WO1996000849A1 - Micropompe - Google Patents
Micropompe Download PDFInfo
- Publication number
- WO1996000849A1 WO1996000849A1 PCT/DE1995/000841 DE9500841W WO9600849A1 WO 1996000849 A1 WO1996000849 A1 WO 1996000849A1 DE 9500841 W DE9500841 W DE 9500841W WO 9600849 A1 WO9600849 A1 WO 9600849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dynamic
- pump chamber
- micropump according
- membrane
- microvalves
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 239000012528 membrane Substances 0.000 claims description 32
- 238000005530 etching Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 5
- 238000000206 photolithography Methods 0.000 claims description 5
- 238000005452 bending Methods 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000012530 fluid Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000000819 phase cycle Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
- F04B43/046—Micropumps with piezoelectric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/10—Valves; Arrangement of valves
- F04B53/1077—Flow resistance valves, e.g. without moving parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/02—Glass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2203/00—Non-metallic inorganic materials
- F05C2203/08—Ceramics; Oxides
- F05C2203/0865—Oxide ceramics
- F05C2203/0886—Silica
Definitions
- the invention relates to a micropump.
- the micropump has dynamic passive valves and is used especially for the conveyance of gases and liquids. It can be produced very advantageously using known semiconductor technologies and is suitable for use in integrated microsystems. State of the art
- a micropump based on silicon which essentially consists of three identical piezoelectrically driven valve elements which are arranged in series in terms of flow technology.
- the sagging membrane does volume work and creates a corresponding pressure on the fluid. If the individual valves are actuated in a suitable three-phase cycle, the fluid is conveyed in a certain direction, which is determined by the peristaltic wave.
- micropump also suitable for system integration, is presented in CH-PS 04055/89. It contains a piezoelectrically driven membrane which periodically pressurizes the fluid to be pumped. Two passive micro valves at the inlet and outlet of the pump rectify this alternating pressure and thus determine the direction of flow.
- the working principle corresponds structurally to the classic piston pump.
- micropumps have in common the relatively complicated mechanical structure, which complicates the use of microtechnologies and increases the manufacturing costs.
- a strongly structured hydraulic line system can be realized by multiple lithography, combined with a corresponding number of etching processes.
- the joining of the different layers into a sandwich is associated with some technological difficulties.
- the micropumps take up a relatively large area on the carrier substrate. This is countered by the high metering accuracy and a relatively high pump pressure, but also by a comparatively low delivery rate, which can be explained, among other things, by the high flow resistances and the pass times of the fluids flowing through, which are quite noteworthy in connection with the relatively large dead volumes leads.
- a valveless micropump which also effects periodic pressure impressing on the flowing medium by an actuator device, generally a vibrating membrane.
- an actuator device generally a vibrating membrane.
- the rectification is carried out partially by a structure which is anisotropic from a fluidic point of view without any moving mechanical functional elements.
- An anisotropic structure is, inter alia, a gap-like region which is otherwise not specified and which is designed as a sawtooth.
- Whose Manufacturing with the microtechnologies is complicated, however, since the sawtooth shape does not necessarily have to coincide with the crystal structure of the substrate material, and this makes the use of anisotropic etching processes more difficult.
- the proposed embodiment whose sawtooth-like geometry is realized by arranging two V-shaped gap-like structures one behind the other, requires costly precision joining methods given the dimensions specified in the micrometer range.
- the micropump according to the invention has the advantage over the arrangements just recognized that it has a very simple geometric structure that can be produced in an uncomplicated manner by a few microtechnological processes.
- the necessary joining steps can be reduced to a minimum depending on the number and required accuracy.
- the micro pump is particularly suitable for inexpensive mass production.
- the space requirement of the micropump according to the invention is significantly reduced, especially in comparison to the two documents first recognized.
- the simple geometry of the micro-pump according to the invention optimizes the fluidodynamic system, which increases the maximum possible working frequency, volume flow and pump pressure.
- a particularly advantageous embodiment of the micropump provides at least two dynamic passive microvalves, which consist of a microflow channel with a truncated pyramid-shaped geometry.
- the channel cross section along the axis of symmetry thus decreases continuously in one direction up to its narrowest point, in order then to suddenly widen.
- This shape of the microflow channel has the effect that its flow resistance depends on the direction of flow at sufficiently high flow velocities.
- the microchannel described is therefore able to partially rectify an alternating flow according to the principle "two steps forward - one step back", as a result of which a net volume flow is brought about in a preferred flow direction. Since this effect only occurs at higher speeds, it is referred to as a dynamic microvalve.
- Such dynamic microvalves are used in a micropump according to claim 1.
- FIG. 1 shows a perspective illustration of a first exemplary embodiment of a micropump
- FIG. 2 shows a section along the line 1-1 in FIG. 1
- FIG. 3 shows a section along the line 2-2 in FIG. 1
- FIG. 4 to FIG. 7 shows a second to fifth exemplary embodiment a micropump.
- the micropump according to the invention consists of an essentially closed pump chamber 3, which is filled with the fluid to be pumped and which is periodically impressed by a suitable drive device 4. Furthermore, the micropump contains at least two of the described dynamic microvalves 5, which serve in the form of flow channels as the inlet or outlet opening of the pumping chamber 3.
- the micropump is characterized in particular by its very simple construction, which can be produced very advantageously, for example, using generally known microtechnologies such as photolithography and anisotropic etching on the basis of silicon and glass.
- the dynamic microvalves 5 can be implemented in a ⁇ 100> -oriented silicon wafer in such a way that, starting from a sufficiently large opening in the etching mask, the material removal proceeds by means of an anisotropic etching solution such as KOH over the entire wafer thickness.
- the resulting channel is laterally delimited by four crystallographic ⁇ 111> surfaces, which results in its truncated pyramidal geometry.
- the respectively opposite ⁇ 111> surfaces enclose an angle of approximately 70 °.
- a line 14, which runs in the middle in the main flow direction, represents the axis of symmetry of the dynamic microvalve 5. It is perpendicular to the wafer surface.
- a membrane 7 is particularly suitable for the drive device 4, which is excited electromagnetically, electrostatically, pneumatically or piezoelectrically and executes bending vibrations indicated by the double arrow 16.
- the piezoelectric drive can advantageously be carried out using a bimorph.
- the pump chamber 3 is fixed in an element 10, 11, 11a or 11b and 11c by suitable microtechnologies. This can be done, for example, by photolithography with a subsequent etching step in silicon or glass as the starting material. If an appropriate etching stop method is used, the material removal can be stopped before the element 10 is completely penetrated, as a result of which the membrane 7 of the drive device 4 is formed. As such an etch stop special, on the Starting material of the element 10 previously applied layers, such as silicon oxide or silicon nitride on a silicon substrate, are understood, on which the etching process comes to a standstill and which are exposed by the material removal and thus fix the membrane 7.
- the pump chamber 3 is closed on a side 12 facing away from the drive device 4 by the wafer 6, which contains the dynamic microvalves 5 and which is connected to the element 10, 11, 11a or 11c.
- the element 11, 11a or 11b and 11c containing the pump chamber 3 can be open per se on a side 13 facing away from the wafer 6, realized, for example, by an etching step which runs completely through the element 11, 11a or 11b and 11c.
- the membrane 7 is then attached as a thin material or film 15 with suitable joining methods on the element 11, 11a or 11b, whereby the pump chamber 3 is closed. This is possible, for example, by applying a glass foil, which forms the membrane 7, to the element 11, 11a or 11b by anodic bonding.
- Typical dimensions of the dynamic micropump according to the invention are for: the cross section of the dynamic microvalves 5 at the narrowest point between one micrometer and five hundred micrometers, the extension of the dynamic microvalves 5 along the axes of symmetry
- the typical oscillation frequency of the membrane 7 is between one hundred hertz and twenty kilohertz.
- the dynamic microvalves 5 are implemented in an anti-parallel arrangement in the double-sided polished silicon wafer 6.
- the element 10, which is firmly connected to the wafer 6 on the side 12 facing away from the membrane 7, contains the pump chamber 3, which is produced by an anisotropic etching step and has a truncated pyramidal geometry.
- a thin material residue remains on a side of the pump chamber 3 facing away from the dynamic microvalves 5, which forms the membrane 7.
- the membrane 7, which is part of the drive device 4, which is otherwise not described in detail, carries out bending vibrations identified by the double arrow 16.
- FIG. 4 shows a second exemplary embodiment of the micropump, the pump chamber 3 of which is fixed in the element 11 by an anisotropic etching step and has a truncated pyramidal geometry.
- the ele- element 11 is closed on the side 13 by means of the membrane 15 serving as membrane 7, which is fastened on the element 11.
- the third exemplary embodiment of the micropump shown in FIG. 5 differs from the previous one in that the pump chamber 3 has a smaller dead volume instead of the element 11 due to the modified element 11a.
- the element 11a contains two partial structures 17 and 18 with different cross-sectional areas, the mutually facing end faces of which partially coincide within the element 11a, the larger partial structure 17 with the membrane 7 and the smaller partial structure 18 with the wafer 6 containing the dynamic microvalves 5 is in direct connection.
- the element 11a can be produced, for example, in that after double-sided lithography with different mask sizes in each case, an anisotropic etching process proceeds from the sides 12 and 13 until the etching fronts meet.
- the pump chamber 3 is defined by the partial element 11b, which contains an opening with a larger cross-sectional area, and the partial element 11c, which contains an opening with a smaller cross-sectional area, instead of the element 11a, the partial element 11b with the membrane 7 and the partial element 11c is connected to the wafer 6 and the two sub-elements 11b and 11c are firmly connected to one another on a joining surface 19.
- the drive device 4 is defined by the membrane 7 and a piezo element 9, the piezo element 9 being arranged on the membrane 7 and forming a bimorph structure with it.
- the piezo element 9 is either a piezo plate, which is attached to the membrane 7, for example by an adhesive connection, or in the integrated form around a piezoelectrically active which is physically and chemically deposited on the membrane 7 with known microtechnologies and subsequently structured Layer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Abstract
Les micropompes connues se caractérisent par une structure relativement complexe qui en général est difficile à produire et à monter. Les débits atteignables sont en outre limités. Une nouvelle micropompe doit avoir une structure plus simple et plus facile à produire en série, ainsi que des propriétés dynamiques améliorées qui permettent d'obtenir des débits plus élevés. Au moins deux microvannes dynamiques (5) sont utilisées pour redresser le courant alternatif généré par un oscillateur d'entraînement (4). Ces microvannes comprennent essentiellement un microcanal dont la section transversale se rétrécit en continu dans un sens d'écoulement jusqu'à atteindre son point le plus étroit. Des pièces mécaniques mobiles ne sont pas nécessaires, de sorte que les microvannes dynamiques peuvent être réalisées de manière très simple par exemple en silicium. Le système hydraulique simple de la micropompe permet d'atteindre des fréquences élevées de fonctionnement, donc des débits élevés. Cette micropompe est utile surtout dans la technique des microsystèmes, par exemple comme élément d'entraînement dans des systèmes microhydrauliques ou micropneumatiques.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4422743.4 | 1994-06-29 | ||
DE4422743A DE4422743A1 (de) | 1994-06-29 | 1994-06-29 | Mikropumpe |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996000849A1 true WO1996000849A1 (fr) | 1996-01-11 |
Family
ID=6521804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/000841 WO1996000849A1 (fr) | 1994-06-29 | 1995-06-29 | Micropompe |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4422743A1 (fr) |
WO (1) | WO1996000849A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000036892A1 (fr) * | 1998-12-11 | 2000-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Dispositif accroissant les transferts thermiques |
US6227809B1 (en) | 1995-03-09 | 2001-05-08 | University Of Washington | Method for making micropumps |
JP2011513649A (ja) * | 2008-03-14 | 2011-04-28 | ザ テクノロジー パートナーシップ ピーエルシー | ポンプ |
US8821134B2 (en) * | 2009-06-03 | 2014-09-02 | The Technology Partnership Plc | Fluid disc pump |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19539020C2 (de) * | 1995-10-19 | 1999-04-22 | Siemens Ag | Pumpe zur Förderung gasförmiger oder flüssiger Medien |
DE19648695C2 (de) * | 1996-11-25 | 1999-07-22 | Abb Patent Gmbh | Vorrichtung zur automatischen und kontinuierlichen Analyse von Flüssigkeitsproben |
DE19648694C1 (de) * | 1996-11-25 | 1998-04-30 | Vermes Mikrotechnik Gmbh | Bidirektionale dynamische Mikropumpe |
JP2001505640A (ja) | 1996-12-11 | 2001-04-24 | ゲーシム・ゲゼルシャフト・フューア・ズィリーツィウム−ミクロズュステーメ・ミト・ベシュレンクテル・ハフツング | マイクロポンプ |
DE19711270C2 (de) * | 1997-03-18 | 2001-07-26 | Schwerionenforsch Gmbh | Mikropumpe für fluide Medien |
JP3582316B2 (ja) * | 1997-08-20 | 2004-10-27 | 株式会社日立製作所 | 化学分析装置 |
JP4396095B2 (ja) | 2002-06-03 | 2010-01-13 | セイコーエプソン株式会社 | ポンプ |
JP4378937B2 (ja) * | 2002-06-03 | 2009-12-09 | セイコーエプソン株式会社 | ポンプ |
DE10233235B4 (de) * | 2002-07-22 | 2004-07-22 | Siemens Ag | Pumpvorrichtung und Verfahren zur Herstellung der Pumpvorrichtung |
KR100499141B1 (ko) * | 2003-01-15 | 2005-07-04 | 삼성전자주식회사 | 유체의 상변화에 의해 구동되는 마이크로 펌프 |
GB0308197D0 (en) * | 2003-04-09 | 2003-05-14 | The Technology Partnership Plc | Gas flow generator |
WO2005060593A2 (fr) | 2003-12-10 | 2005-07-07 | Purdue Research Foundation | Micro-pompe de refroidissement d'appareils electroniques |
CN1583541B (zh) * | 2004-05-27 | 2010-09-29 | 哈尔滨工程大学 | 采用多层驱动膜结构的微驱动器及其制作方法 |
GB0508194D0 (en) * | 2005-04-22 | 2005-06-01 | The Technology Partnership Plc | Pump |
CN102459900A (zh) * | 2009-06-03 | 2012-05-16 | 技术合伙公司 | 流体盘形泵 |
US8371829B2 (en) | 2010-02-03 | 2013-02-12 | Kci Licensing, Inc. | Fluid disc pump with square-wave driver |
US8646479B2 (en) | 2010-02-03 | 2014-02-11 | Kci Licensing, Inc. | Singulation of valves |
GB201202346D0 (en) | 2012-02-10 | 2012-03-28 | The Technology Partnership Plc | Disc pump with advanced actuator |
JP6183862B2 (ja) | 2012-03-07 | 2017-08-23 | ケーシーアイ ライセンシング インコーポレイテッド | 改良アクチュエータを備えるディスクポンプ |
GB201322103D0 (en) | 2013-12-13 | 2014-01-29 | The Technology Partnership Plc | Fluid pump |
GB2583880A (en) | 2020-07-31 | 2020-11-11 | Ttp Ventus Ltd | Actuator for a resonant acoustic pump |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2248891A (en) * | 1990-10-18 | 1992-04-22 | Westonbridge Int Ltd | Membrane micropump |
WO1993005295A1 (fr) * | 1991-09-11 | 1993-03-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Micropompe microminiaturisee a membrane et a commande electrostatique |
WO1994019609A1 (fr) * | 1993-02-23 | 1994-09-01 | Erik Stemme | Pompe volumetrique du type a diaphragme |
-
1994
- 1994-06-29 DE DE4422743A patent/DE4422743A1/de not_active Withdrawn
-
1995
- 1995-06-29 WO PCT/DE1995/000841 patent/WO1996000849A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2248891A (en) * | 1990-10-18 | 1992-04-22 | Westonbridge Int Ltd | Membrane micropump |
WO1993005295A1 (fr) * | 1991-09-11 | 1993-03-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Micropompe microminiaturisee a membrane et a commande electrostatique |
WO1994019609A1 (fr) * | 1993-02-23 | 1994-09-01 | Erik Stemme | Pompe volumetrique du type a diaphragme |
Non-Patent Citations (1)
Title |
---|
STEMME & STEMME: "A VALVELESS DIFFUSER/NOZZLE-BASED FLUID PUMP", SENSORS AND ACTUATORS, no. 2, LAUSANNE, pages 159 - 167, XP000425002 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6227809B1 (en) | 1995-03-09 | 2001-05-08 | University Of Washington | Method for making micropumps |
WO2000036892A1 (fr) * | 1998-12-11 | 2000-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Dispositif accroissant les transferts thermiques |
US6252769B1 (en) | 1998-12-11 | 2001-06-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Device for increasing heat transfer |
JP2011513649A (ja) * | 2008-03-14 | 2011-04-28 | ザ テクノロジー パートナーシップ ピーエルシー | ポンプ |
US8821134B2 (en) * | 2009-06-03 | 2014-09-02 | The Technology Partnership Plc | Fluid disc pump |
Also Published As
Publication number | Publication date |
---|---|
DE4422743A1 (de) | 1996-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996000849A1 (fr) | Micropompe | |
DE4402119C2 (de) | Verfahren zur Herstellung von Mikromembranpumpen | |
EP2207963B1 (fr) | Pompe et ensemble pompe | |
EP1320686B1 (fr) | Microsoupape se trouvant normalement a l'etat ferme | |
EP2205869B1 (fr) | Pompe à membrane | |
EP0672835B1 (fr) | Micro diode fluidique | |
EP1458977B2 (fr) | Micropompe peristaltique | |
DE69410487T2 (de) | Mikropumpe | |
DE69213340T2 (de) | Ventil und seine Verwendung in einer Vorrichtung hergestellt aus Halbleitermaterial | |
DE60209449T2 (de) | Passives Mikroventil | |
WO1998051929A1 (fr) | Pompe a micromembrane | |
EP0681873A1 (fr) | Dispositif pour doser et pulvériser des fluides | |
DE4223019C1 (de) | Ventillose Mikropumpe | |
DE4138491A1 (de) | Mikromechanisches ventil fuer mikromechanische dosiereinrichtungen | |
DE112011104467B4 (de) | Mikropumpe zur Erzeugung einer Fluidströmung, Pumpensystem und Mikrokanalsystem | |
DE10135569A1 (de) | Mikromechanisches Bauteil und Verfahren seiner Herstellung | |
DE19844518A1 (de) | Hydraulischer Wegverstärker für Mikrosysteme | |
EP1161294B1 (fr) | Micromelangeur actif | |
DE19611270A1 (de) | Mikromischer zur Handhabung kleinster Flüssigkeitsmengen | |
DE3802545A1 (de) | Mikropumpe zur foerderung kleinster gasmengen | |
EP1700036B1 (fr) | Micropompe et son procédé de fabrication | |
DE19711270C2 (de) | Mikropumpe für fluide Medien | |
DE102022125010A1 (de) | Mikrofluidisches Bauteil | |
DE19637945C2 (de) | Mikroventil und Verfahren zu seiner Herstellung | |
DE10332315A1 (de) | Vorrichtung und Verfahren zum Transport von Fluiden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |