WO1996002798A1 - Convertisseur de rayonnement pour transformer un rayonnement electromagnetique en chaleur et de la chaleur en rayonnement electromagnetique - Google Patents
Convertisseur de rayonnement pour transformer un rayonnement electromagnetique en chaleur et de la chaleur en rayonnement electromagnetique Download PDFInfo
- Publication number
- WO1996002798A1 WO1996002798A1 PCT/EP1995/002753 EP9502753W WO9602798A1 WO 1996002798 A1 WO1996002798 A1 WO 1996002798A1 EP 9502753 W EP9502753 W EP 9502753W WO 9602798 A1 WO9602798 A1 WO 9602798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quasi
- converter according
- radiation converter
- radiation
- crystalline
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 58
- 230000005670 electromagnetic radiation Effects 0.000 title claims abstract description 15
- 239000002178 crystalline material Substances 0.000 claims abstract description 49
- 239000006096 absorbing agent Substances 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims description 49
- 239000010949 copper Substances 0.000 claims description 37
- 239000000758 substrate Substances 0.000 claims description 25
- 238000010521 absorption reaction Methods 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 16
- 230000003595 spectral effect Effects 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052732 germanium Inorganic materials 0.000 claims description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 150000003464 sulfur compounds Chemical class 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 229910052796 boron Inorganic materials 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims 1
- -1 Mo¬ lybdenum Chemical compound 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims 1
- 229910052744 lithium Inorganic materials 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 229910052707 ruthenium Inorganic materials 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 239000011593 sulfur Substances 0.000 claims 1
- 238000005496 tempering Methods 0.000 claims 1
- 229910052845 zircon Inorganic materials 0.000 claims 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 57
- 230000003287 optical effect Effects 0.000 description 14
- 239000011195 cermet Substances 0.000 description 10
- 239000003989 dielectric material Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000013528 metallic particle Substances 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003667 anti-reflective effect Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- KYCIUIVANPKXLW-UHFFFAOYSA-N dimethyl-(2-phenoxyethyl)-(thiophen-2-ylmethyl)azanium Chemical compound C=1C=CSC=1C[N+](C)(C)CCOC1=CC=CC=C1 KYCIUIVANPKXLW-UHFFFAOYSA-N 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000013079 quasicrystal Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012982 x-ray structure analysis Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Definitions
- the invention relates to radiation converters for converting electromagnetic radiation into heat (absorber) or from heat into electromagnetic radiation (emitter).
- Radiation converters are used in several areas. They are used as absorbers, particularly in the production of thermal energy from solar radiation.
- the radiation can be concentrated, for example with the help of parabolic mirrors.
- High optical absorption grades a s > 0.85 for the solar spectral range ie wavelength ⁇ * 300-2000 nm
- these absorbers must additionally be selective, ie the absorber must have the highest possible degrees of reflection, ie low emissivities, in the spectral range of the thermal emission.
- the low hemispherical emissivity (e ⁇ ⁇ 0.1) is intended to reduce losses in the solar radiation obtained through re-emission in the infrared spectral range.
- Non-selective absorbers with high solar absorption levels and high spherical emission levels are e.g. available on the basis of simple coats.
- Rough metal layers made of small particles, e.g. Black-chrome or black-cobalt are common. These materials have high degrees of solar absorption; the hemispherical emission level is around 0.2 (J. Spitz, T.V. Danh, A. Aubert, Solar Energy Materials I (1979), 189-200) and is therefore too high for many applications.
- Such a coating is TiN ⁇ (US Pat. No. 4,098,956) with a thickness of approximately 50 nm. Amorphous, ⁇ -CH carbon doped with hydrogen is also used (DR McKenzie et al. In Solar Energy Materials 9 (1983), 113). ⁇ -
- Cermets are small metallic particles with a diameter of approx. 2 - 40 ⁇ m, which are embedded in a dielectric matrix.
- Many different material combinations have been discussed and investigated, for example Au-Si0 2 , stainless steel in -C: H etc. (for example LK Thomas and T. Chunhe, Solar Energy Materials IS (1989), 117-126).
- the commercially used nickel-pigmented aluminum oxide also belongs to the cermets. Such layers are partially provided with additional dielectric anti-reflection layers (A. Anderson et al., J. Appl. Phys. _L (1980), 754).
- the volume fraction of the metallic particles can also be varied as a function of the location within the thickness of the layer.
- the optical constants of the cermet are also variable and allow an increase in the degree of solar absorption (GL Harding et al., J. Vac. Sei. Teclinol. I £ (1979), 2105).
- thermophotovoltaics as emitters (RM Swanson, Proc. IEEE _ ⁇ (1979), 446). Heat is converted into electromagnetic radiation and then into electricity using a photocell. A body is heated to temperatures in the range of 600 - 900 ° C. In order to achieve maximum conversion of the thermal radiation emitted by the body, the band gap of the material of the photocell must be set appropriately. It is of great importance that the wavelength characteristics of the emitter and the photocell are matched to one another and that as little radiation as possible is emitted in wavelength ranges far from the band gap becomes. It is therefore useful to coat the emitter suitably and selectively.
- Ideal quasi-crystalline materials have a long-range order which does not correspond to a translation symmetry, but can be described by other well-defined mathematical methods (see, for example, "Quasicristals", C. Janot, Oxford University Press, Oxford, 1992, chap. 1, Section 2.4).
- quasi-crystalline materials are also understood to mean materials which only approximate an ideal quasi-crystalline order. They consist of microcrystalline areas, the microcrystals being arranged in a quasi-crystalline form (C. Janot, ibid., Chapter 2.5). Like ideal quasicrystals, these materials show diffraction patterns with "forbidden” symmetries, i.e. Those that are actually impossible for crystals.
- Radiation converters must meet a number of requirements at the same time.
- selective absorbers they must have high levels of solar absorption. Their emissivity must be very low, especially at high absorber temperatures. They must be chemically stable at high absorber temperatures and must not show any other signs of aging, e.g. by diffusion of substrate material into the layers or by diffusion within the different layers.
- the selective absorbers 5 used and known today do not sufficiently meet all requirements.
- the invention is therefore based on the object of providing a radiation converter which fully meets the requirements for thermal and chemical stability and whose spectral optical properties can be set in the form desired for the particular application.
- the radiation converter contains at least one quasi-crystalline material or at least one quasi-crystalline material is used as a component of an inhomogeneous material.
- quasi-crystalline regions occur in an otherwise amorphous or crystalline environment (phase).
- the material that forms a quasi-crystalline phase can also contain amorphous or crystalline phases.
- the quasi-crystalline phase of this material exceeds a volume fraction of 30%, preferably 50%, very preferably 80%.
- thermodynamically stable quasi-crystalline material ie a material whose thermodynamically stable structure is not crystalline.
- quasi-crystalline materials are preferably made of two or more elements, these being selected from aluminum, boron, chromium, iron, gallium. Germanium, hafnium, carbon, copper, magnesium, Molybdenum, manganese. Nickel, niobium, osmium, palladium. Rhenium, ru ⁇ thenium, silicon, tantalum, titanium, vanadium, bismuth, tungsten, yttrium, zinc or zirconium can be used. Materials that meet the following formulas are particularly preferably used:
- X means an impurity such as e.g. Na, O or N or one or more of the elements listed in the paragraph above.
- the quasi-crystalline material very preferably has the following empirical formulas: Al 65 Cu 20 Ru 15 , Al 62 Cu 20 Co 15 Si 3 , Al 635 Cu 245 Fe 12> Al ⁇ Cu ⁇ Fe ⁇ , Al ⁇ Cu ⁇ Fe, ⁇ Al 60 Cu 10 Li 30 Al 65 Cu 20 Co 15 , Ga 16 Mg 32 Zn 52 or Al 70 Mn Pd 21 .
- the required optical properties are achieved for the different applications by different techniques and measures in the sense of the invention.
- the quasi-crystalline material already has unusually good optical properties that can be used for a radiation converter.
- These optical properties can be further expanded by using inhomogeneous materials.
- Preferred dielectric materials are amorphous carbon; dielectric oxides, dielectric nitrides, dielectric halides or dielectric sulfur compounds of any main group and sub group elements or a mixture of these materials, very preferably A1 2 0 3 , Y 2 0 3 , Hf0 2 , Sn0 2 , ln 2 0 3 , Bi 2 0 3 , Ta ⁇ g, Si 3 N 4 or ZnS.
- Other useful matrix materials are semiconductors, such as doped silicon or germanium, and metals, such as iron or copper.
- the material component that forms a largely coherent structure is referred to as the matrix in the sense used above.
- the embedded particles are largely separated from one another.
- the optical properties of such inhomogeneous materials can often be described using effective media theories.
- the properties of the matrix material determine the optical properties. This applies both to the case in which the quasi-crystalline material represents the matrix and to the case in which the quasi-crystalline material is embedded in the form of particles in a different type of matrix.
- absorption occurs due to so-called geometric resonances, which does not occur in homogeneous materials.
- the fill factor ie the volume fraction of the particles in one inhomogeneous material, determines the spectral shape and the strength of these resonances.
- the fill factor is in the range of 2-80%, preferably in the range of 5-40%. This means that the matrix fills the interspaces between the separate particles. However, there may be contact between the particles.
- the matrix can be quasi-crystalline or made of another material.
- the fill factor can be spatially varied in order to reduce reflection losses on the surface and, for example, to increase the degree of solar absorption.
- the particles or voids in the matrix are formed regularly or regularly unre ⁇ and preferably have volumes in the range of 0.2 nm 3 to 10 / in 3, preferably in the range of 2 nm 3 to 1 /.m 3, most preferably in the range from 5 nm 3 to 30000 nm 3 .
- the diameters of the particles are in the range from 0.5-2000 nm, preferably 1-500 nm and very preferably 2-30 nm.
- the quasi-crystalline material in addition to the quasi-crystalline phase, can also contain ' amorphous or crystalline phases, the volume fraction of which is below 70% overall. This means that the quasi-crystalline phase must exceed 30% by volume, preferably 50%, very preferably 80%.
- the quasi-crystalline material or the inhomogeneous material containing the quasi-crystalline material is preferably applied to a substrate in the form of one or more layers with a thickness of 1 nm to mm, preferably 5-5000 nm, very preferably 10-500 nm.
- the substrate is a highly reflective metal, such as aluminum and copper. Silver, gold, molybdenum, titanium, iron or an alloy of these materials, such as steel or brass. However, a serve a thin layer of the aforementioned metals or alloys on another substrate customary in the art. These are temperature-stable materials, preferably ceramics.
- the substrate can also have a roughness in order to reduce the short-wave reflection.
- the roughness of the substrate surface is characterized by a statistical distribution of the deviations from a medium level and the standard deviation of this distribution (RMS roughness) is in the range from 0 to 1500 nm, with a lateral correlation length of 10- 1000 nm.
- RMS roughness the standard deviation of this distribution
- the design as thin layers enables the realization of optical interference filters with certain properties, for example the properties of a selective absorber.
- homogeneous quasi-crystalline layers In order to implement a selective absorber, homogeneous quasi-crystalline layers must be relatively thin (1 nm - 200 nm), since the emissivity of a solid quasi-crystalline material is too high, approx. 40%. Only thin quasi-crystalline layers are sufficiently transparent in the infrared spectral range, so that the emissivity is determined by the highly reflective metallic substrate underneath.
- dielectric anti-reflection layers with thicknesses of 10-1000 nm are used.
- Any layer systems can be formed from dielectric layers and layers with quasi-crystalline materials.
- a preferred layer sequence consists of substrate / dielectric layer / quasi-crystalline layer / dielectric layer.
- Another preferred layer sequence consists of substrate / inhomogeneous material containing quasi-crystalline particles (cermet) / dielectric layer. The choice of the dielectric depends on the selected layer sequence, as well as on the type of layer containing the quasi-crystalline material. It II -
- both break-through dielectrics preferably Sn0 2 , In 2 0 3 , Bi 2 0 3 , Ta 2 0 5 , ZnS, ZnO, Ti0 2 , as well as low-refraction materials, preferably A1 2 0 3 , Si0 2 , or materials with medium refractive index, preferably Y 2 0 3 , Hf0 2 , Si 3 N 4 .
- the layer sequence and the Schichtdic ⁇ can ken for the respective application are optimized numerically, preferably using genetic algorithms (T. iron Hammer et al., Appl. Opt. 32 (1993), 6310-6315). However, any other layer with anti-reflective properties that is known to the person skilled in the art is also possible. These layers can also serve as a diffusion barrier.
- the radiation converters according to the invention can be used as selective absorbers in concentrating systems, for example with parabolic trough mirrors.
- the absorber layers are applied to a cylindrical tube.
- Another possible application is in flat and tube collectors, which are often, but not necessarily, evacuated to avoid heat transfer.
- the low emissivities allow the use of relatively high absorber temperatures (200 ° C and higher).
- the radiation converter preferably has high degrees of absorption for electromagnetic radiation in the solar wavelength range ( ⁇ approx. 300- 1200 nm) and high reflectance for electromagnetic radiation in the spectral range of the thermal emission ( ⁇ > approx. 2000 nm).
- the design of the radiation converter as an emitter in combination with a photocell enables the conversion of heat into electricity without the use of moving parts.
- interesting applications in power plant technology and the automotive industry require high temperatures (approx. 900 ° C) and selective properties of the emitter.
- the radiation converter is preferably heated with electric current for generating infrared or visible electromagnetic radiation, by burning fossil fuels or by thermal coupling to hot gaseous, liquid or solid media.
- Fig.l Representation of the spectral reflectance of a radiation converter from a simple layer of Al 70 Mn 9 Pd 2 , (quasi-crystalline material) on a copper substrate.
- Fig.2 Representation of the reflectance of a radiation converter, which consists of a layer system made of Ti0 2 / Al 7 () MnyPd 2
- Fig.3 Representation of the reflectance of a radiation converter, which consists of a layer system made of Y 2 ⁇ 3 / Al 7ü Mn 9 Pd 21 / Y 0 3 on a copper substrate .
- Fig.4 Representation of the reflectance of a radiation converter from a cermet, which has a quasi-crystalline material (Al ⁇ Mn ⁇ Pd ⁇ ) and Hf0 2 as a dielectric, as well as an additional anti-reflection layer (AIF-.O) on a copper substrate.
- Fig.5 Representation of the reflectance of a radiation converter from a cermet which has Al 70 Mn 9 Pd 21 as quasi-crystalline material and Y 7 0 3 as dielectric and A1F-.0 as an additional antireflection layer on a copper substrate.
- Fig.6 Representation of the reflectance of a radiation converter from a cermet, which has Al 70 Mn 9 Pd 71 as quasi-crystalline material and A1 2 0 3 as dielectric and AlF ⁇ O y as an additional antireflection layer on a copper substrate.
- Example 1 shows the optical properties of a thin quasi-crystalline layer on a highly reflective Metal substrate.
- Examples 2 to 6 show selective absorbers based on quasi-crystalline materials.
- the corresponding table shows the solar absorption levels for an AM 1.5 spectrum with vertical incidence and hemispherical emission levels at 250 ° C. and 400 ° C.
- the numbers given in brackets in the "Layer system” column are the respective layer thicknesses in nm.
- a simple layer of a quasi-crystalline material made of Al 70 Mn 9 Pd 21 on a copper substrate has, with a thickness of the layer of, for example, 40 nm, an almost constant degree of absorption of about 55% in the wavelength range from 300 nm to almost 2 ⁇ .
- the quasi-crystalline material becomes transparent for longer wavelengths, and the degree of reflection rises sharply due to the copper substrate lying under the quasi-crystalline material, ie the degree of absorption decreases sharply.
- the spectral reflectance is shown in Figure 1.
- the optical behavior of other quasi-crystalline materials, e.g. Al ⁇ Cu ⁇ Fe ⁇ , is comparable.
- One application is the generation of a thermal emission spectrum with a reduced infrared portion. This is annoying when simulating solar radiation with conventional, largely gray emitters high proportion of the emission in the infrared spectral range, which is largely suppressed in the example described here.
- the degree of solar absorption of a single quasi-crystalline layer is not sufficient for solar thermal applications.
- the degree of solar absorption can be significantly increased, for example, with a layer system made of TiO 2 / quasi-crystalline material / Y 2 O 3 on a copper substrate.
- Figure 2 shows the spectral reflectance of such a layer system (TiO 2 / Al 70 Mn 9 Pd 21 / Y 2 O 3 ).
- the solar degree of absorption is 0.86, while the hemispherical degree of emissivity for a temperature of 250 ° C is 0.043 (see table, line 1).
- the optimal properties can also be optimized for applications at low absorber temperatures.
- a higher degree of solar absorption is necessary here, while the hemispherical emissivity is of less importance.
- a layer system Y 2 O 3 / Al 70 Mn 9 21 Pd / Y 2 O 3 with the copper layer thicknesses of 60/14/55 nm has a solar absorptance of 0.92, the hemispherical emissivity at 100 C C is 0.045.
- Figure 3 shows the spectral reflectance of this layer system. l ( ⁇
- cermets made of a quasi-crystalline material and various dielectric materials are very well suited for use as a selective absorber.
- the table shows some examples of layers with a fill factor of 30% and an additional dielectric antireflection layer with a low refractive index (AlF ⁇ O »; GL Harding, Solar Energy Materials 12 (1985), 169-186) .
- a solar degree of absorption of 0.89 with a hemispherical emissivity of 0.037 is achieved with a cermet with Hf0 2 as a dielectric.
- a solar absorption level of 0.92 with a hemispherical emission level of 0.042 is achieved with a cermet with Y 2 0 3 as the dielectric.
- a degree of solar absorption of 0.91 with a hemispherical degree of emission of 0.043 is achieved with a cermet with A1 2 0 3 as dielectric.
- the spectral reflectance is shown in Figure 6.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
Abstract
L'invention concerne un convertisseur de rayonnement qui permet de transformer un rayonnement électromagnétique en chaleur (absorbeur) ou de la chaleur en rayonnement électromagnétique (émetteur). Ledit convertisseur de rayonnement contient au moins un matériau quasicristallin. L'invention concerne en outre l'utilisation des convertisseurs de rayonnement comme absorbeurs ou comme émetteurs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU30784/95A AU3078495A (en) | 1994-07-15 | 1995-07-13 | Radiation converter for converting electromagnetic radiation into heat and vice versa |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4425140.8 | 1994-07-15 | ||
DE4425140A DE4425140C1 (de) | 1994-07-15 | 1994-07-15 | Strahlungswandler zur Umsetzung von elektromagnetischer Strahlung in Wärme und von Wärme in elektromagnetische Strahlung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996002798A1 true WO1996002798A1 (fr) | 1996-02-01 |
Family
ID=6523319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1995/002753 WO1996002798A1 (fr) | 1994-07-15 | 1995-07-13 | Convertisseur de rayonnement pour transformer un rayonnement electromagnetique en chaleur et de la chaleur en rayonnement electromagnetique |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU3078495A (fr) |
DE (1) | DE4425140C1 (fr) |
WO (1) | WO1996002798A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011057972A3 (fr) * | 2009-11-11 | 2012-02-09 | Almeco-Tinox Gmbh | Système multicouche optiquement actif pour absorption solaire |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2744839B1 (fr) * | 1995-04-04 | 1999-04-30 | Centre Nat Rech Scient | Dispositifs pour l'absorption du rayonnement infrarouge comprenant un element en alliage quasi-cristallin |
DE19620645C2 (de) * | 1995-05-22 | 1998-07-02 | Thomas Eisenhammer | Verfahren zur Herstellung selektiver Absorber |
US6177628B1 (en) * | 1998-12-21 | 2001-01-23 | Jx Crystals, Inc. | Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators |
US6271461B1 (en) * | 2000-04-03 | 2001-08-07 | Jx Crystals Inc. | Antireflection coated refractory metal matched emitters for use in thermophotovoltaic generators |
DE10043295C1 (de) * | 2000-09-02 | 2002-04-25 | Rheinzink Gmbh | Heliothermischer Flachkollektor-Modul |
DE102004019061B4 (de) * | 2004-04-20 | 2008-11-27 | Peter Lazarov | Selektiver Absorber zur Umwandlung von Sonnenlicht in Wärme, ein Verfahren und eine Vorrichtung zu dessen Herstellung |
US20050275936A1 (en) * | 2004-06-14 | 2005-12-15 | Anurag Gupta | Bandpass reflector with heat removal |
SE530464C2 (sv) * | 2005-08-02 | 2008-06-17 | Sunstrip Ab | Nickel-aluminiumoxid-belagd solabsorbator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0104708A2 (fr) * | 1982-09-24 | 1984-04-04 | Energy Conversion Devices, Inc. | Dispositif photothermique |
WO1992013111A1 (fr) * | 1991-01-18 | 1992-08-06 | Centre National De La Recherche Scientifique | Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications |
JPH04338733A (ja) * | 1991-05-15 | 1992-11-26 | Ricoh Co Ltd | 準結晶の超微粒子を含有する非線形光学材料 |
FR2693185A1 (fr) * | 1992-07-03 | 1994-01-07 | France Grignotage | Revêtement composite à base de quasi-cristaux et son procédé de fabrication. |
EP0587186A1 (fr) * | 1992-09-11 | 1994-03-16 | Ykk Corporation | Alliage à base d'aluminium à haute résistance et résistance à la chaleur |
US5312521A (en) * | 1992-06-30 | 1994-05-17 | Fraas Arthur P | Compact DC electric power generator using low bandgap thermophotovoltaic cell strings with a hydrocarbon gas burner fitted with a regenerator |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4098956A (en) * | 1976-08-11 | 1978-07-04 | The United States Of America As Represented By The Secretary Of The Interior | Spectrally selective solar absorbers |
US4772370A (en) * | 1987-06-23 | 1988-09-20 | The United States Of America As Represented By The Secretary Of Commerce | Process for producing icosahedral materials |
US5204191A (en) * | 1988-08-04 | 1993-04-20 | Centre National De La Recherche Scientifique | Coating materials for metal alloys and metals and method |
-
1994
- 1994-07-15 DE DE4425140A patent/DE4425140C1/de not_active Expired - Lifetime
-
1995
- 1995-07-13 WO PCT/EP1995/002753 patent/WO1996002798A1/fr active Application Filing
- 1995-07-13 AU AU30784/95A patent/AU3078495A/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0104708A2 (fr) * | 1982-09-24 | 1984-04-04 | Energy Conversion Devices, Inc. | Dispositif photothermique |
WO1992013111A1 (fr) * | 1991-01-18 | 1992-08-06 | Centre National De La Recherche Scientifique | Alliages d'aluminium, les substrats revetus de ces alliages et leurs applications |
JPH04338733A (ja) * | 1991-05-15 | 1992-11-26 | Ricoh Co Ltd | 準結晶の超微粒子を含有する非線形光学材料 |
US5312521A (en) * | 1992-06-30 | 1994-05-17 | Fraas Arthur P | Compact DC electric power generator using low bandgap thermophotovoltaic cell strings with a hydrocarbon gas burner fitted with a regenerator |
FR2693185A1 (fr) * | 1992-07-03 | 1994-01-07 | France Grignotage | Revêtement composite à base de quasi-cristaux et son procédé de fabrication. |
EP0587186A1 (fr) * | 1992-09-11 | 1994-03-16 | Ykk Corporation | Alliage à base d'aluminium à haute résistance et résistance à la chaleur |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 17, no. 187 (P - 1520) 12 April 1993 (1993-04-12) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011057972A3 (fr) * | 2009-11-11 | 2012-02-09 | Almeco-Tinox Gmbh | Système multicouche optiquement actif pour absorption solaire |
EP2759783A1 (fr) * | 2009-11-11 | 2014-07-30 | Almeco GmbH | Système multicouches à effet optique pour absorption solaire |
US9222703B2 (en) | 2009-11-11 | 2015-12-29 | Almeco Gmbh | Optically active multilayer system for solar absorption |
Also Published As
Publication number | Publication date |
---|---|
AU3078495A (en) | 1996-02-16 |
DE4425140C1 (de) | 1995-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69015273T3 (de) | Optische Interferenzüberzüge und Lampen mit derartigen Interferenzüberzügen. | |
EP0736109B1 (fr) | Materiau realise a partir de composes chimiques comportant un metal du groupe iv de la classification periodique des elements, d'azote et d'oxygene et son procede de production | |
EP2093520B1 (fr) | Revêtement d'absorbeur à rayonnement sélectif, tube d'absorbeur et son procédé de fabrication | |
EP0110029B1 (fr) | Couche réfléchissant sélectivement la chaleur du soleil, de couleur neutre pour panneaux de verre | |
DE69125644T2 (de) | Interferenz-Filter | |
DE69516551T2 (de) | Beschichtungen auf Glas | |
DE4128645C2 (fr) | ||
DE19620645C2 (de) | Verfahren zur Herstellung selektiver Absorber | |
DE3027256A1 (de) | Mehrschichtsystem fuer waermeschutzanwendungen und verfahren zu seiner herstellung | |
DE102009016708A1 (de) | Solarabsorber-Schichtsystem und Verfahren zu seiner Herstellung | |
DE102013112532A1 (de) | Strahlungsabsorber zum Absorbieren elektromagnetischer Strahlung, Solarabsorber-Anordnung, und Verfahren zum Herstellen eines Strahlungsabsorbers | |
DE69318560T2 (de) | Interferenzfilter aus Titan-,Tantal- und Siliziumoxyd und Lampen mit diesem Filter | |
DE4425140C1 (de) | Strahlungswandler zur Umsetzung von elektromagnetischer Strahlung in Wärme und von Wärme in elektromagnetische Strahlung | |
DE112009003493T5 (de) | Grundierungsschichten, die eine verbesserte Deckschichtfunktionalität verleihen | |
DE10140514A1 (de) | Sputtertarget auf Basis von Titandioxid | |
DE102013101106B4 (de) | Solarabsorber-Schichtsystem und Verfahren zu dessen Herstellung | |
DE2648878B2 (de) | Verfahren zur Herstellung eines Wärmestrahlen-Sperrfilters | |
EP2970698B1 (fr) | Revêtement, son procédé de production et son utilisation | |
DE60202142T2 (de) | Oberflächenbeschichtung für kollektorrohr eines linearen parabolischen sonnenkonzentrators | |
WO2003066540A1 (fr) | Procede pour appliquer un revetement sur un bruleur a quartz d'une lampe a decharge a haute intensite | |
DE102007062876A1 (de) | Selektive Solarabsorberschicht und Verfahren für das Herstellen derselben | |
DE102013110118B4 (de) | Solarabsorber und Verfahren zu dessen Herstellung | |
EP1204149B1 (fr) | Méthode de déposition d'un système de couches et son utilisation | |
EP3190354B1 (fr) | Séquence de matériau multicouche destinée à la production d'énergie à partir de la lumière solaire, sa production et son utilisation | |
DE102005038901B4 (de) | Verglasungselement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN HU JP MX US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1997 765976 Date of ref document: 19970310 Kind code of ref document: A Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |