WO1996006873A1 - Bound-in catalysts - Google Patents
Bound-in catalysts Download PDFInfo
- Publication number
- WO1996006873A1 WO1996006873A1 PCT/GB1995/002006 GB9502006W WO9606873A1 WO 1996006873 A1 WO1996006873 A1 WO 1996006873A1 GB 9502006 W GB9502006 W GB 9502006W WO 9606873 A1 WO9606873 A1 WO 9606873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- curable composition
- tertiary amine
- group
- chr
- catalysts
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 65
- 239000012948 isocyanate Substances 0.000 claims abstract description 23
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000002360 preparation method Methods 0.000 claims abstract description 3
- 150000003512 tertiary amines Chemical group 0.000 claims description 44
- 239000005056 polyisocyanate Substances 0.000 claims description 13
- 229920001228 polyisocyanate Polymers 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 239000013626 chemical specie Substances 0.000 claims description 3
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims description 2
- HXXJMMLIEYAFOZ-UHFFFAOYSA-N (1-methylpiperidin-2-yl)methanol Chemical compound CN1CCCCC1CO HXXJMMLIEYAFOZ-UHFFFAOYSA-N 0.000 claims 1
- VARKIGWTYBUWNT-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanol Chemical compound OCCN1CCN(CCO)CC1 VARKIGWTYBUWNT-UHFFFAOYSA-N 0.000 claims 1
- XBRDBODLCHKXHI-UHFFFAOYSA-N epolamine Chemical compound OCCN1CCCC1 XBRDBODLCHKXHI-UHFFFAOYSA-N 0.000 claims 1
- 239000004814 polyurethane Substances 0.000 abstract description 4
- 229920002635 polyurethane Polymers 0.000 abstract description 4
- 239000011347 resin Substances 0.000 description 18
- 229920005989 resin Polymers 0.000 description 18
- 238000009472 formulation Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- 239000004970 Chain extender Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- -1 isocyanate compound Chemical class 0.000 description 3
- 238000002386 leaching Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920005903 polyol mixture Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920013701 VORANOL™ Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 231100000016 inhalation toxicity Toxicity 0.000 description 1
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000012970 tertiary amine catalyst Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8003—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
- C08G18/8006—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
- C08G18/8041—Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3271
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/26—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1825—Catalysts containing secondary or tertiary amines or salts thereof having hydroxy or primary amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/20—Heterocyclic amines; Salts thereof
Definitions
- the present invention relates to curable compositions and in particular to isocyanate based resin systems suitable for use in medical applications, such as orthopaedic casting and splinting.
- polyfunctional active hydrogen containing compounds in the presence of a catalyst to form a polyurethane material.
- inorganic carbonate catalysts (US 4,427,003) have been used with isocyanate resin systems but more recently different catalysts based on tertiary amines have been used for example catalysts containing morpholino groups.
- Such formulations usually comprise mixing an organic polyisocyanate, an organic compound containing at least two active hydrogen atoms, stabilizers, fillers and additives as required and a tertiary amine catalyst.
- catalysts it is important that the catalyst be thoroughly mixed with the isocyanate system for even curing to occur. Furthermore there is the possibility that catalyst may leach out from the cured product or from the resin system during cure.
- reactive tertiary amine catalysts may be vapourized by the exotherm generated during the polyurethane reaction. These amines may have a strong odour and the potential inhalation toxicity of tertiary amines is also well known.
- Patent Application WO94/02525 partially addresses the problems encountered with tertiary amine catalysts by modifying reactive tertiary amine catalysts by mixing under reaction conditions a reactive tertiary amine, a polyol and an organic isocyanate compound, to give a catalyst or co-catalyst, which has a higher molecular weight, and may therefore be retained more within an isocyanate resin system.
- a curable composition comprising isocyanate prepolymers wherein said prepolymers contain chemically bound-in catalysts. Further there is provided a curable composition comprising isocyanate prepolymers without any non bound-in catalyst.
- said curable composition is a water curable composition.
- said isocyanate prepolymers may comprise a mixture or a single chemical species.
- Said chemically bound-in catalysts, bound to a curable composition as hereinbefore described may be covendedly bound, ionically bound or may comprise a mixture of ionically and covendingly bound catalysts.
- said chemically bound-in catalysts comprise tertiary amine groups, most preferably said tertiary amine groups are covIERly bound to the isocyanate prepolymers.
- a curable composition suitable for use as a casting or splinting resin comprising a plurality of isocyanate prepolymers having chemically bound-in tertiary amine groups; wherein said prepolymers are the reaction products of polyisocyanates and molecules comprising both a tertiary amine group and an isocyanate reactive group.
- isocyanate reactive group refers to a group which forms a covalent bond when reacted with an isocyanate group (-NCO) under appropriate conditions, these include for example hydroxy and amine groups as well as carboxylic acids, thiols, anhydrides, urethanes, ureas and other such groups with an active hydrogen atom known to one skilled in the art.
- Chemically bound-in tertiary amine groups are defined as including tertiary amine groups bonded covarrily and/or ionically to the isocyanate prepolymer.
- the water curable composition of the present invention does not require the addition of a free catalyst to catalyse curing since the bound-in tertiary amine groups themselves act as a catalyst. The possible problem of catalyst leaching out from a resin composition is thus avoided and the number of separate
- the bound-in tertiary amine groups may be present at any appropriate location in the isocyanate prepolymers. For example they may be introduced at an end of the prepolymer molecules via a capping reaction, they may be present on a side chain extending from the main polymer backbone, or may be part of the polymer backbone itself.
- tertiary amine groups may be present on some or all of the locations as discussed above.
- the chemically bound-in tertiary amine groups may comprise a single species or mixture of species. Further several species of such bound tertiary amines may be present within the prepolymer composition or within one isocyanate prepolymer molecule. For example some of the prepolymer composition may have one tertiary amine present and the rest may have another species of tertiary amine present. Any one of the prepolymer molecules may contain a single bound-in tertiary amine group, more than one tertiary amine group of a single species or more than one tertiary amine group of a number of species.
- any one prepolymer molecule may comprise more than one tertiary amine group either present on a side chain, as end groups or part of the polymer backbone, for example when tertiary amine molecules comprise two or more isocyanate reactive groups and act as chain extenders.
- Appropriate tertiary amine molecules for reacting with the polyisocyanates so as to form the prepolymers of the composition of the present invention include molecules selected from the group comprising the general formula I, II, and III as illustrated below:
- R 1 is typically from the group comprising alkanols, aikylamines and alkylacids where said alkyl group may be branched and is typically C 1 to C 10 . Examples include
- R 2 and R 3 may be the same or different and are typically C 1 to C 10 of the group comprising alkyls, aryls, alkylenes, aikylamines, branched alkyls or alkylenes. Examples include
- These molecules may be optionally substituted with substituents which do not substantially adversely affect the reaction of the molecules with isocyanate groups or the catalytic effect of the tertiary amine groups when present in the prepolymers of the composition of the present invention.
- Appropriate molecules for reacting with the polyisocyanates so as to form the prepolymers of the composition of the present invention may include but are not limited to the molecules listed below.
- Tertiary amine containing molecules which are monofunctional with respect to isocyanate groups where the functional groups for example mono-hydroxy or mono-amino molecules are suitable for capping reactions, whereby the tertiary amine groups can be located at or close to chain ends of a polyisocyanate.
- Such molecules are advantageous in that they can allow the viscosity of the prepolymer to be relatively easily controlled, whereas this may be difficult using multi-functional molecules which act as chain extenders (particularly where the level of tertiary amine is required to be high).
- Tertiary amine containing molecules which are di-functional with respect to isocyanate groups can be used as chain extenders.
- Tertiary amine containing molecules which are polyfunctional with respect to isocyanate groups can be used as cross linkers.
- the polyisocyanates used to react with the molecules comprising both a tertiary amine group and an isocyanate reactive group can be any appropriate polyisocyanates well known in the art for casting and splinting applications, for example liquid polymeric MDI's (4,4'-methylene bis (phenyl isocyanate)).
- tertiary amine containing molecules whatever species of tertiary amine containing molecules are utilised to prepare a bound-in catalyst, it is preferred that they comprise less than 10% by weight more preferably from 0.1 to 5% by weight of the curable composition.
- the polyisocyanates include molecules formed by chain extending polyisocyanates with polyols for example polyethylene glycols (PEG's), as is well known in the art. Apt chain-extended polyisocyanates are disclosed in WO 89/08463.
- the present invention includes within its scope a flexible substrate having therein and/or thereon a composition of the present invention.
- the flexible substrate is desirably a fibrous material and is preferably a bandage or tape.
- Suitable substrates include glass fibre, polypropylene and other materials known to those skilled in the art.
- an orthopaedic splinting material comprising a substrate carrying a curable composition as hereinbefore described.
- a method for forming a hardened splint from a splinting material comprising a substrate carrying a curable composition as herein before described wherein said splinting material is shaped around or against a body member and allowed to cure.
- said curable composition is a water curable composition.
- the substrate for carrying the curable composition of the invention may have the curable composition applied in any manner conventionally used by someone skilled in the art. These include processes such as coating, dipping, spraying and laminating.
- the orthopaedic splinting material comprising the flexible substrate having a water curable composition of the present invention therein and/or thereon may be provided in a sealed package and may be sterilised.
- the package can be opened, the substrate may be wet with water for example by dunking or spraying to initiate curing and the substrate can then be shaped as desired against or around a limb of a patient. Extra cushioning may
- undercast padding On curing, a hardened cast or splint is formed.
- the catalyst was weighed into the remaining 30% of the homogenous polyol mixture mixed and this mixture was then added to the 700ml flask. The temperature was reduced to 60°C and the reaction mix was stirred for a further 1.5 hours. While still hot the product was poured into a dry 500ml airtight jar.
- the resultant product was then allowed to cool, poured into a pre-dried airtight container, and could then be used as a resin . Curing of the resin was assayed using a setting rate rheometer as described below: -
- Curing Assay The rheometer used is illustrated in Fig. 1 a) in plan view and in Fig. 1 b) in a cross-section taken along line x-x shown in Fig. 1.
- the labelled parts are:- A. Main housing G. Beam
- test material comprising a resin sample and an approximately equal volume of water which had been thoroughly mixed together for a few seconds
- the upper platen (M) was then immediately lowered on its guide into position so that the thickness of the material between the two platens was only a few millimetres.
- the beam (G) was immediately set into oscillating motion.
- the output from the transducer was continuously recorded by the computer. From this computer data a graph of the variation of the viscosity of the setting resin with time was obtained. The cure time was taken at the point where the viscosity of the test material became so high that no further changes could be detected by the rheometer. This usually occurred shortly after the largest change was observed (see graph). Cure times were all determined at room temperature (20°C).
- Example 2 The procedure described in Example 1 was repeated using a different catalyst and varying the weights of the materials used in the resin formulation.
- Example 3 (Suppliers of the products indicated with trade marks are disclosed in Example 1).
- Example 3 (Suppliers of the products indicated with trade marks are disclosed in Example 1).
- Example 3 The procedure described in Example 1 was repeated except that different catalysts were used (again at a level of 2% by weight). The results are indicated in Table 3 below.
- Example 4 The procedure described in Example 2 was repeated except that different catalysts were used at a different level i.e. 1% by weight.
- Example 6 The resin formulation obtained in Example 1 was used to thoroughly impregnate a polypropylene bandage which was then dipped in water, squeezed several times to allow water to impregnate throughout the bandage, and used to bandage around the forearm of an artificial limb (which approximates the contours of a human forearm). It was found that a hard, smooth cast was formed within about two minutes of when the wet, impregnated bandage was applied. The resin had a viscosity which allowed the bandage to be easily worked so that a smooth cast could be formed.
- Example 6, 7 and 8 The resin had a viscosity which allowed the bandage to be easily worked so that a smooth cast could be formed.
- Example 1 The procedure described in Example 1 was repeated using the following formulations, as set out in Table 5, Table 6 and Table 7 below:
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Polyurethanes Or Polyureas (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8508549A JPH10504855A (en) | 1994-08-31 | 1995-08-24 | Bonded catalyst |
AU33505/95A AU3350595A (en) | 1994-08-31 | 1995-08-24 | Bound-in catalysts |
EP95929946A EP0778854A1 (en) | 1994-08-31 | 1995-08-24 | Bound-in catalysts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9417502A GB9417502D0 (en) | 1994-08-31 | 1994-08-31 | Water curable compositions |
GB9417502.3 | 1994-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996006873A1 true WO1996006873A1 (en) | 1996-03-07 |
Family
ID=10760605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1995/002006 WO1996006873A1 (en) | 1994-08-31 | 1995-08-24 | Bound-in catalysts |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0778854A1 (en) |
JP (1) | JPH10504855A (en) |
AU (1) | AU3350595A (en) |
GB (1) | GB9417502D0 (en) |
WO (1) | WO1996006873A1 (en) |
ZA (1) | ZA957109B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997010275A1 (en) * | 1995-09-13 | 1997-03-20 | Smith & Nephew Plc | Curable compositions |
WO2003028602A1 (en) * | 2001-09-28 | 2003-04-10 | Alcare Co., Ltd. | Water-hardening fixing material and method for using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102477301B1 (en) * | 2016-02-22 | 2022-12-13 | 한국화학연구원 | Autocatalytic polyurethane and epoxy adhesive composition including the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968672A (en) * | 1957-03-19 | 1961-01-17 | Reichhold Chemicals Inc | Polyisocyanates containing tertiary amine structure |
FR1560081A (en) * | 1967-03-29 | 1969-03-14 | ||
WO1981000671A1 (en) * | 1979-09-04 | 1981-03-19 | Minnesota Mining & Mfg | Water-activated casting material |
EP0531820A1 (en) * | 1991-09-10 | 1993-03-17 | Bayer Ag | Polyisocyanate mixtures, process for their preparation and their use |
WO1994002525A1 (en) * | 1992-07-21 | 1994-02-03 | Polyol International B.V. | Isocyanate modified amines as catalysts useful for the preparation of polyurethane materials |
WO1994005475A1 (en) * | 1992-09-03 | 1994-03-17 | Glunz Ag | Process for manufacturing fibre or particle boards |
-
1994
- 1994-08-31 GB GB9417502A patent/GB9417502D0/en active Pending
-
1995
- 1995-08-24 WO PCT/GB1995/002006 patent/WO1996006873A1/en not_active Application Discontinuation
- 1995-08-24 JP JP8508549A patent/JPH10504855A/en active Pending
- 1995-08-24 EP EP95929946A patent/EP0778854A1/en not_active Withdrawn
- 1995-08-24 ZA ZA9507109A patent/ZA957109B/en unknown
- 1995-08-24 AU AU33505/95A patent/AU3350595A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2968672A (en) * | 1957-03-19 | 1961-01-17 | Reichhold Chemicals Inc | Polyisocyanates containing tertiary amine structure |
FR1560081A (en) * | 1967-03-29 | 1969-03-14 | ||
WO1981000671A1 (en) * | 1979-09-04 | 1981-03-19 | Minnesota Mining & Mfg | Water-activated casting material |
EP0531820A1 (en) * | 1991-09-10 | 1993-03-17 | Bayer Ag | Polyisocyanate mixtures, process for their preparation and their use |
WO1994002525A1 (en) * | 1992-07-21 | 1994-02-03 | Polyol International B.V. | Isocyanate modified amines as catalysts useful for the preparation of polyurethane materials |
WO1994005475A1 (en) * | 1992-09-03 | 1994-03-17 | Glunz Ag | Process for manufacturing fibre or particle boards |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997010275A1 (en) * | 1995-09-13 | 1997-03-20 | Smith & Nephew Plc | Curable compositions |
AU711469B2 (en) * | 1995-09-13 | 1999-10-14 | Bsn Medical, Inc. | Curable compositions |
US6353077B2 (en) * | 1995-09-13 | 2002-03-05 | Michael Francis Shelvey | Curable compositions |
US6756467B2 (en) * | 1995-09-13 | 2004-06-29 | Bsn Medical, Inc. | Curable compositions |
WO2003028602A1 (en) * | 2001-09-28 | 2003-04-10 | Alcare Co., Ltd. | Water-hardening fixing material and method for using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH10504855A (en) | 1998-05-12 |
AU3350595A (en) | 1996-03-22 |
GB9417502D0 (en) | 1994-10-19 |
ZA957109B (en) | 1997-02-18 |
EP0778854A1 (en) | 1997-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5423735A (en) | Orthopedic cast composed of an alkoxysilane terminated resin | |
EP0192701B1 (en) | Stabilized, catalyzed water activated polyurethane systems | |
CA1222740A (en) | Polyisocyanate compositions containing reversibly blocked catalysts, a process for their production, their use in the production of polyurethane plastics and addition products of sulfonyl isocyanates with catalysts having a tin(ii)-or tin(iv)-carboxylate | |
JP2713379B2 (en) | Water-curable polymer preparation | |
US4638795A (en) | Material for support dressings | |
EP0283868A2 (en) | Process for producing polyurethane/urea elastomers | |
US6756467B2 (en) | Curable compositions | |
WO1996006873A1 (en) | Bound-in catalysts | |
EP0199021A2 (en) | Nucleation of urethane compositions | |
EP0010411B1 (en) | Method for preparing an elastomeric urethane-urea copolymer and a composition for preparing same | |
JPH03503611A (en) | hardenable material | |
KR0136832B1 (en) | Casting material | |
KR100654425B1 (en) | Hydrocurable polyurethane resin composition and semi-cast casting tape using the same | |
US4908394A (en) | Diaminobenzoate catalytic chain extenders | |
JPS62223213A (en) | Moisture-curable urethane prepolymer | |
SU1500654A1 (en) | Method of producing mouldable urethane elastomers | |
KR100448098B1 (en) | Resin composition of polyurethane hardening by moisture and cast for orthopedic surgery prepared therefrom | |
EP0300349A1 (en) | Non-fugitive diaminobenzoate catalytic chain extenders | |
US4166042A (en) | Compositions for preparing elastomeric urethane/urea block copolymers | |
JPH01271460A (en) | Hydraulic polymer preparation | |
WO1988006150A1 (en) | Neutralization of polyalkylene carbonate polyols for polyurethane prepolymer synthesis | |
WO2001062815A1 (en) | Polyisocyanate reaction systems for application in wooden floor parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995929946 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1997 793136 Date of ref document: 19970505 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1995929946 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995929946 Country of ref document: EP |