+

WO1996005855A1 - Cartilage disease remedy - Google Patents

Cartilage disease remedy Download PDF

Info

Publication number
WO1996005855A1
WO1996005855A1 PCT/JP1995/000121 JP9500121W WO9605855A1 WO 1996005855 A1 WO1996005855 A1 WO 1996005855A1 JP 9500121 W JP9500121 W JP 9500121W WO 9605855 A1 WO9605855 A1 WO 9605855A1
Authority
WO
WIPO (PCT)
Prior art keywords
hgf
cartilage
arthritis
cells
active ingredient
Prior art date
Application number
PCT/JP1995/000121
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Iwamoto
Sumihare Noji
Toshikazu Nakamura
Original Assignee
Sumitomo Pharmaceuticals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Pharmaceuticals Co., Ltd. filed Critical Sumitomo Pharmaceuticals Co., Ltd.
Priority to CA002197869A priority Critical patent/CA2197869C/en
Publication of WO1996005855A1 publication Critical patent/WO1996005855A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/4753Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1833Hepatocyte growth factor; Scatter factor; Tumor cytotoxic factor II
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to an agent useful for treating and preventing cartilage disease. More specifically, the present invention relates to a therapeutic agent for cartilage disorders, a chondrocyte proliferation promoter and a proteoglycan production promoter containing HGF (Hepatocyte Growth Factor) as an active ingredient.
  • HGF Hepatocyte Growth Factor
  • Cartilage is connective tissue consisting of chondrocytes and the matrix surrounding it, and is found in joints, spinal discs, costal cartilage, auricles, ear canals, pubic connections, and epiglottis.
  • Cartilage is composed of chondrocytes and cartilage matrix produced by chondrocytes.
  • the cartilage matrix is mainly composed of fibrous components such as collagen fibers, proteoglycans and water.
  • the cartilage is mixed with the cartilage matrix to produce hyaline cartilage (costum).
  • cartilage Disc cartilage, pubic cartilage, articular cartilage, etc.
  • collagen fibers are involved in rigidity and strength of cartilage against tension and shear force
  • proteoglycans are involved in strength against compressive force
  • water has never before been characterized as a viscoelastic body of living tissue.
  • articular cartilage water accounts for 78.6% of cartilage mass
  • collagen accounts for 20%
  • proteoglycan accounts for 7%.
  • the effects of cartilage include reduction of epiphyseal friction (cartilage between bones), retention of elasticity (such as auricular cartilage), and motor function (such as costal cartilage and pubic cartilage).
  • cartilage has an important effect in maintaining the function of a living body, and various diseases caused by cartilage disorders have been known, for example, dyschondrodysplasia, osteoarthritis, deformation Examples include intervertebral disc disease, fracture repair, and poor healing.
  • various diseases caused by cartilage disorders include intervertebral disc disease, fracture repair, and poor healing.
  • HGF has an effect of promoting the growth of chondrocytes and the production of proteoglycan, and has been shown to inhibit various diseases caused by cartilage disorders.
  • the present inventors have found that they are effective for treatment and completed the present invention.
  • HGF is a protein found as a factor for growing hepatocytes in vitro (Biochem Biophys Res Commun, 122, 1450, 1984, Proc. Natl. Acad. Sci. USA, 83, 6489, 1986, FEBS Letter, 224, 311, 1987, Nature, 342, 440, 1989, Proc. Natl. Acad. Sci. USA, 87, 3200, 1990).
  • HGF which was discovered as a factor that specifically promotes hepatocyte proliferation, has been shown to have various activities such as tissue injury healing and the like in vivo by recent research results by many researchers including the present inventors. The results are clear, and expectations are high for its application not only as a research target but also as a therapeutic drug for humans and animals.
  • HGF is produced by cells of the mesenchymal system in life, and it has been clarified that a so-called paracrine mechanism has been established in which HGF is supplied from neighboring cells as needed. I have. However, when liver and spine are injured, HGF production is also increased in uninjured organs, such as lungs, so that it is considered that HGF is also supplied by the so-called endocrine mechanism.
  • the present invention is a remedy for cartilage disorders comprising HGF as an active ingredient.
  • Another aspect of the present invention provides a chondrocyte proliferation promoting agent comprising HGF as an active ingredient; a proteoglycan production promoting agent comprising HGF as an active ingredient; and administering an effective amount of HGF. And a method for treating cartilage disorders in a human or mammal.
  • the above HGF may be derived from human or animal tissues or blood components, or may be produced by genetic recombination.
  • HGF which is an active ingredient, has the effect of promoting the proliferation of chondrocytes and the production of proteoglycan, and is therefore effective for the treatment and prevention of various diseases caused by cartilage disorders.
  • Figure 1 is a micrograph showing the expression of HG FmRNA in the limb buds of early nascent mice (bright field on the left and corresponding dark field on the right).
  • a to D are 10.5-day-old fetuses
  • E to H are longitudinal section sections of the 11-day-old fetus.
  • Figure 2 is a photomicrograph showing the expression of HG FmRNA in the limb buds of the mouse during finger formation (bright field on the left, corresponding ⁇ field on the right).
  • a and B are sections of a 12.5 day old fetus
  • C to F are sections of a 13 day old fetus
  • G to J are sections of a 14 day old fetus.
  • Fe is the femur
  • Fi is the fibula
  • Ta indicates a tarsal bone
  • I to V indicate finger numbers.
  • FIG. 3 is a micrograph showing the expression of HGF mRNA in the limb buds and thorax of a developing mouse (the bright field is on the left, and the corresponding dark field is on the right).
  • a and B show cross sections of hind limbs of a 6-day-old fetus; C and D show 13-day- ⁇ fetuses, and E and F show longitudinal-section sections of the thorax of 14-day-old fetuses.
  • Ta indicates tarsal bone
  • Ti indicates tibia
  • Rib indicates pre-cartilaginous accumulation of rib cartilage.
  • FIG. 4 is a micrograph showing the scatter activity of HGF on chondrocytes.
  • A indicates control (non-HGF processing) and B indicates HGF processing.
  • FIG. 5 shows the effect of HGF on chondrocyte proliferation.
  • A shows the effect on DNA synthesis of articular chondrocytes
  • B shows the effect on DNA synthesis of peritoneal cells
  • C shows the effect on proliferation (cell number) of articular chondrocytes.
  • FIG. 6 is a diagram showing the effect of HGF on proteoglycan production.
  • FIG. 7 is a graph showing the effects of HGF on DNA synthesis (FIG. 7A) and production of open-ended theoglycans (FIG. 7B) in the presence of an anti-HGF antibody.
  • FIG. 8 is an electrophoretic photograph showing the expression of HGF receptor mRNA in chondrocytes. BEST MODE FOR CARRYING OUT THE INVENTION
  • HGF used in the present invention those prepared by various methods can be used as long as they are purified to the extent that they can be used as pharmaceuticals.
  • HGF HGF-like growth factor
  • organs such as bone marrow, brain, back, placenta, etc.
  • blood cells such as platelets, leukocytes, plasma, serum, etc. It can be obtained by extraction and purification (see FEBS Letter, 224, 312, 1987, Proc. Natl. Acad. Sci. USA, 86, 5844, 1989, etc.).
  • HGF primary cultured cells and cell lines that produce HGF are cultured and cultured.
  • HGF can be isolated and purified from culture supernatants, cultured cells, etc., or HGF-encoding genes can be incorporated into an appropriate vector by genetic engineering techniques and inserted into an appropriate host.
  • HGF recombinant HGF from the culture supernatant of this transformant (for example, Nature, 342, 440, 1989, Japanese Patent Application Laid-Open No. 5-111383). Gazette, Biochem. Biophys. Res. Commun., 163, 967, 1989).
  • the above host cells are not particularly limited, and various host cells conventionally used in genetic engineering techniques, for example, Escherichia coli, Bacillus subtilis, yeast, filamentous fungi, plants, or animal cells can be used.
  • a method for extracting and purifying HGF from living tissue for example, a method of intraperitoneally administering carbon tetrachloride to a rat, extracting and crushing the liver of the rat in a hepatitis state, and crushing the S-sepharose
  • the protein can be purified by conventional protein purification methods such as gel column chromatography such as heparin sepharose and HPLC.
  • animal cells such as Chinese hamster ovaries (eg, Chinese hamster ovaries), are obtained by using an expression vector in which a gene encoding the amino acid sequence of human HGF has been incorporated into a vector such as sipapilloma virus DNA using a genetic recombination method.
  • CHO CHO cells, mouse C127 cells, monkey COS cells, etc. can be transformed and obtained from the culture supernatant.
  • HGF HGF
  • a part of the amino acid sequence is deleted or replaced by another amino acid, or another amino acid sequence is partially inserted.
  • one or more amino acids may be bound to the N-terminus and / or C-terminus, or the sugar chain may be similarly deleted or substituted.
  • the therapeutic agent and accelerator of the present invention contain the above-mentioned HGF as an active ingredient, and HGF promotes the growth of chondrocytes and the production of proteoglycan, as shown in the test examples described later. Furthermore, since HGF does not act on undisturbed cartilage tissue and acts only on impaired cartilage tissue, HGF has a feature that it is less likely to cause side effects. Therefore, the therapeutic agent and the accelerator of the present invention are useful for treating various diseases caused by cartilage disorders. It is effective for prevention, and these include, for example, the following diseases.
  • the therapeutic agent and enhancer of the present invention are useful for the treatment and prevention of various diseases caused by cartilage disorders in mammals (for example, horses, horses, pigs, sheep, dogs, cats, etc.) in addition to humans. Applied.
  • the therapeutic agent and enhancer of the present invention can be used in various forms (for example, liquids, solids, capsules, etc.).
  • the injection can be prepared by a conventional method. For example, after dissolving HGF in an appropriate solvent (for example, sterilized water, buffer, physiological saline, etc.), sterilize by passing through a filter or the like. Then, it can be prepared by filling in a sterile container.
  • the HGF content in the injection is usually adjusted to about 0.002 to 0.2 (W / V5, preferably about 0.001 to 0.1 (W / V%).
  • Suppositories can also be prepared by a conventional method using a conventional base (for example, cacao butter, laurin butter, glycemic gelatin, macrocrogol, witepsol, etc.).
  • Inhalants should also be prepared in accordance with the usual pharmaceutical procedures. Can be.
  • the HGF content in the preparation can be appropriately adjusted according to the dosage form, the disease to be applied and the like.
  • a stabilizer is preferably added.
  • the stabilizer include albumin, globulin, gelatin, glycine, mannitol, glucose, dextran, sorbitol, ethylene glycol and the like.
  • the preparation of the present invention may contain additives necessary for preparation, for example, excipients, solubilizers, antioxidants, soothing agents, isotonic agents and the like.
  • a liquid preparation it is desirable to store it after freezing or freezing it to remove water.
  • the lyophilized preparation is reconstituted with distilled water for injection and used before use.
  • the therapeutic agent and enhancer of the present invention can be administered by an appropriate route depending on the form of the preparation.
  • it can be administered in the form of an injection into a vein, artery, subcutaneous, intramuscular, or the like.
  • the dose is adjusted appropriately depending on the patient's condition, age, weight, etc., but is usually 0.05 mg to 500 ing, preferably lmg to 100 mg as HGF, and is divided into once or several times a day. It is appropriate to administer.
  • HGF which is an active ingredient, has the effect of promoting the growth of chondrocytes and promoting the production of priteoglycan. Therefore, the therapeutic agent and the promoting agent of the present invention are useful for the treatment and prevention of the above-mentioned various diseases caused by cartilage disorders. Furthermore, since HGF acts only on damaged cartilage tissue, it is possible to obtain a drug with few side effects.
  • Rat HG F-cDNA (RBC1 clone) (Proc. Natl. Acad.
  • the sections were washed with 0.1 XSSC solution at 50 ° C for 1 hour, treated with RNAase A (20 g / m]) at 37 ° C for 30 minutes, and then treated with 2XSSC solution. Washing was performed twice at 37T for 10 minutes.
  • the sections were immersed in the emulsion (11 Kodak NBT-2 diluted solution) and exposed for 2 weeks. The sections were developed and fixed on Kodak D-19 and stained with hematoxylin and eosin.
  • Chondrocytes were isolated from 23-day-old fetuses and 4-week-old newborns of New Zealand white herons according to the method described in the literature (J. Cell. Physiol., 133, 491, 1987). Articular cartilage was isolated from femoral articular cartilage of the knee, and costal cartilage was isolated from hyaline cartilage of the rib (Dev. Biol., 136, 500, 1989). Meningeal fibroblasts were isolated from the meningeal tissue of the knee joint. The minced synovial tissue fragments were cultured in DMEM containing 10% FBS for 10 days, and cells grown by trypsin treatment were collected. According to the method described in the literature (Exp.
  • fetal mesenchymal cells were isolated from leg muscle tissues of fetal rats on day 20.
  • Leg bud mesenchymal cells were isolated from rat embryos at 10.5 days. Leg buds are surgical
  • the cells were cut out under a microscope for use, treated with 0.25% tribcine for 30 minutes, and then pitted to obtain isolated cells with nylon gauze. All cells except Asymmetric cells, 1 0% FBS, 6 0 ⁇ DM EM ( hereinafter, referred to as medium A) containing g / 1 of kanamycin 3 7 ° at C, 5% C 0 2/ 9 5% air Maintained below.
  • DNA synthesis rate is 10 ° /.
  • [3 H] to T CA insoluble cell sedimentation - thymidine.. [6 - 3 H ] - thymidine, Amersham, 2 0 C immo 1) of was evaluated by measuring the incorporation (J. Clin Invest, 85, 626, 1990).
  • Cells were seeded at a density of 1.5 11 per 96-mm plate in a 96-well plate ( ⁇ density) and cultured until confluent. To stop the growth, cells were incubated with 0.3% FBS. .. containing preincubation with 0.
  • Chondrocytes were seeded at a density of 1.5 x 1 ( ⁇ ) per 6 mm well and maintained in 0.1 ml medium A. When cells reached confluence, they contained 0.3% FBS. Preincubation was performed for 24 hours in 0.1 ml DMEM, followed by incubation for 24 hours in 0.1 ml DMEM containing 0.3% FBS and HGF. ae S] The monosulfate group was added 20 hours before the end of the incubation. The proteoglycan synthesis was based on [ 3 'S] of the precipitate on cetylpyridinium chloride after protease digestion. —Evaluated by measuring sulfate uptake (Exp. Cell Res., 130, 73, 1980).
  • RNA from cartilage was prepared by a modification of the method described in the literature (Anal. Biochem., 203, 352, 1992). Freshly isolated tissue fragments (0.1 g wet weight) were prepared using 4 M guanidine thiosinate, 0.1 MT ris hydrochloric acid (pH 7.5), 1% 2-mercaptoethanol in 4 MGITC solution 2 The homogenization was performed quickly at m 1. The homogenate was mixed with 10% SDS 1001 and centrifuged for 5 minutes in a microcentrifuge.
  • first-strand cDNA was synthesized from 0.5 ⁇ g of total RNA using Supersrcript revertase (Gibco-BRL) and an antisense primer in the downstream region. Subsequently, PCR expansion was performed. Proliferation is for 30 cycles at 94 ° C for 30 seconds, 58 for 1 minute, and 72 ° C for 5 minutes for 35 cycles (for chondrocytes) or 40 cycles (for cartilage tissue). I went in.
  • the primer base sequence for PCR amplification is 5 'for rat and mouse c-Met (Oncogene, 2, 593, 1988).
  • CA GT A / G
  • Fig. 1 shows the expression of HG FmRNA in the limb buds of mice in early development, and is a photomicrograph of a longitudinal section of the hind limb. The corresponding dark field (right) was taken after in situ hybridization, autoradiography and staining.
  • a to D are sections of a 10.5 day old fetus
  • E to H are sections of an 11 day old fetus.
  • Figure 2 shows the expression of HG FmRNA in the limb buds of the mouse during finger formation.
  • a and B are sections of a 12.5 day old fetus
  • CF are sections of a 13 day old fetus
  • GJ are sections of a 14 day old fetus.
  • Fe represents a femur
  • Fi represents a fibula
  • Ta represents a tarsal bone
  • I to V represent finger numbers.
  • Figure 3 is a micrograph showing the expression of HG FmRNA in the limb buds and rib cage of the developing mouse.
  • the bright field (left) and the corresponding dark field (right) are in situ hybridization and autoradio. It was taken after the graphic and dyeing.
  • a and B show cross-sections of hind limbs of 16-day-old fetuses; C and D show 13-day-old fetuses, and E and F show longitudinal cross-sections of thorax of 14-day-old fetuses.
  • Ta indicates a tarsal bone
  • Ti indicates a tibia
  • R ib indicates pre-cartilaginous accumulation of rib cartilage.
  • HGF mRNA expression was observed in the joint area of the wrist malleolus and elbow Z knee when the base leg, the joint leg, and the self-leg portion were formed on Day 2.5 (see FIGS. 2A and B. For convenience). , Knees and ankles). Late (days 13 to 14), HGF mRNA was expressed in adjacent and restricted mesenchymal cells of the cartilage accumulation in the wrist Z ankle and elbow / knee joint regions (Fig. 2C-J See).
  • HG FmRNA was localized to limited mesenchymal cells adjacent to tarsal cartilage (see FIGS. 3A and B). HG Limb expression levels of FmRNA decreased with differentiation. No HG FmRNA was detected in the growth plates of the limbs throughout the study.
  • Example 2
  • HG FmRNA was expressed in the intercostal mesenchymal tissue around the tip of the intercostal elongated pre-cartilaginous accumulation. No signal of hybridization was detected in pre-cartilaginous accumulation.
  • chondrocytes from knee joint cartilage and costal cartilage, synovial cells from knee joint, and fibroblasts grown from limb muscle tissue Cultured cells were prepared, and the effect of exogenously added HGF on these cells was examined.
  • perforated articular chondrocytes were seeded at a density of 3 ⁇ 10 3 cells in 16-mm wells and maintained in medium A for 2 days. Thereafter, the cells were treated with HGF for 2 days. At the end of the incubation, phase contrast micrographs were taken. Fig. 4 shows the results.
  • articular chondrocytes collected from 4 weeks old egrets were cultured. After the configurator Ruen Bok cells became 24 hours serum withdrawal treatment, were treated with HG F at various concentrations, by the method described in Materials and Methods [a H] - uptake of thymidine was measured . In addition, a similar test was performed on the heron membrane fibroblasts. The results are shown in FIGS. 5A (articular chondrocytes) and B (synovial fibroblasts). The results show the average soil standard deviation of three tests (the same applies to Figs. 5C, 6 and Figs. 7A and B).
  • HG F is Usagi articular cartilage into cells [3 H] - increased thymidine incorporation in a dose-dependent manner, enhancement of DNA synthesis, a growth promoting effect on immediate Chi articular chondrocytes It was shown to have. DNA synthesis showed a 3-fold increase in HGF at 1 ng / ml over control. On the other hand, as shown in FIG. 5B, meningeal fibroblasts did not respond to HGF.
  • ⁇ ⁇ in 101 8 111] increased the cell number by about 1.8 times compared to the control.
  • IGF Insulin-like growth factor
  • PTH Parathyroid hormone
  • FIG. 6 shows the results. As shown in FIG. 6, HGF dose-dependently increased 6 S] -sulfate uptake. The maximum increase was obtained with 1 ng / ml of HGF. This effect is due to TG F— / 3 (J. Cell Physiol.,
  • HGF is generally considered to act on target cells by a paracrine mechanism, and the results of the in situ hybridization described above are considered to support this idea. Therefore, in order to confirm this point, it was examined whether the HGF polyclonal antibody changes the function of chondrocytes.
  • the confluent Egret articular chondrocytes were cultured with 25 ⁇ g / ml anti-HGF polyclonal antibody (IgG fraction purified by affinity) in the presence or absence of 3 ng Zml of HGF. ) Treated or non-treated. Thereafter, the materials and methods described in the Methods Nyori, [a H] - thymidine or [36 S] - labeled with sulfate group was measured DN A synthesis or proteoglycans generation. The results are shown in FIGS. 7A (DNA synthesis) and B (proteoglycan generation). In the figure, Ab indicates an anti-HGF polyclonal antibody.
  • HGF receptor 1 HGF receptor 1
  • the above substance was dissolved in 0.01 M PBS having a pH of 7.0, the total amount was adjusted to 20 ml, and after sterilization, 2 ml was dispensed into vials and sealed by freeze-drying.
  • the above substance was dissolved in physiological saline for injection, the total volume was adjusted to 2 Oml, and after sterilization, 2 ml was dispensed into vials and sealed by freeze-drying.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

A cartilage disease remedy, cartilage cell growth accelerator and proteoglycan formation accelerator, each containing a hepatocyte growth factor (HGF) as the active ingredient, and a method of treating human and mammalian cartilage diseases by administering an effective dose of HGF. The HGF as the active ingredient accelerates cartilage cell growth and proteoglycan formation. Therefore the remedy and accelerators are useful for preventing and treating various cartilage diseases.

Description

明 細 書 軟骨障害治療剤 技術分野  Description Treatment agent for cartilage disorders Technical field
本発明は軟骨疾患の治療及び予防に有用な薬剤に関する。 より詳細に は、 H G F (Hepatocyte Growth Factor)を有効成分として含有する軟骨 障害治療剤、 軟骨細胞増殖促進剤及びプロテオグリカン生成促進剤に関 する。 背景技術  The present invention relates to an agent useful for treating and preventing cartilage disease. More specifically, the present invention relates to a therapeutic agent for cartilage disorders, a chondrocyte proliferation promoter and a proteoglycan production promoter containing HGF (Hepatocyte Growth Factor) as an active ingredient. Background art
軟骨は軟骨細胞とこれを取り囲む基質からなる結合組織であり、 関節、 脊柱の椎間板、 肋軟骨、 耳介、 外耳道、 恥骨結合、 咽喉蓋などに存在す る。 軟骨は、 軟骨細胞と、 軟骨細胞が産生する軟骨基質からなり、 軟骨 基質はコラーゲン線維などの線維成分、 プロテオグリカン及び水が主な 成分であり、 軟骨は軟骨基質の混じりぐあいにより、 硝子軟骨 (肋軟骨、 咽喉軟骨、 関節軟骨など) 、 弾性軟骨 (耳介軟骨など) 及び線維軟骨 Cartilage is connective tissue consisting of chondrocytes and the matrix surrounding it, and is found in joints, spinal discs, costal cartilage, auricles, ear canals, pubic connections, and epiglottis. Cartilage is composed of chondrocytes and cartilage matrix produced by chondrocytes. The cartilage matrix is mainly composed of fibrous components such as collagen fibers, proteoglycans and water. The cartilage is mixed with the cartilage matrix to produce hyaline cartilage (costum). Cartilage, throat cartilage, articular cartilage, etc.), elastic cartilage (auricular cartilage, etc.) and fibrocartilage
(椎間板軟骨、 恥骨軟骨、 関節軟骨など) に分類することができる。 上 記の軟骨基質において、 コラーゲン線維は軟骨の張力及び剪断力に対す る剛性と強度に関与し、 プロテオグリカンは圧縮力に対する強度に関与 し、 水は生体組織の粘弾性体としての特性にあずかつているとされてお り、 例えば、 関節軟骨の場合、 軟骨の質重量の 7 8 . 6 %は水が占め、 コラーゲンが 2 0 %を占め、 プロテオグリカンが 7 %を占めている。 軟骨の作用としては、 骨端の摩擦の低減 (骨間の軟骨) 、 弾性の保持 (耳介軟骨など) 、 運動機能 (肋軟骨、 恥骨軟骨など) が挙げられる。 上記のように軟骨は生体の機能維持の上で重要な作用を有しており、 従来から軟骨の障害に起因する種々の疾患が知られ、 例えば、 軟骨形成 異常症、 変形性関節症、 変形性椎間板症、 骨折の修復, 治癒不全などが 例示される。 特に、 高齡化社会の到来、 スポーツによる外傷の増加、 キ 一パンチヤー病などに代表される職業病の出現などにより、 関節障害患 者は著しく増加しており、 この領域における医療の進歩が要望されてい る。 (Disc cartilage, pubic cartilage, articular cartilage, etc.). In the above-mentioned cartilage matrix, collagen fibers are involved in rigidity and strength of cartilage against tension and shear force, proteoglycans are involved in strength against compressive force, and water has never before been characterized as a viscoelastic body of living tissue. For example, in the case of articular cartilage, water accounts for 78.6% of cartilage mass, collagen accounts for 20%, and proteoglycan accounts for 7%. The effects of cartilage include reduction of epiphyseal friction (cartilage between bones), retention of elasticity (such as auricular cartilage), and motor function (such as costal cartilage and pubic cartilage). As described above, cartilage has an important effect in maintaining the function of a living body, and various diseases caused by cartilage disorders have been known, for example, dyschondrodysplasia, osteoarthritis, deformation Examples include intervertebral disc disease, fracture repair, and poor healing. In particular, with the advent of an aging society, an increase in trauma due to sports, and the emergence of occupational diseases represented by Kipanchia disease, etc. The number of health care professionals has increased significantly, and medical progress in this area is demanded.
従来から軟骨障害を治療するために種々の治療法が試みられてきてい るが、 それらは直接的に原因の解消を目的とするものではなく、 例えば, 抗炎症剤などを投与することにより、 その疾患に基づく痛みなどの陣害 を抑制する方法; 関節にヒアルロン酸製剤などを注入して関節の動きを 潤滑にする方法など、 対症療法的なものでしかなかった。  Conventionally, various treatments have been tried to treat cartilage disorders, but they are not aimed at directly resolving the cause. For example, by administering an anti-inflammatory agent, etc. It was only a symptomatic treatment, such as a method of suppressing pain and other injuries caused by the disease; a method of injecting a hyaluronic acid preparation or the like into a joint to lubricate the movement of the joint.
このように、 関節障害の根治的治療法は見出されておらず、 特に変形 性関節症は患者数が多く、 その有効な治療法が切望されている。  As described above, no curative treatment for joint disorders has been found. Particularly, osteoarthritis has a large number of patients, and there is an eager need for effective treatments.
本発明者らは上記の課題を解決するために鋭意検討した結果、 H G F が軟骨細胞の増殖を促進し、 またプロテオグリカンの生成を促進する作 用を有し、 軟骨障害に起因する種々の疾患の治療に有効であることを見 出し、 本発明を完成させた。  The present inventors have conducted intensive studies to solve the above-mentioned problems.As a result, HGF has an effect of promoting the growth of chondrocytes and the production of proteoglycan, and has been shown to inhibit various diseases caused by cartilage disorders. The present inventors have found that they are effective for treatment and completed the present invention.
上記の H G Fは肝実質細胞を in vi tro で増殖させる因子として見出 されたタンパク質である(Bi ochem Bi ophys Res Commun, 122, 1450, 19 84、 Proc. Natl . Acad. Sci . USA, 83, 6489, 1986、 FEBS Letter, 224, 31 1 , 1987、 Nature, 342, 440, 1989、 Proc. Nat l . Acad. Sci . USA, 87, 3200, 1990 ) 。 肝実質細胞を特異的に増殖させる因子として発見さ れた H G Fは、 本発明者らをはじめとする多くの研究者による最近の研 究成果によって、 生体内で組織傷害治癒などの種々の活性を示している 事が明らかとなり、 研究対象としてのみならずヒ 卜や動物の治療薬など への応用に期待が集まっている。  The above-mentioned HGF is a protein found as a factor for growing hepatocytes in vitro (Biochem Biophys Res Commun, 122, 1450, 1984, Proc. Natl. Acad. Sci. USA, 83, 6489, 1986, FEBS Letter, 224, 311, 1987, Nature, 342, 440, 1989, Proc. Natl. Acad. Sci. USA, 87, 3200, 1990). HGF, which was discovered as a factor that specifically promotes hepatocyte proliferation, has been shown to have various activities such as tissue injury healing and the like in vivo by recent research results by many researchers including the present inventors. The results are clear, and expectations are high for its application not only as a research target but also as a therapeutic drug for humans and animals.
H G Fは生に間葉系の細胞により産生されていることが解明されてお り、 近隣細胞から必要に応じて H G Fが供給される、 所謂パラクリン機 構が成立していることが明らかにされている。 しかしながら、 肝臓ゃ脊 臓に傷害を受けたとき、 傷害を受けていない臓器、 例えば肺などにおい ても H G Fの産生が高まることから、 所謂ェンドクリン機構によっても H G Fが供給されていると考えられる。  It has been elucidated that HGF is produced by cells of the mesenchymal system in life, and it has been clarified that a so-called paracrine mechanism has been established in which HGF is supplied from neighboring cells as needed. I have. However, when liver and spine are injured, HGF production is also increased in uninjured organs, such as lungs, so that it is considered that HGF is also supplied by the so-called endocrine mechanism.
このような H G Fの受容体に関して、 最近の研究から、 c一 M e t原 腫瘻遺伝子が H G F受容体をコー ドしていることが確定的になった(Bot taro et al. , Science 251_, 802-804, 1991 ; Naldini et al. , Oncogen e 6, 501-504, 1991)。 Recent studies on the receptor for HGF have confirmed that the c-Met primordial tumor fist gene encodes the HGF receptor (Bot taro et al., Science 251_, 802-804, 1991; Naldini et al., Oncogen e 6, 501-504, 1991).
上述のように H G Fに関しては多くの知見が得られているが、 H G F の軟骨細胞増殖促進作用及びプロテオグリカン生成促進作用は従来知ら れていない新規な知見であり、 かかる知見に基づいてなされた本発明は 軟骨障害に起因する種々の疾患の治療に有用な薬剤を提供することにあ る。 発明の開示  Although a great deal of knowledge has been obtained on HGF as described above, the action of HGF to promote chondrocyte proliferation and proteoglycan production is a novel finding that has not been known so far, and the present invention based on such knowledge has been made. Is to provide an agent useful for treating various diseases caused by cartilage disorders. Disclosure of the invention
本発明は、 H G Fを有効成分として含有することからなる軟骨障害治 療剤である。  The present invention is a remedy for cartilage disorders comprising HGF as an active ingredient.
また、 本発明の他の発明は、 H G Fを有効成分として含有することか らなる軟骨細胞増殖促進剤; HG Fを有効成分として含有することから なるプロテオグリカン生成促進剤; 有効量の H G Fを投与することから なるヒ 卜又は哺乳動物の軟骨障害の治療法である。  Another aspect of the present invention provides a chondrocyte proliferation promoting agent comprising HGF as an active ingredient; a proteoglycan production promoting agent comprising HGF as an active ingredient; and administering an effective amount of HGF. And a method for treating cartilage disorders in a human or mammal.
上記の H G Fは、 ヒ ト又は動物の組織又は血液成分由来のものであつ てもよく、 また遺伝子組換えにより製造したものであってもよい。  The above HGF may be derived from human or animal tissues or blood components, or may be produced by genetic recombination.
有効成分である HGFは、 軟骨細胞の増殖を促進し、 プロテオグリカ ンの生成を促進する作用を有するので、 軟骨障害に起因する種々の疾患 の治療 · 予防に有効である。 図面の簡単な説明  HGF, which is an active ingredient, has the effect of promoting the proliferation of chondrocytes and the production of proteoglycan, and is therefore effective for the treatment and prevention of various diseases caused by cartilage disorders. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 早期発生期マウスの肢芽における HG FmRN Aの発現を示 す顕微鏡写真である (左側は明視野、 右側はそれに対応する暗視野) 。 同図において、 A〜Dは 1 0. 5日齢胎児、 E〜Hは 1 1 日齢胎児の縦 断面切片である。  Figure 1 is a micrograph showing the expression of HG FmRNA in the limb buds of early nascent mice (bright field on the left and corresponding dark field on the right). In the figure, A to D are 10.5-day-old fetuses, and E to H are longitudinal section sections of the 11-day-old fetus.
図 2は、 指形成期マウスの肢芽における HG FmRN Aの発現を示す 顕微鏡写真である (左側は明視野、 右側はそれに対応する喑視野) 。 同 図において、 A及び Bは 1 2. 5日齢胎児、 C〜Fは 1 3日齡胎児、 G 〜 Jは 1 4日齡胎児の切片である。 また、 F eは大腿骨、 F iは腓骨、 T aは足根骨を、 I〜Vは指番号を示す。 Figure 2 is a photomicrograph showing the expression of HG FmRNA in the limb buds of the mouse during finger formation (bright field on the left, corresponding 喑 field on the right). In the figure, A and B are sections of a 12.5 day old fetus, C to F are sections of a 13 day old fetus, and G to J are sections of a 14 day old fetus. Fe is the femur, Fi is the fibula, Ta indicates a tarsal bone, and I to V indicate finger numbers.
図 3は、 発生期マウスの肢芽及び胸郭における H G F mRN Aの発現 を示す顕微鏡写真である (左側は明視野、 右側はそれに対応する暗視野) 。 同図において、 A及び Bは】 6日齢胎児の後肢の横断面切片 ; C及び Dは 1 3日鹼胎児、 E及び Fは 1 4日齢胎児の胸郭の縦断面切片を示す。 また、 T aは足根骨、 T iは脛骨、 R i bは肋骨軟骨の前軟骨性集積を 示す。  FIG. 3 is a micrograph showing the expression of HGF mRNA in the limb buds and thorax of a developing mouse (the bright field is on the left, and the corresponding dark field is on the right). In the same figure, A and B show cross sections of hind limbs of a 6-day-old fetus; C and D show 13-day- 鹼 fetuses, and E and F show longitudinal-section sections of the thorax of 14-day-old fetuses. Ta indicates tarsal bone, Ti indicates tibia, and Rib indicates pre-cartilaginous accumulation of rib cartilage.
図 4は、 HG Fの軟骨細胞に対するスキヤッタ一活性を示す顕微鏡写 真である。 同図において、 Aはコン トロール (HG F非処理) を、 Bは HG F処理を示す。  FIG. 4 is a micrograph showing the scatter activity of HGF on chondrocytes. In the figure, A indicates control (non-HGF processing) and B indicates HGF processing.
図 5は、 軟骨細胞増殖に対する HG Fの効果を示す図である。 同図に おいて、 Aは関節軟骨細胞の DNA合成に対する効果を、 Bは搰膜細胞 の DN A合成に対する効果を、 Cは関節軟骨細胞の増殖 (細胞数) に対 する効果を示す。  FIG. 5 shows the effect of HGF on chondrocyte proliferation. In the figure, A shows the effect on DNA synthesis of articular chondrocytes, B shows the effect on DNA synthesis of peritoneal cells, and C shows the effect on proliferation (cell number) of articular chondrocytes.
図 6は、 プロテオグリカン生成に対する HG Fの効果を示す図である。 図 7は、 抗 HG F抗体存在下における、 DNA合成 (図 7 A) 及びプ 口テオグリカン生成 (図 7 B) に対する HG Fの効果を示す図である。 図 8は、 H G Fレセブター mRN Aの軟骨細胞での発現を示す電気泳 動写真である。 発明を実施するための最良の形態  FIG. 6 is a diagram showing the effect of HGF on proteoglycan production. FIG. 7 is a graph showing the effects of HGF on DNA synthesis (FIG. 7A) and production of open-ended theoglycans (FIG. 7B) in the presence of an anti-HGF antibody. FIG. 8 is an electrophoretic photograph showing the expression of HGF receptor mRNA in chondrocytes. BEST MODE FOR CARRYING OUT THE INVENTION
本発明で使用される HG Fとしては、 医薬として使用できる程度に精 製されたものであれば、 種々の方法で調製されたものを用いることがで さる。  As the HGF used in the present invention, those prepared by various methods can be used as long as they are purified to the extent that they can be used as pharmaceuticals.
H G Fの調製方法としては、 各種の方法が知られている。 例えば、 ラ ッ 卜、 ゥシ、 ゥマ、 ヒッジなどの哺乳動物の肝臓、 脾臓、 肺臓、 骨髄、 脳、 背臓、 胎盤等の臓器、 血小板、 白血球等の血液細胞や血漿、 血清な どから抽出、 精製して得ることができる(FEBS Letter, 224, 312, 1987、 Proc. Natl. Acad. Sci. USA, 86, 5844, 1989など参照)。  Various methods are known for preparing HGF. For example, from liver, spleen, lung, bone marrow, organs such as bone marrow, brain, back, placenta, etc., blood cells such as platelets, leukocytes, plasma, serum, etc. It can be obtained by extraction and purification (see FEBS Letter, 224, 312, 1987, Proc. Natl. Acad. Sci. USA, 86, 5844, 1989, etc.).
また、 HG Fを産生する初代培養細胞や株化細胞を培養し、 培養物 (培養上清、 培養細胞等) から分離精製して H G Fを得ることもできる, あるいは遺伝子工学的手法により H G Fをコー ドする遺伝子を適切なベ クタ一に組込み、 これを適当な宿主に挿入して形質転換し、 この形質転 換体の培養上清から目的とする組換え H G Fを得ることができる(例え ば、 Nature, 342, 440, 1989、 日本国特開平 5— 1 1 1 3 8 3号公報、 Bi ochem. Biophys. Res. Commun. , 163, 967, 1989など参照)。 上記の 宿主細胞は特に限定されず、 従来から遺伝子工学的手法で用いられてい る各種の宿主細胞、 例えば大腸菌、 枯草菌、 酵母、 糸状菌、 植物又は動 物細胞などを用いることができる。 In addition, primary cultured cells and cell lines that produce HGF are cultured and cultured. HGF can be isolated and purified from culture supernatants, cultured cells, etc., or HGF-encoding genes can be incorporated into an appropriate vector by genetic engineering techniques and inserted into an appropriate host. To obtain the desired recombinant HGF from the culture supernatant of this transformant (for example, Nature, 342, 440, 1989, Japanese Patent Application Laid-Open No. 5-111383). Gazette, Biochem. Biophys. Res. Commun., 163, 967, 1989). The above host cells are not particularly limited, and various host cells conventionally used in genetic engineering techniques, for example, Escherichia coli, Bacillus subtilis, yeast, filamentous fungi, plants, or animal cells can be used.
より具体的には、 H G Fを生体組織から抽出精製する方法としては、 例えば、 ラッ 卜に四塩化炭素を腹腔内投与し、 肝炎状態にしたラッ 卜の 肝臓を摘出して粉砕し、 S—セファロース、 へパリンセファロースなど のゲルカラムクロマ卜グラフィー、 H P L C等の通常の蛋白質精製法に て精製することができる。  More specifically, as a method for extracting and purifying HGF from living tissue, for example, a method of intraperitoneally administering carbon tetrachloride to a rat, extracting and crushing the liver of the rat in a hepatitis state, and crushing the S-sepharose The protein can be purified by conventional protein purification methods such as gel column chromatography such as heparin sepharose and HPLC.
また、 遺伝子組換え法を用い、 ヒ 卜 H G Fのアミノ酸配列をコー ドす る遺伝子を、 ゥシパピローマウィルス D N Aなどのべクターに組み込ん だ発現べクタ一によって動物細胞、 例えば、 チャイニーズハムスター卵 巣 (C H O ) 細胞、 マウス C 1 2 7細胞、 サル C O S細胞などを形質転 換し、 その培養上清より得ることができる。  In addition, animal cells, such as Chinese hamster ovaries (eg, Chinese hamster ovaries), are obtained by using an expression vector in which a gene encoding the amino acid sequence of human HGF has been incorporated into a vector such as sipapilloma virus DNA using a genetic recombination method. CHO) cells, mouse C127 cells, monkey COS cells, etc. can be transformed and obtained from the culture supernatant.
かく して得られた H G Fは、 H G Fと実質的に同効である限り、 その ァミノ酸配列の一部が欠失又は他のアミノ酸により置換されていたり、 他のアミノ酸配列が一部挿入されていたり、 N末端及び/又は C末端に 1又は 2以上のアミノ酸が結合していたり、 あるいは糖鎖が同様に欠失 又は置換されていてもよい。  In the HGF thus obtained, as long as it is substantially equivalent to HGF, a part of the amino acid sequence is deleted or replaced by another amino acid, or another amino acid sequence is partially inserted. Or one or more amino acids may be bound to the N-terminus and / or C-terminus, or the sugar chain may be similarly deleted or substituted.
本発明の治療剤及び促進剤は上記の H G Fを有効成分とし、 H G Fは 後記試験例に示されるように、 軟骨細胞の増殖を促進し、 またプロテオ グリカンの生成を促進する作用を有する。 更に、 H G Fは、 障害を受け ていない軟骨組織には作用を示さず、 障害を有する軟骨組織にのみ作用 するので、 副作用を惹起するおそれが少ないという特長を有する。 従つ て、 本発明の治療剤及び促進剤は、 軟骨障害に起因する各種疾患の治療 ' 予防に有効であり、 これらには例えば下記の疾患が包含される。 The therapeutic agent and accelerator of the present invention contain the above-mentioned HGF as an active ingredient, and HGF promotes the growth of chondrocytes and the production of proteoglycan, as shown in the test examples described later. Furthermore, since HGF does not act on undisturbed cartilage tissue and acts only on impaired cartilage tissue, HGF has a feature that it is less likely to cause side effects. Therefore, the therapeutic agent and the accelerator of the present invention are useful for treating various diseases caused by cartilage disorders. It is effective for prevention, and these include, for example, the following diseases.
変形性関節炎  Osteoarthritis
軟骨形成異常症  Chondrodysplasia
骨折の治癒及び修復  Fracture healing and repair
外傷による関節軟骨、 関節円板の修復 Repair of articular cartilage and articular disc due to trauma
急性化膿性関節炎 Acute purulent arthritis
結核性関節炎 Tuberculous arthritis
梅毒性関節炎 Syphilitic arthritis
慢性関節リウマチ Rheumatoid arthritis
リウマチ熱、 全身性エリテマ卜一デス  Rheumatic fever, systemic lupus erythematosus
変形性脊椎症 Degenerative spondylosis
椎間板ヘルニア Herniated disc
骨移植による修復 Bone graft repair
本発明の治療剤及び促進剤は、 ヒ 卜の他、 哺乳動物 (例えば、 ゥシ、 ゥマ、 ブタ、 ヒッジ、 ィヌ、 ネコ等) における軟骨障害に起因する種々 の疾患の治療 · 予防に適用される。  The therapeutic agent and enhancer of the present invention are useful for the treatment and prevention of various diseases caused by cartilage disorders in mammals (for example, horses, horses, pigs, sheep, dogs, cats, etc.) in addition to humans. Applied.
本発明の治療剤及び促進剤は種々の製剤形態 (例えば、 液剤、 固形剤, カプセル剤等) をとりうる力、 一般的には有効成分である H G Fのみ又 はそれと慣用の担体と共に注射剤、 吸入剤、 坐剤又は経口剤とされる。 当該注射剤は常法により調製することができ、 例えば、 H G Fを適切な 溶剤 (例えば、 滅菌された水、 緩衝液、 生理食塩水等) に溶解した後、 フィルタ一等で濂過して滅菌し、 次いで無菌的な容器に充填することに より調製することができる。 注射剤中の H G F含量としては、 通常 0. 00 02〜0. 2 (W/V5 程度、 好ましくは 0. 001〜0. 1 (W/V%)程度に調整される。 また、 経口薬としては、 例えば、 錠剤、 顆粒剤、 細粒剤、 散剤、 軟又は 硬カプセル剤、 液剤、 乳剤、 懸濁剤、 シロップ剤などの剤形に製剤化さ れ、 これらの製剤は製剤化の常法に準じて調製することができる。 坐剤 も慣用の基剤 (例えば、 カカオ脂、 ラウリン脂、 グリセ口ゼラチン、 マ クロゴール、 ウイテツプゾル等) を用いた製剤上の常法によって調製す ることができる。 また、 吸入剤も製剤上の常套手段に準じて調製するこ とができる。 The therapeutic agent and enhancer of the present invention can be used in various forms (for example, liquids, solids, capsules, etc.). Generally, the active ingredient HGF alone or an injection thereof together with a conventional carrier, Inhalant, suppository or oral. The injection can be prepared by a conventional method. For example, after dissolving HGF in an appropriate solvent (for example, sterilized water, buffer, physiological saline, etc.), sterilize by passing through a filter or the like. Then, it can be prepared by filling in a sterile container. The HGF content in the injection is usually adjusted to about 0.002 to 0.2 (W / V5, preferably about 0.001 to 0.1 (W / V%). Are formulated into tablets, granules, fine granules, powders, soft or hard capsules, solutions, emulsions, suspensions, syrups, etc. Suppositories can also be prepared by a conventional method using a conventional base (for example, cacao butter, laurin butter, glycemic gelatin, macrocrogol, witepsol, etc.). Inhalants should also be prepared in accordance with the usual pharmaceutical procedures. Can be.
製剤中の H G F含量は、 剤形、 適用疾患などに応じて適宜調整するこ とができる。  The HGF content in the preparation can be appropriately adjusted according to the dosage form, the disease to be applied and the like.
製剤化に際して、 好ましくは安定化剤が添加され、 安定化剤としては, 例えば、 アルブミン、 グロブリン、 ゼラチン、 グリシン、 マンニトール, グルコース、 デキストラン、 ソルビトール、 エチレングリコールなどが 挙げられる。 さらに、 本発明の製剤は製剤化に必要な添加物、 例えば、 賦形剤、 溶解補助剤、 酸化防止剤、 無痛化剤、 等張化剤等を含んでいて もよい。 液状製剤とした場合は凍結保存、 又は凍結乾燥等により水分を 除去して保存するのが望ましい。 凍結乾燥製剤は、 用時に注射用蒸留水 などを加え、 再溶解して使用される。  At the time of formulation, a stabilizer is preferably added. Examples of the stabilizer include albumin, globulin, gelatin, glycine, mannitol, glucose, dextran, sorbitol, ethylene glycol and the like. Further, the preparation of the present invention may contain additives necessary for preparation, for example, excipients, solubilizers, antioxidants, soothing agents, isotonic agents and the like. When a liquid preparation is used, it is desirable to store it after freezing or freezing it to remove water. The lyophilized preparation is reconstituted with distilled water for injection and used before use.
本発明の治療剤及び促進剤は、 その製剤形態に応じた適当な投与経路 により投与され得る。 例えば、 注射剤の形態にして静脈、 動脈、 皮下、 筋肉内などに投与することができる。 その投与量は、 患者の症状、 年齢、 体重などにより適宜調整されるが、 通常 H G Fとして 0. 05mg〜500ing、 好ましくは l mg〜100mgであり、 これを 1 日 1 回ないし数回に分けて投 与するのが適当である。 産業上の利用可能性  The therapeutic agent and enhancer of the present invention can be administered by an appropriate route depending on the form of the preparation. For example, it can be administered in the form of an injection into a vein, artery, subcutaneous, intramuscular, or the like. The dose is adjusted appropriately depending on the patient's condition, age, weight, etc., but is usually 0.05 mg to 500 ing, preferably lmg to 100 mg as HGF, and is divided into once or several times a day. It is appropriate to administer. Industrial applicability
本発明において、 有効成分である H G Fは、 軟骨細胞の増殖を促進し、 またプリテオグリカンの生成を促進させる作用を有している。 従って、 本発明の治療剤及び促進剤は、 前述した軟骨障害に起因する各種疾患の 治療 ' 予防に有用である。 更に、 H G Fは、 障害を受けている軟骨組織 にのみ作用するので、 副作用の少ない薬剤を得ることができるという効 果を奏する。 実施例  In the present invention, HGF, which is an active ingredient, has the effect of promoting the growth of chondrocytes and promoting the production of priteoglycan. Therefore, the therapeutic agent and the promoting agent of the present invention are useful for the treatment and prevention of the above-mentioned various diseases caused by cartilage disorders. Furthermore, since HGF acts only on damaged cartilage tissue, it is possible to obtain a drug with few side effects. Example
以下、 実施例及び製造例に基づいて本発明をよリ詳細に説明するが、 本発明はこれらの例に限定されるものではない。 なお、 以下の実験で使 用した材料及び方法は以下のとおりである。 材料と方法 Hereinafter, the present invention will be described in more detail based on Examples and Production Examples, but the present invention is not limited to these Examples. The materials and methods used in the following experiments are as follows. Materials and methods
① in situハイブリダィゼ一シヨン  ① In situ hybridization
ラッ 卜 HG F— c DNA (R BC 1 クローン) (Proc. Natl. Acad. Rat HG F-cDNA (RBC1 clone) (Proc. Natl. Acad.
Sci. USA, 87, 3200, 1990)の 1. 4 k b E c o R I断片を p G EM 7ベクターにサブクローンし [a— 3' S] U T P ( 4 00 C i / m m oThe 1.4 kb EcoRI fragment of Sci. USA, 87, 3200, 1990) was subcloned into the pGEM7 vector and [a— 3 'S] UTP (400 Ci / mmo).
1、 アマシャム社) で標識化したアンチセンスとセンスの RN Aプロ一 ブを作製した。 標識した転写物は、 リボプローブとして 5 0— 1 5 0塩 基にアル力リ加水分解した。 1, Amersham) to prepare antisense and sense RNA probes. The labeled transcript was hydrolyzed to 50-150 base as a riboprobe.
in situノヽイブりダイゼーシヨンは文献(Biochem. Biophys. Res. Com mun., Γ73, 42, 1990)記載の方法で実施した。 サンプルは 4 %パラホル ムアルデヒ ド一リン酸生理食塩水溶液で固定し、 エタノールで脱水、 卜 ルェンで洗浄後、 パラフィンに包埋した。 5 μ πιの切片を切り出し、 ポ リー L—リジンでコートしたスライ ドグラスにマウン卜した。 切片はグ リシンと無水酢酸で脱パラフィ ンし、 5 0°C、 1 6時間プローブでハイ ブリダィズした。 その後、 切片を 0. 1 X S S C液で 5 0°C、 1時間洗 浄し、 RNA a s e A ( 2 0 g/m ] ) で 37°C、 3 0分処理してか ら、 2 X S S C液で 3 7T、 1 0分間で 2回洗浄した。 切片は乳剤 ( 1 1 コダック N BT— 2希釈液) に浸し 2週間露光した。 切片はコダック D- 1 9に現像定着し、 へマ卜キシリン ' ェォジンで染色した。  The in situ hybridization was carried out by the method described in the literature (Biochem. Biophys. Res. Commun., 73, 42, 1990). Samples were fixed in 4% paraformaldehyde monophosphate saline solution, dehydrated with ethanol, washed with toluene, and embedded in paraffin. A 5 μπι section was cut out and mounted on a slide glass coated with poly L-lysine. Sections were deparaffinized with glycine and acetic anhydride and hybridized with a probe at 50 ° C for 16 hours. Thereafter, the sections were washed with 0.1 XSSC solution at 50 ° C for 1 hour, treated with RNAase A (20 g / m]) at 37 ° C for 30 minutes, and then treated with 2XSSC solution. Washing was performed twice at 37T for 10 minutes. The sections were immersed in the emulsion (11 Kodak NBT-2 diluted solution) and exposed for 2 weeks. The sections were developed and fixed on Kodak D-19 and stained with hematoxylin and eosin.
②細胞と細胞培養 ② Cells and cell culture
軟骨細胞は、 文献(J. Cell. Physiol., 133, 491, 1987)記載の方法 に準じて、 ニュージーランドホワイ トゥサギの 2 3日齢胎児と 4週齡新 生児から単離した。 関節軟骨は膝の大腿骨関節軟骨から、 肋軟骨は肋骨 の硝子軟骨から単離した(Dev. Biol., 136, 500, 1989)。 搰膜線維芽細 胞は、 膝関節の搰膜組織から単離した。 細切した滑膜組織断片を 1 0 % F B Sを含む DMEMで 1 0日間培養し、 卜リプシン処理で増殖した細 胞を集めた。 文献(Exp. Cell Res., 157, 483, 1985)記載の方法に準じ て、 2 0日鹼ラッ 卜胎児の脚筋肉組織から胎生間葉系細胞を単離した。 脚芽間葉細胞は、 1 0. 5日睇のラッ 卜胎児から単離した。 脚芽は外科 用顕微鏡下で切り出し、 0. 2 5 % 卜リブシンで 3 0分で処理後、 ピぺ ッテングしナイロンガーゼで単離細胞を得た。 脚芽細胞以外全ての細胞 は、 1 0 % F B S、 6 0 μ g/ 1のカナマイシンを含む DM EM (以 下、 培地 Aという) で 3 7 °C、 5 %C 02/ 9 5 %空気下で維持した。 Chondrocytes were isolated from 23-day-old fetuses and 4-week-old newborns of New Zealand white herons according to the method described in the literature (J. Cell. Physiol., 133, 491, 1987). Articular cartilage was isolated from femoral articular cartilage of the knee, and costal cartilage was isolated from hyaline cartilage of the rib (Dev. Biol., 136, 500, 1989). Meningeal fibroblasts were isolated from the meningeal tissue of the knee joint. The minced synovial tissue fragments were cultured in DMEM containing 10% FBS for 10 days, and cells grown by trypsin treatment were collected. According to the method described in the literature (Exp. Cell Res., 157, 483, 1985), fetal mesenchymal cells were isolated from leg muscle tissues of fetal rats on day 20. Leg bud mesenchymal cells were isolated from rat embryos at 10.5 days. Leg buds are surgical The cells were cut out under a microscope for use, treated with 0.25% tribcine for 30 minutes, and then pitted to obtain isolated cells with nylon gauze. All cells except Asymmetric cells, 1 0% FBS, 6 0 μ DM EM ( hereinafter, referred to as medium A) containing g / 1 of kanamycin 3 7 ° at C, 5% C 0 2/ 9 5% air Maintained below.
③ D N A合成の測定 ③ Measurement of DNA synthesis
DNA合成速度は、 1 0 °/。T CA不溶性細胞沈殿への [3 H] —チミ ジン ( [ 6 — 3 H ] —チミジン、 アマシャム社、 2 0 C i m m o 1 ) の取り込みの測定で評価した(J. Clin. Invest. , 85, 626, 1990)。 細 胞は、 9 6穴プレー 卜の 6 mmゥエル当り 1 . 5 Χ 1 (Γ個の密度で播 種し、 コンフルェン卜になるまで培養した。 增殖を停止するため、 細胞 は 0. 3 % F B S含有 DM EMの 0. 1 m lでプレインキュベーション した。 種々の濃度の H G Fを培地に添加した。 インキュベーションは 2 4時間続けた。 1 C i /m l [a H] —チミジンは、 インキュベーシ ヨン停止 3時間前に添加した。 標識後細胞は氷冷 P B Sで 3回、 3 mM チミジンを含有する 5 %T C Aで 2回、 エタノール: ジメチルエーテル ( 3 : 1 ) で 1 回洗浄した。 ゥエル内の残渣は、 1 0 0 μ 1の 0. 1 Ν N a O Hで可溶化し、 液体シンチバイアルに移し、 I N H C 1 で中和 後、 放射能をシンチレーションカウンター (R a c k— b e t a、 ファ ルマシア社) で測定した。 DNA synthesis rate is 10 ° /. Of [3 H] to T CA insoluble cell sedimentation - thymidine.. ([6 - 3 H ] - thymidine, Amersham, 2 0 C immo 1) of was evaluated by measuring the incorporation (J. Clin Invest, 85, 626, 1990). Cells were seeded at a density of 1.5 11 per 96-mm plate in a 96-well plate (Γ density) and cultured until confluent. To stop the growth, cells were incubated with 0.3% FBS. .. containing preincubation with 0. 1 ml of DM EM various concentrations of HGF was added to the medium the incubation was continued for 24 hours 1 C i / ml [a H ] -. thymidine Inkyubeshi Yung stop 3 After labeling, cells were washed three times with ice-cold PBS, twice with 5% TCA containing 3 mM thymidine, and once with ethanol: dimethyl ether (3: 1). After solubilization with 100 µl of 0.1 NaOH, the solution was transferred to a liquid scintillation vial, neutralized with INHC1, and radioactivity was measured with a scintillation counter (Rack-beta, Pharmacia).
④プロテオグリカン合成の測定 測定 Measurement of proteoglycan synthesis
軟骨細胞は、 6 mmゥエル当り 1 . 5 X 1 (Γ個の密度で播種し、 0. 1 m 1の培地 Aで維持した。 細胞がコンフルェン 卜に達したら、 0. 3 % F B Sを含有する 0. 1 m lの DM EMで 2 4時間プレインキュベー シヨンした。 その後、 0. 3 % F B Sと H G Fを含有する 0. 1 m lの DM EMで 2 4時間インキュベーションした。 1 μ C i / 1の [a e S] 一硫酸基をィンキュベーシヨン終了 2 0時間前に添加した。 プロテオグ リカン合成は、 プロテア一ゼ消化後のセチルピリジニゥムクロライ ドで の沈殿物への [3' S ] —硫酸基の取り込みの測定により評価した(Exp. Cell Res., 130, 73, 1980)。 Chondrocytes were seeded at a density of 1.5 x 1 (Γ) per 6 mm well and maintained in 0.1 ml medium A. When cells reached confluence, they contained 0.3% FBS. Preincubation was performed for 24 hours in 0.1 ml DMEM, followed by incubation for 24 hours in 0.1 ml DMEM containing 0.3% FBS and HGF. ae S] The monosulfate group was added 20 hours before the end of the incubation.The proteoglycan synthesis was based on [ 3 'S] of the precipitate on cetylpyridinium chloride after protease digestion. —Evaluated by measuring sulfate uptake (Exp. Cell Res., 130, 73, 1980).
⑤総 R NA調製と逆転写 P C R ⑤Total RNA preparation and reverse transcription PCR
軟骨から総 R N Aは、 文献(Anal. Biochem. , 203, 352, 1992)記載の 方法の変法で調製した。 新鮮単離組織断片 ( 0. 1 g湿重量) は、 4 M グァニジンチオシァネー 卜、 0. 1 M T r i s塩酸 (p H 7. 5) 、 1 % 2—メルカプ卜ェタノールの 4 M G I T C溶液 2 m 1 ですばやく ホモジェネー 卜した。 ホモジェネー卜は 1 0 % S D S 1 0 0 1に混合 し、 微量遠心機で 5分間遠心した。 上清 2 m 1 をベックマンポリアロマ —遠心チューブ ( 1 3 X 5 1 mm) 中で、 同容量のし 6 gセシウム卜 リフルォロアセテー トと 1 mM E D TA ( p H 8. 0 ) に重層した。 試料を 3 5 , O O O r p m ( 1 4 7 , O O O X g ) で 1 8°C、 2 0時間 遠心した。 上清を吸引除去後、 沈殿を 4 M G I T C溶液 2 0 0 μ 1に 溶解し、 フエノール: クロロホルム : イソアミルアルコーソレ ( 2 5 : 2 4 : 1 ) で抽出処理後、 2 0 μ 1の 3 Μ酢酸ナトリウム (ρ Η 4. 8 ) を混ぜ、 2倍容量 (4 4 0 μ 1 ) のエタノールで沈殿させた。 沈渣は D E P C処理水に溶解した。  Total RNA from cartilage was prepared by a modification of the method described in the literature (Anal. Biochem., 203, 352, 1992). Freshly isolated tissue fragments (0.1 g wet weight) were prepared using 4 M guanidine thiosinate, 0.1 MT ris hydrochloric acid (pH 7.5), 1% 2-mercaptoethanol in 4 MGITC solution 2 The homogenization was performed quickly at m 1. The homogenate was mixed with 10% SDS 1001 and centrifuged for 5 minutes in a microcentrifuge. 2 ml of the supernatant is layered on a Beckman polyaroma-centrifuge tube (13 x 51 mm) over an equal volume of 6 g cesium trifluoroacetate and 1 mM EDTA (pH 8.0). did. The sample was centrifuged at 35 ° C, OOOrpm (147, OOOXg) at 18 ° C for 20 hours. After removing the supernatant by suction, dissolve the precipitate in 200 μl of 4 MGITC solution, extract with phenol: chloroform: isoamylalcosol (25: 24: 1), then add 20 μl of 3-acetic acid. Sodium (ρΗ4.8) was mixed and precipitated with 2 volumes (440 μl) of ethanol. The precipitate was dissolved in DEPC-treated water.
まず、 0. 5 μ g総 RNAからファース卜ストランド c DNAの合成 を S u p e r s c r i p t逆転酵素(Gibco-BRL)と下流域のアンチセン スプライマ一を使って行った。 引き続いて P C R増殖を行った。 増殖は、 9 4 °Cで 3 0秒、 5 8でで 1分、 7 2 °Cでし 5分での 3 5サイクル (軟骨細胞の場合) 又は 4 0サイクル (軟骨組織の場合) の条件で行つ た。 P C R増殖のプライマ一塩基配列は、 ラッ 卜とマウスの c— M e t (Oncogene, 2, 593, 1988)に対しては 5 ' — CA G T (A/G) A T G A T C T CAA T GGG CAA T - 3 ' と 5 ' -AA T G C C C T C T T C C T A T GA C T T C - 3 ' で 7 2 5 b p断片を作製した。 実施例 1  First, first-strand cDNA was synthesized from 0.5 μg of total RNA using Supersrcript revertase (Gibco-BRL) and an antisense primer in the downstream region. Subsequently, PCR expansion was performed. Proliferation is for 30 cycles at 94 ° C for 30 seconds, 58 for 1 minute, and 72 ° C for 5 minutes for 35 cycles (for chondrocytes) or 40 cycles (for cartilage tissue). I went in. The primer base sequence for PCR amplification is 5 'for rat and mouse c-Met (Oncogene, 2, 593, 1988). — CA GT (A / G) ATGATCT CAA T GGG CAA T-3' And 5'-AA TGCCCTCTTCCTAT GA CTTC-3 'to generate a 72 bp fragment. Example 1
発生四肢での H G F mRN A発現 HG F mRNA expression in developing limbs
発生期マウスの肢芽における H G F m R NAの発現を in situハイブ リダィゼーシヨン法で試験した。 その結果を図 1、 図 2及び図 3に示す, 図 1は早期発生期マウスの肢芽における HG FmRN Aの発現を示し, 後肢の縦断面切片の顕微鏡写真であり、 明視野 (左側) 及びそれに対応 する暗視野 (右側) は in situハイブリダィゼーシヨン、 オートラジオ グラフィ及び染色後に撮影したものである。 同図において、 A〜Dは 1 0. 5日齡胎児、 E〜Hは 1 1 日齢胎児の切片である。 Expression of HGF mRNA in limb buds of developing mice Tested by the reduction method. The results are shown in Fig. 1, Fig. 2 and Fig. 3. Fig. 1 shows the expression of HG FmRNA in the limb buds of mice in early development, and is a photomicrograph of a longitudinal section of the hind limb. The corresponding dark field (right) was taken after in situ hybridization, autoradiography and staining. In the figure, A to D are sections of a 10.5 day old fetus, and E to H are sections of an 11 day old fetus.
図 2は指形成期マウスの肢芽における HG FmRN Aの発現を示し、 後肢の縦断面切片の顕微鏡写真であり、 明視野 (左側) 及びそれに対応 する暗視野 (右側) は in situハイブリダィゼーシヨン、 オートラジオ グラフィ及び染色後に撮影したものである。 同図において、 A及び Bは 1 2. 5日齢胎児、 C〜Fは 1 3日齢胎児、 G〜 Jは 1 4 日齢胎児の切 片である。 また、 F eは大腿骨、 F iは腓骨、 T aは足根骨を、 I〜V は指番号を示す。  Figure 2 shows the expression of HG FmRNA in the limb buds of the mouse during finger formation. Photomicrographs of longitudinal sections of the hind limb. The bright field (left) and the corresponding dark field (right) are in situ hybridized. Photographs were taken after zession, autoradiography and staining. In the figure, A and B are sections of a 12.5 day old fetus, CF are sections of a 13 day old fetus, and GJ are sections of a 14 day old fetus. Fe represents a femur, Fi represents a fibula, Ta represents a tarsal bone, and I to V represent finger numbers.
図 3は発生期マウスの肢芽及び胸郭における H G FmRN Aの発現を 示す顕微鏡写真であり、 明視野 (左側) 及びそれに対応する暗視野 (右 側) は in situハイブリダィゼーシヨン、 オートラジオグラフィ及び染 色後に撮影したものである。 同図において、 A及び Bは 1 6日齢胎児の 後肢の横断面切片を ; C及び Dは 1 3日齢胎児、 E及び Fは 1 4 日齢胎 児の胸郭の縦断面切片を示す。 また、 T aは足根骨、 T iは脛骨、 R i bは肋骨軟骨の前軟骨性集積を示す。  Figure 3 is a micrograph showing the expression of HG FmRNA in the limb buds and rib cage of the developing mouse. The bright field (left) and the corresponding dark field (right) are in situ hybridization and autoradio. It was taken after the graphic and dyeing. In the same figure, A and B show cross-sections of hind limbs of 16-day-old fetuses; C and D show 13-day-old fetuses, and E and F show longitudinal cross-sections of thorax of 14-day-old fetuses. Ta indicates a tarsal bone, Ti indicates a tibia, and R ib indicates pre-cartilaginous accumulation of rib cartilage.
図 1に示されるように、 1 1 日目に四肢の底部領域周囲に HG FmR NAのびまん性の発現が検出された。 この段階で軟骨性集積は、 四肢に 発生していなかった。 軟骨性集積が進行すると HG FmRN Aの発現部 位はより制限されてきた。 1 2. 5日目に基脚、 接合脚、 自脚部分が形 成されるとき、 HGFmRNAの発現は、 手首 踝と肘 Z膝の関節領域 で観察された (図 2 A及び B参照。 便宜上、 膝及び踝について示した) 。 後期 ( 1 3〜 1 4 日) には、 HGFmRNAは、 手首 Z踝と肘/膝の関 節領域の軟骨集積の隣接し限定された間葉系細胞に発現していた (図 2 C〜J参照) 。 1 6日目に、 HG FmRNAは、 足根骨の軟骨に隣接す る限定された間葉細胞に局在化されていた (図 3 A及び B参照) 。 HG FmRNAの四肢での発現レベルは、 分化と共に減少した。 試験を通じ て手足の成長板で HG FmRNAを検出しなかった。 実施例 2 As shown in FIG. 1, on day 11, diffuse expression of HG FmRNA was detected around the bottom region of the limb. At this stage, cartilaginous accumulation had not occurred in the limbs. As cartilage accumulation progresses, the expression site of HG FmRNA has been more restricted. HGF mRNA expression was observed in the joint area of the wrist malleolus and elbow Z knee when the base leg, the joint leg, and the self-leg portion were formed on Day 2.5 (see FIGS. 2A and B. For convenience). , Knees and ankles). Late (days 13 to 14), HGF mRNA was expressed in adjacent and restricted mesenchymal cells of the cartilage accumulation in the wrist Z ankle and elbow / knee joint regions (Fig. 2C-J See). On day 16, HG FmRNA was localized to limited mesenchymal cells adjacent to tarsal cartilage (see FIGS. 3A and B). HG Limb expression levels of FmRNA decreased with differentiation. No HG FmRNA was detected in the growth plates of the limbs throughout the study. Example 2
発生胸郭での H G F mRN A発現 HG F mRNA expression in the developing rib cage
発生期マウスの胸郭における HG FmRNAの発現を in situハイブ リダイゼーシヨン法で試験した。 その結果を図 3 C〜Fに示す。  The expression of HG F mRNA in the thorax of developing mice was tested by the in situ hybridization method. The results are shown in FIGS.
図 3 C〜Fに示されるように、 HG FmRNAは、 肋間の伸長した前 軟骨性集積の先端の周囲肋間間葉組織で発現していた。 前軟骨性集積で はハイプリダイゼーシヨンのシグナルは、 検出されなかった。 実施例 3  As shown in FIGS. 3C-F, HG FmRNA was expressed in the intercostal mesenchymal tissue around the tip of the intercostal elongated pre-cartilaginous accumulation. No signal of hybridization was detected in pre-cartilaginous accumulation. Example 3
HG Fの軟骨細胞に対するスキヤッター活性試験  Scatter activity test of HGF for chondrocytes
分化している軟骨組織の周囲でどれが H G Fの標的細胞かを決めるた め、 膝関節軟骨と肋軟骨からの軟骨細胞、 膝関節から滑膜細胞、 四肢筋 肉組織から増殖した線維芽細胞の培養細胞を調製し、 これらの細胞に外 因的に添加した H G Fの効果を検討した。  To determine which cells are the target cells for HGF around the differentiating cartilage tissue, chondrocytes from knee joint cartilage and costal cartilage, synovial cells from knee joint, and fibroblasts grown from limb muscle tissue Cultured cells were prepared, and the effect of exogenously added HGF on these cells was examined.
即ち、 ゥサギ関節軟骨細胞を 1 6 mmゥエルに 3 X 1 03細胞の密度 で播種し、 培地 Aで 2日間維持した。 その後、 H G Fで 2日間処理を行 つた。 インキュベーションの終了時に、 位相差顕微鏡写真を撮影した。 その結果を図 4に示す。 That is, perforated articular chondrocytes were seeded at a density of 3 × 10 3 cells in 16-mm wells and maintained in medium A for 2 days. Thereafter, the cells were treated with HGF for 2 days. At the end of the incubation, phase contrast micrographs were taken. Fig. 4 shows the results.
図 4に示されるように、 HGF非処理 (コン トロール) においては、 多角形の軟骨細胞が増殖し島状になった (図 4 A) 。 一方、 HG F (3 n gZm l ) で処理をした培養では軟骨細胞は、 単細胞状態で島を形成 しなかった (図 4 B) 。 従って、 HG Fは軟骨細胞の移動を刺激するこ とが明らかになった。 なお、 HG Fは、 線維芽細胞及び滑膜細胞につい ては分散させなかった。 実施例 4  As shown in Fig. 4, when HGF was not treated (control), polygonal chondrocytes proliferated and became insular (Fig. 4A). On the other hand, in the culture treated with HGF (3 ng Zml), chondrocytes did not form islets in a single cell state (FIG. 4B). Therefore, HGF was found to stimulate chondrocyte migration. HGF was not dispersed in fibroblasts and synovial cells. Example 4
に対する HG Fの効果 軟骨細胞の増殖に対する HGFの効果を検討した。 Effect of HG F on The effect of HGF on chondrocyte proliferation was examined.
即ち、 4週鹼のゥサギから採取した関節軟骨細胞を培養した。 コンフ ルェン卜になった細胞を 24時間血清除去処理をした後、 種々の濃度の HG Fで処置し、 材料及び方法の項に示した方法により [aH] —チミ ジンの取り込み量を測定した。 また、 ゥサギ搰膜線維芽細胞についても 同様な試験を行った。 その結果を図 5 A (関節軟骨細胞)及び B (滑膜線 維芽細胞)に示す。 なお、 結果は 3回の試験の平均値土標準偏差を示す (図 5 C、 図 6並びに図 7 A及び Bにおいても同様)。 That is, articular chondrocytes collected from 4 weeks old egrets were cultured. After the configurator Ruen Bok cells became 24 hours serum withdrawal treatment, were treated with HG F at various concentrations, by the method described in Materials and Methods [a H] - uptake of thymidine was measured . In addition, a similar test was performed on the heron membrane fibroblasts. The results are shown in FIGS. 5A (articular chondrocytes) and B (synovial fibroblasts). The results show the average soil standard deviation of three tests (the same applies to Figs. 5C, 6 and Figs. 7A and B).
図 5 Aに示されるように、 HG Fは、 ゥサギ関節軟骨細胞への [3H] —チミジンの取り込みを用量依存的に増加させ、 DNA合成の促進、 即 ち関節軟骨細胞に対する増殖促進作用を有することが示された。 DN A 合成は、 1 n g/m 1の H G Fにおいて、 コントロールに対して 3倍の 増加が認められた。 一方、 図 5 Bに示されるように、 搰膜線維芽細胞は H G Fに反応しなかった。 As shown in FIG. 5 A, HG F is Usagi articular cartilage into cells [3 H] - increased thymidine incorporation in a dose-dependent manner, enhancement of DNA synthesis, a growth promoting effect on immediate Chi articular chondrocytes It was shown to have. DNA synthesis showed a 3-fold increase in HGF at 1 ng / ml over control. On the other hand, as shown in FIG. 5B, meningeal fibroblasts did not respond to HGF.
また、 別実験で、 関節軟骨の細胞数に対する H G Fの効果を検討した。 即ち、 1 6 mmゥエルにゥサギ関節軟骨細胞を 1 X 1 (Γ細胞播種し、 1 0 % F B Sを含む DM EM培地で維持した。 次いで、 1 0 n g/m 1 の HG Fを添加して 4 8時間インキュベーションし、 インキュべ一ショ ン終了後、 細胞数を測定した。 その結果を図 5 Cに示す。  In another experiment, the effect of HGF on the number of articular cartilage cells was examined. That is, 1 × 1 (Γ cells were seeded in 16 mm wells and maintained in a DMEM medium containing 10% FBS. Then, 10 ng / m 1 of HGF was added thereto. After incubation for 8 hours, the number of cells was counted after the incubation, and the results are shown in Figure 5C.
図 5 Cに示されるように、 1 01 8 111】 の^〇 は、 コントロール に比べて細胞数を約 1. 8倍増加させた。 実施例 5  As shown in FIG. 5C, ^ 〇 in 101 8 111] increased the cell number by about 1.8 times compared to the control. Example 5
プロテオグリカン生成に対する H G Fの効果 Effect of HGF on proteoglycan formation
上記のように、 H G Fは軟骨細胞の増殖を促進したので、 次に、 前述 の材料及び方法の項で示した方法により、 関節軟骨細胞のプロテオグリ カン生成に対する効果を検討した。 プロテオグリカン合成は、 プロテア —ゼ消化後セチルピリジニゥムクロライ ドで沈殿する巨大分子 (グリコ サミノグリカン) への [3' S] —硫酸基の取り込みの測定で検討した(E xp. Cell Res., 130, 73, 1980)。 なお、 HG Fに代えて、 下記の因子 についても試験した。 As described above, HGF promoted the proliferation of chondrocytes. Next, the effect of articular chondrocytes on proteoglycan production was examined by the method described in the above-mentioned Materials and Methods. Proteoglycan synthesis was studied by measuring the incorporation of [ 3 'S] -sulfate groups into macromolecules (glycosaminoglycans) that precipitate on cetylpyridinium chloride after protease digestion (Exp. Cell Res., 130, 73, 1980). Instead of HG F, the following factors Was also tested.
インスリン様成長因子 ( I G F) — I : 濃度 1 0 0 n gZm 1  Insulin-like growth factor (IGF) — I: concentration 100 n gZm 1
I G F - I I : 濃度 1 0 0 n g/m 1  I G F-I I: concentration 100 ng / m 1
副甲状腺ホルモン (P T H) : 濃度 1 0—7M Parathyroid hormone (PTH): Concentration 1 0- 7 M
TG F- β : 濃度 3 n g/m 1  TG F-β: concentration 3 ng / m 1
その結果を図 6に示す。 図 6に示されるように、 H G Fは、 用量依存 的に 6 S] —硫酸基の取り込みを増加させた。 最大増加は、 1 n g/ m 1の H G Fで得られた。 この作用は、 TG F— /3 (J. Cell Physiol.,Figure 6 shows the results. As shown in FIG. 6, HGF dose-dependently increased 6 S] -sulfate uptake. The maximum increase was obtained with 1 ng / ml of HGF. This effect is due to TG F— / 3 (J. Cell Physiol.,
138, 329, 1989)や P T H (J. Clin. Invest., 85, 626, 1990)よりは 弱かったが、 I G F— I及び I I とは同程度であった(Exp. Cell Res.,138, 329, 1989) and PTH (J. Clin. Invest., 85, 626, 1990), but comparable to IGF-I and II (Exp. Cell Res.,
130, 73, 1980)。 実施例 6 130, 73, 1980). Example 6
抗 HG F抗体存在下における、 DN A合成及びプロテオグリカン生成に 対する H G Fの効果 Effect of HGF on DNA synthesis and proteoglycan production in the presence of anti-HGF antibody
前述のように、 一般に HG Fはパラクリン機構で標的細胞に作用する と考えられており、 前記の in situハイブリダィゼーシヨンの結果は、 この考えを支持していると思料される。 そこで、 この点を確認するため に、 H G Fポリクローナル抗体が、 軟骨細胞の機能を変化させるかどう かを検討した。  As described above, HGF is generally considered to act on target cells by a paracrine mechanism, and the results of the in situ hybridization described above are considered to support this idea. Therefore, in order to confirm this point, it was examined whether the HGF polyclonal antibody changes the function of chondrocytes.
即ち、 コンフルェン卜になったゥサギ関節軟骨細胞を、 3 n gZm l の H G Fの存在下又は非存在下、 2 5 μ g/m 1の抗 H G Fポリクロー ナル抗体 (ァフィニティーで精製した I g G画分) で処理又は非処理し た。 その後、 前記の材料及び方法の項で示した方法にょリ、 [a H] — チミジン又は [36 S] —硫酸基で標識し、 DN A合成又はプロテオグリ カン生成を測定した。 その結果を図 7 A (DNA合成) 及び B (プロテ ォグリカン生成) に示す。 なお、 同図において、 A bは抗 HG Fポリク ローナル抗体を示す。 That is, the confluent Egret articular chondrocytes were cultured with 25 μg / ml anti-HGF polyclonal antibody (IgG fraction purified by affinity) in the presence or absence of 3 ng Zml of HGF. ) Treated or non-treated. Thereafter, the materials and methods described in the Methods Nyori, [a H] - thymidine or [36 S] - labeled with sulfate group was measured DN A synthesis or proteoglycans generation. The results are shown in FIGS. 7A (DNA synthesis) and B (proteoglycan generation). In the figure, Ab indicates an anti-HGF polyclonal antibody.
図 7に示されるように、 抗 HG Fポリクローナル抗体の添加だけでは、 関節軟骨細胞での DN A合成もプロテオグリカン生成も変化させなかつ た。 しかしながら、 抗 HGFポリクローナル抗体は、 外因性に添加した HGFの効果を完全に阻害した。 このことは、 軟骨細胞が軟骨自身の機 能を調節するのに十分な H G Fを産生していないことを示している。 実施例 7 As shown in Figure 7, addition of anti-HGF polyclonal antibody alone did not alter DNA synthesis or proteoglycan production in articular chondrocytes. Was. However, the anti-HGF polyclonal antibody completely inhibited the effect of exogenously added HGF. This indicates that chondrocytes do not produce enough HGF to regulate the function of cartilage itself. Example 7
H G Fレセプター mRN Aの軟骨細胞での発現  Expression of HGF receptor mRNA in chondrocytes
生体内及び生体外における軟骨細胞での H G Fレセプタ一 ( c一 M e t ) の発現を逆転写 P C Rで検討した。 関節組織と肋軟骨の各部分を外 科用顕微鏡下で、 4週齢ラッ 卜から切り出し、 総 RNAは、 方法と材料 の項で述べたように抽出した。 抽出した RNA ( 0. 5 μ g ) は逆転写 し、 c—Me tのプライマーを用いて増幅した後、 1. 5 %ァガロース ゲル電気泳動法により分析した。 その結果を図 8に示す。  The expression of HGF receptor 1 (c-Met) in chondrocytes in vivo and in vitro was examined by reverse transcription PCR. Joint tissue and costal cartilage were excised from a 4-week-old rat under a surgical microscope, and total RNA was extracted as described in Methods and Materials. The extracted RNA (0.5 μg) was reverse transcribed, amplified using c-Met primer, and analyzed by 1.5% agarose gel electrophoresis. Figure 8 shows the results.
図 8に示されるように、 関節軟骨組織及び肋軟骨組織について 4 0回 の増幅後、 微量の c -Me t発現を検出し、 培養軟骨細胞は 3 5回の増 幅後、 著明な c一 M e t発現を認めた。 製造例 1  As shown in Fig. 8, after 40 times of amplification in articular and costal cartilage tissues, trace amounts of c-Met expression were detected, and cultured chondrocytes showed significant c after 35 times of amplification. One met expression was observed. Production Example 1
HG F製剤の生産例  Production example of HGF preparation
(1) HGF 20 g (1) HGF 20 g
ヒ 卜血清アルブミン 1 00 m g  Human serum albumin 100 mg
上記物質を p H 7. 0の 0. 0 1 Mの P B Sで溶解し、 全量を 2 0 m 1に調製し、 滅菌後、 バイアル瓶に 2 m 1ずつ分注し、 凍結乾燥密封し た。  The above substance was dissolved in 0.01 M PBS having a pH of 7.0, the total amount was adjusted to 20 ml, and after sterilization, 2 ml was dispensed into vials and sealed by freeze-drying.
(2) HGF 4 0 g  (2) HGF 40 g
ツイーン 8 0 1 m g  Tween 8 0 1 mg
ヒ 卜血清アルブミン 1 00 m g  Human serum albumin 100 mg
上記物質を注射用生理食塩水に溶解し、 全量を 2 O m lに調製し、 滅 菌後、 バイアル瓶に 2 m 1ずつ分注し、 凍結乾燥密封した。  The above substance was dissolved in physiological saline for injection, the total volume was adjusted to 2 Oml, and after sterilization, 2 ml was dispensed into vials and sealed by freeze-drying.

Claims

請 求 の 範 蹈 Billing scope
1 . H G Fを有効成分として含有することからなる軟骨障害治療剤。1. A therapeutic agent for cartilage disorders comprising HGF as an active ingredient.
2 . H G Fが遺伝子組換えにより製造したものである請求の範囲第 1 項 に記載の軟骨障害治療剤。 2. The therapeutic agent for cartilage disorders according to claim 1, wherein the HGF is produced by genetic recombination.
3 . 軟骨障害が、 変形性関節炎、 軟骨形成異常症、 骨折の治癒及び修復, 外傷による関節軟骨及び関節円板の修復、 急性化膿性関節炎、 結核性関 節炎、 梅毒性関節炎、 慢性関節リウマチ、 リウマチ熱、 全身性エリテマ 卜一デス、 変形性脊椎症、 椎間板ヘルニア又は骨移植による修復である 請求の範囲第 1項又は第 2項に記載の軟骨障害治療剤。  3. Cartilage disorders include osteoarthritis, achondroplasia, healing and repair of fractures, repair of articular cartilage and articular disc due to trauma, acute suppurative arthritis, tuberculous arthritis, syphilitic arthritis, rheumatoid arthritis 3. The therapeutic agent for cartilage disorders according to claim 1 or 2, which is repaired by rheumatic fever, systemic lupus erythematosus, osteoporosis, herniated disc or bone graft.
4 . H G Fを有効成分として含有することからなる軟骨細胞増殖促進剤。  4. A chondrocyte proliferation promoter comprising HGF as an active ingredient.
5 . H G Fを有効成分として含有することからなるプロテオグリカン生 成促進剤。 5. A proteoglycan production promoter comprising HGF as an active ingredient.
6 . H G Fが逮伝子組換えによリ製造したものである請求の範囲第 4項 又は第 5項に記載の剤。  6. The agent according to claim 4 or 5, wherein the HGF is produced by recombination of the arrested child.
7 . 有効量の H G Fを投与することからなるヒ 卜又は哺乳動物の軟骨障 害の治療法。  7. A method for treating cartilage disorders in a human or mammal, comprising administering an effective amount of HGF.
8 . H G Fが遺伝子組換えにより製造したものである請求の範囲第 Ί項 に記載の軟骨障害の治療法。  8. The method for treating a cartilage disorder according to claim 6, wherein the HGF is produced by genetic recombination.
9 . 軟骨障害が、 変形性関節炎、 軟骨形成異常症、 骨折の治癒及び修 復、 外傷による関節軟骨及び関節円板の修復、 急性化膿性関節炎、 結核 性関節炎、 梅毒性関節炎、 慢性関節リウマチ、 リウマチ熱、 全身性エリ テマ卜一デス、 変形性脊椎症、 椎間板ヘルニア又は骨移植による修復で ある請求の範囲第 7項又は第 8項に記載の軟骨障害の治療法。  9. Cartilage disorders include osteoarthritis, chondrodysplasia, healing and repair of fractures, repair of articular cartilage and discs due to trauma, acute suppurative arthritis, tuberculosis arthritis, syphilitic arthritis, rheumatoid arthritis, 9. The method for treating a cartilage disorder according to claim 7 or 8, which is repaired by rheumatic fever, systemic lupus erythematosus, osteoporosis, herniated disc or bone graft.
PCT/JP1995/000121 1994-08-19 1995-01-30 Cartilage disease remedy WO1996005855A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002197869A CA2197869C (en) 1994-08-19 1995-01-30 Therapeutic agent for cartilaginous diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21816494A JP3737532B2 (en) 1994-08-19 1994-08-19 Cartilage disorder treatment
JP6/218164 1994-08-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08793121 A-371-Of-International 1997-04-21
US09/921,874 Continuation US6756358B2 (en) 1994-08-19 2001-08-06 Therapeutic agent for cartilaginous diseases

Publications (1)

Publication Number Publication Date
WO1996005855A1 true WO1996005855A1 (en) 1996-02-29

Family

ID=16715640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000121 WO1996005855A1 (en) 1994-08-19 1995-01-30 Cartilage disease remedy

Country Status (2)

Country Link
JP (1) JP3737532B2 (en)
WO (1) WO1996005855A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072134A1 (en) * 2001-02-28 2002-09-19 Mitsubishi Pharma Corporation Remedies for arthritis deformans and remedies for rheumatoid arthritis
US7601365B2 (en) 2000-08-28 2009-10-13 Damavand Wound, AB Synergetic effects of HGF and antibacterial treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132426A (en) * 1991-02-15 1993-05-28 Takeda Chem Ind Ltd Agent for promoting formation of bone tissue
JPH0625010A (en) * 1991-05-15 1994-02-01 Toshiichi Nakamura Antitumor agent
JPH06172207A (en) * 1992-10-08 1994-06-21 Toshiichi Nakamura Lung injury therapeutic agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132426A (en) * 1991-02-15 1993-05-28 Takeda Chem Ind Ltd Agent for promoting formation of bone tissue
JPH0625010A (en) * 1991-05-15 1994-02-01 Toshiichi Nakamura Antitumor agent
JPH06172207A (en) * 1992-10-08 1994-06-21 Toshiichi Nakamura Lung injury therapeutic agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601365B2 (en) 2000-08-28 2009-10-13 Damavand Wound, AB Synergetic effects of HGF and antibacterial treatment
WO2002072134A1 (en) * 2001-02-28 2002-09-19 Mitsubishi Pharma Corporation Remedies for arthritis deformans and remedies for rheumatoid arthritis

Also Published As

Publication number Publication date
JPH0859502A (en) 1996-03-05
JP3737532B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
US11241482B2 (en) Mesenchymal stem cell differentiation
US10328126B2 (en) Peptides and compositions for treatment of joint damage
US20080187543A1 (en) Use of Myostatin (Gdf-8) Antagonists for Improving Wound Healing and Preventing Fibrotic Disease
JP5466017B2 (en) Surgical application for BMP binding proteins
US6756358B2 (en) Therapeutic agent for cartilaginous diseases
JPH06172207A (en) Lung injury therapeutic agent
JP3737532B2 (en) Cartilage disorder treatment
CA2197869C (en) Therapeutic agent for cartilaginous diseases
US20250082727A1 (en) Cxcl14-based compositions and method for enhancing cartilage regeneration
JP2020517706A (en) Human BMP7 protein variant
JP3904268B2 (en) HGF pharmaceutical preparation
US20220409698A1 (en) Composition for preventing or treating bone diseases comprising ccr2
TW202513089A (en) Cxcl14-based compositions and method for enhancing cartilage regeneration
CN100448890C (en) Novel protein derived from MP-52 protein and its preparation method and use
JPWO2008020638A1 (en) Ligament injury treatment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2197869

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1997 793121

Country of ref document: US

Date of ref document: 19970421

Kind code of ref document: A

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载