WO1996002995A2 - Data transmission by frequency shift - Google Patents
Data transmission by frequency shift Download PDFInfo
- Publication number
- WO1996002995A2 WO1996002995A2 PCT/DE1995/000842 DE9500842W WO9602995A2 WO 1996002995 A2 WO1996002995 A2 WO 1996002995A2 DE 9500842 W DE9500842 W DE 9500842W WO 9602995 A2 WO9602995 A2 WO 9602995A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- transmission
- participants
- transmission signal
- carrier frequency
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000001360 synchronised effect Effects 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/10—Frequency-modulated carrier systems, i.e. using frequency-shift keying
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/1149—Arrangements for indoor wireless networking of information
Definitions
- the invention relates to a method for the transmission of data between a plurality of subscribers, in which the data is modulated by frequency shift keying to generate a transmission signal, and to a suitable arrangement.
- Frequency shift keying is also generally known under the term frequency shift keying (FSK).
- FSK frequency shift keying
- a voltage-controlled oscillator can be used, on the voltage input of which a data signal is carried. If the data signal has two discrete voltage levels, an alternating signal with two carrier frequencies is generated as the transmission signal, which, however, do not suddenly change into one another.
- modulating and demodulating digital data difficulties can arise due to transients if the carrier frequencies are not many times higher than the data rate. By selecting the carrier frequencies at a sufficient distance from the data rate, the transmission capacity in narrow-band transmission channels is thus subject to narrow limits.
- the object of the invention is to find a method for transmitting data in which an increase in the data rate up to the order of magnitude of the carrier frequencies is possible, and to provide a suitable arrangement.
- the new method of the type mentioned at the outset has the features of claim 1.
- Advantageous further developments of the method are specified in claims 2 to 9.
- a new arrangement to carry out the The method is described in claim 10, an advantageous embodiment of this arrangement in claim 11.
- the invention has the advantage that the carrier frequencies and the data rate can be of the same order of magnitude. Since the central subscriber also sends a carrier frequency signal to the other subscribers during the message breaks, a reference signal is constantly available to all subscribers for synchronizing their own oscillator via a phase locked loop. A synchronization character preceding the message, a so-called preamble, which would otherwise be required to synchronize the participants, is not required. Since the scanning frequency of the receivers is constantly locked onto the carrier frequency, errors in the demodulator are avoided and correct data are determined immediately from the start of a message. This is particularly advantageous if several participants communicate with a central participant via a wireless transmission medium or with a bus via a repeater.
- inexpensive means of transmission can be used to achieve the data rate prevailing in the bus.
- inexpensive infrared light-emitting diodes which can be operated at a maximum of 10 MHz, are sufficient for the optical transmission of data at a data rate of 1 MB / s.
- Figure 1 shows an arrangement for the transmission of
- FIG. 2 a block diagram of the devices of two subscribers required for the transmission.
- the arrangement in FIG. 1 consists of a central subscriber 1, which is connected to a bus network 2 as a repeater is, as well as three further participants 3, 4 and 5.
- the transmission takes place optically by infrared light.
- participants 1, 3, 4 and 5 are each provided with transmission devices 6, 7, 8, 9, which have inexpensive infrared light-emitting diodes, and with receiving devices 10, 11, 12, 13 with photodiodes.
- the transmitters 6 ... 9 are modulated via two different carrier frequency pairs in order to avoid mutual interference and to ensure a clear selection by means of bandpasses in the receiving devices 10 ... 13.
- a first signal direction is shown in FIG. 1 by arrows 14, 15 and 16, a second signal direction by arrows 17, 18 and 19.
- the center or repeater 1 continuously sends a signal of a frequency of the carrier frequency pair f ⁇ 0 , f ⁇ _ u to the further participants 3, 4 and 5.
- participants 3, 4 and 5 the synchronization takes place via a phase locked loop with a voltage controlled oscillator.
- the result is a simplex transmission with a data rate that is in the range of the carrier frequency.
- the other participants 3, 4 and 5 send one after the other in time when they are requested to submit a message by the participant 1. They all use the carrier frequencies f2 0 and f2u »which are only switched through with a transmission enable to the transmission devices 7, 8 and 9 to generate a transmission signal.
- the reception and the synchronous demodulation of the carrier frequencies f2 0 and d f2 U is thus possible without additional synchronization at the start of transmission, since a rigid coupling with respect to the carrier frequencies is already achieved by the direction of the arrows 14, 15 and 16 transmitted transmission signal exists. If the subscribers 3, 4 and 5 are located at a variable location, only phase-related phase shifts can occur, but these do not lead to sampling errors on the demodulated signal. Due to the type of data transmission between subscribers 1, 3, 4 and 5 according to the invention, in the case of a repeater as subscriber 1, it is possible to address subscribers 3, 4 and 5 on bus 2 directly as subscriber 20.
- repeater 1 Similar to repeaters that connect two identical segments of a bus system to one another, repeater 1 also establishes a bus connection between subscribers 3, 4 and 5 and subscriber 20 located in another segment. If the data rate on bus 2 is also 1 MB / s, no special features need to be taken into account when transferring data via repeater 1. Participants 3, 4 and 5 on the wireless transmission medium can have master and slave functions, so that master-slave operation and multimaster operation as well as mixed operation are possible.
- FIG. 2 shows the block diagram of a central participant 21 and a further participant 22.
- a central clock 24 of 12 MHz is generated in the subscriber 21 by an oscillator 23. This central clock 24 is performed on two dividers 25 and 26.
- a switch 27 is controlled by the data 28 to be sent, which are provided by further devices of the central subscriber 21, not shown in FIG. 2.
- the transmission data 28 are synchronized with the central clock 24 so that the switching points of the switch 27, which Dulator of the transmission data 28 acts to always come to the times when the carrier frequency signals supplied by the dividers 25 and 26 are in phase.
- the zero crossing of the carrier frequency signals is preferably selected as the switchover point.
- a light-emitting diode with a suitable connection 29 generates an optical transmission signal 30 from the modulated transmission signal.
- the further subscriber 22 has a photodiode with a signal amplifier 31 for receiving the optical transmission signal 30 for generating a digital reception signal 32.
- the signal 32 is fed both to a phase locked loop and to a synchronous demodulator 33.
- the phase-locked loop which consists of a phase comparator 34 and a voltage-controlled oscillator 35, is used to synchronize the subscriber 22 so that it is clocked at the same frequency as the central subscriber 21.
- a clock signal 36 is generated by the phase control loop, which corresponds to the central clock 24.
- the synchronous demodulator 33 delivers received data 37 from the digital received signal 32. Since an optical transmission signal 30 is also transmitted by the central subscriber 21 during message breaks, the clock signal 36 is always at the central clock 24 synchronized, and receive errors at the start of messages are avoided. Similar to the sending device of the central subscriber 21, the sending device of the other subscriber 22 is also constructed.
- Synchronized with the clock signal 36, transmission data 40 for modulation and a control signal 41 for transmission release are routed to a switching device 42 in the further subscriber 22.
- a light-emitting diode with a suitable connection 43 in turn supplies an optical transmission signal 44.
- This is received in the central subscriber 21 by a photodiode with a signal amplifier 45 and in a synchronous demodulator 46 which is controlled by the central clock 24. clocks is converted into received data 47.
- the internal connection of the central subscriber 21, for example for the simultaneous transmission of the received data 47 as transmitted data 28 in a repeater function, is not shown in FIG. 2 for reasons of clarity.
- the transmission method according to the invention is also applicable to other physical transmission types, e.g. B. wired or with radio, applicable.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Mobile Radio Communication Systems (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
Beschreibungdescription
Verfahren und Anordnung zur Übertragung von DatenMethod and arrangement for the transmission of data
Die Erfindung betrifft ein Verfahren zur Übertragung von Da¬ ten zwischen mehreren Teilnehmern, bei welchem die Daten durch Frequenzumtastung zur Erzeugung eines Übertragungs- signals moduliert werden, sowie eine dazu geeignete Anord¬ nung.The invention relates to a method for the transmission of data between a plurality of subscribers, in which the data is modulated by frequency shift keying to generate a transmission signal, and to a suitable arrangement.
Die Frequenzumtastung ist auch unter dem Begriff Frequency Shift Keying (FSK) allgemein bekannt. Bei diesem Modulations¬ verfahren werden den einzelnen Datenwerten verschiedene Trä¬ gerfrequenzen zugeordnet. Zur Erzeugung eines Übertragungs- Signals kann beispielsweise ein spannungsgesteuerter Oszilla¬ tor verwendet werden, auf dessen Spannungseingang ein Daten¬ signal geführt ist. Wenn das Datensignal zwei diskrete Span¬ nungspegel aufweist, wird als Übertragungssignal ein Wechsel- signal mit zwei Trägerfrequenzen erzeugt, die allerdings nicht sprungartig ineinander übergehen. Bei der Übermittlung digitaler Daten können bei der Modulation und Demodulation Schwierigkeiten aufgrund von Einschwingvorgängen entstehen, wenn die Trägerfrequenzen nicht um ein Vielfaches über der Datenrate liegen. Durch die Wahl der Trägerfrequenzen in aus- reichendem Abstand zur Datenrate sind somit der Übertragungs¬ kapazität in schmalbandigen Übertragungskanälen enge Grenzen gesetzt.Frequency shift keying is also generally known under the term frequency shift keying (FSK). In this modulation method, different carrier frequencies are assigned to the individual data values. To generate a transmission signal, for example, a voltage-controlled oscillator can be used, on the voltage input of which a data signal is carried. If the data signal has two discrete voltage levels, an alternating signal with two carrier frequencies is generated as the transmission signal, which, however, do not suddenly change into one another. When modulating and demodulating digital data, difficulties can arise due to transients if the carrier frequencies are not many times higher than the data rate. By selecting the carrier frequencies at a sufficient distance from the data rate, the transmission capacity in narrow-band transmission channels is thus subject to narrow limits.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Übertragung von Daten zu finden, bei welchem eine Erhöhung der Datenrate bis zur Größenordnung der Trägerfrequenzen mög¬ lich ist, sowie eine dafür geeignete Anordnung zu schaffen.The object of the invention is to find a method for transmitting data in which an increase in the data rate up to the order of magnitude of the carrier frequencies is possible, and to provide a suitable arrangement.
Zur Lösung dieser Aufgabe weist das neue Verfahren der ein- gangs genannten Art die Merkmale des Anspruchs 1 auf. In den Ansprüchen 2 bis 9 sind vorteilhafte Weiterbildungen des Ver¬ fahrens angegeben. Eine neue Anordnung zur Durchführung des Verfahrens ist in Anspruch 10 beschrieben, eine vorteilhafte Ausführungsform dieser Anordnung in Anspruch 11.To achieve this object, the new method of the type mentioned at the outset has the features of claim 1. Advantageous further developments of the method are specified in claims 2 to 9. A new arrangement to carry out the The method is described in claim 10, an advantageous embodiment of this arrangement in claim 11.
Die Erfindung hat den Vorteil, daß die Trägerfrequenzen und die Datenrate durchaus in derselben Größenordnung liegen kön¬ nen. Da der zentrale Teilnehmer auch in den Nachrichtenpausen ein Trägerfrequenzsignal an die weiteren Teilnehmer sendet, steht allen Teilnehmern ständig ein Referenzsignal zur Syn¬ chronisierung des eigenen Oszillators über eine Phasenregel- schleife zur Verfügung. Ein der Nachricht vorangestelltes Synchronisierzeichen, eine sogenannte Präambel, welches zur Synchronisierung der Teilnehmer sonst erforderlich wäre, wird nicht benötigt. Da die Abtastfrequenz der Empfänger ständig auf die Trägerfrequenz eingerastet ist, werden sofort ab Be- ginn einer Nachricht Fehler im Demodulator vermieden und kor¬ rekte Daten ermittelt. Dies ist besonders vorteilhaft, wenn mehrere Teilnehmer über ein drahtloses Übertragungsmedium mit einem zentralen Teilnehmer oder über einen Repeater mit einem Bus kommunizieren. Um die im Bus herrschende Datenrate zu er- reichen, können in diesem Fall preisgünstige Übertragungs- mittel eingesetzt werden. Beispielsweise genügen zur opti¬ schen Übertragung von Daten mit einer Datenrate von 1 MB/s bereits preisgünstige Infrarot-Leuchtdioden, die mit maximal 10 MHz betrieben werden können.The invention has the advantage that the carrier frequencies and the data rate can be of the same order of magnitude. Since the central subscriber also sends a carrier frequency signal to the other subscribers during the message breaks, a reference signal is constantly available to all subscribers for synchronizing their own oscillator via a phase locked loop. A synchronization character preceding the message, a so-called preamble, which would otherwise be required to synchronize the participants, is not required. Since the scanning frequency of the receivers is constantly locked onto the carrier frequency, errors in the demodulator are avoided and correct data are determined immediately from the start of a message. This is particularly advantageous if several participants communicate with a central participant via a wireless transmission medium or with a bus via a repeater. In this case, inexpensive means of transmission can be used to achieve the data rate prevailing in the bus. For example, inexpensive infrared light-emitting diodes, which can be operated at a maximum of 10 MHz, are sufficient for the optical transmission of data at a data rate of 1 MB / s.
Anhand der Zeichnungen, in denen ein Ausführungsbeispiel der Erfindung dargestellt ist, werden im folgenden die Erfindung sowie Ausgestaltungen und Vorteile näher erläutert.Based on the drawings, in which an embodiment of the invention is shown, the invention and embodiments and advantages are explained in more detail below.
Es zeigen:Show it:
Figur 1 eine erfindungsgemäße Anordnung zur Übertragung vonFigure 1 shows an arrangement for the transmission of
Daten und Figur 2 ein Blockschaltbild der zur Übertragung erforderli¬ chen Einrichtungen zweier Teilnehmer.Data and FIG. 2 a block diagram of the devices of two subscribers required for the transmission.
Die Anordnung in Figur 1 besteht aus einem zentralen Teilneh¬ mer l, der als Repeater an ein Busnetzwerk 2 angeschlossen ist, sowie drei weiteren Teilnehmern 3, 4 und 5. Die Über¬ tragung erfolgt in diesem Ausführungsbeispiel optisch durch Infrarot-Licht. Dazu sind die Teilnehmer 1, 3, 4 und 5 je¬ weils mit Sendeeinrichtungen 6, 7, 8, 9 versehen, die preis- günstige Infrarot-Leuchtdioden aufweisen, sowie mit Empfangs¬ einrichtungen 10, 11, 12, 13 mit Fotodioden. Die Modulation der Sender 6 ... 9 erfolgt richtungsabhängig über zwei ver¬ schiedene Trägerfrequenzpaare, um eine gegenseitige Beein¬ flussung zu vermeiden und eine eindeutige Selektion durch Bandpässe in den Empfangseinrichtungen 10 ... 13 sicherzu¬ stellen. Eine erste Signalrichtung ist in Figur 1 durch Pfei¬ le 14, 15 und 16, eine zweite Signalrichtung durch Pfeile 17, 18 und 19 dargestellt. Zur Übertragung von Daten mit einer Datenrate von l MB/s werden in der ersten Richtung, welche den Pfeilen 14, 15 und 16 entspricht, die Trägerfrequenzen fl0 = 2 MHz und flu = 1 MHz, für die zweite Signalrichtung entsprechend den Pfeilen 17, 18 und 19 die Trägerfrequenzen f2o = 3 MHz unci -^2u = -L" 5 KΑz verwendet. Sie stehen in ganz¬ zahligen Verhältnissen zur halben Datenrate und sind über ganzzahlige Teiler von einer einzigen Frequenz abgeleitet. Die Zentrale bzw. der Repeater 1 sendet ständig ein Signal einer Frequenz des Trägerfrequenzpaars fι0, fτ_u zu den weite¬ ren Teilnehmern 3, 4 und 5. Auch in den Nachrichtenpausen wird ein Übertragungssignal mit einer Trägerfrequenz ausge- sandt, die der Signallage des Stop-Zustandes zugeordnet ist. Damit steht allen Teilnehmern 1, 3, 4 und 5 ständig ein Refe¬ renzsignal zur Synchronisierung zur Verfügung. In den Teil¬ nehmern 3, 4 und 5 erfolgt die Synchronisierung über eine Phasenregelschleife mit einem spannungsgesteuerten Oszilla- tor. Das Ergebnis ist eine Simplex-Übertragung mit einer Da¬ tenrate, die im Bereich der Trägerfrequenz liegt. Zur Duplex- Übertragung senden die weiteren Teilnehmer 3, 4 und 5 zeit¬ lich nacheinander dann, wenn sie zur Abgabe einer Nachricht durch den Teilnehmer 1 aufgefordert werden. Sie benutzen alle die Trägerfrequenzen f20 und f2u» die erst mit einer Sende¬ freigabe an die Sendeeinrichtungen 7, 8 und 9 zur Erzeugung eines ÜbertragungsSignals durchgeschaltet werden. In dem zen- tralen Teilnehmer bzw. dem Repeater 1 ist damit der Empfang und die synchrone Demodulation der Trägerfrequenzen f20 und f2U ohne zusätzliche Einsynchronisierung bei Sendebeginn mög¬ lich, da bereits eine starre Kopplung bezüglich der Träger- frequenzen durch das in Richtung der Pfeile 14, 15 und 16 gesendete Übertragungssignal besteht. Wenn sich die Teilneh¬ mer 3, 4 und 5 an einem variablen Ort befinden, können le¬ diglich laufzeitbedingte Phasenverschiebungen auftreten, die jedoch nicht zu Abtastfehlern am demodulierten Signal führen. Aufgrund der erfindungsgemäßen Art der Datenübertragung zwi¬ schen den Teilnehmern 1, 3, 4 und 5 ist es im Falle eines Repeaters als Teilnehmer l möglich, die Teilnehmer 3, 4 und 5 am Bus 2 wie einen Teilnehmer 20 direkt zu adressieren. Ähn¬ lich wie bei Repeatern, die zwei gleichartige Segmente eines Bussystems miteinander verbinden, stellt auch der Repeater 1 eine Busverbindung zwischen den Teilnehmern 3, 4 und 5 und dem an einem anderen Segment befindlichen Teilnehmer 20 her. Wenn die Datenrate auf dem Bus 2 ebenfalls 1 MB/s ist, müssen bei einer Datenübertragung über den Repeater 1 keinerlei Be- Sonderheiten beachtet werden. Die Teilnehmer 3, 4 und 5 am drahtlosen Übertragungsmedium können Master- und Slave-Funk¬ tion besitzen, so daß Master-Slave-Betrieb und Multimaster- Betrieb ebenso wie gemischter Betrieb möglich sind.The arrangement in FIG. 1 consists of a central subscriber 1, which is connected to a bus network 2 as a repeater is, as well as three further participants 3, 4 and 5. In this exemplary embodiment, the transmission takes place optically by infrared light. For this purpose, participants 1, 3, 4 and 5 are each provided with transmission devices 6, 7, 8, 9, which have inexpensive infrared light-emitting diodes, and with receiving devices 10, 11, 12, 13 with photodiodes. Depending on the direction, the transmitters 6 ... 9 are modulated via two different carrier frequency pairs in order to avoid mutual interference and to ensure a clear selection by means of bandpasses in the receiving devices 10 ... 13. A first signal direction is shown in FIG. 1 by arrows 14, 15 and 16, a second signal direction by arrows 17, 18 and 19. To transmit data at a data rate of 1 MB / s, the carrier frequencies f l0 = 2 MHz and f lu = 1 MHz are used in the first direction, which corresponds to the arrows 14, 15 and 16, for the second signal direction in accordance with the arrows 17 , 18 and 19 uses the carrier frequencies f2o = 3 MHz unci - ^ 2u = -L " 5 KΑz . They are in integer ratios to half the data rate and are derived from a single frequency via integer dividers. The center or repeater 1 continuously sends a signal of a frequency of the carrier frequency pair fι 0 , fτ_ u to the further participants 3, 4 and 5. A transmission signal with a carrier frequency which is assigned to the signal position of the stop state is also transmitted during the message breaks a reference signal for synchronization is constantly available to all participants 1, 3, 4 and 5. In participants 3, 4 and 5 the synchronization takes place via a phase locked loop with a voltage controlled oscillator. The result is a simplex transmission with a data rate that is in the range of the carrier frequency. For duplex transmission, the other participants 3, 4 and 5 send one after the other in time when they are requested to submit a message by the participant 1. They all use the carrier frequencies f2 0 and f2u »which are only switched through with a transmission enable to the transmission devices 7, 8 and 9 to generate a transmission signal. In the zen central subscriber or repeater 1, the reception and the synchronous demodulation of the carrier frequencies f2 0 and d f2 U is thus possible without additional synchronization at the start of transmission, since a rigid coupling with respect to the carrier frequencies is already achieved by the direction of the arrows 14, 15 and 16 transmitted transmission signal exists. If the subscribers 3, 4 and 5 are located at a variable location, only phase-related phase shifts can occur, but these do not lead to sampling errors on the demodulated signal. Due to the type of data transmission between subscribers 1, 3, 4 and 5 according to the invention, in the case of a repeater as subscriber 1, it is possible to address subscribers 3, 4 and 5 on bus 2 directly as subscriber 20. Similar to repeaters that connect two identical segments of a bus system to one another, repeater 1 also establishes a bus connection between subscribers 3, 4 and 5 and subscriber 20 located in another segment. If the data rate on bus 2 is also 1 MB / s, no special features need to be taken into account when transferring data via repeater 1. Participants 3, 4 and 5 on the wireless transmission medium can have master and slave functions, so that master-slave operation and multimaster operation as well as mixed operation are possible.
In Figur 2 ist das Blockschaltbild eines zentralen Teilneh¬ mers 21 und eines weiteren Teilnehmers 22 dargestellt. In dem Teilnehmer 21 wird durch einen Oszillator 23 ein zentraler Takt 24 von 12 MHz erzeugt. Dieser zentrale Takt 24 wird auf zwei Teiler 25 und 26 geführt. Der Teiler 25, der den zentra- len Takt 24 durch 6 teilt, bildet ein Trägerfrequenzsignal der Frequenz fl0 = 2 MHz, der Teiler 26 mit dem Quotienten 12 bildet ein Trägerfrequenzsignal der Frequenz flu = l MHz. Ein Schalter 27 wird durch die zu sendenden Daten 28 angesteuert, die von weiteren, in der Figur 2 nicht dargestellten Einrich- tungen des zentralen Teilnehmers 21 bereitgestellt werden. Die Sendedaten 28 sind mit dem zentralen Takt 24 synchroni¬ siert, so daß die Schaltpunkte des Schalters 27, der als Mo- dulator der Sendedaten 28 wirkt, immer auf die Zeiten zu lie¬ gen kommen, zu denen die von den Teilern 25 und 26 geliefer¬ ten TrägerfrequenzSignale gleichphasig sind. Vorzugsweise wird der Nulldurchgang der Trägerfrequenzsignale als Um- schaltpunkt gewählt. Eine Leuchtdiode mit geeigneter An- schaltung 29 erzeugt aus dem modulierten Sendesignal ein op¬ tisches Übertragungssignal 30. Der weitere Teilnehmer 22 weist zum Empfang des optischen Übertragungssignals 30 eine Fotodiode mit SignalVerstärker 31 zur Erzeugung eines digi- talen Empfangssignals 32 auf. Das Signal 32 wird sowohl auf eine Phasenregelschleife als auch auf einen Synchron-Demo¬ dulator 33 geführt. Die Phasenregelschleife, die aus einem Phasenvergleicher 34 und einem spannungsgesteuerten Oszil¬ lator 35 besteht, dient zur Synchronisierung des Teilnehmers 22, damit dieser mit der gleichen Frequenz wie der zentrale Teilnehmer 21 getaktet wird. Dazu wird durch die Phasen¬ regelschleife ein Taktsignal 36 erzeugt, das dem zentralen Takt 24 entspricht. Gesteuert durch dieses Taktsignal 36 lie¬ fert der Synchron-Demodulator 33 aus dem digitalen Empfangs- signal 32 Empfangsdaten 37. Da auch in Nachrichtenpausen durch den zentralen Teilnehmer 21 ein optisches Übertragungs¬ signal 30 gesendet wird, ist das Taktsignal 36 ständig mit dem zentralen Takt 24 synchronisiert, und es werden Empfangs¬ fehler beim Nachrichtenbeginn vermieden. Ähnlich der Sende- einrichtung des zentralen Teilnehmers 21 ist auch die Sende¬ einrichtung des weiteren Teilnehmers 22 aufgebaut. Zwei Trägerfrequenzsignale der Frequenzen f20 = 3 MHz und f2u = 1<5 W*12 werden aus dem Taktsignal 36 durch einen Teiler 38, der es durch 4 teilt, bzw. mit einem Teiler 39 durch Di- vision durch 8 erzeugt. Synchronisiert mit dem Taktsignal 36 werden in dem weiteren Teilnehmer 22 Sendedaten 40 zur Modu¬ lation sowie ein Steuersignal 41 zur Sendefreigabe auf eine Schalteinrichtung 42 geführt. Eine Leuchtdiode mit geeigneter Anschaltung 43 liefert wiederum ein optisches Übertragungs- signal 44. Dieses wird im zentralen Teilnehmer 21 durch eine Fotodiode mit Signalverstärker 45 empfangen und in einem Synchron-Demodulator 46, der durch den zentralen Takt 24 ge- taktet ist, in Empfangsdaten 47 umgewandelt. Die interne Ver- schaltung des zentralen Teilnehmers 21, beispielsweise zum gleichzeitigen Aussenden der Empfangsdaten 47 als Sendedaten 28 in einer Repeater-Funktion, ist der Übersichtlichkeit wegen in Figur 2 nicht dargestellt.FIG. 2 shows the block diagram of a central participant 21 and a further participant 22. A central clock 24 of 12 MHz is generated in the subscriber 21 by an oscillator 23. This central clock 24 is performed on two dividers 25 and 26. The divider 25, which divides the central clock 24 by 6, forms a carrier frequency signal of the frequency f l0 = 2 MHz, the divider 26 with the quotient 12 forms a carrier frequency signal of the frequency f lu = 1 MHz. A switch 27 is controlled by the data 28 to be sent, which are provided by further devices of the central subscriber 21, not shown in FIG. 2. The transmission data 28 are synchronized with the central clock 24 so that the switching points of the switch 27, which Dulator of the transmission data 28 acts to always come to the times when the carrier frequency signals supplied by the dividers 25 and 26 are in phase. The zero crossing of the carrier frequency signals is preferably selected as the switchover point. A light-emitting diode with a suitable connection 29 generates an optical transmission signal 30 from the modulated transmission signal. The further subscriber 22 has a photodiode with a signal amplifier 31 for receiving the optical transmission signal 30 for generating a digital reception signal 32. The signal 32 is fed both to a phase locked loop and to a synchronous demodulator 33. The phase-locked loop, which consists of a phase comparator 34 and a voltage-controlled oscillator 35, is used to synchronize the subscriber 22 so that it is clocked at the same frequency as the central subscriber 21. For this purpose, a clock signal 36 is generated by the phase control loop, which corresponds to the central clock 24. Controlled by this clock signal 36, the synchronous demodulator 33 delivers received data 37 from the digital received signal 32. Since an optical transmission signal 30 is also transmitted by the central subscriber 21 during message breaks, the clock signal 36 is always at the central clock 24 synchronized, and receive errors at the start of messages are avoided. Similar to the sending device of the central subscriber 21, the sending device of the other subscriber 22 is also constructed. Two carrier frequency signals of the frequencies f2 0 = 3 MHz and f 2u = 1 < 5 W * 12 are generated from the clock signal 36 by a divider 38, which divides it by 4, or with a divider 39 by division by 8. Synchronized with the clock signal 36, transmission data 40 for modulation and a control signal 41 for transmission release are routed to a switching device 42 in the further subscriber 22. A light-emitting diode with a suitable connection 43 in turn supplies an optical transmission signal 44. This is received in the central subscriber 21 by a photodiode with a signal amplifier 45 and in a synchronous demodulator 46 which is controlled by the central clock 24. clocks is converted into received data 47. The internal connection of the central subscriber 21, for example for the simultaneous transmission of the received data 47 as transmitted data 28 in a repeater function, is not shown in FIG. 2 for reasons of clarity.
Selbstverständlich ist das erfindungsgemäße Übertragungs¬ verfahren auch auf andere physikalische Übertragungsarten, z. B. drahtgebunden oder mit Funk, anwendbar. Of course, the transmission method according to the invention is also applicable to other physical transmission types, e.g. B. wired or with radio, applicable.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19944424741 DE4424741A1 (en) | 1994-07-13 | 1994-07-13 | Method and arrangement for the transmission of data |
DEP4424741.9 | 1994-07-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1996002995A2 true WO1996002995A2 (en) | 1996-02-01 |
WO1996002995A3 WO1996002995A3 (en) | 1996-04-25 |
Family
ID=6523065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/000842 WO1996002995A2 (en) | 1994-07-13 | 1995-06-29 | Data transmission by frequency shift |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4424741A1 (en) |
WO (1) | WO1996002995A2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0147008A3 (en) * | 1983-09-30 | 1986-07-16 | Texas Instruments Incorporated | Bilateral digital fsk communication system interface using digital technique |
JPS6180932A (en) * | 1984-09-28 | 1986-04-24 | Nec Corp | Msk type modulating method |
-
1994
- 1994-07-13 DE DE19944424741 patent/DE4424741A1/en not_active Withdrawn
-
1995
- 1995-06-29 WO PCT/DE1995/000842 patent/WO1996002995A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
DE4424741A1 (en) | 1996-01-18 |
WO1996002995A3 (en) | 1996-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69636812T2 (en) | FREQUENCY DEVIATION CORRECTION FOR PARTICIPANTS | |
DE4447230C2 (en) | Modulation process, demodulation process, modulator and demodulator and use of modulator and demodulator | |
DE3586255T2 (en) | COMMUNICATION SYSTEM FOR BIDIRECTIONAL DIGITAL SIGNALS. | |
DE68916935T2 (en) | METHOD FOR DERIVING AN ACCURATE FREQUENCY REFERENCE FOR THE BURST DEMODULATOR OF A SATELLITE TRANSMISSION SYSTEM. | |
DE69205016T2 (en) | Method and network for communication via optical fibers with frequency division multiplex. | |
DE2315247A1 (en) | REMOTE SIGNALING SYSTEM | |
DE19735391A1 (en) | Digital transmitter and receiver system using direct modulation and demodulation processes | |
DE60126542T2 (en) | Optical transmission system and optical receiver | |
WO2003096584A1 (en) | Method and arrangement for reducing the signal degradation in an optical polarisation-multiplex signal | |
DE69431786T2 (en) | Multiple access transmission network and subcarrier | |
DE2738624C2 (en) | System for two-way transmission between a main station and n secondary stations | |
US5267074A (en) | Coherent optical heterodyne transmission system | |
CA1193674A (en) | Two pilot frequency control for communication systems | |
WO1996002995A2 (en) | Data transmission by frequency shift | |
WO1991020135A1 (en) | Process and system for transmitting energy and data | |
EP1137219B1 (en) | Transceiver in a multipoint to point network | |
DE1161328B (en) | System for the wireless transmission of stereophonic signals | |
EP0874495A2 (en) | Modulation apparatus, for the modulation of digital signals | |
DE69705736T2 (en) | INTERFACE DEVICE FOR TWO-WAY CONNECTION BETWEEN LOW VOLTAGE CARRIER FREQUENCIES AND RADIO FREQUENCIES | |
DE69026594T2 (en) | Coherent optical overlay transmission system | |
DE2807706A1 (en) | BROADCASTING SYSTEM WITH IDENTIFICATION SIGNALS | |
EP0899897B1 (en) | Method for adjusting the carrier frequency of a user station in a point to multipoint transmission system | |
DE2457131C3 (en) | Method and device for multi-channel information transmission | |
EP2018723B1 (en) | Method for transmitting optically transmitted data via a radio antenna and corresponding device | |
DE3852277T2 (en) | Device and method for converting a frequency multiple into a time multiple. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |