WO1996004507A1 - Procede et dispositif de combustion pour une combustion enrichie en oxygene - Google Patents
Procede et dispositif de combustion pour une combustion enrichie en oxygene Download PDFInfo
- Publication number
- WO1996004507A1 WO1996004507A1 PCT/NL1995/000263 NL9500263W WO9604507A1 WO 1996004507 A1 WO1996004507 A1 WO 1996004507A1 NL 9500263 W NL9500263 W NL 9500263W WO 9604507 A1 WO9604507 A1 WO 9604507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flue gas
- stoker
- oven
- combustion
- process according
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 58
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 239000001301 oxygen Substances 0.000 title claims abstract description 43
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 27
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 103
- 239000003546 flue gas Substances 0.000 claims abstract description 103
- 239000000463 material Substances 0.000 claims abstract description 34
- 239000002699 waste material Substances 0.000 claims abstract description 33
- 239000000567 combustion gas Substances 0.000 claims abstract description 32
- 239000000446 fuel Substances 0.000 claims abstract description 7
- 238000004064 recycling Methods 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 238000005200 wet scrubbing Methods 0.000 claims description 3
- 238000009434 installation Methods 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 230000007797 corrosion Effects 0.000 description 14
- 238000005260 corrosion Methods 0.000 description 14
- 238000011160 research Methods 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 229910052801 chlorine Inorganic materials 0.000 description 7
- 239000002893 slag Substances 0.000 description 7
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005094 computer simulation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000000597 dioxinyl group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B7/00—Combustion techniques; Other solid-fuel combustion apparatus
- F23B7/002—Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements
- F23B7/007—Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements with fluegas recirculation to combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/002—Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/007—Supplying oxygen or oxygen-enriched air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/10—Combustion in two or more stages
- F23G2202/106—Combustion in two or more stages with recirculation of unburned solid or gaseous matter into combustion chamber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the present invention relates to combusting material, in particular waste, fuel or the like.
- waste is mainly combusted in waste combustion installations with combustion air, wherein com- plete combustion of the waste is to be ensured for as much as is possible.
- the PCT patent text WO 86/06151 introduces a process for combusting waste material, wherein, in order to prevent the formation of toxic organic matter and to reduce the NO-content of the flue gas, oxygen is supplied to the furnace in the place of at least a part of the combustion gas.
- the present invention has as its object, to provide an improved combustion process, in particular combustion processes in ovens with moving parts, in particular stokers.
- a process for combusting material such as waste, fuel or the like is provided, comprising the steps of:
- the temperature in the stoker is controllable during combustion of material without deviation in the desired percentage of supplied oxygen being required.
- the nitrogen pre ⁇ sent acts as a temperature regulator, because nitrogen behaves as an inert, non-combustible gas.
- Increasing the amount of oxygen in the combustion gas means that the rela- tive amount of nitrogen falls, which in turn means that the inert fraction in the combustion air falls, whereby the temperature in the stoker rises.
- Recirculation into the stoker of a part of the flue gas, formed during combustion of the material means that combustion can now be carried out with oxygen percentages in the combustion gas which are greater than 25 vol %, since the flue gas, which is also inert, replaces the inert nitrogen present in air, whereby the inert temperature regulator is provided which is needed for controllable combustion with oxygen enriched combustion air.
- the invention furthermore concerns a combuster for carrying out the above described process, comprising
- a material supply for supplying material to be burned, into a stoker
- - moving means for moving the material through the stoker
- first guiding means for guiding a primary combustion gas stream to the material
- second guiding means for guiding flue gas from the material, out of the stoker
- Figure l is a schematic diagram of a stoker accor ⁇ ding to the present invention
- Figure 2 is a schematic reproduction of a comparative combustion process model without recirculation of flue gas.
- Figure 3 is a comparative graph showing the temperature in the stoker (the furnace temperature) and amount of air at different oxygen percentages in the supplied primary combustion gas
- Figure 4 is a schematic reproduction of a waste combustion installation model showing recirculation of the flue gas according to the present invention
- Figure 5 is a graph showing recirculation of flue gas at different temperatures in the stoker (furnace temperature) as a function of the oxygen percentage in the primary combustion gas supplied,
- Figure 6 is a graph showing the amount of flue gas as a function of the oxygen percentage in the supplied primary combustion gas when the temperature in the stoker (furnace temperature) is 1150°C and wherein the residue oxygen percentage in the flue gas is 6.5 vol %,
- Figure 7 is a graph showing the volume fraction of the main components in the flue gas as a function of the oxygen percentage in the primary combustion gas supplied, wherein the residue oxygen percentage of the flue gas is 6.5 vol %,
- Figure 8 is a graph showing the steam debit yielded and the boiler efficiency as a function of the oxygen percentage in the primary combustion gas supplied, according to the present invention.
- Figure 9 is a graph showing the energy components as a function of the oxygen percentage in the primary combustion gas supplied, according to the present invention.
- Figure 10 shows a table, summarizing the research results.
- the stoker 1, figure 1 comprises a hopper 2, through which waste, for example, is supplied onto a combustion grate 3 in the stoker, wherein a furnace 4 is situated.
- the waste is transported through the furnace 4, for example by means of a series of downwardly inclining rollers 5 before the slag (not shown) is removed via a de- slagger 6.
- Primary combustion gas (shown by arrows 7) is preferably guided into the furnace 4 from beneath the rollers 5 (in a manner not shown) in order to ensure an efficient continuous combustion and also cooling of the rollers 5.
- the flue gas formed during combustion of the material is lead out of the furnace 4 via a flue gas ducting 8 to a boiler (not shown) .
- a flue gas ducting 8 At least one part of this flue gas, the so called secondary flue gas, shown by arrows 9, is lead back to the furnace 4 in a manner not shown, either from the flue gas ducting 8 or from the boiler, or from any other suitable part of the installation.
- This secondary flue gas is preferably guided by means of ventilators, not shown.
- the secondary flue gas also acts to ensure mixing and complete combustion of the flue gas, resulting from the bur ⁇ ning waste and any unburned particles in the flue gas.
- a good mixing of the combustion gasses is very important for low C ⁇ H ⁇ and CO-emissions, gasses which are harmful to the environment, for helping to obviate the reducing gas streams which cause corrosion problems in the installations and lessening of gas stream turbulence in the stoker, whereby fly ash (solid particles which are transported along with the flue gas) can be deposited, which can lead to blockage problems.
- the flue gas is preferably scrubbed, before recycling takes place, in order to remove corrosion causing components such as chlorine compounds and acid components.
- Filtering of the secondary flue gas ensures that contamination, overheating and blocking of the stoker is prevented.
- at least one not shown ventilator is used in order to both guide and propel the secondary flue gas back to the stoker oven. This ventilator also contributes to the provision of the correct pressure, velocity, stream and mixing conditions necessary for optimum combustion.
- the secondary flue gas can be guided in order to be directly mixed with the primary combustion gas.
- the use of steam in order to pre-warm primary combustion gas is less necessary, whereby more steam is available for energy generation.
- the secondary flue gas can be guided, in a manner not shown, along the not shown side walls of the stoker in order to cause a cooling effect and to prevent the burning of slag onto the side walls. This side wall cooling by means of the secondary flue gas, increases the life of the stoker.
- a stoker needs to be able to be used for diffe- ring compositions of material to be combusted with a net heating value for example of between 6-15 MJ/kg and with differing sizes.
- the combustion gasses should reach a temperature of at least 850°C for at least two seconds, in order to ensure complete combustion; the temperature should not rise above roughly 1,300°C in order to prevent melting of the slag formed in the stoker; and the flue gas expelled into the environment should have, according to legal requirements an oxygen content of at least 6 vol.%.
- the cause of the increasing temperature in the furnace is the reduction in the amount of nitrogen present in the primary combustion air.
- the maximum allowable furnace temperature, by waste combustion is about 1,300°C.
- the following problems should be taken into consideration: a) melting of slag, whereby the installation can become blocked and heat transfer hindered. b) damage to the brick work and construction of the waste burning installation can occur. For instance, dependent on the type of brick work, this can melt at a temperature of above 1,400°C and due to the higher furnace temperatures accelerated erosion and corrosion can take place.
- the amount of flue gas to be treated by the flue gas treatment decreases, whereby advantages in the treatment and consumption costs can be obtained.
- the primary combustion gas and secondary flue gas result in an almost constant gas stream from the stoker.
- Figure 7 shows the decrease of the volume fraction of nitrogen to zero as a result of the fact that no more nitrogen is supplied to the process, when 100% oxygen is used as the primary combustion gas. Since the percentage of nitrogen in the flue gas falls, the volume fraction of the other components in the flue gas, especially those of H 2 0 and C0 2 , increases. This yields the advantage that if the percentage of oxygen in the primary combustion gas is increased, whereby the percentage of nitrogen therein decreases, the volume percentage of damaging gasses produced, such as NO, N0 2 , N 2 0, N0 ⁇ which are environmental polluters, decreases. 4) With an increase in the volume fraction of the flue gas components, the condensation point of each component was taken into consideration.
- the condensation point of water vapor is important. In the extreme case when the supplied primary combustion air consists of 100% oxygen, the flue gas will contain roughly 65 vol.% H 2 0. The partial pressure of the water vapor is then about 0 ,6 bar. The condensation point temperature belonging to this value is 86°C. Accordingly it has been concluded that the temperature of the flue gas should remain above the condensation point, particularly before wet scrubbing when the flue-gas comes into contact with the ventilators and so forth, unless measures are undertaken in order to fight corrosion.
- the concentration in unwanted, corrosive material increases by recirculation of the flue gas.
- the amount of unwanted, corrosive material delivered via the waste material remains unchanged, whilst the amount of flue gas delivered to the flue gas treatment decreases.
- the flue gas flow to be treated amounts to 27% of the amount without recirculation.
- the concentration in corrosive material amounts in this case to 1/0.27, which is 3.7 times the concentration in corrosive material without any recirculation.
- the thermal energy loss via the chimney will reduce from about 6.2 to 2.1 MW on using oxygen enriched primary combustion gas.
- the explanation for this reduction is the reduction in the amount of flue gas going to the flue gas treatment.
- the flue gas losses have been calculated with the aid of the formula M*CP* ⁇ T.
- the Cp-value of the flue gas, concentration values, will indeed increase, but this increase has less effect on the chimney losses than the reduction in the amount of flue gas.
- furnace temperature can be easily programmed, so that the quality of the slag is impro ⁇ ved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Incineration Of Waste (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95926030A EP0774098A1 (fr) | 1994-08-02 | 1995-07-28 | Procede et dispositif de combustion pour une combustion enrichie en oxygene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL9401269A NL9401269A (nl) | 1994-08-02 | 1994-08-02 | Werkwijze en verbrander voor het uitvoeren van met zuurstof verrijkte verbranding. |
NL9401269 | 1994-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996004507A1 true WO1996004507A1 (fr) | 1996-02-15 |
Family
ID=19864498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL1995/000263 WO1996004507A1 (fr) | 1994-08-02 | 1995-07-28 | Procede et dispositif de combustion pour une combustion enrichie en oxygene |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0774098A1 (fr) |
NL (1) | NL9401269A (fr) |
TW (1) | TW291528B (fr) |
WO (1) | WO1996004507A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001035024A1 (fr) * | 1999-11-10 | 2001-05-17 | L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitationdes Procedes Georges Claude | Procede d'exploitation d'une chaudiere, impliquant l'utilisation de comburants enrichis en oxygene |
US6532881B2 (en) | 1999-06-10 | 2003-03-18 | L'air Liquide - Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation De Procedes Georges Claude | Method for operating a boiler using oxygen-enriched oxidants |
EP4198392A1 (fr) * | 2021-12-15 | 2023-06-21 | Martin GmbH für Umwelt- und Energietechnik | Procédé pour la combustion de déchets et dispositif pour la mise en oeuvre d'un tel procédé |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989003241A1 (fr) * | 1987-10-16 | 1989-04-20 | Reinhard Fischer | Procede d'elimination de dechets par combustion enrichie avec de l'oxygene |
US5052310A (en) * | 1991-01-22 | 1991-10-01 | Air Products And Chemicals, Inc. | Solid waste-to-steam incinerator capacity enhancement by combined oxygen enrichment and liquid quench |
US5309850A (en) * | 1992-11-18 | 1994-05-10 | The Babcock & Wilcox Company | Incineration of hazardous wastes using closed cycle combustion ash vitrification |
EP0621448A1 (fr) * | 1993-04-20 | 1994-10-26 | MARTIN GmbH für Umwelt- und Energietechnik | Procédé pour la combustion de combustibles, en particulier de déchets |
DE4313102A1 (de) * | 1993-04-22 | 1994-10-27 | Sbw Sonderabfallentsorgung Bad | Verfahren zum Reduzieren der Abgasmengen zur Eliminierung von NO¶x¶-Emissionen bei der Verbrennung, vorzugsweise bei der Abfallverbrennung |
WO1994025801A1 (fr) * | 1993-04-29 | 1994-11-10 | Noell-Krc Umwelttechnik Gmbh | Procede permettant de reduire le volume de fumees d'installations de combustion |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3512810A1 (de) * | 1985-04-10 | 1986-10-23 | Dyckerhoff Engineering GmbH, 6200 Wiesbaden | Verfahren und anlage zur verbrennung von abfallstoffen |
US4932335A (en) * | 1987-01-22 | 1990-06-12 | Saarbergwerke Aktiengesellschaft | Coal combustion with a fluidized incineration bed |
DE4103025A1 (de) * | 1991-02-01 | 1992-08-06 | Noell K & K Abfalltech | Verfahren zur temperaturregulation in muellverbrennungsanlagen |
-
1994
- 1994-08-02 NL NL9401269A patent/NL9401269A/nl unknown
-
1995
- 1995-07-28 EP EP95926030A patent/EP0774098A1/fr not_active Ceased
- 1995-07-28 WO PCT/NL1995/000263 patent/WO1996004507A1/fr not_active Application Discontinuation
- 1995-08-29 TW TW084108980A patent/TW291528B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989003241A1 (fr) * | 1987-10-16 | 1989-04-20 | Reinhard Fischer | Procede d'elimination de dechets par combustion enrichie avec de l'oxygene |
US5052310A (en) * | 1991-01-22 | 1991-10-01 | Air Products And Chemicals, Inc. | Solid waste-to-steam incinerator capacity enhancement by combined oxygen enrichment and liquid quench |
US5309850A (en) * | 1992-11-18 | 1994-05-10 | The Babcock & Wilcox Company | Incineration of hazardous wastes using closed cycle combustion ash vitrification |
EP0621448A1 (fr) * | 1993-04-20 | 1994-10-26 | MARTIN GmbH für Umwelt- und Energietechnik | Procédé pour la combustion de combustibles, en particulier de déchets |
DE4313102A1 (de) * | 1993-04-22 | 1994-10-27 | Sbw Sonderabfallentsorgung Bad | Verfahren zum Reduzieren der Abgasmengen zur Eliminierung von NO¶x¶-Emissionen bei der Verbrennung, vorzugsweise bei der Abfallverbrennung |
WO1994025801A1 (fr) * | 1993-04-29 | 1994-11-10 | Noell-Krc Umwelttechnik Gmbh | Procede permettant de reduire le volume de fumees d'installations de combustion |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6418865B2 (en) | 1999-06-10 | 2002-07-16 | American Air Liquide | Method for operating a boiler using oxygen-enriched oxidants |
US6532881B2 (en) | 1999-06-10 | 2003-03-18 | L'air Liquide - Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation De Procedes Georges Claude | Method for operating a boiler using oxygen-enriched oxidants |
WO2001035024A1 (fr) * | 1999-11-10 | 2001-05-17 | L'air Liquide Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitationdes Procedes Georges Claude | Procede d'exploitation d'une chaudiere, impliquant l'utilisation de comburants enrichis en oxygene |
EP4198392A1 (fr) * | 2021-12-15 | 2023-06-21 | Martin GmbH für Umwelt- und Energietechnik | Procédé pour la combustion de déchets et dispositif pour la mise en oeuvre d'un tel procédé |
Also Published As
Publication number | Publication date |
---|---|
EP0774098A1 (fr) | 1997-05-21 |
NL9401269A (nl) | 1996-03-01 |
TW291528B (fr) | 1996-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002081624A (ja) | 廃棄物ガス化溶融炉と同溶融炉の操業方法 | |
CN102076399B (zh) | Co和炼钢炉废气中可燃物的燃烧 | |
JP2634320B2 (ja) | ガススクラバーの後に後燃焼と熱回収とを行う一段焼却炉を用いたスラッジ焼却方法 | |
KR100529826B1 (ko) | 플라즈마 열분해에 의한 폐기물 처리 장치 및 방법 | |
EP0432293B1 (fr) | Procédé pour la récupération de gaz résiduaires d'un foyer à charbon | |
JP4542417B2 (ja) | 廃棄物溶融炉の可燃性ガスの処理方法 | |
NL1015519C2 (nl) | Rookgasrecirculatie bij een afvalverbrandingsinstallatie. | |
CN213066123U (zh) | 燃烧固废物的循环流化床焚烧锅炉 | |
JP2010043840A (ja) | 廃棄物溶融処理方法および廃棄物溶融処理装置 | |
CN102519049A (zh) | 低能耗有害废气净化焚烧系统 | |
CN112664953A (zh) | 一种燃烧固废物的循环流化床焚烧锅炉 | |
JPH11173520A (ja) | 流動床式熱分解方法と装置 | |
WO1996004507A1 (fr) | Procede et dispositif de combustion pour une combustion enrichie en oxygene | |
CN111076180B (zh) | 一种高低温变气速废弃物焚烧系统及其方法 | |
JP2007127355A (ja) | ごみ焼却溶融方法及びこれに用いるごみ焼却溶融装置 | |
JPH09506163A (ja) | 熱エネルギの生成を伴う廃棄物燃焼方法 | |
JP2001021126A (ja) | 廃棄物の乾留熱分解溶融燃焼装置 | |
JP2002031312A (ja) | ごみガス化溶融設備における低NOx燃焼装置及び方法 | |
JP2740644B2 (ja) | 灰の溶融装置およびその方法 | |
JP2005308372A (ja) | 流動床炉 | |
JP2006242490A (ja) | ストーカ式焼却炉及びその運転方法 | |
JPH10169944A (ja) | 廃棄物熱分解炉における流動層制御方法 | |
JP5876264B2 (ja) | 廃棄物処理装置 | |
JP2004169955A (ja) | 廃棄物焼却炉及びその操業方法 | |
WO2004085801A1 (fr) | Unite d'alimentation en energie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CZ HU JP KR PL US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995926030 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1995926030 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1995926030 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995926030 Country of ref document: EP |