WO1996002943A1 - Thermally enhanced leadframe - Google Patents
Thermally enhanced leadframe Download PDFInfo
- Publication number
- WO1996002943A1 WO1996002943A1 PCT/US1995/009022 US9509022W WO9602943A1 WO 1996002943 A1 WO1996002943 A1 WO 1996002943A1 US 9509022 W US9509022 W US 9509022W WO 9602943 A1 WO9602943 A1 WO 9602943A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- paddle
- leads
- perimeter
- leadframe
- inner lead
- Prior art date
Links
- 238000007373 indentation Methods 0.000 claims description 10
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 abstract description 2
- 239000000206 moulding compound Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 5
- PYRKKGOKRMZEIT-UHFFFAOYSA-N 2-[6-(2-cyclopropylethoxy)-9-(2-hydroxy-2-methylpropyl)-1h-phenanthro[9,10-d]imidazol-2-yl]-5-fluorobenzene-1,3-dicarbonitrile Chemical compound C1=C2C3=CC(CC(C)(O)C)=CC=C3C=3NC(C=4C(=CC(F)=CC=4C#N)C#N)=NC=3C2=CC=C1OCCC1CC1 PYRKKGOKRMZEIT-UHFFFAOYSA-N 0.000 description 3
- NPRYCHLHHVWLQZ-TURQNECASA-N 2-amino-9-[(2R,3S,4S,5R)-4-fluoro-3-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-prop-2-ynylpurin-8-one Chemical compound NC1=NC=C2N(C(N(C2=N1)[C@@H]1O[C@@H]([C@H]([C@H]1O)F)CO)=O)CC#C NPRYCHLHHVWLQZ-TURQNECASA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- LNUFLCYMSVYYNW-ZPJMAFJPSA-N [(2r,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[(2r,3r,4s,5r,6r)-6-[[(3s,5s,8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-disulfo Chemical compound O([C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1[C@@H](COS(O)(=O)=O)O[C@H]([C@@H]([C@H]1OS(O)(=O)=O)OS(O)(=O)=O)O[C@@H]1C[C@@H]2CC[C@H]3[C@@H]4CC[C@@H]([C@]4(CC[C@@H]3[C@@]2(C)CC1)C)[C@H](C)CCCC(C)C)[C@H]1O[C@H](COS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@H](OS(O)(=O)=O)[C@H]1OS(O)(=O)=O LNUFLCYMSVYYNW-ZPJMAFJPSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940003372 compro Drugs 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49503—Lead-frames or other flat leads characterised by the die pad
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49568—Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Definitions
- the present invention relates to the housing and pro ⁇ tection of integrated circuit chips. More specifically, the present invention relates to a leadframe structure that of ⁇ fers enhanced thermal dissipation for integrated circuit chips.
- the leadframe typically consists of a metallic leadframe paddle on which the IC is mounted and lead fingers for providing electrically conductive paths from the bonding pads of the IC to external elements, such as circuit boards.
- FIG. 1 An example of a typical leadframe is illustrated in FIG. 1
- the IC 10 is typically attached to a leadframe paddle 12.
- Electrically conductive lead fingers 14 are electrically connected to the IC 10 with wire bonds 16 and serve to pro ⁇ vide electrically conductive paths from the IC 10 to external elements (not shown) .
- the leadframe is typically encapsu ⁇ lated in a moulding compound 18.
- the typical heat conduction paths are along the leadframe paddle 12 and through the moulding compound 18, which typically has low thermal conductivity.
- the lead fin ⁇ gers 14 generally do not contribute significantly to the thermal dissipation because of the relatively low thermal conductivity paths between them and the paddle 12.
- One prior leadframe design described in United States Patent No. 5,146,310 by Bayan et al., improves thermal dissipation by connecting the paddle to four thermally con ⁇ ductive pins and also increasing the surface area of the leadframe paddle.
- the paddle pins allow the paddle to be connected to external heat sinks, such as a ground plane on a circuit board.
- external heat sinks such as a ground plane on a circuit board.
- the pin count is increased by up to four relative to a standard package.
- the package dimensions In order to incorporate the Bayan design into low pin count packages, such as 8-lead dual in-line plastic (DIP) or 8-lead small outline integrated circuit (SOIC) packages, the package dimensions must be increased by up to 50 percent to accommo- date the additional paddle pins. As a result, these packages must be redesigned to accommodate the Bayan leadframe struc ⁇ ture, and are not pin-compatible with the standard leadframe.
- DIP dual in-line plastic
- SOIC small outline integrated circuit
- Another leadframe structure described in Japanese Pat ⁇ ent Application No. 2-310954 by Isao Sasahara, increases thermal dissipation by placing the inner ends of the lead fingers in close proximity to the leadframe paddle and branching the outer ends of the lead fingers so that a por ⁇ tion of each lead finger is attached to a thermally conduc ⁇ tive sheet positioned on top of the IC package.
- the Sasahara structure improves thermal dissipation over standard leadframe structures, additional tooling is required to trim and form the lead fingers after the leadframe has been en ⁇ capsulated in the moulding compound and additional manufac ⁇ turing steps are required to apply the thermally conductive sheet to the top of the IC package.
- a third leadframe structure extends portions of the leadframe paddle into the space between the lead fingers to electrically shield the lead fingers from each other.
- a side benefit of this design is increased dis ⁇ sipation of heat into the moulding compound as a result of the increased surface area of the paddle.
- thermal conduction between the paddle and lead fingers is not greatly improved in this design because the paddle extensions are made narrow in order to extend them between each and every pair of lead fingers. Relatively little heat can flow into these extensions because a narrow paddle extension has a higher thermal resistance than a broad paddle extension. As a result, relatively little heat is available in the exten ⁇ sions to transfer into the leads .
- the present invention provides a leadframe that ex ⁇ hibits improved thermal dissipation and that can be incorpo ⁇ rated in standard outline packages.
- a larger thermal cross-section is achieved by making the shape of the paddle perimeter nonlinear.
- the nonlinear shape increases the surface area of the perimeter edge.
- a "serpentine-shaped" paddle perimeter is used.
- the inner ends of the lead fingers are placed in close proximity to the paddle perimeter and are shaped to substantially follow its serpentine shape.
- the shaped paddle perimeter and lead ends increase the area of the thermal cross-section and simultaneously reduce the dis ⁇ tance between the paddle and the leads, resulting in improved thermal conduction between them.
- the leads conduct the heat to the outside of the package, where it is dissipated into the circuit board on which the leadframe package is mounted.
- a paddle with a saw-tooth shaped perimeter is used.
- the leads are positioned so that the in ⁇ ner end of at least one of the leads extends between the "teeth" of the saw-tooth shaped paddle perimeter (these leads are termed "inside leads”).
- Heat is efficiently conducted to the inside leads as a result of their perimeters being close to and parallel to the paddle perimeter. Heat is conducted from the inside leads to the adjacent leads outside the saw ⁇ tooth paddle perimeter by virtue of their close proximity to each other.
- This embodiment is particularly suitable for leadframes with a large number of leads, such as a 160-lead Quad Flat Pack (QFP) .
- QFP Quad Flat Pack
- the present leadframe structure utilizes the ex ⁇ isting leads of a leadframe to conduct a significant amount of heat away from the IC. Since the number of leads is not increased, the thermally efficient leadframe structure can be incorporated into existing IC package designs without increasing the size or lead count of the IC package.
- the present leadframe structure does not require additional thermally conductive components, such as thermally conductive sheets. As a result, additional manufacturing steps and tools are not required for either the leadframe or the IC assembly.
- FIG. 1, described above, is a sectional plan view of a typical leadframe.
- FIG. 2 is a sectional plan view of an 8-lead P-DIP leadframe incorporating the thermally enhanced paddle and lead finger structure of the present invention.
- FIGs. 3a-3d are sectional views of the embodiment of FIG. 2 taken along the section line 3-3.
- FIG. 4a is a sectional plan view of a 160-lead Quad Flat Pack leadframe incorporating the thermally enhanced paddle and lead finger structure of the present invention.
- FIG. 4b is a sectional plan view of the 160-lead Quad Flat Pack leadframe of FIG. 4a, illustrating an alternative inner lead portion arrangement.
- FIGs. 5a-5c are sectional views of the embodiment of FIG. 4 taken along the section line 5-5.
- FIG. 2 illustrates an 8-lead P-DIP package with the leadframe paddle and lead finger structure of the present invention.
- the leadframe paddle 22 on which an IC 21 is disposed is designed with a nonlinear "serpentine-shaped" perimeter 24 that has a greater perimeter edge surface area than a standard rectangular shaped paddle.
- Leads 26 are designed so that their inner ends 28 are in close proximity to and substantially follow the shape of the paddle perimeter 2 . This causes the inner lead ends 28 to substantially mesh with the serpentine-shaped paddle per ⁇ imeter.
- the distance between the lead ends 28 and the paddle perimeter 24 is dictated by the resolution of the manufac- turing process used to make the leadframe.
- the lead ends 28 are preferably placed as close to the paddle perimeter 24 as the manufacturing process will allow, while maintaining electrical isolation. If the leadframe is manufactured with standard chemical etching techniques, the lead ends 28 and paddle perimeter 24 can be as close together as the leadframe is thick, typically 0.127 mm.
- the paddle perimeter 24 and the lead ends 28 are preferably disposed in a common plane to minimize the thermal path length.
- the serpentine shapes of the lead ends 28 and paddle perimeter 24 increase the thermal cross-section between the paddle 22 and leads 26, resulting in more efficient thermal conduction.
- Thermal cross-section refers to the opposed edge areas of the paddle 21 and lead ends 28, which are typically 0.127 to 0.203 mm thick.
- power dissipation can be improved by as much as 35 and 50 percent, respectively.
- the IC 21 is attached to the paddle 22 with thermally conductive adhesive (not shown) .
- the paddle 22 and leads 26 are preferably made from electrically and thermally conduc- tive material, such as copper. Electrical connections are made between the IC 21 and the leads 26 with wire bonds 30.
- the paddle 22, IC 21, and a portion of the leads 26 are en ⁇ capsulated in a moulding compound 32, preferably a high thermal conductivity material, such as Sumitomo EME5900H.
- FIGs. 3a-3d are sectional views of the embodiment of
- FIG. 2 taken along the section line 3-3, and illustrating different downsetting options for the paddle 22.
- heat 34 generated by the IC 21 is transmitted to the paddle 22 , and is conducted from the paddle 22 into the moulding compound 32.
- the large thermal cross-section be ⁇ tween the paddle perimeter 24 and the lead ends 28 results in efficient heat transfer between them through the moulding compound 32.
- the heat is ultimately transmitted to the cir ⁇ cuit board (not shown) by the leads 26.
- the paddle perimeter 24 and the lead ends 28 are disposed in a common plane to minimize the thermal path length.
- the central paddle portion 35 on which the IC 21 lies is downset with respect to the outer portions 37 of the leads 26, while still maintaining the lead ends 28 and the paddle perimeter 24 on a common plane. The amount of downset can be adjusted to accomodate particular package requirements.
- FIG. 3c illustrates a downsetting option in which the entire paddle 22 is downset with respect to the leads 26.
- the amount of downset used in this embodiment is preferably limited so that the distance between the top of the paddle 22 and the top of the lead ends 28 is no greater than approxi ⁇ mately 1.5 times the thickness of the inner lead ends 28 and paddle perimeter 24, so that heat conduction is not compro ⁇ mised. Even though the lead ends 28 and the paddle perimeter 24 are no longer disposed on a common plane, the applicant has found that for a downset equal to 1.0 times the thickness of the leads 26, heat conduction is reduced by only 6 percent when compared to the embodiments of FIGs. 3a, 3b and 3d.
- the present invention utilizes the leads 26 for heat dissipation, other heat conducting paths are still present.
- some of the heat conducted into the moulding compound is conducted to the surface of the package, where it is convected by the air.
- the specific paddle perimeter shape and lead shapes il ⁇ lustrated in FIG. 2 are not the only shapes that can be used. Any shape that increases the thermal cross-section between the paddle perimeter 24 and the lead ends 28 can be used.
- FIG. 4a illustrates a way of implementing the thermally- enhanced paddle and lead structure in IC packages that uti- lize a large number of leads, such as a 160-lead QFP.
- the paddle 36 is designed so that its perimeter 38 contains in ⁇ dentations and generally rectangularly shaped protrusions 42. At least two adjacent leads 40 are extended into each inden- tation between protrusions 42.
- the distance between the in ⁇ ner portion of the leads 41 and the paddle perimeter 38 should be as short as existing leadframe manufacturing tech ⁇ niques will allow. With standard chemical etching techniques, the distance can be as short as 0.127 mm.
- the shape of the paddle perimeter increases the thermal cross-section between the paddle 36 and the extended leads 40.
- the leadframe struc ⁇ ture of FIG. 4 is encapsulated in a moulding compound 44.
- the moulding compound 44 conducts heat over the short distance between the paddle perimeter 38 and the extended leads 40. As the heat travels along the ex ⁇ tended leads 40 towards the circuit board (not shown) , some of the heat is conducted to the adjacent shorter leads 48, which help transfer the heat to the circuit board (not shown) . As with the embodiment of FIG. 2, heat is also con ⁇ ducted to the surface of the package by the moulding compound 44, where it is convected by the air. As with the embodi ⁇ ments of FIGs. 3a-3d, the paddle portion on which the IC 21 lies may be downset with respect to the outer lead portions, as illustrated in FIGs. 5a-5c.
- FIG. 4b illustrates an embodiment in which all the leads 40 are extended into the indentations, so that there are no short leads.
- FIG. 4a at least two adjacent leads are extended into each indentation.
- the leads 50 that are not directly ad ⁇ jacent to a protrusion 42 receive heat from the surrounding leads, which helps transfer the heat to the circuit board (not shown) .
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Lead Frames For Integrated Circuits (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU31332/95A AU3133295A (en) | 1994-07-19 | 1995-07-17 | Thermally enhanced leadframe |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27732494A | 1994-07-19 | 1994-07-19 | |
US08/277,324 | 1994-07-19 | ||
US08/445,037 | 1995-05-19 | ||
US08/445,036 US5519576A (en) | 1994-07-19 | 1995-05-19 | Thermally enhanced leadframe |
US08/445,036 | 1995-05-19 | ||
US08/445,037 US5532905A (en) | 1994-07-19 | 1995-05-19 | Thermally enhanced leadframe for packages that utilize a large number of leads |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996002943A1 true WO1996002943A1 (en) | 1996-02-01 |
Family
ID=27402888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/009022 WO1996002943A1 (en) | 1994-07-19 | 1995-07-17 | Thermally enhanced leadframe |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN1119832C (en) |
AU (1) | AU3133295A (en) |
TW (1) | TW389384U (en) |
WO (1) | WO1996002943A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7956175B2 (en) | 2003-09-11 | 2011-06-07 | Ibis Biosciences, Inc. | Compositions for use in identification of bacteria |
US8097416B2 (en) | 2003-09-11 | 2012-01-17 | Ibis Biosciences, Inc. | Methods for identification of sepsis-causing bacteria |
US8546082B2 (en) | 2003-09-11 | 2013-10-01 | Ibis Biosciences, Inc. | Methods for identification of sepsis-causing bacteria |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100377346C (en) * | 2004-12-23 | 2008-03-26 | 旺宏电子股份有限公司 | Package member |
CN101604971B (en) * | 2008-06-12 | 2011-09-14 | 泰艺电子股份有限公司 | Oscillator device that slows heat dissipation to the outside |
CN101800208B (en) * | 2009-02-11 | 2012-02-29 | 日月光半导体制造股份有限公司 | Semiconductor package structure and heat sink |
CN102496609B (en) * | 2011-12-22 | 2014-10-01 | 日月光半导体制造股份有限公司 | Embedded die package structure and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53135574A (en) * | 1977-05-02 | 1978-11-27 | Hitachi Ltd | Lead frame |
JPS6123351A (en) * | 1984-07-11 | 1986-01-31 | Nec Corp | Lead frame |
JPS63174347A (en) * | 1987-01-13 | 1988-07-18 | Shinko Electric Ind Co Ltd | Lead frame |
-
1995
- 1995-07-17 WO PCT/US1995/009022 patent/WO1996002943A1/en active Application Filing
- 1995-07-17 CN CN95193990A patent/CN1119832C/en not_active Expired - Lifetime
- 1995-07-17 AU AU31332/95A patent/AU3133295A/en not_active Abandoned
- 1995-07-18 TW TW085209426U patent/TW389384U/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53135574A (en) * | 1977-05-02 | 1978-11-27 | Hitachi Ltd | Lead frame |
JPS6123351A (en) * | 1984-07-11 | 1986-01-31 | Nec Corp | Lead frame |
JPS63174347A (en) * | 1987-01-13 | 1988-07-18 | Shinko Electric Ind Co Ltd | Lead frame |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7956175B2 (en) | 2003-09-11 | 2011-06-07 | Ibis Biosciences, Inc. | Compositions for use in identification of bacteria |
US8013142B2 (en) | 2003-09-11 | 2011-09-06 | Ibis Biosciences, Inc. | Compositions for use in identification of bacteria |
US8097416B2 (en) | 2003-09-11 | 2012-01-17 | Ibis Biosciences, Inc. | Methods for identification of sepsis-causing bacteria |
US8546082B2 (en) | 2003-09-11 | 2013-10-01 | Ibis Biosciences, Inc. | Methods for identification of sepsis-causing bacteria |
Also Published As
Publication number | Publication date |
---|---|
CN1119832C (en) | 2003-08-27 |
AU3133295A (en) | 1996-02-16 |
CN1172552A (en) | 1998-02-04 |
TW389384U (en) | 2000-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5541446A (en) | Integrated circuit package with improved heat dissipation | |
US5646831A (en) | Electrically enhanced power quad flat pack arrangement | |
US6723582B2 (en) | Method of making a semiconductor package having exposed metal strap | |
KR960004562B1 (en) | Semiconductor device package | |
US6153924A (en) | Multilayered lead frame for semiconductor package | |
EP1374305B1 (en) | Enhanced die-down ball grid array and method for making the same | |
US5796159A (en) | Thermally efficient integrated circuit package | |
US4684975A (en) | Molded semiconductor package having improved heat dissipation | |
US5105257A (en) | Packaged semiconductor device and semiconductor device packaging element | |
US5532905A (en) | Thermally enhanced leadframe for packages that utilize a large number of leads | |
US5519576A (en) | Thermally enhanced leadframe | |
US20100193922A1 (en) | Semiconductor chip package | |
JPH05109972A (en) | Package assembly of lead frame and integrated circuit chip | |
US5299091A (en) | Packaged semiconductor device having heat dissipation/electrical connection bumps and method of manufacturing same | |
US5939781A (en) | Thermally enhanced integrated circuit packaging system | |
US8076771B2 (en) | Semiconductor device having metal cap divided by slit | |
JP2829925B2 (en) | Semiconductor package and electronic circuit board | |
JPS63246851A (en) | Method of housing semiconductor device holder and integrated circuit in plastic package | |
US7102211B2 (en) | Semiconductor device and hybrid integrated circuit device | |
WO1996002943A1 (en) | Thermally enhanced leadframe | |
JPH03132063A (en) | Lead frame | |
US5248895A (en) | Semiconductor apparatus having resin encapsulated tab tape connections | |
EP0436126A2 (en) | Resin-encapsulated semiconductor device | |
WO2006074312A2 (en) | Dual flat non-leaded semiconductor package | |
JPH06132441A (en) | Resin-sealed semiconductor device and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95193990.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB HU JP KP KR KZ LK LU LV MG MN MW NO NZ PL PT RO RU SD SE SG SK UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WD | Withdrawal of designations after international publication |
Free format text: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |