU3587495A (en) | 1994-09-14 | 1995-09-13 | Polymerization process |
KR1019970701649A KR970706320A (en) | 1994-09-14 | 1995-09-13 | POLYMERIZATION PROCESS |
EP95933087A EP0781301A1 (en) | 1994-09-14 | 1995-09-13 | Polymerization process |
JP8510309A JPH10506659A (en) | 1994-09-14 | 1995-09-13 | Polymerization process |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/306,055 | 1994-09-14 | ||
US08/306,055 US5763543A (en) | 1994-09-14 | 1994-09-14 | Olefin polymerization process with little or no scavenger present |
US08/332,162 US5712353A (en) | 1994-10-31 | 1994-10-31 | Gas phase polymerization process |
US08/332,162 | 1994-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996008521A1 true WO1996008521A1 (en) | 1996-03-21 |
Family
ID=26974934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/011594 WO1996008521A1 (en) | 1994-09-14 | 1995-09-13 | Polymerization process |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0781301A1 (en) |
JP (1) | JPH10506659A (en) |
KR (1) | KR970706320A (en) |
AU (1) | AU3587495A (en) |
CA (1) | CA2199869A1 (en) |
WO (1) | WO1996008521A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098372A3 (en) * | 2000-06-22 | 2003-04-17 | Exxonmobil Chem Patents Inc | Metallocene-produced very low density polyethylenes |
US6932592B2 (en) | 2000-06-22 | 2005-08-23 | Exxonmobil Chemical Patents Inc. | Metallocene-produced very low density polyethylenes |
US7125933B2 (en) | 2000-06-22 | 2006-10-24 | Univation Technologies, Llc | Very low density polyethylene blends |
EP1541599A3 (en) * | 2003-12-12 | 2006-10-25 | Mitsui Chemicals, Inc. | Ethylene type ternary copolymer and propylene type resin composition |
WO2017005867A1 (en) | 2015-07-09 | 2017-01-12 | Ineos Europe Ag | Copolymers and films thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4595140B2 (en) * | 1997-11-12 | 2010-12-08 | 住友化学株式会社 | Thermoplastic resin composition |
US6911516B1 (en) * | 1999-08-13 | 2005-06-28 | Basell Polyolefine Gmbh | Copolymers of ethylene with c3-c12 α-olefins |
JP2010159217A (en) * | 2009-01-07 | 2010-07-22 | National Institute Of Advanced Industrial Science & Technology | Scaffold for regenerating tissue including gene and solubility-control factor, and method for producing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017665A (en) * | 1989-07-25 | 1991-05-21 | Exxon Chemical Patents Inc. | Supported catalyst for 1-olefin and 1,4-diolefin copolymerization |
WO1993004486A1 (en) * | 1991-08-15 | 1993-03-04 | Exxon Chemical Patents Inc. | Electrical devices having polymeric insulating or semiconducting members |
US5241031A (en) * | 1992-02-19 | 1993-08-31 | Exxon Chemical Patents Inc. | Elastic articles having improved unload power and a process for their production |
WO1994003509A1 (en) * | 1992-08-05 | 1994-02-17 | Exxon Chemical Patents Inc. | Gas phase polymerization of ethylene and c7 to c10 olefins |
-
1995
- 1995-09-13 CA CA002199869A patent/CA2199869A1/en not_active Abandoned
- 1995-09-13 AU AU35874/95A patent/AU3587495A/en not_active Abandoned
- 1995-09-13 EP EP95933087A patent/EP0781301A1/en not_active Withdrawn
- 1995-09-13 WO PCT/US1995/011594 patent/WO1996008521A1/en not_active Application Discontinuation
- 1995-09-13 JP JP8510309A patent/JPH10506659A/en active Pending
- 1995-09-13 KR KR1019970701649A patent/KR970706320A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017665A (en) * | 1989-07-25 | 1991-05-21 | Exxon Chemical Patents Inc. | Supported catalyst for 1-olefin and 1,4-diolefin copolymerization |
WO1993004486A1 (en) * | 1991-08-15 | 1993-03-04 | Exxon Chemical Patents Inc. | Electrical devices having polymeric insulating or semiconducting members |
US5241031A (en) * | 1992-02-19 | 1993-08-31 | Exxon Chemical Patents Inc. | Elastic articles having improved unload power and a process for their production |
WO1994003509A1 (en) * | 1992-08-05 | 1994-02-17 | Exxon Chemical Patents Inc. | Gas phase polymerization of ethylene and c7 to c10 olefins |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001098372A3 (en) * | 2000-06-22 | 2003-04-17 | Exxonmobil Chem Patents Inc | Metallocene-produced very low density polyethylenes |
WO2001098406A3 (en) * | 2000-06-22 | 2003-10-09 | Exxonmobil Chem Patents Inc | Polyethylene blends |
US6932592B2 (en) | 2000-06-22 | 2005-08-23 | Exxonmobil Chemical Patents Inc. | Metallocene-produced very low density polyethylenes |
US7125933B2 (en) | 2000-06-22 | 2006-10-24 | Univation Technologies, Llc | Very low density polyethylene blends |
EP1541599A3 (en) * | 2003-12-12 | 2006-10-25 | Mitsui Chemicals, Inc. | Ethylene type ternary copolymer and propylene type resin composition |
US7259211B2 (en) | 2003-12-12 | 2007-08-21 | Mitsui Chemicals, Inc. | Ethylene type ternary copolymer and propylene type resin composition |
WO2017005867A1 (en) | 2015-07-09 | 2017-01-12 | Ineos Europe Ag | Copolymers and films thereof |
US10676550B2 (en) | 2015-07-09 | 2020-06-09 | Ineos Europe Ag | Copolymers and films thereof |
EP4321564A2 (en) | 2015-07-09 | 2024-02-14 | Ineos Europe AG | Copolymers and films thereof |
Also Published As
Publication number | Publication date |
---|---|
KR970706320A (en) | 1997-11-03 |
AU3587495A (en) | 1996-03-29 |
MX9701924A (en) | 1998-07-31 |
EP0781301A1 (en) | 1997-07-02 |
JPH10506659A (en) | 1998-06-30 |
CA2199869A1 (en) | 1996-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2313215C (en) | Polymerization catalyst systems, their use, their products and articles thereof | |
US5629253A (en) | Polymerization catalyst systems, their production and use | |
JP3380554B2 (en) | Polymerization catalyst systems, their production and use | |
US6114477A (en) | Polymerization process | |
AU686836B2 (en) | Polymerization catalyst systems, their production and use | |
AU723804B2 (en) | High activity metallocene polymerization process | |
AU743509B2 (en) | Mixed catalysts and their use in a polymerization process | |
AU743367B2 (en) | Aluminum-based lewis acid cocatalysts for olefin polymerization | |
EP0739360B1 (en) | Polymerization catalyst systems, their production and use | |
EP0797598B1 (en) | Polymerization catalyst systems, their production and use | |
US5595950A (en) | Polymerization catalyst systems, their production and use | |
WO1996008521A1 (en) | Polymerization process | |
US5712353A (en) | Gas phase polymerization process | |
WO1997024375A1 (en) | Slurry polymerization process | |
MXPA97001924A (en) | Process of polimerizac | |
AU3236997A (en) | Polymerization process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95195696.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN JP KR MX RU SG |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2198248 Country of ref document: CA Ref document number: 2198248 Country of ref document: CA Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2199869 Country of ref document: CA Ref document number: 2199869 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019970701649 Country of ref document: KR Ref document number: PA/a/1997/001924 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995933087 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995933087 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019970701649 Country of ref document: KR |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995933087 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1019970701649 Country of ref document: KR |