+

WO1996000781A1 - Nouvelle deaminoneuraminidase et procede de production - Google Patents

Nouvelle deaminoneuraminidase et procede de production Download PDF

Info

Publication number
WO1996000781A1
WO1996000781A1 PCT/JP1995/001213 JP9501213W WO9600781A1 WO 1996000781 A1 WO1996000781 A1 WO 1996000781A1 JP 9501213 W JP9501213 W JP 9501213W WO 9600781 A1 WO9600781 A1 WO 9600781A1
Authority
WO
WIPO (PCT)
Prior art keywords
kdn
acid
enzyme
carbohydrates
activity
Prior art date
Application number
PCT/JP1995/001213
Other languages
English (en)
French (fr)
Inventor
Yasuo Inoue
Sadako Inoue
Ken Kitajima
Original Assignee
Seikagaku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corporation filed Critical Seikagaku Corporation
Priority to US08/765,491 priority Critical patent/US5834288A/en
Priority to EP95921985A priority patent/EP0771868B1/en
Priority to AU26832/95A priority patent/AU692562B2/en
Priority to DE69529986T priority patent/DE69529986T2/de
Priority to JP50300196A priority patent/JP3647873B2/ja
Publication of WO1996000781A1 publication Critical patent/WO1996000781A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01018Exo-alpha-sialidase (3.2.1.18), i.e. trans-sialidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)

Definitions

  • the present invention relates to a novel deaminoneuraminidase, and more particularly, to a deaminoneuraminidase having no sialidase activity.
  • BACKGROUND ART Daminoneuraminic acid (3-deoxy-D-glycero-D-galacto-nonulosonic acid) is 2-keto-3 -deoxy-D-glycero-D-galacto-nononic acid;
  • KDN has the same structure as sialic acid, except that the N-acyl group attached to carbon 5 of sialic acid is replaced by a hydroxyl group.
  • KDN like sialic acid, has been found to be widely distributed in the living world as a component of glycoconjugates, and to have various modes of existence. Also, KDN has a unique property different from cyanoleic acid, and it has been revealed that KDN-containing glycoconjugates play an important role in egg-sperm interaction during fertilization. There is great interest in elucidating the structures and functions of glycans and glycolipids.
  • KDNase deaminoneuraminidase
  • the diaminoneuraminidase activity at around pH 6 of the above-mentioned loach-derived enzyme is 65% of the deaminoneuraminidase activity at the optimum pH.
  • the present inventors have found that deaminoneuraminidase activity is not detected in the above rainbow trout-derived enzyme at around pH 6.5, and it is difficult to carry out the deaminoneuraminidase reaction under neutral pH conditions. there were.
  • the above-mentioned deaminoneuraminidase is an animal-derived enzyme, and no microorganism-derived deaminoneuraminidase is known at all, and the amount of the obtained enzyme is limited.
  • deaminoneuraminidase which has high activity and activity near neutrality, is expected to be extremely useful. Also, if highly active deaminoneuraminidase can be obtained, it is expected that a new deaminoneuraminate-containing glycoconjugate or carbohydrate can be created by performing the reverse reaction of KDN ketoside bond hydrolysis. Is done.
  • the present invention has been made in view of the above, has a high KDNase activity even in the neutral region, and is different from a conventionally known sialidase having KDNase activity.
  • the object of the present invention is to provide a KDNase which is extremely specific for a KDN ketoside bond without acting.
  • the present inventors have conducted intensive searches for microorganisms that produce KDNase to solve the above problems, and as a result, have found that a kind of bacteria belonging to the genus Sphingobacterium produces KDNase. Further, the inventors have found that this KDNase has a high activity in a neutral region and does not show a sialidase activity, leading to the present invention. That is, the present invention relates to a deaminoneuraminidase having the following enzymatic properties.
  • glycoconjugates or carbohydrates containing deaminoneuraminic acid acts on glycoconjugates or carbohydrates containing deaminoneuraminic acid and hydrolyzes the ketoside bond of deaminoneuraminic acid to form a glycoconjugate or carbohydrate containing no deaminoneuraminic acid, or deaminoneuraminic acid.
  • Neuraminic acid forms glycoconjugates or carbohydrates from which partially removed and free deaminononylamic acid.
  • the deaminoneuraminidase of the present invention further has the following physicochemical properties.
  • the present invention is a deaminoneuraminidase which is produced by sphingobacterium mOL12-4s and has the above-mentioned properties. Further, the present invention provides a method for culturing a bacterium belonging to the genus Sphingopa cacterium, which has the ability to produce damininolaminidase, and cultivating a bacterium having the above-mentioned properties from the culture. It is intended to provide a method for producing a deaminoneulaminidase, which comprises collecting laminidase, and a sphingopa 'cuteridium mOL12-4s having an ability to produce deaminoneuraminidase.
  • the present invention provides a diaminoneuraminic acid-containing saccharide, wherein deaminoneuraminic acid, saccharide and Z or complex saccharide are coexisted with deaminoneuraminidase having the above-mentioned properties.
  • the present invention provides a method for producing carbohydrates and glycoconjugates.
  • KD Nase of the present invention may be referred to as “the enzyme of the present invention”.
  • KDN-containing glycoconjugates or carbohydrates are those in which KDN is linked to glycoconjugates such as glycoproteins or glycolipids or carbohydrates such as monosaccharides, oligosaccharides or polysaccharides by ketoside bonds.
  • Sialic acid (including N-acetylneuraminic acid and N-glycolylneuraminic acid) -containing complex carbohydrates or carbohydrates refers to complex carbohydrates or carbohydrates in which sialic acid is bound by a ketoside bond .
  • sialidase activity refers to the activity of degrading a sialic acid-containing ketoside bond in a sialic acid-containing complex carbohydrate or a carbohydrate. Does not contain KDNase activity.
  • the deaminoneuraminidase of the present invention is a novel enzyme having the above properties.
  • the enzyme of the present invention can be collected, for example, by culturing a bacterium belonging to the genus Sphingobacterium and culturing the bacterium.
  • bacteria belonging to the genus Sphingobacterium include Sphingobacterium and Sphingobacterium multivorum, and specific examples include sphingobacterium mOL12-4s isolated according to the present invention.
  • a microorganism that produces the enzyme of the present invention is inoculated and cultured in an appropriate medium, and cells are collected from the cultured culture (in the case of liquid culture, by culture) by centrifugation or the like.
  • the starting material is a cell lysate obtained by crushing cells by sonication or a fraction with enzymatic activity released outside the cells by osmotic shock.
  • the cultivation of the microorganism producing the enzyme of the present invention is carried out by using a carbon source that can be assimilated by the microorganism (oligosaccharide containing KDN, glucose, etc.), a nitrogen source (yeast extract, peptone, meat kiss, corn steep liquor, Organic nitrogen sources such as soybean meal and casein hydrolyzate (casamino acids); inorganic nitrogen sources such as ammonium hydrochloride, ammonium sulfate, urea and ammonium nitrate; inorganic salts (calcium, magnesium, potassium, sodium, etc.) Culture in a medium containing sulfate, phosphate, hydrochloride, etc. by aerobic culture method (shaking culture, aeration stirring culture, etc.) at a temperature suitable for growth for several hours to several days. be able to.
  • a carbon source that can be assimilated by the microorganism
  • a nitrogen source oligosaccharide containing KDN, glucose, etc.
  • KDN oligosaccharide alcohol a substance having a KDN ketoside bond, such as KDN or a KDN-containing oligosaccharide alcohol (hereinafter also referred to as “KDN oligosaccharide alcohol”), is added to the medium, KDNase is induced and the number of bacterial cells is increased. Since the enzyme activity per unit is increased, the microorganism of the present invention can efficiently produce the enzyme of the present invention. This effect is more remarkable when a substance having a KDN ketoside bond, such as KDN oligosaccharide alcohol, is added to the medium than KDN.
  • the substance having a KDN ketoside bond, such as a KDN oligosaccharide alcohol, to be added to the medium is not necessarily required to be pure, and a crude product or the like can be used.
  • ammonium sulfate (ammonium sulfate), sodium sulfate, etc. can be used to isolate cells from the cells collected from the culture, disrupted by sonication, or released by an appropriate method such as osmotic shock.
  • An enzyme preparation having a desired purification degree can be obtained by affinity chromatography using an agarose gel or the like to which (KDN-gp) has been bound.
  • the KDNase activity of the enzyme of the present invention is measured by allowing the enzyme of the present invention to act on glycoconjugates or carbohydrates containing KDN, hydrolyzing the ketoside bond of KDN, and quantifying the KDN released. be able to.
  • the enzyme of the present invention A method of measuring the fluorescence of 4-methylumberiphine, which is made to act upon 4-methylumberipheryl KDN (4-MU-KDN) and liberated by enzymatic hydrolysis of a ketoside bond.
  • KDN-containing glycoprotein derived from rainbow trout ovary fluid is used as a substrate, the enzyme of the present invention is added thereto and reacted, cetylpyridinium chloride (CPC) is added to the reaction solution, and the mixture is centrifuged.
  • CPC cetylpyridinium chloride
  • the KDNase activity can also be measured by quantifying the amount of KDN in the broth by the thiobarbituric acid method (Analytical Biochemistry Volume 205, 244-250, (1992)).
  • the KDN-containing glycoprotein forms a complex in the presence of CPC and precipitates, but the KDN released by the enzymatic reaction does not precipitate, so that unreacted KDN-containing glycoprotein can be removed from the reaction system by centrifugation.
  • FIG. 4 shows the physicochemical properties of KDNase produced by the Sphingobacterium mOL 12-4 s as the enzyme of the present invention.
  • a KDN-containing saccharide and / or a complex saccharide or the like can be produced by allowing the enzyme of the present invention to coexist with KDN, a saccharide or Z or a complex saccharide or the like.
  • KDN Deaminoneuraminic acid
  • the enzyme of the present invention cleaves all of the KDN residues present in the following KDN-containing glycoconjugates or carbohydrates, and forms a naturally-known binding mode of KDN residues ⁇ 2-3, na2 ⁇ 6, ⁇ 2 ⁇ Acts on any of the 8 ketoside bonds.
  • KDN-containing glycoprotein a mucin-like glycoprotein in which a number of sugar chains having three different KDN bonds (KDNa2 ⁇ 3Gal, KDN «2 ⁇ 8KDN, KDN 2 ⁇ 6GalNAc) are linked.
  • KDN oligosaccharide alcohol obtained by treating alkali-borohydride from KDN-containing glycoprotein General formula ( ⁇ 8KDNa2 ⁇ ) n ⁇ 8KDNa2-6 [KDNa2 ⁇ 3Gal ⁇ l-3GalNAcal- ⁇ 3] GalNAc- ol, n are 2 to 9 and the average is 5.
  • N-glycan with two KDN residues linked by 2-3Gal KDN a 2 ⁇ 3Gal ⁇ l ⁇ 4GlcNAc ⁇ l ⁇ 2 an a 1-6 [KDN a 2-3Gal ⁇ l ⁇ 4GlcNAc ⁇ l ⁇ 2 an al ⁇ 3]
  • the enzyme of the present invention is capable of catalyzing the hydrolysis of a sialic acid ketoside bond in a complex carbohydrate or a carbohydrate containing known sialic acids (p-acetylneuraminic acid and p-glycolylneuraminic acid). Without this (see Example 2 below), the enzyme of the present invention has extremely high specificity for a diamino neuraminic acid ketoside bond.
  • the enzyme of the present invention has the highest activity around ⁇ 6.
  • Example 2 90% ammonium sulfate precipitate fraction of the supernatant of the cell lysate of the cell suspension of Sphingopatelium mOL 12-4 s was purified using CM-Toyopearl 650M (manufactured by Tosoichi), DEAE- SDS-polyacrylamide gel electrophoresis obtained by purifying by column chromatography using Toyo pearl 650M (manufactured by Tosoichi) and CM-Toyopearl 650M (manufactured by Tosoichi) in order.
  • the relationship between pH and enzyme activity of the enzyme purified to a band (hereinafter also referred to as “single purified enzyme”) is as shown in FIG.
  • the enzyme of the present invention is relatively stable after standing for several hours at 25, pH 4-9. Also, the enzyme of the present invention does not inactivate at 25 for at least 48 hours. However, the enzyme of the present invention is stabilized at a concentration of several tens / g / ml or less in the presence of a protein such as a force, which is unstable irrespective of the pH and the ion intensity, such as serum albumin.
  • the activity of the enzyme of the present invention is not affected by ImM calcium ion (Ca2 + ), magnesium ion (Mg2 + ), manganese ion (Mn2 + ) and EDTA (sodium ethylenediamine tetraphosphate).
  • the activity of the enzyme of the present invention sharply increases with an increase in ionic strength.
  • the highest value is obtained in the presence of 300 mM NaCl, and the activity is extremely low at a low ionic strength of 50 mM or less.
  • the enzyme of the present invention is inhibited (at a concentration of 3 mM) by free KDN.
  • free sialic acid which is a structural analog of deaminoneuraminic acid (KDN), a complex carbohydrate or saccharide having N-acetylneuraminic acid or N-glycolylneuraminic acid which is not a substrate of the enzyme of the present invention. Not inhibited by quality. It is a specific inhibitor of known sialidase (cleaving the ketoside bond of N-acylneuraminic acid). 3-dehydro-2-deoxy-not inhibited by N-acetylneuraminic acid. Triton X-100, which is a surfactant, does not inhibit the enzyme activity of the enzyme of the present invention.
  • the molecular weight of the enzyme of the present invention was determined by dividing the 50-70% ammonium sulfate precipitate fraction of the supernatant of the cell lysate of Sphingobacterium mOL12-4s by two rounds of Sepha.
  • Example 2 the method of Nossal and H-mark pel was used from the cells of the Sphingobacterium mOL 12-4 s (J. Biol. Chem., Vol. 241, No. 3055-). Page 3062 (1966) However, the procedure of treating with ImM Mg (CH 3 C00) 2 for 10 minutes and then centrifuging to obtain a supernatant is the same as that of treating with ImM Mg (CH 3 C00) 2 for 10 minutes and doubling the volume. 90% of the periplasmic (periplasmic) solution leached from the cells by the osmotic shock method after adding 1M NaCl—1M Tris-HC1 (PH7.1) and centrifuging to obtain the supernatant).
  • CM-Toyopearl 650M manufactured by Tohso Ichi
  • DEAE-Toyopearl 650 manufactured by Tohso Ichi
  • CM-Toyopearl 650 manufactured by Tohso Ichi
  • Gel filtration (Sephataryl S-200 column, 1.8 cm x 135 cm; 20 mM Tris-HCl buffer (pH Eluted with 8.0) /0.2 NaCl), it is estimated to be about 40,000, and by SDS-polyacrylamide gel electrophoresis, about 42,000. 8 Michaelis constant
  • the Michaelis constant (Km) and the maximum enzyme reaction rate (Vmax) of the enzyme of the present invention using 4-methylumberifuryl KDN (4-MU-KDN) as a substrate are as follows.
  • Vmax 0.19 ⁇ M / min or 7.4 m / min / mg protein
  • the amino acid composition of the enzyme of the present invention is as follows. The numbers represent mol% asparagine and aspartic acid: 5.3
  • the sphingobacterium mOL 12-4 s of the present invention is obtained by culturing the sludge of a fish farm in an integrated medium containing oligoamino alcohol containing only deaminonoylamic acid (KDN) as a sole carbon source.
  • KDN deaminonoylamic acid
  • this microorganism can be cultured from sludge or soil from fish farms, etc., in an integrated medium containing complex carbohydrates or carbohydrates containing KDN as the sole carbon source, and have a KDNase activity. It can be obtained by screening using the index as to whether or not it is possessed.
  • the sphingobacterium mOL 12-4 s isolated according to the present invention was obtained on May 24, 1994 from the Ministry of International Trade and Industry by the Ministry of International Trade and Industry with the accession number of F ERM P-14325. Deposited, transferred to an international deposit under the Budapest Treaty on May 26, 1995, and deposited under the accession number FERM BP-5116.
  • FIG. 6 is a view showing the results of measuring the KDNase activity per 10 1 Q bacterial cells over time when cultured in a medium supplemented with E. coli.
  • FIG. 2 is a diagram showing an elution pattern of the first round of cefacryl S-200 gel filtration chromatography in the purification of the enzyme of the present invention.
  • the solid line indicates the enzyme activity, and the dotted line indicates the ultraviolet absorption (A280) indicating the protein amount.
  • FIG. 3 is a diagram showing an elution pattern of a second round of Cefacryl S-200 gel filtration chromatography in the purification of the enzyme of the present invention.
  • the solid line represents the enzyme activity
  • the dotted line represents the ultraviolet absorption (A280) indicating the amount of protein.
  • FIG. 4 is a diagram showing an elution pattern of affinity chromatography by KDN-gp-bound agarose gel in the first round of purification of the enzyme of the present invention.
  • the solid line represents the enzyme activity
  • the dotted line represents the ultraviolet absorption (A230) indicating the evening mass.
  • FIG. 5 is a diagram showing an elution pattern of affinity chromatography using a second KDN-gp-bound agarose gel in the purification of the enzyme of the present invention.
  • the solid line is The enzyme activity is shown, and the dotted line represents ultraviolet absorption (A220) indicating the amount of protein.
  • FIG. 6 is a diagram showing an elution pattern of the second CM-Toyopearl 650M column chromatography in the purification of the enzyme of the present invention (single purified enzyme).
  • the solid line represents the enzyme activity
  • the dotted line represents the concentration of NaCl used for elution.
  • FIG. 7 shows the results of 10% acrylamide gel electrophoresis of the affinity-purified enzyme fraction. Densitometer for the position and staining intensity of each band after silver staining
  • FIG. 8 is a pH-enzyme activity curve showing the optimum pH of the affinity-purified enzyme fraction of the enzyme of the present invention.
  • FIG. 9 is a pH-enzyme activity curve showing the optimal pH of a single purified enzyme of the enzyme of the present invention.
  • FIG. 10 is an ionic strength-enzyme activity curve showing the optimal ionic strength of the enzyme of the present invention. You. Ionic strength was expressed as the concentration of added NaCl. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described more specifically with reference to examples. This embodiment shows one example of the present invention, and the present invention is not limited thereto.
  • the measurement of the KD Nase activity was performed by the following method. Enzyme activity measurement method>
  • the fluorescence intensity when the same reaction was performed without adding the enzyme was used as a control.
  • the amount of enzyme that hydrolyzes 1 nmol of 4-MU-KDN per minute was defined as 1 unit.
  • the 4-MU-KDN used in this method was obtained by the method developed by Dr. Thomas G. Warner shown below, and was provided by Dr. Thomas G. Warner. Using.
  • KDN was synthesized from D-mannose and pyruvate using Neu5Ac aldolase according to enzymatically known methods [Auge, C, et al., Tetrahedron 46, 201-214 (1990)]. After drying, the KDN was suspended in 10 ml of acetic anhydride and 10 ml of pyridine, and reacted at room temperature overnight. The reaction solution was ice-cooled, methanol was added to stop the reaction, and the solvent was removed. The residue was dissolved in methanol, applied to a Dowe x 50 (H + ) column (4 x 5 cm), and eluted with methanol.
  • H + Dowe x 50
  • KDN-containing glycoprotein derived from rainbow trout ovary fluid was used as a substrate.
  • 2 ml of 0.1% cetylpyridinium chloride (CPC) was added to the reaction solution.
  • CPC cetylpyridinium chloride
  • KDN-containing glycoproteins form a complex in the presence of CPC and precipitate, but KDN released by the enzymatic reaction does not precipitate.
  • Example 1 Obtaining Sphingobacterium mOL 12-4 s Sludge from a fish farm was prepared using KDN oligosaccharide alcohol (prepared by the method described in J. Biol. Chem. 265, 21811-21 819 (1990)). % (in 1 L, Na 2 HP0 4 6.0g , KH2PO4 3.0g, NH4CI 1.0g, NaCl 0.5g gS0 4 lmM, including CaCl 2 0. ImM) M 9 liquid medium supplemented with 25 was inoculated into Cultured for 48 hours.
  • KDN oligosaccharide alcohol prepared by the method described in J. Biol. Chem. 265, 21811-21 819 (1990)
  • % in 1 L, Na 2 HP0 4 6.0g , KH2PO4 3.0g, NH4CI 1.0g, NaCl 0.5g gS0 4 lmM, including CaCl 2 0. ImM
  • the culture was streaked on an M9 agar plate containing KDN oligosaccharide alcohol and cultured at 25 ⁇ for 48 hours, yielding 66 colonies as microorganisms that grow using KDN oligosaccharide alcohol as the sole carbon source.
  • KDN oligosaccharide alcohol as the sole carbon source.
  • the microorganisms forming each colony were inoculated and cultured in M9 liquid medium containing 0.05% KDN oligosaccharide alcohol, and collected by centrifugation.
  • the obtained cells were disrupted by sonication, and the KDNase activity and sialidase activity in the disrupted solution were measured by the 41 MU-KDN method.
  • the microorganism derived from the lysate from which the KDNase activity was observed and the sialidase activity was not observed was designated as mOL12 and used for the following selection.
  • KDNase activity is observed in strains that form “large” colonies and “medium”
  • the mOL 12-4s isolated as described above was identified using a commercially available kit for identifying Gram-negative bacilli other than intestinal bacteria (Piomeleu, API 2ONE). The main bacteriological properties tested are shown below.
  • mOL 12-4 s was identified as a bacterium belonging to the genus Sphingobacterium, and named as Sphingobacterium mOL12-4s.
  • This bacterium was deposited on May 24, 1994 with the Ministry of International Trade and Industry, National Institute of Advanced Industrial Science and Technology, under the accession number of FERM P-14325, based on the Budapest Treaty on May 26, 1995. Transferred to International Deposit and deposited under FERM BP-51 16 accession number. It should be noted that this bacterium has a high possibility of being Sphingobacterium multiphorum (Sphingobacterium multivorum) due to mycological properties.
  • Example 2 Production of KPNase Miller's Luria broth (LB) culture solution (Gibco BRL) was dispensed 800 ml into a 2-liter triangular flask and autoclaved. This medium was inoculated with Sphingobacterium mOL 12-4 s, and cultured at 25 for 48 hours using a shaking incubator.
  • LB KPNase Miller's Luria broth
  • the cells were collected from the culture by centrifugation (15,000 xg, 40 minutes). The obtained cells were suspended in ice-cooled 0.1 M Tris-HCl buffer (pH 8.0) containing 0.1 M NaCl, and centrifuged again to wash the cells. After performing this washing operation three times, the cells are suspended in 1/2 volume of 0.1 NaCl-20 mM tris-hydrochloric acid buffer (pH 8.0), and sonicated (50 ⁇ l). For 5 minutes) to disrupt the cells.
  • Tris-HCl buffer pH 8.0
  • sonicated 50 ⁇ l
  • KDNase As another method for extracting KDNase from the cells, KDNase was purified by subjecting the cells to osmotic shock to release the enzyme outside the cells, and fractionating the extracellular fluid with ammonium sulfate. .
  • the Sphingobacterium mOL 12-4 s was cultured in the same manner as above, and the cells were collected and washed by centrifugation (15,000 xg, 40 minutes).
  • the cells were subjected to osmotic shock treatment according to a known method [Nossal, N. G. and Heppel, L. A. (1966) J. Biol. Chem. 241, 3055-3062] to release the enzyme outside the cells. That is, the cells were suspended in 20 mM Tris-HCl buffer (pH 7.1) containing 40% sucrose 20% per 1 g of the cells, allowed to stand for 10 minutes, and then centrifuged (13,000 xg, (30 minutes) to precipitate.
  • the cells were suspended in 20 mM Tris-HCl buffer (pH 7.1) containing ImM magnesium chloride and allowed to stand for 10 minutes to give an osmotic shock.
  • the cell suspension was centrifuged again (13,000 ⁇ g, 30 minutes) to remove the cells.
  • Ammonium sulfate was immediately added to the obtained supernatant to 90% saturation, and the mixture was allowed to stand for 4 hours.
  • the resulting precipitate was collected by centrifugation (15,000 ⁇ g, 30 minutes), suspended and dissolved in 503 ⁇ 4! Ammonium sulphate, and the insoluble suspension was removed by centrifugation (15,000 ⁇ g, 30 minutes).
  • Ammonium sulfate was added to the obtained supernatant so as to be 70% saturated, and left at 4 overnight. This was centrifuged again (15,000 ⁇ g, 30 minutes), and the obtained precipitate fraction was collected as a 50-70% ammonium sulfate precipitate fraction.
  • the lyophilized powder (50 g) was extracted once with 1.0 L of chloroform / methanol (2: 1, v / v), and extracted with 1.0 L of chloroform / methanol (1: 2, v / v) at room temperature. (See Yu, S. et al., Biochemistry 32, 9221-9229 (1993)). The defatted residue was air-dried and weighed 39 g. The defatted ovarian fluid powder (10 g) was suspended in 100 ml of 1 M NaBH 4 /0.1 mM NaOH and incubated with shaking at 37 ° C.
  • Sphingobacterium mOL 12 4 s bacterial cells (4.0 x 10 8 ) were treated with 1% (w / v) casein hydrolyzate (casamino acid, Gibco) and 1% (w / v) Of glucose (Glc) in 40 ml of M9 liquid medium and cultured at 25 for 44 hours. Cells in the growth phase were collected and washed twice with M9 liquid medium. 0.1% (w / v) crude KDN-0 S, KDN-OS, KDN, Neu5Ac, mild acid hydrolyzate of colominic acid (oligo Neu5Ac; Kitazume, S. et al., Anal. Biochem.
  • FIG. 1 shows the results of measuring the KD Nase activity per 10 1 Q cells over time when 0.1% crude KDN-OS was added.
  • KDN, KDN-OS and crude KDN-OS induced KDNase, but other monosaccharides and oligosaccharides had no effect on the induction of the enzyme.
  • Free KDN also induces KDNase, but was not as effective as KDN-0S and crude KDN-0S. This suggested that a substance having a ketoside bond of KDN is preferable as an inducer.
  • Figure 1 also shows that when proliferating cells (6.Oxl01 () ) were cultured in M9 medium containing 0.1% KDN-OS, cells were cultured after 24 to 43 hours of incubation. Per KDNase activity was shown to increase to a very high level compared to the initial activity. ⁇ 2> Purification of KDNase
  • the entire amount of the 50-70% ammonium sulfate precipitation fraction obtained as in (1) above was applied to a Sephacryl S-200 (Pharmacia) column (1.8 x 35 cm), and a 20 Tris monohydrochloride buffer containing 0.5 NaCl was applied. (PH 8.0), and the geno 1 was fractionated (Fig. 2).
  • the KDNase activity of each eluted fraction was measured by the 41 MU-KDN method, and the active fractions were collected, added with ammonium sulfate so as to be 90% saturated, and allowed to stand overnight.
  • KDNase-active fraction was collected, ammonium sulfate was added to 90 ° saturation, the mixture was allowed to stand overnight, and the precipitate obtained by centrifugation at 0,000 xg for 1 hour was added to 4.8 ml of 20 mM tris-trim. It was dissolved in monoacetic acid buffer (pH 6.0) /0.05 NaCl. This solution is applied to a column (2.0 x 15 cm) packed with agarose gel (Affi-gel 15, BioRad) to which KDN-containing glycoprotein (KDN-p) is bound, and 90 ml of 20 mM Tris-acetate buffer is added.
  • Ammonium sulfate fraction 113 103 1.11 74.2 1.5 SELF 7 krill S-200 1st 76.1 57.3 1.33 49.8 1.8 SEFF acrylic S-200 2nd 57.4 26.6 2.16 37.6 2.9
  • the affinity-purified enzyme fraction was subjected to 10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE). After the electrophoresis, the gel was stained with a silver staining kit (manufactured by Wako Pure Chemical Industries, Ltd.), and the positions and concentrations of the 5 to 6 stained bands were determined using a densitometer (absorbance at 600 nm). It measured using. Fig. 7 shows the results.
  • This enzyme fraction was further fractionated using a Cefacryl S-200 gel filtration column, and the seven fractions having KDNase activity eluted at K a V of 0.3 to 0.4 were subjected to SDS-
  • a Cefacryl S-200 gel filtration column As a result of a detailed study of the relationship between the behavior of the band detected by polyacrylamide gel electrophoresis and the KD-nase activity, one band was found in which the appearance pattern of the band and the size of the activity were matched. It was estimated that The apparent molecular weight of this band was calculated to be 57,000 from comparison with a molecular weight marker (manufactured by Seikagaku Corporation).
  • the molecular weight of the active ingredient estimated from gel filtration chromatography was calculated to be 50,000 from comparison with a molecular weight marker (manufactured by Seikagaku Corporation), which was almost consistent with the result by SDS-PAGE.
  • FIG. 7 shows the SDS-PAGE pattern of the affinity-purified enzyme fraction and the position of the band considered to be KD Nase.
  • KDNase is not completely purified by the above purification steps, it can be used as KDNase without sialidase activity in both crude enzyme solutions such as cell lysates and affinity-purified enzyme fractions. . Further, if necessary, the enzyme may be further purified by an ordinary enzyme purification method. At that time, KDNa se The properties and estimated molecular weight can be used as indices.
  • KDNase could be purified to a uniform level by SDS-PAGE.
  • Solid ammonium sulfate was gradually added to the supernatant of the lysate obtained by osmotic shock treatment to 90% saturation with gentle stirring, and the mixture was allowed to stand at 4 overnight.
  • the precipitate was collected by centrifugation at ⁇ , ⁇ g for 30 minutes, dissolved in 10 ml of 0.1 M NaCl-100 mM Tris-acetate buffer (PH6.0), and dissolved in 0.1 M NaCl-0.25 M sucrose-20 mM Tris. Dialysis was performed against an acetate buffer (pH 6.0).
  • passed-through fr actions were combined, concentrated by ultrafiltration (YM10, manufactured by Amicon) to 15 ml, and 0.1 M NaCl-0.25 M sucrose-20 mM Tris monohydrochloride buffer (pH 8. Apply to a DEAE-Toyopearl 650M column (2.2xllcm, 42ml; Tosoichi) equilibrated in step 0), and use the same buffer (0.1M NaCl-0.25M sucrose-20mM Tris) used for the first equilibration.
  • Hydrochloric acid buffer (PH8.0) was eluted with 60 ml, and then eluted with 6 Om1 of 0.5 M NaCl-0.25 M sucrose-20 mM Tris-HCl buffer (pH 8.0). Fractions not adsorbed to the column were pooled, concentrated by ultrafiltration to 13 ml, and equilibrated with 0.1 M NaCl-0.25 M sucrose-20 m Tris monohydrochloride buffer (pH 8.0) Apply to CM-Toyopearl 650M column, first linear concentration of NaCl in 0.1M NaCl-0.25M sucrose-20mM Tris-HCl buffer (pH8.0), then 0.25sucrose-20mM Tris-HCl buffer (pH8.0) The fraction was eluted with a gradient (0.1 M to 0.6 M), and fractions having KDNase activity (NaCl around 0.17 to 0.2 M) were collected.
  • PH8.0 Hydrochloric acid buffer
  • the single purified enzyme thus obtained had an apparent molecular weight of about 42, compared with the molecular weight marker in SDS-PAGE. It was calculated as 000.
  • gel filtration chromatography (Sephaclinole S-200 column, 1.8 cm x 35 cm; 20 mM Tris-HCl) The molecular weight estimated from the buffer (eluted with pH 8.0) /0.2 M NaCl) was calculated to be about 40,000 by comparison with the molecular weight marker.
  • the properties of the enzyme of the present invention were examined using the affinity-purified enzyme fraction obtained above.
  • the reactivity of the enzyme of the present invention was examined for various KDN-containing glycoconjugates and carbohydrates, and sialic acid-containing glycoconjugates and carbohydrates.
  • KDN dimer N-acetylneuraminic acid (Neu5Ac) dimer, N-glycolylneuraminic acid (Ne5Gc) dimer: Anal. Biochem. 202, 25-34 (1992).
  • KDN oligosaccharide alcohol J. Biol. Chem. 265, 21811-21819 (1990).
  • Ganglioside GM3 containing KDN GM3 J. Biol. Chem. 266, 21929-21935 (1991) 4-Methylpamperiduryl Neu 5Ac, Colominic acid: purchased from Hanoi Chemical. N-Acetylneuraminic acid lactose, human transferrin, male fetal serum Fetuin: purchased from Sigma.
  • Neu5Ac-containing double-stranded N-type sugar chain J. Biol. Chem. 264, 18520-18526 (1989).
  • Porcine submandibular mucin Arch. Biochem. Biophys. 129, 49-56 (1969).
  • Ne u 5Ac a 2 ⁇ 6 G a 1 / S 1 ⁇ 3
  • G a 1 NA co K Toad egg jelly glycoprotein Eur. J. Biochem. 223, 223-231 (1994) 5 g of the above KDN or sialic acid-containing complex carbohydrate or carbohydrate as KDN or N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc)
  • a 0.1 M Tris-acetate buffer solution pH 6.0
  • the enzyme of the present invention was incubated with 80 milliunits of the enzyme of the present invention at 25 for 20 hours.
  • KDN oligosaccharide alcohol KDN 2- »8KDN KDN a 2—3Gal
  • Neu5Ac a 2-6 (Gal ⁇ l- ⁇ 3) GalNAcol Neu5Aca2 ⁇ 6GalNAcol-human transferrin Neu5Aca2 ⁇ 6Gal- ⁇ fetal serum fetuin Neu5Aca2 ⁇ 3 (6) Gal submucosal gland mucin Neu5Gca2 ⁇ 6GalNAc 1 Hikika ', Egg egg "Re-sugar tank. Protein Neu5Aca2 ⁇ 6GalNAc-Colominic acid ( ⁇ 8Neu5Aca2 ⁇ ) n- 1 Lake trout. Lysia ⁇ Sugar tank (, ⁇ 8Neu5Aca2- ⁇ n 1 Rainbow trout.
  • the enzyme of the present invention is not limited to the 4-MU-KDN which is a synthetic substrate, but also L, which is a naturally-known binding mode of KDN residue, ⁇ 2-3, ⁇ 2 ⁇ 6, ⁇ 2-8, It has been clarified that it also acts on displacement.
  • the enzyme of the present invention can be used with respect to complex carbohydrates and carbohydrates containing various carboxyl-neuraminic acids and carbohydrate-neuraminic acids shown in Table 3 to obtain carbohydrates of carbohydrates and carbohydrates. It did not catalyze the hydrolysis of the ketoside bond of glycolinolenouraminic acid. Thus, the enzyme of the present invention has extremely high specificity for deaminoneuraminic acid.
  • the optimal ⁇ ⁇ was measured using the affinity-purified enzyme fraction of the enzyme of the present invention and the single purified enzyme obtained as described above.
  • the enzyme reaction was carried out according to the 4-MU-KDN method except that the reaction was carried out at each ⁇ of ⁇ 4.0 to 9.0 using 0.1 ⁇ Tris-acetate buffer as the buffer, and the enzyme activity under each ⁇ condition was measured.
  • FIG. 8 affinity-purified enzyme fraction
  • FIG. 9 single-purified enzyme
  • KDNase activity was measured according to the 4-MU-KDN method except that the temperature conditions were changed. As a result, the enzyme of the present invention exhibited high enzyme activity around 25 to 30.
  • the KDNase activity was measured by the 41-MU-KDN method.
  • the enzyme of the present invention was relatively stable in this pH range.
  • the enzyme of the present invention is dissolved in 0.1 M Tris-acetate buffer (pH 6.0) /0.1 M NaCl at a concentration of 70 g / ml, left at various temperatures for a predetermined time, and then subjected to the MU-KDN method. KDNase activity was measured. As a result, the enzyme of the present invention was not inactivated at 25 for at least 48 hours. In addition, the enzyme of the present invention was unstable at a concentration of several tens / g / ml or less irrespective of pH and ionic strength. The purified enzyme was stabilized in the presence of proteins such as serum albumin.
  • FIG. 10 shows the result of examining the effect of ionic strength on the enzyme of the present invention.
  • the enzyme activity sharply increased with increasing ionic strength, and reached the highest value in the presence of 300 mM NaCl.
  • the activity was very low under low ionic strength of 50 mM or less.
  • the enzyme of the present invention was inhibited by free KDN (3m). On the other hand, it was not inhibited by free sialic acid, a structural analog of KDN. It was not inhibited by complex carbohydrates or carbohydrates containing N-acetyl neuraminic acid or N-glycolyl neuraminic acid, which were found not to be substrates for the enzyme of the present invention. It was not inhibited by 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, which is a specific inhibitor of known sialidase (cleaving the ketoside bond of N-acylneuraminic acid).
  • the enzyme of the present invention was not inhibited by the surfactant Triton X-100.
  • the enzyme activity of the enzyme of the present invention was almost completely eliminated by 0.5% sodium cholate (sodium cholate), but about 90% activity was maintained by 0.1% sodium cholate (sodium cholate).
  • the Michaelis constant (Km) and the maximum rate of the enzyme reaction (Vmax) were determined when 4-methylumberifuryl KDN (4-MU-KDN) was used as a substrate.
  • the purified KDNase (single purified enzyme) was hydrolyzed with 6 N hydrochloric acid at 105 X: for 24 hours, and the amino acid composition was examined. The results are shown below. The numbers indicate mol%.
  • the enzyme of the present invention is expected to be used as a reagent useful for studies such as analysis of the structure and function of deaminoneuraminic acid. Further, since the enzyme of the present invention has extremely high specificity for KDN ketoside bonds, application to the detection of KDN ketoside bonds is expected.
  • a new glycosylated carbohydrate or carbohydrate containing deaminoneuraminic acid can be created.
  • Such new glycoconjugates and carbohydrates containing deaminoneuraminic acid have the potential to modify the function of the analogous glycoconjugates and carbohydrates containing N-acylneuraminic acid, or be used as new bioactive substances. And so on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細書 新規デァミノノイラミニダーゼとその製造方法 技術分野 本発明は、 新規なデァミノノィラミニダーゼに関し、 詳しくは、 シァリダーゼ 活性を有しないデァミノノイラミニダ一ゼに関するものである。 背景技術 デァミノノイラミン酸 (3-deoxy-D-glycero-D-galacto-nonulosonic acid、 め る 、は 2— keto— 3— deoxy— D— glycero-D— galacto— nononic acid;以下、 「KDN」 と いう) は、 シアル酸の 5位の炭素に結合する N-ァシル基が水酸基に置き換わつ ている以外は、 シアル酸と同一の構造をしている。 これまでに、 KDNはシアル 酸と同様、 複合糖質の構成成分として生物界に広く分布し、 多様な存在様式をも つことが判明している。 また、 KDNはシァノレ酸と異なるユニークな性質をもち、 KDN含有複合糖質が受精時の卵-精子相互作用において重要な役割を果たすこ となどが明らかにされてきており、 KD N含有糖タンパク質や糖脂質の構造や機 能の解明には大きな興味がよせられている。
ところで、 KDNを含有する複合糖質における KDNケトシド結合を切断する 酵素 (デアミノノイラミニダーゼ;以下、 「KDNa s e」 ともいう) として、 ドジョゥの肝臓に存在する K D N—シァリダ一ゼ(Li, Y. -T.ら, Archives of Biochemistry and Biophysics, 第 310巻, 第 1号, 第 243— 246頁 (1994年)) が 知られている。 また本発明者らは、 魚類のニジマスの卵巣等の組織に、 シァリダ —ゼ活性とデァミノノィラミニダ一ゼ活性とを有する酵素が存在することを見い 出している (Angata, T.ら, Glycobiology, 第 4巻, 第 517- 523頁 (1994年)) 。 しかし、 いずれの酵素も、 KDNケトシド結合を特異的に切断する酵素ではな く、 KDNケトシド結合切断活性と同程度 (上記ドジヨウ由来の酵素) もしくは それ以上 (上記ニジマス由来の酵素) のシァリダ一ゼ活性を含んでおり、 KDN のみに特異的に作用する酵素は知られていない。 また、 上記の酵素の至適 pHは、 ドジヨウ由来のものが PH4. 5付近であることが知られており、 本発明者らは ニジマス由来のものが p H 4. 4付近であることを見い出している。
上記ドジヨウ由来の酵素の p H 6付近におけるデァミノノイラミニダ一ゼ活性 は、 至適 pHにおけるデァミノノィラミニダ一ゼ活性の 65%であることが知ら れており、 また、 本発明者らは上記ニジマス由来の酵素は pH 6. 5付近ではデ アミノノイラミニダーゼ活性が検出されないことを見い出しており、 中性 pH条 件下でデァミノノィラミニダーゼ反応を行なうことは困難であった。 さらに、 上 記のデァミノノイラミニダーゼはいずれも動物由来の酵素であり、 微生物由来の デアミノノィラミニダーゼは全く知られておらず、 得られる酵素量にも限界があ つ 発明の開示 デアミノノイラミン酸の構造や機能の解析などの研究にとって、 活性が高く、 しかも中性付近で活性を有するデァミノノィラミニダーゼは極めて有用であるこ とが期待される。 また、 活性の高いデァミノノィラミニダ一ゼが得られれば、 K DNケトシド結合加水分解の逆反応を行なわせることにより、 新しいデァミノノ イラミン酸含有複合糖質または糖質等を創出できることが期待される。
本発明は、 上記観点からなされたものであり、 中性域においても高い KDN a s e活性を有し、 しかも従来知られている KDN a s e活性を有するシァリダ一 ゼと異なり、 N—ァシルノイラミン酸残基には作用せず、 KDNケトシド結合に 極めて特異的な KDNa s eを提供することを課題とする。
本発明者らは、 上記課題を解決するために、 KDNa s eを産生する微生物を 鋭意検索した結果、 スフインゴバクテリゥム (Sphingobacterium) 属に属する細 菌の一種が KDNa s eを産生することを見出し、 さらにこの KDNa s eは中 性域で高い活性を有し、 しかもシァリダーゼ活性を示さないことを見出し、 本発 明に至った。 すなわち本願発明は、 下記の酵素学的性質を有するデァミノノイラミニダーゼ である。
①作用:
デァミノノイラミン酸を含有する複合糖質もしくは糖質に作用し、 デァミノノ イラミン酸ケトシド結合を加水分解して、 デアミノノイラミン酸を含有しない複 合糖質もしくは糖質、 またはデァミノノイラミン酸が部分的に除去された複合糖 質もしくは糖質と遊離のデァミノノィラミン酸とを生成する。
②基質特異性:
デアミノノイラミン酸を含有する複合糖質もしくは糖質には作用するが、 N— ァセチルノイラミン酸又は N—グリコリルノイラミン酸を含有する複合糖質もし くは糖質における、 N—ァセチルノイラミン酸または N—グリコリルノイラミン 酸のケトシド結合には作用しない。
本発明の具体的な態様として、 本願発明のデァミノノイラミニダ一ゼは、 さら に以下の理化学的性質を有する。
(i)至適反応 p H:
P H 6付近
(ii)安定 p H範囲:
2 5 にぉぃて 11 4〜9で安定
(iii)至適反応温度:
2 5 付近
(iv)熱安定性:
2 5 で少なくとも 4 8時間失活しない。
(V)阻害及び安定化:
遊離のデァミノノィラミン酸によって阻害される。 ゥシ血清アルブミンなどの 夕ンパク質存在下で安定化される。
また本願発明は、 スフィンゴバクテリゥム m O L 1 2— 4 sにより産生され ることを特徴とし、 かつ前記の性質を有するデァミノノイラミニダーゼである。 また本願発明は、 スフインゴパ'クテリウム属に属し、 デァミノノィラミニダー ゼ生産能を有する細菌を培養し、 その培養物から前記性質を有するデァミノノィ ラミニダーゼを採取することを特徴とするデァミノノィラミニダーゼの製造方法、 及びデァミノノイラミニダーゼ生産能を有するスフィンゴパ 'クテリゥム m O L 1 2 - 4 sを提供する。
さらに本願発明は、 デアミノノィラミン酸と、 糖質及び Z又は複合糖質と、 上 記性質を有するデァミノノイラミニダ一ゼとを共存させることを特徴とするデァ ミノノイラミン酸含有糖質及びノ又は複合糖質の製造方法を提供する。
尚、 本発明の K D N a s eを、 「本発明酵素」 ということがある。 また、 K D N含有複合糖質または糖質とは、 糖タンパク質もしくは糖脂質等の複合糖質また は単糖類、 ォリゴ糖類もしくは多糖類などの糖質に K D Nがケトシド結合により 結合しているものをいい、 シアル酸 (N—ァセチルノイラミン酸及び N—グリコ リルノイラミン酸を含む) 含有複合糖質または糖質とは、 複合糖質または糖質に シアル酸がケトシド結合により結合しているものをいう。 さらに、 本明細書にお いて、 「シァリダ一ゼ活性」 とは、 シアル酸含有複合糖質または糖質におけるシ アル酸ケトシド結合を分解する活性をいい、 従来知られているシァリダ一ゼが有 する K D N a s e活性を含まない。
以下、 本発明を詳細に説明する。
< 1〉本発明の K D N a s e
( 1 ) 本発明酵素の取得法
本発明のデアミノノィラミニダ一ゼは、 上記性質を有する新規酵素である。 本 発明酵素は、 例えば、 スフインゴバクテリゥム (Sphingobacterium) 属に属する 細菌を培養し、 その培養物から採取することができる。 スフインゴバクテリゥム 属に属する細菌としては、 スフインゴパ、クテリゥム マルチボラム (Sphingobac terium multivorum) が挙げられ、 具体的には本発明により分離されたスフィンゴ バクテリゥム m O L 1 2— 4 sが挙げられる。
具体的には、 本発明酵素を生産する微生物を適当な培地に接種して培養し、 培 養後の培養物 (液体培養のときは培養液) から菌体を遠心分離などによって収集 し、 菌体を超音波処理などにより破砕して得られる菌体破砕液、 または浸透圧シ ョックによって菌体外に放出される酵素活性を持つ画分等を出発物質として、 次 いで KDNa s e活性を指標として一般的な酵素の分離法を適用することにより、 所望の精製度の酵素標品を採取することができる。
本発明酵素を産生する微生物の培養は、 この微生物が資化可能な炭素源、 (K DNを含むオリゴ糖、 グルコースなど) 、 窒素源 (酵母エキス、 ペプトン、 肉ェ キス、 コーンスティープリカ一、 大豆粕、 カゼインの加水分解物 (casamino acid s)などの有機窒素源;塩酸アンモニゥム、 硫酸アンモニゥム、 尿素、 硝酸アンモ ニゥムなどの無機窒素源) 、 無機塩 (カルシウム、 マグネシウム、 カリウム、 ナ トリウムなどの硫酸塩、 リン酸塩、 塩酸塩など) などを含む培地中で、 好気的な 培養法 (振盪培養、 通気撹拌培養など) によって生育に適した温度で数時間〜数 日間培養することによって行うことができる。
また、 培地中に KDNや KDN含有オリゴ糖アルコール (以下、 「KDNオリ ゴ糖アルコール」 ともいう) 等の KDNケトシド結合を有する物質を添加してお くと、 KDNa s eが誘導されて菌体数あたりの酵素活性が上昇するため、 本発 明酵素を産生する微生物に、 効率よく本発明酵素を産生させることができる。 ま たこの効果は、 KDNよりも KDNオリゴ糖アルコール等の KDNケトシド結合 を有する物質を培地に添加したほうが顕著である。 なお、 培地に添加する KDN オリゴ糖アルコール等の KDNケトシド結合を有する物質は、 必ずしも純粋であ る必要はなく、 粗精製物等を用いることもできる。
培養物から収集した菌体から、 超音波処理などによる破砕、 あるいは浸透圧シ ョック等の適当な方法によって放出された酵素を含む画分から、 例えば、 硫酸ァ ンモニゥム (硫安) 、 硫酸ナトリゥム等による塩析;透析;限外ろ過法;吸着ク 口マトグラフィー、 陰イオン及び陽イオン交換クロマトグラフィー;疎水性クロ マトグラフィー;ゲル濾過法;電気泳動法など公知の酵素精製法、 さらには K D N含有糖タンパク質 (KDN-gp) を結合させたァガロースゲル等を用いたァフィ二 ティ一クロマトグラフィーによって目的とする精製度の酵素標品を得ることがで きる。
本発明酵素の KDNa s e活性は、 KD Nを含有する複合糖質または糖質等に 本発明酵素を作用させて、 KDNのケトシド結合を加水分解させ、 遊離する KD Nを定量することによって測定することができる。 具体的には、 本発明酵素を 4 ーメチルゥンベリフェリル KDN (4- MU- KDN)に作用させ、 ケトシド結合が酵素的 に加水分解されて遊離される 4ーメチルゥンベリフ 口ンの蛍光を測定する方法 が挙げられる。 また、 ニジマス卵巣液由来の KDN含有糖タンパク質等を基質と して用い、 これに本発明酵素を加えて反応させ、 この反応液に塩化セチルピリジ ニゥム (CPC) を加え、 遠心分離して得られる上清中の KDN量をチォバルビッ一 ル酸法 (Analytical Biochemistry第 205巻、 244-250, (1992)) で定量することに よっても、 KDNa s e活性を測定することができる。 KDN含有糖タンパク質 は、 CPC存在下で複合体を形成して沈殿するが、 酵素反応によって遊離する KDN は沈殿しないので、 未反応の KDN含有糖タンパク質は遠心分離によって反応系 から除くことができる。 これらの方法は、 後記実施例に、 より具体的に説明した。
( 2 ) 本発明酵素の理化学的性質
本発明酵素として、 スフイ ンゴバクテリゥム mOL 12— 4 sが産生する K DNa s eの理化学的性質を示す。
①作 用
KDNを含有する複合糖質もしくは糖質に作用し、 KDNと、 それが結合して I、る複合糖質ある t、は糖質との結合を加水分解して、 K D Nを持たな t、複合糖質 もしくは糖質、 または KDNが部分的に除去された複合糖質もしくは糖質と遊離 の KDNとを生成する。 また、 例えば 4ーメチルゥンベリフェリル KDNのよう な、 複合糖質及び糖質以外の化合物と KDNとのケトシド結合にも作用し得るこ とが確認されている。
さらに、 KDNとラク トースとの混合液に本発明酵素を作用させたところ、 反 応液中に KDN含有オリゴ糖鎖の存在が認められ、 上記反応の逆反応も触媒する こと力確認されている。 この反応を利用して、 KDNと、 糖質及び Z又は複合糖 質等と本発明酵素とを共存させることによって、 KD N含有糖質及びノ又は複合 糖質等を製造することができる。
②基質特異性
デアミノノィラミン酸 (KDN) ケトシド結合に作用して分解する力、'、 N—ァ セチルノイラミン酸又は N—グリコリルノイラミン酸のケトシド結合には作用し ない。
本発明酵素は、 以下に示す K D N含有複合糖質または糖質等に存在する K D N 残基のすべてを切断し、 KDN残基の天然において既知な結合様式 α 2—3, な 2→ 6, α2→8のケトシド結合のいずれにも作用する。
(a) KDN含有糖タンパク質, 3つの異なる KDN結合(KDNa2→3Gal, KDN «2→8KDN, KDNな 2→6GalNAc)を有する糖鎖を多数本結合しているムチン様 糖タンパク質。
(b) KDN含有糖タンパク質からアルカリ一ボロヒドリ ド処理して得られた KDN オリゴ糖アルコール:一般式 (→8KDNa2→)n→8KDNa2—6[KDNa2→3G al^l- 3GalNAcal-→3] GalNAc-ol, nは 2〜9であり、 平均は 5。
(c) KDNダイマー, KDNな 2→8KDN。
(d) 2— 3Galで結合した K D N残基を 2つ有する N—型糖鎖, K D N a 2→3Gal β l→4GlcNAc β l→2 an a 1- 6[KDN a 2— 3Gal β l→4GlcNAc β l→2 an a l→3]Man β 1 →4GlcMcSl~4GlcNAc。
(e) KDNをもつスフインゴ糖脂質, KDN含有ガングリオシド GM3, KDNa 2→3Gal β 1— 4Glc β l→Cer。
(f ) 4—メチルゥンベリフヱリル Κ D Ν。
一方、 本発明酵素は、 既知のシアル酸 (Ν—ァセチルノイラミン酸及び Ν—グ リコリルノィラミン酸) を含有する複合糖質もしくは糖質における、 シアル酸ケ トシド結合の加水分解は触媒せず(後記実施例 2参照) 、 本発明酵素はデァミノ ノイラミン酸ケトシド結合に対して極めて特異性が高い。
③至適反応 ρ Η
本発明酵素は、 ρΗ 6付近で最も高い活性が得られる。
なお、 後記実施例 2に示すように、 スフインゴバクテリゥム mOL 1 2— 4 sの菌体破砕液上清の 50〜70%硫安沈澱画分を、 2回のセファクリル (Sephacryl) S-200 (フアルマシア社製) カラムクロマトグラフィー 、 KDN含有糖タンパク 質 (KDN-gp) を結合させたァガロースゲル (Affi- gel 15、 バイオラッド社製)力 ラムクロマトグラフィーにより精製して得られる本発明酵素のァフィ二ティー精 製酵素画分の、 p Hと酵素活性との関係は、 図 8に示される通りである。 また、 後記実施例 2に示すように、 スフインゴパ'クテリゥム m O L 1 2— 4 sの菌体 破砕液上清の 90%硫安沈澱画分を、 CM- Toyopearl 650M (東ソ一製) 、 DEAE-Toyo pearl 650M (東ソ一製) 、 及び CM- Toyopearl 650M (東ソ一製) を用いたカラムク ロマトグラフィ一をそれぞれ順に行うことにより精製して得られる、 S D S—ポ リアクリルアミ ドゲル電気泳動において単一バンドとなるまで精製した酵素 (以 下、 「単一精製酵素」 ともいう) の、 p Hと酵素活性との関係は、 図 9に示され る通りである。
④至適反応温度
本発明酵素は、 25〜30 付近で、 高い酵素活性が得られる。
⑤安定性
本発明酵素は、 2 5 、 pH 4〜9において、 数時間放置した後、 比較的安定であ る。 また、 本発明酵素は、 25 で少なくとも 48時間失活しない。 ただし、 本発明 酵素は数 10 // g/ml以下の濃度では、 p H及びィォン強度に拘わらず不安定である 力、'、 ゥシ血清アルブミンなどのタンパク質存在下で安定化される。
⑥阻害及び活性化
本発明酵素の活性は、 各々 I mMのカルシウムイオン(Ca2 +), マグネシウムィォ ン(Mg2 + ), マンガンイオン(Mn2 + )及び EDTA (エチレンジァミン四酌酸ナトリウ ム) によって影響されない。
本発明酵素の活性は、 イオン強度の増加にともなって急激に上昇する。 NaCW 場合、 300 mM NaCl存在下で最高値を示し、 50 mM以下の低イオン強度下では、 活 性は極めて低い。
本発明酵素は、 遊離の K D Nによって阻害される (3 mM の濃度で) 。 一方、 デ アミノノイラミン酸 (K D N ) の構造アナログである遊離のシアル酸、 本発明酵 素の基質とならない N—ァセチルノイラミン酸又は N—グリコリルノイラミン酸 をもつ複合糖質もしくは糖質によっては阻害されない。 また、 公知のシァリダ一 ゼ (N—ァシルノイラミン酸のケトシド結合を切断) の特異的な阻害剤である 2, 3—デヒドロ— 2—デォキシ— N—ァセチルノイラミン酸によって阻害されない。 また、 界面活性剤である Triton X- 100は本発明酵素の酵素活性を阻害しない。
0. 5%コール酸ナトリゥム(sodium cholate)は本発明酵素の酵素活性を消失させる が、 0. 1%存在下では約 90%の酵素活性が保たれる。 このことから、 K D N含有ガ ングリォシドのような K D N含有糖脂質に本発明の酵素を作用させる場合には、 例えば Triton X- 100等を添加しておくことも可能である。
⑦分子量
本発明酵素の分子量は、 後記実施例 2に示すように、 スフインゴバクテリゥム m O L 1 2 - 4 sの菌体破砕液上清の 50〜70%硫安沈澱画分を、 2回のセファ クリル (Sephacryl) S-200 (フアルマシア社製) カラムクロマトグラフィー 、 K D N含有糖タンパク質 (KDN-gp) を結合させたァガロースゲル (Affi- gel 15、 ノ ィオラッド社製)カラムクロマトグラフィーにより精製して得られる本発明酵素の ァフィ二ティ一精製酵素画分においては、 ゲル濾過 (セフアクリル S- 200 カラム, 1. 8 cm X 135 cm; 20 m トリス塩酸緩衝液 (pH 8. 0)/0. 5 M NaClで溶出) により、 およそ 50, 000、 S D S—ポリアクリルアミ ドゲル電気泳動法により、 約 57, 000 と推定される。
また、 後記実施例 2に示すように、 スフインゴバクテリゥム mO L 1 2— 4 sの菌体から、 Nossalと H印 pelの方法 (J. Biol. Chem. , 第 241巻, 第 3055- 3062 頁 (1966年)、 ただし、 ImM Mg(CH3C00)2で 10分間処理した後遠心して上清を得る 操作を、 ImM Mg(CH3C00)2で 10分間処理した後、 2倍容の 1M NaCl— 1M Tris- HC1 (PH7. 1)を加えた後、 遠心して上清を得るように変更) である浸透圧ショック法に よって菌体から浸出するペリブラズム (周縁細胞質) 液の 90%硫安沈澱画分を、 CM-Toyopearl 650M (東ソ一製) 、 DEAE- Toyopearl 650 (東ソ一製) 、 及び CM- T oyopearl 650 (東ソ一製) を用いたカラムクロマトグラフィーをそれぞれ順に行 うことにより精製して得られる単一精製酵素においては、 ゲル濾過 (セフアタリ ル S- 200 カラム, 1. 8 cm X 135 cm; 20 mM トリス塩酸緩衝液 (pH 8. 0)/0. 2 NaClで溶出) により、 およそ 40, 000、 S D S—ポリアクリルアミ ドゲル電気泳動 法により、 約 42, 000と推定される。 ⑧ミカエリス定数
4ーメチルゥンベリフヱリル KDN (4- MU-KDN)を基質としたときの本発明酵素 のミカエリス定数 (Km)及び 酵素反応最大速度 (Vmax) は以下の通りである。
Km : 19 /M
Vmax: 0.19^M/min または 7.4 m /min/mg タンパク質
⑨ァミノ酸組成
本発明酵素のアミノ酸組成は以下の通りである。 なお、 数字はモル%を表す ァスパラギン及びァスパラギン酸: 5. 3
グル夕ミン及びグル夕ミン酸 : 5. 5
セリン : 1 3. 6
グリシン 1 9. 8
ヒスチジン 2. 0
アルギニン 2. 0
スレオニン 6. 7
ァラニン 9. 0
プロリン 3. 5
チロシン 5. 6
バリン 5. 9
メチォニン 7. 6
イソロイシン 3. 5
ロイシン 4. 9
フエ二ルァラニン 3. 2
リジン 2. 0 く 2〉本発明のスフインゴバクテリゥム mOL 12— 4 s
本発明の微生物スフィンゴバクテリゥム mOL 12— 4 sは、 養魚場の汚泥 から、 デァミノノィラミン酸 (KDN) を含有するオリゴ糖アルコールを唯一の 炭素源とする集積培地で培養し、 菌体破砕液中に 4一 MU— KDNを加水分解す る活性を有するものとして選択された微生物であり、 シァリダーゼ活性を有しな い上記 KDNa s eを産生することを特徴とする。
本微生物は、 同様に、 養魚場などの汚泥あるいは土壌から、 KDNを含む複合 糖質または糖質等を唯一の炭素源とする集積培地で培養し、 KDNa s e活性を 有するか否かを指標としてスクリーニングすることによって、 取得することがで きる。 尚、 本発明により分離されたスフィンゴバクテリゥム mOL 12— 4 s は、 平成 6年 5月 24日に、 通商産業省工業技術院生命工学工業技術研究所に F ERM P- 14325の受託番号で寄託され、 平成 7年 5月 26日にブダぺス ト条約に基づく国際寄託に移管され、 FERM BP— 51 16の受託番号で寄 託されている。
本発明の微生物の菌学的性状は後記実施例 1に示す通りであり、 これらの性質 からスフインゴバクテリゥム (Sphingobacterium) 属に属する細菌であると同定 された。 尚、 本菌は、 スフインゴバクテリゥム マルチボラム (Sphingobacteri urn multivorum) である可能性が高い 0 図面の簡単な説明 図 1は、 スフィンゴバクテリゥム mOL 12— 4 sを 0.1%の粗 K D N— 0 S (ニジマスから調製した、 KDNオリゴ糖アルコール (KDNa2→3Gal;Sl→3GalNA c«l→3 [KD a2→(8KDNa2→)n→6] GalNAcolで n = 5のもの)が豊富な画分) を 添加した培地中で培養した時の、 菌体数 101Q個あたりの KDNa s e活性を、 経時的に測定した結果を示す図である。
図 2は、 本発明酵素の精製において、 一回目のセフアクリル S-200ゲル濾過ク 口マトグラフィ一の溶出パターンを示す図である。 実線は、 酵素活性を表し、 点 線はタンパク質量を示す紫外吸収 (A280)を表す。
図 3は、 本発明酵素の精製において、 二回目のセフアクリル S- 200ゲル濾過ク 口マトグラフィ一の溶出パターンを示す図である。 実線は、 酵素活性を表し、 点 線は、 タンパク質量を示す紫外吸収 (A280)を表す。
図 4は、 本発明酵素の精製において、 一回目の KDN-gp結合ァガロース ·ゲルに よるァフィ二ティーク口マトグラフィ一の溶出パターンを示す図である。 実線は、 酵素活性を表し、 点線は夕ンパク質量を示す紫外吸収 (A230)を表す。
. 図 5は、 本発明酵素の精製において、 二回目の KDN-gp結合ァガロース .ゲルに よるァフィ二ティ一クロマトグラフィーの溶出パターンを示す図である。 実線は、 酵素活性を表し、 点線はタンパク質量を示す紫外吸収 (A220)を表す。
図 6は、 本発明酵素 (単一精製酵素) の精製において、 2回目の CM- Toyopearl 650Mカラムクロマトグラフィーの溶出パターンを示す図である。 実線は、 酵素活 性を表し、 点線は溶出に用いた NaClの濃度を表す。
図 7は、 ァフィ二ティー精製酵素画分の 1 0 %アクリルアミ ドゲル電気泳動の 結果を示す図である。 銀染色後の各バンドの位置及び染色強度をデンシトメータ
- ( 6 0 0 n mの吸収を測定) を用いて解析した。
図 8は、 本発明酵素のァフィ二ティ一精製酵素画分の至適 p Hを示す p H—酵 素活性曲線である。
図 9は、 本発明酵素の単一精製酵素の至適 p Hを示す p H—酵素活性曲線であ 図 1 0は、 本発明酵素の至適イオン強度を示すイオン強度一酵素活性曲線であ る。 イオン強度は、 添加した NaClの濃度で表した。 発明を実施するための最良の形態 以下、 本発明を実施例によりさらに具体的に説明する。 この実施例は本発明の 一例を示すものであり、 これに限定されるものではない。 尚、 本実施例において、 K D N a s e活性の測定は、 下記の方法によって行った。 ぐ酵素活性測定法 >
( 1 ) 4ーメチルゥンベリフヱリル K D Nを用いる方法 (4一 MU— K D N法) 4ーメチルゥンベリフヱリル K D N (4-Μϋ- KDN)のケトシド結合が酵素的に加水 分解される (次の反応) と、 蛍光性の 4ーメチルゥンベリフエロン力、'遊離される。 その蛍光を測定する。
4 -メチルゥンへ、、リフ Iリル KDN→ KDN + 4-メチルゥン リフエロン 具体的には、 1. 4 nmolの 4- MU- KDNを、 20 1の 0. 1 M 卜リス酢酸緩衝液 (pH 6. 0)/0. 1M NaClに溶解した酵素溶液に加えて、 25て、 30分間反応させ、 反応後、 反 応液 20 z 1をとつて、 2. 5 mlの 85 mMグリシン炭酸塩緩衝液 (pH 9. 3) と混合して、 蛍光強度を測定した (励起波長 365 nm、 測定波長 450 nm) 。 蛍光強度測定につい ては、 Biochemistry第 18巻、 第 13号、 2783- 2787ページ を参照した。 酵素を加え ずに上記と同様の反応を行ったときの蛍光強度をコントロールとした。 25 にお いて、 1分間に 1 nmolの 4- MU- KDNを加水分解する酵素量を 1ユニットと定義した。 本方法に用いた 4— MU— KDNは、 以下に示す Dr. Thomas G. Warnerによつ て開発された方法によって得られたものであり、 Dr. Thomas G. Warnerから恵与 されたものを用いた。
KDNは、 酵素的に既知の方法 [Auge, C,ら, Tetrahedron 46, 201-214 (19 90)] にしたがって、 D—マンノースとピルビン酸から Ne u 5 A cアルドラーゼ を用いて合成した。 KDNを乾燥後、 10m lの無水酢酸、 10m lのピリジン に懸濁し、 室温で一晩反応させた。 反応液を氷冷し、 メタノールを加えて反応を 停止させ、 溶媒を除去した。 残渣をメタノールに溶かし、 Dowe x 50 (H+) カラム (4 x 5 cm) にかけて、 メタノールで溶出した。 溶出物は溶媒除去後、 ェチルエーテル中で過剰量のジァゾメタンを加えて、 メチルエステルとした。 生 成した完全ァセチノレ化メチルエステル物は、 シリシック酸カラム (2. 5 x 17 cm) にかけて、 へキサン中で酢酸ェチルの濃度勾配をかけて溶出し、 メチル 2, 4, 5, 7, 8, 9—へキサ— 0—ァセチル KDN (K 1) を得た。 次いで、 既 知の方法 [Warnerら, Biochemistry 2783-2787 (1979)] にしたがって K 1を グリコシルクロリ ドに変え、 4ーメチルゥンベリフエロン (4一 MU) のナトリ ゥム塩と反応させて、 K 1と 4一 MUを重合させ、 4—メチルー 2—ォキソ一 2 H— 1—ベンゾピラン一 7—ィル 4, 5, 7, 8, 9—ペンタ一 0—ァセチル KDN (K 2) を得た。
K 2 0. 5 gに 4m 1のメタノール、 続いて 4m Iの 0. 5 Nの水酸化ナトリ ゥムを加えて懸濁し、 37 で 1時間置いた。 さらに、 4m Iの水酸化ナトリウ ムを加え、 37 で 90分間置いた後、 pHを Dowe x 50 (H+) 樹脂を加 えて中和して、 pH6. 0とした。 濾過して樹脂を除き、 溶媒を除去した。 残渣 に対して、 少量の 1 OmMアンモニア水を加えて、 pH9とした後、 セフアデッ クス (S e p h a d e x) G— 25ゲル濾過によって高純度の 4— MU— K D N が精製された。 尚、 4—MU— KDNは、 Schreiner. E. and Zbiral, E. (1990) Liebigs An n. Chem. , 581-586に記載の方法によっても得られる。
(2)塩化セチルピリジニゥム (CPC) 法
基質として、 ニジマス卵巣液由来の KDN含有糖タンパク質を用いた。 酵素反 応を上記 (1) 項に述べた条件と同様に行なった後、 反応液に 2 mlの 0.1%塩化セ チルピリジニゥム (CPC) を加えた。 KDN含有糖タンパク質は、 CPC存在下で複 合体を形成して沈殿するが、 酵素反応によって遊離する KDNは沈殿しない。 反 応液を 30分放置した後、 遠心分離 (3000rpm、 10分間) し、 得られる上清の KDN 量をチォバルビツール酸法 (Analytical Biochemistry第 205巻、 244-250, (1992)) で定量することによって酵素活性を測定した。 25 において、 1分間に lnmolの K D N含有糖タンパク質を加水分解する酵素量を 1ユニッ トと定義した。 実施例 1 スフインゴバクテリゥム mOL 12— 4 sの取得 養魚場の汚泥を、 KDNオリゴ糖アルコール (J. Biol. Chem. 265, 21811-21 819 (1990)記載の方法で調製) 0. 05%を添加した M 9液体培地 (1 L中に、 Na2HP04 6.0g、 KH2PO4 3.0g、 NH4CI 1.0g、 NaCl 0.5g gS04 lmM、 CaCl2 0. ImM を含む) に接種して 25 で 48時間培養した。 培養液を、 KDNオリゴ糖アル コールを含む M 9寒天培地プレー卜にストリークして 25^で 48時間培養し、 KDNオリゴ糖アルコールを唯一の炭素源として生育する微生物として、 66コ ロニーが得られた。
各々のコロニーを形成する微生物を、 KDNオリゴ糖アルコール 0. 05%を 含む M 9液体培地に接種して培養し、 遠心分離により集菌した。 得られた菌体を 超音波処理により破砕し、 破砕液中の KDNa s e活性及びシァリダ一ゼ活性を、 4一 MU— KDN法により測定した。 これらのうち、 KDNa s e活性が認めら れ、 シァリダーゼ活性が認められなかった破砕液が由来する微生物を mO L 12 とし、 以下の選択に用いた。
mOL 12株のコロニーを KDNオリゴ糖アルコール 0. 05%を含む M9寒 天培地にス卜リークし、 4株のコロニーを分離し、 各々 mOL 12— 1、 mOL 12— 2、 mOL 12— 3及び1110し 12-4とした。 各々のコロニーを LB平 板培地にストリークし、 単一コロニーを KDNオリゴ糖アルコール 0. 05%を 含む M 9液体培地に接種して培養し、 菌体破砕液の KDNa s e活性及びシァリ ダ一ゼ活性を、 各々 4— MU— KD N法及び塩化セチルビリジニゥム法により測 定した。 mOL 12— 4を LB平板培地にストリークした際に形成されたコロニ 一は、 「大」 、 「中」及び「小」 の 3種類の大きさに分かれ、 それらのうち、
「大」 コロニー及び「中」 コ桿陰ロニーを形成する株には、 KDNa s e活性が認め 性菌
られなかったが、 「小」 コロニーを形成した株は、 KDNa s e活性を示し、 シ ァリダーゼ活性を示さなかった。 これらの KDNa s e活性のみを示した株のう ちの 1株を mOL 12 - 4 sとした。
上記のようにして分離された mOL 12— 4 sの同定を、 市販の腸内細菌以外 のグラム陰性桿菌同定キット (ピオメリュー社、 AP I 2 ONE) を用いて行つ た。 試験された主な菌学的性状を以下に示す。 形態
グラム染色性
胞子形成性
連励性
酸素に対する態度 好気性
ィンドール生成
グルコース発酵性
尿素分解 +
エスクリ ン分解 +
資化性
グルコース +
Lーァラビノース +
D—マンノ一ス +
D—マンニトール
マノレトース +
カタラーゼ +
ォキシダーゼ +
/S—ガラクトシダーゼ + 以上の結果から、 mOL 12— 4 sは、 スフィンゴバクテリゥム (Sphingobac terium) 属に属する細菌であると同定され、 スフインゴパ'クテリゥム mOL l 2-4 sと命名された。 本菌は、 平成 6年 5月 24日に、 通商産業省工業技術院 生命工学工業技術研究所に FERM P - 14325の受託番号で寄託され、 平 成 7年 5月 26日にブダペスト条約に基づく国際寄託に移管され、 FERM B P-51 1 6の受託番号で寄託されている。 尚、 本菌は、 菌学的性状から、 スフ ィンゴパ、クテリゥム マルチホラム (Sphingobacterium multivorum) である可倉 ^ 性が高い。 実施例 2 KPN a s eの生産 ミラーのルリァ ·ブロス (LB) 培養液 (ギブコ · BRL) を 2リツ トルの三角フ ラスコに 800 ml分注し、 オートクレープした。 この培地にスフインゴバクテリウ ム mO L 12— 4 sを接種した後、 振盪培養機を用いて、 25 で、 48時間培養 した。
く 1 >KDNa s eの抽出及び硫安分画
(1) 菌体破砕による KDNa s eの抽出及び硫安分画
培養終了後、 遠心分離 (15,000xg, 40分間) により、 培養液から菌体を集めた。 得られた菌体を、 氷冷した 0.1 M NaClを含む 0.1 M トリス—塩酸緩衝液 (pH 8. 0) に懸濁し、 再び遠心分離を行うことによって菌体を洗浄した。 この洗浄操作を 3回行なった後、 菌体に対して 1/2容量の 0. 1 NaCl-20 mM 卜リス一塩酸緩衝液 (pH 8.0)に菌体を懸濁し、 超音波処理 (50ヮッ ト, 5分間) して菌体を破砕した。 この菌体破砕液を遠心分離 (17,000xg, 40分間) して得られる上清を冷却し、 この上清に硫酸アンモニゥムを 50!¾飽和になるまで加え、 4 で 1時間放置した。 これを、 150.000 xgで 1時間遠心分離して沈殿物を除去し、 得られる上清に対し て 70%飽和になるように硫酸アンモニゥムを加え、 4 で一晩放置した。 これを再 び 150, 000 xgで 1時間遠心分離して沈殿を得、 10 mlの 0.5 M NaCl-20 mM トリス 一塩酸緩衝液 (pH 8.0)に溶解した。 この溶液に、 43¾飽和となるように飽和硫酸 アンモニゥム水溶液を加え、 4 で 1時間放置した。 これを、 150,000xgで 1時間 遠心分離して得られる上清に、 85!¾飽和となるように硫酸アンモニゥムを加え、 4 で一晩放置した。 生じた沈殿を、 150,000xgで 1時間遠心分離により回収し、 これを 10.9 mlの 0.5 M NaCl-20 mM トリス—塩酸緩衝液 (pH 8.0)に溶解した。 こうして得られた画分を、 50〜70!¾硫安沈殿画分とした。
(2) 浸透圧ショックによる KDNa s eの抽出及び硫安分画
菌体から KDNa s eを抽出する他の方法として、 菌体に浸透圧ショックを与 えて菌体外に酵素を遊離させ、 その菌体外液を硫安分画することにより KDNa s eの精製を行った。
上記と同様にしてスフインゴバクテリゥム mOL 12— 4 sを培養し、 遠心 分離 (15,000xg, 40分間) により集菌、 洗滌を行った。 この菌体を、 既知の方法 [Nossal, N. G. and Heppel, L. A. (1966) J. Biol. Chem. 241, 3055-3062] に 従って、 浸透圧ショック処理し、 菌体外に酵素を遊離させた。 すなわち、 菌体 1 gに対して 40 mlの蔗糖 20%を含む 20mM トリス—塩酸緩衝液 (pH7. 1) に菌体 を懸濁し、 10分間放置した後、 菌体を遠心操作 (13,000xg, 30分間) して沈澱 させた。 この菌体を、 ImM塩化マグネシウムを含む 20mMのトリス塩酸緩衝液 (p H7. 1) に懸濁して 10分間放置することにより浸透圧ショックを与えた。 上記菌体懸濁液を再び遠心分離 (13,000xg, 30分間) し、 菌体を除去した。 得 られた上清に、 速やかに硫酸アンモニゥムを 90%飽和となるように加え、 4 で一 晚放置した。 生じた沈澱を遠心分離(15,000xg, 30分間) によって集め、 50¾!飽 和硫安に懸濁,溶解し、 不溶性の懸濁物を遠心分離 (15,000xg, 30分間) によつ て除去した。 得られた上清に対して 70%飽和となるように硫酸アンモニゥムを加 え、 4 で一晩放置した。 これを、 再び遠心分離 (15,000xg, 30分間) し、 得ら れた沈澱画分を 50〜70%硫安沈澱画分として集めた。
(3) スフィンゴバクテリゥム m〇L 12— 4 sにおける KDNa s eの誘導 (3- 1) 誘導物質の調製
. KDN及び KDNオリゴ糖アルコール(KDNa2→3GalySl→3GalNAcal→3 [KD Na2-»(8KDNa2→)„-*6] GalNAcolで n = 5のもの、 以下、 「KDN— OSJ とも いう) は、 公知の方法 (Kitajima, K.ら、 J. Biol. Chem. 269, 21415-21419 (1 994)) で調製した。 KDN— OSが豊富な分画 (以下、 「粗 KDN— OS」 とも いう) は、 次のように調製した。 ニジマスの卵巣液 (12.3L) を濃縮し、 凍結乾 燥して、 1 10 gの乾燥粉末を得た。 凍結乾燥した粉末 (50 g) は、 1.0Lのク ロロホルム メタノール (2 : 1, v/v) で一回抽出し、 そして 1.0Lのクロロホ ルムノメタノール (1 : 2, v/v) で室温において 2時間抽出した (Yu, S.ら、 B iochemistry 32, 9221-9229 (1993)参照) 。 脱脂した残渣を風乾し、 計量したと ころ 39 gであった。 脱脂した卵巣液粉末 ( 10 g ) を 100 m 1の 1M NaBH4/0. lM NaOHに懸濁し、 撹拌しながら 37てでインキュベートした。 24時間インキュ ベーシヨンした後、 50m lの同じ溶液 (1M NaBH4/0.1M NaOH) を添加し、 さら に 24時間インキュベートした。 反応混合物を 9,000x gで 20分間遠心し、 氷酢 酸で〜 pH 6程度に中和した後、 上清をセフアデックス G— 25 (Sephadex G-2 5、 フアルマシア製) クロマトグラフィー (2.0xl50cm。 水により溶出した。 ) に より脱塩した。 脱塩した分画は KDN— OSを豊富に含んでおり、 粗 KDN— 0 Sと名付けた。 KDNは TBA法 (Kitajima, K.ら、 Anal. Biochem. 205, 244- 250 (1992)) により定量した。
(3-2) 酵素誘導実験
スフインゴバクテリゥム mOL 12— 4 sの細菌細胞 (4. 0 x 108) を、 1 %(w/v)のカゼィン加水分解物 (casamino acid、 ギブコ製) および 1 %(w/v) のグルコース(Glc)を含む、 40m 1の M9液体培地に接種し、 25 で 44時間 培養した。 増殖期の菌体 (細胞) を集め、 M 9液体培地で 2回洗浄した。 それぞ れ 0. 1 %(w/v)の粗 KDN— 0 S、 KDN— OS、 KDN, Neu5Ac、 コロミン酸 の緩和酸加水分解物 (オリゴ Neu5Ac; Kitazume, S.ら、 Anal. Biochem. 202, 25 - 34 (1992)) 、 Glcを含む、 それぞれ 2. 0 m 1の M 9液体培地に 6. 1 x 10' °個の菌体細胞を接種し、 25てで 24時間インキュベートし、 増殖可能な細胞数 及び KDNa s e活性を測定した。 細胞数は、 それぞれインキュベートした細胞 培養液を希釈して、 LB寒天培地プレートに接種し、 生育したコロニー数をカウ ントすることによって決定した (Kitajima, K.ら、 J. Biol. Chem. 269, 21415- 21419) 。 細胞の KDNa s e活性を測定するために、 5, 000 r p mまたは 1, 500x gで 1 0分間遠心することにより集めた細胞を、 lOOmM NaClを含む lOOmM トリス —酢酸緩衝液 (pH6.0)、 0.5m 1に懸濁し、 超音波破砕した (50ワット、 1分間) 。 これを 10, OOOrpmまたは 6, 000 x gで 1 0分間遠心した後に得られた上清の KD N a s e活性を測定した。 結果を表 1に示す。 なお、 表 1中の [ ] 内の数字は、 添 加前を 1としたときの比を表す。 表 1 添加物質 細胞数 KDNase活性 細胞あたりの KDNase活性
(ミリユニット) (ミリユニットノ 101()細胞) 添カロ刖 6.1X1010 [1] 20 [1] 3.3 [1] Glc 1.7X1012 [28] 80 [4] 0.47 [0.14]
KDN-OS 1.5X1012 [25] 7500 [380] 50 [15] 粗 KDN-OS 5.7X1012 [93] 23000 [1200] 40 [12] KDN 3.6X1010 [0.59] 38 [1.9] 11 [3.3]
Neu5Ac 2.5X1010 [0.41] 15 [0.75] 6.0 [1.8] 才リコ' Neu5Ac 3.0X1010 [0.49] 12 [0.60] 4.0 [1.2]
また、 0.1%の粗 KDN— OSを添加した場合の、 細胞数 1 01Q個あたりの KD Na s e活性を、 経時的に測定した結果を図 1に示す。
この結果、 KDN、 KDN— OS及び粗 KDN— OSは KDNa s eを誘導す るが、 他の単糖及びオリゴ糖は酵素の誘導に対して効果がなかった。 遊離の KD Nも KDNa s eを誘導するが、 KD N— 0 S及び粗 K D N— 0 Sほどの効果は 見られなかった。 このことから、 KDNのケトシド結合を有する物質が誘導物質 として好ましいことが示唆された。
また図 1から、 増殖している細胞(6. O x l 01()) を 0. 1 % KDN— OS を含む M 9培地中で培養すると、 24時間から 43時間のインキュベーションの 後には、 細胞あたりの KDNa s e活性が当初の活性に比べて非常に高いレベル まで増加することが示された。 < 2 >KDN a s eの精製
上記 (1 ) のようにして得られた 50〜 70%硫安沈殿画分の全量を、 セファ クリル S- 200 (フアルマシア社製) カラム (1.8xl35cm)にかけて、 0.5 NaClを 含む 20 トリス一塩酸緩衝液(pH 8.0)で溶出し、 ゲノ 1 過分画を行った (図 2) 。 各溶出画分について、 KDNa s e活性を 4一 MU— KDN法により測定し、 活 性画分を集め、 これに 90%飽和となるように硫酸アンモニゥムを加え、 一晩放置し た。 これを 150.000 xgで 1時間遠心分離して得られる沈殿を、 4.7 mlの 20 mM ト リス—塩酸緩衝液 (pH 8.0)/0.5 M NaClに溶解し、 再び、 上記と同様にしてセフ アクリル S- 200 カラムを用いたゲル濾過を行い、 KDNa s e活性画分を集めた (図 3) 。
上記 KDNa s e活性画分を集め、 これに 90¾飽和となるように硫酸アンモニゥ ムを加え、 一晩放置し、 0,000xgで 1時間遠心分離して得られる沈殿を、 4.8 mlの 20 mM 卜リス一酢酸緩衝液 (pH 6.0)/0.05 NaClに溶解した。 この溶液を、 KDN含有糖タンパク質 (KDN- p) を結合させたァガロースゲル (Affi-gel 15、 バイオラッ ド社製)を充填したカラム (2.0x15 cm) にかけ、 90 mlの 20 mM トリ スー酢酸緩衝液 (pH 6.0)/0.05 NaCU 135 mlの 20 m トリス—酢酸緩衝液 (pH 6.0)ノ 0.5 NaClを順次用いて溶出させた (図 4) 。 カラムの結合能力容量 をこえて未吸着となった活性画分は、 そのまま再び上記カラムにかけて吸着させ た後、 20 mM 卜リス一酢酸緩衝液 (pH 6.0) 0.5 M NaClで溶出させた (図 5) 。 このようにして KM-gpを結合させたァガロースゲルに吸着後、 高ィォン強度で溶 出される酵素画分をすベて集め (15 ml) 、 限外滹過 (セントリフロー CF25、 了 ミコン社製) によって 2 mlまで濃縮し、 ァフィ二ティ一精製酵素画分とした。 得られた酵素画分についての各精製段階ごとに酵素活性、 タンパク質量、 収率 及び精製度を測定した。 KDNa s e活性は、 4一 MU— K D N法により測定し、 25 で 1分間に 1 nmo 1の 4一 MUを生成する酵素量を 1ュニッ トとした。 また、 タンパク質量の定量は、 ローリー法の改変法 (BCA reagent; Pierce, U.S. A. ) でゥシ血清アルブミン (BSA) を標準として 230 nmにおける吸収を測定するこ とにより行った。 結果を表 2に示す。 表 2 画 分 活性 蛋白 比活性 収率 精製度
(ユニット) (mg) (ュニ 7ト /mgリ (¾) (倍) 菌体破砕液 153 207 0.737 100 1.0
50〜70!¾硫安画分 113 103 1.11 74.2 1.5 セフ 7クリル S - 200 1回目 76.1 57.3 1.33 49.8 1.8 セフアクリル S - 200 2回目 57.4 26.6 2.16 37.6 2.9
KDN-gpfrn-ス吸着画分 52.2 0.410 127 34.2 173
ァフィ二ティー精製酵素画分の 10% SDS—ポリアクリルアミ ドゲル電気泳 動 (SDS— PAGE) を行った。 泳動後、 ゲルを銀染色キット (和光純薬工業 株式会社製) を用いて染色し、 染色された 5〜 6本のバンドの位置及び濃度を、 デンシトメ一夕一 (600nmの吸収を測定) を用いて測定した。 結果を図 7に示す。 この酵素画分を、 更にセフアクリル S— 200ゲル濾過カラムを用いて分画し、 K a V 0. 3〜0. 4に溶出された KDNa s e活性を有する 7本の画分につい て、 SDS—ポリアクリルアミ ドゲル電気泳動で検出されるバンドの挙動と KD Na s e活性との関係を詳しく調べた結果、 バンドの出現パターンと活性の大小 がー致するバンドが一成分見いだされ、 KDNa s eのバンドであると推定され た。 このバンドの見かけの分子量は、 分子量マ一カー (生化学工業株式会社製)と の比較から 57, 000と計算された。 一方、 ゲル濾過クロマトグラフィーから 推定される活性成分の分子量は、 分子量マーカー (生化学工業株式会社製)との比 較から 50, 000と計算され、 SDS— PAGEによる結果とほぼ一致した。 図 7には、 ァフィ二ティ一精製酵素画分の SDS— PAGEのパターンと、 KD N a s eと思われるバンドの位置を示した。
上記の精製工程によっては、 KDNa s eは完全には精製されていないが、 菌 体破砕液などの粗酵素液、 及びァフィニティ一精製酵素画分ともにシァリダーゼ 活性を有しない KDNa s eとして使用することができる。 また、 必要に応じて、 通常の酵素の精製方法によってさらに精製すればよい。 その際、 KDNa s e活 性及び推定される分子量を指標とすることができる。
例えば次のような方法を用いることにより、 KDN a s eを SD S— PAGE で均一なレベルまで精製することができた。 菌体を浸透圧ショック処理すること によって得られた菌体破砕液の上清に、 固体の硫酸アンモニゥムを緩やかに撹拌 しながら 9 0 %飽和まで少しづつ添加し、 4 で一晩放置した。 沈澱を Π, ΟΟΟΧ g、 3 0分間の遠心で回収し、 1 0m 1の 0.1M NaCl- lOOmM卜リス—酢酸緩衝液 (PH6.0)で溶解し、 0.1M NaCl-0.25M スクロース- 20mMトリスー酢酸緩衝液 (pH6.0) に対して透析した。 この溶液を、 同じ透析緩衝液 (0.1M NaCl-0.25M スクロース -20mMトリスー酢酸緩衝液 (pH6.0)) で平衡化した CM-Toyopearl 650M カラム (2. 2 X 11cm, 42ml;東ソ一製) にアプライし、 最初に 6 Om】の同じ緩衝液 (0.1M NaCl-0.25M スクロース- 20mM卜リス一酢酸緩衝液 (pH6.0)) で溶出させ、 続いて 4 O Om lの、 0.25M スクロース - 20mMトリスー酢酸緩衝液 (pH6.0)中の NaClの直線 濃度勾配 (0.1Mから 0.6Mまで) で溶出させた。 通り抜けた画分 (pass- through fr actions)を合わせて、 限外濾過 (YM10、 アミコン社製)により 1 5m Iに濃縮し、 0.1M NaCl- 0.25M スクロース -20mMトリス一塩酸緩衝液 (pH8.0)で平衡化した DEAE -Toyopearl 650M カラム (2.2xllcm、 42ml;東ソ一製) にアプライし、 最初に平 衡化に用いたものと同じ緩衝液 (0.1M NaCl- 0.25M スクロース- 20mMトリスー塩酸 緩衝液(PH8.0)) 6 0m lで溶出し、 次いで 6 Om 1の 0.5M NaCl-0.25M スクロー ス - 20mMトリスー塩酸緩衝液 (pH8.0)で溶出させた。 カラムに吸着しな 、画分をプ —ルして、 限外濾過により 1 3m lに濃縮し、 0.1M NaCl-0.25M スクロース- 20m 卜リス一塩酸緩衝液 (pH8.0)で平衡化した CM- Toyopearl 650Mカラムにアプライし、 まず 0.1M NaCl- 0.25M スクロース- 20mM卜リスー塩酸緩衝液 (pH8.0)、 次いで 0.25 スクロース- 20mMトリスー塩酸緩衝液 (pH8.0)中の NaClの直線濃度勾配 (0.1Mか ら 0.6M) により溶出させ、 KDN a s e活性を有する画分 (NaCl 0.17〜0.2M付 近) を集めた。 この画分を SD S— PAGEに付したところ、 単一のバンドが確 こうして得られた単一精製酵素は、 SD S— PAGEにおいて分子量マ一カー との比較から、 見かけの分子量は約 42, 000と計算された。 また、 ゲル濾過クロマ トグラフィー (セファクリノレ S - 200 カラム, 1,8 cmxl35 cm; 20 mM トリス塩酸 緩衝液 (pH 8.0)/0.2 M NaClで溶出) から推定される分子量は、 分子量マーカー との比較から、 約 40, 000と計算された。
< 3〉本発明酵素の性質
上記で得られたァフィ二ティ一精製酵素画分を用いて、 本発明酵素の性質を調 ベた。
( 1 ) 基質特異性
種々の K D N含有複合糖質及び糖質、 シアル酸含有複合糖質及び糖質につ t、て、 本発明酵素の反応性を調べた。
用いた KDN含有複合糖質及び糖質、 シアル酸含有複合糖質及び糖質の入手法 ある t、は入手先を以下に示す。
KDNダイマ一、 N—ァセチルノイラミン酸 (N e u 5 A c) ダイマ一、 N— グリコリルノィラミン酸 (Ne u 5Gc) ダイマー : Anal. Biochem. 202, 25 -34 (1992)。
0^^含有ニ本鎖^^型糖鎖: Biochemistry 33, 6495-6502 (1994)
KDNオリゴ糖アルコール、 KDN含有糖タンパク質: J. Biol. Chem. 265, 21811-21819 (1990)。
KDN含有ガングリオシド GM3 : J. Biol. Chem. 266, 21929-21935 (1991) 4ーメチルゥンベリフヱリル Ne u 5Ac、 コロミン酸: 半井化学より購入。 N—ァセチルノイラミン酸ラクト一ス、 ヒトトランスフェリン、 ゥシ胎仔血清 フェツイン: シグマ社より購入。
Ne u 5Ac含有ニ本鎖N型糖鎖 : J. Biol. Chem. 264, 18520-18526 (1989)。 ブタ顎下腺ムチン: Arch. Biochem. Biophys. 129, 49-56 (1969)。
レイク トラゥトポリシァロ糖タンパク質、 ニジマスポリシァロ糖タンパク質、 イワナポリシァロ糖タンパク質: J. Biol. Chem. 268, 23675-23684 (1993)。
N e u 5 A c含有ガングリオシド GM 3、 N e u 5 A c含有ガングリオシ KG
Ml : Biochem. J. 441, 488-497 (1976)。
Ne u 5Ac a 2→6 ( G a 1 /S 1→ 3 ) G a 1 N A c o K ヒキガエル卵ゼ リー糖タンパク質: Eur. J. Biochem. 223, 223-231 (1994) KDNまたは N—ァセチルノイラミン酸 (N e u 5 A c) または N—グリコリ ルノイラミン酸 (N e u 5 G c) として 5 gの上記 K D Nまたはシアル酸含有 複合糖質または糖質を、 1 0 1の0. lM Na C 〗を含む0. 1M トリスー 酢酸緩衝液 (pH6. 0) 中で、 本発明酵素 80ミリユニッ トとともに 25 で 20時間おいた。
上記反応液を、 シリカゲル薄層クロマトグラフィー用プレート (メルク社製) にスポッ トし、 1一プロパノール: 25%アンモニア水:水 = 6 : 1 : 2. 5 (体積比) 中で 7時間展開した。 展開後、 風乾し、 1 0%硫酸エタノール溶液を 噴霧し、 1 20てで加熱して、 複合糖質または糖質、 及び遊離した KDN、 N e u 5 Acまたは N e u 5 G cを発色させた。 酵素を加えずに反応させたものをコ ントロールとした。 結果を表 3に示す。 尚、 KDN、 N e u 5 A cまたは N e u 5 G cを遊離するものを 「 +」 とし、 まったく遊離しないものを 「―」 で表した。 表 3 複合糖質または糖質 idt ム
ifa 口 開裂の有無
4 -MU-KDN
KDNダイマ一 濯ひ2→8漏
1 01^含有ニ本鎖1^型糖鎖 KDN«2→3Gal
KDNオリゴ糖アルコール KDN 2-»8KDN, KDN a 2—3Gal
KDNa2-»6GalNAcol
KDN含有糖タンパク質 KDNa2→8KDN, KDNa2→3Gal + + + + +
KDNa2→6GalNAc
KDN含有力'、ンク'リオシに GM3 KDNa2→3Gal +
4 -MU-Neu5Ac
Neu5Acダイマ一 Neu5Ac a 28Neu5Ac ―
Neu Gcダイマ一 Neu5Gca2→8Neu5Gc ―
Neu5Ac5夕 卜一ス Neu5Aca2→3(6)Gal 一
Neu5Ac含有二本鎖 N型糖鎖 Neu5Aca2→3Gal 一
Neu5Ac a 2-6(Gal β l-→3)GalNAcol Neu5Aca2→6GalNAcol - ヒ ト トラ ンスフェ リ ン Neu5Aca2→6Gal - ゥシ胎仔血清フエツイ ン Neu5Aca2→3(6)Gal 一 ブ夕顎下腺ムチン Neu5Gca2→6GalNAc 一 ヒキカ '、エル卵セ"リ-糖タンハ。ク質 Neu5Aca2→6GalNAc - コロミン酸 (→8Neu5Aca2→)n 一 レイクトラウトホ。リシァ π糖タンハ°ク (,→8Neu5Aca2- n 一 ニジマスホ。リシァ π糖タンハ。ク質 (→8Neu5Gca2→)n - イワナホ。リシァ α糖タンハ 'ク質 (→8Neu5Aca2→,→8Neu5Gca2→)n 一 Neu5Ac含有ガングリオシド GM3 Neu5Ac a 2— 3Gal — Neu5Ac含有ガングリォシド GM1 Neu5Ac a 2→3(GalNAc^ l→4)Gal 一 この結果から、 本発明酵素は、 合成基質である 4—MU— KDNだけでなく、 KDN残基の天然において既知な結合様式 α 2—3, α2→6, α2— 8 のケトシド結合 の L、ずれにも作用することが明らかとなった。
一方、 本発明酵素は、 表 3に示したいろいろな Ν—ァセチルノイラミン酸及び Ν—グリコリルノイラミン酸を含む複合糖質及び糖質に対しては、 Ν—ァセチル ノイラミン酸及び Ν—グリコリノレノイラミン酸のケトシド結合の加水分解を触媒 しなかった。 このように、 本発明酵素はデアミノノイラミン酸に対してきわめて 特異性が高い。
(2) 至適 ρΗ
上記のようにして得られた本発明酵素のァフィ二ティ一精製酵素画分及び単一 精製酵素を用いて、 至適 ρΗの測定を行った。 緩衝液として 0.1 Μ トリス—酢酸 緩衝液を用い、 ρΗ 4.0~9.0の各 ρΗで反応を行った他は、 前記 4— MU— KDN 法にしたがって酵素反応を行い、 各 ρΗ条件下での酵素活性を測定した。 その結 果、 図 8 (ァフィニティー精製酵素画分) 及び図 9 (単一精製酵素) に示したよ うに、 ρΗ 6付近で最も高い活性が得られた。
( 3 ) 至適温度
温度条件を変えた以外は、 前記 4— MU— KDN法にしたがって KDNa s e 活性を測定した。 その結果、 本発明酵素は、 25〜30 付近で高い酵素活性を示し た。
(4)安定性
本発明酵素を 25 、 pH 4〜9の条件下で数時間放置した後、 4一 MU— KDN 法によって KDNa s e活性を測定した。 本発明酵素は、 この pH範囲で比較的 安定であつた。
本発明酵素を 0.1 M トリス一酢酸緩衝液 (pH 6.0) /0.1 M NaClに 70 g/mlと なるように溶解し、 種々の温度下で所定時間放置した後、 4一 MU— KDN法に よって KDNa s e活性を測定した。 その結果、 本発明酵素は 25 で少なくと も 48時間失活しなかった。 また、 本発明酵素は数 10 /g/ml以下の濃度では、 pH及びイオン強度にかかわ らず、 不安定であった。 精製酵素は、 ゥシ血清アルブミンなどのタンパク質存在 下で安定化された。
( 5 ) 本発明酵素の阻害及び活性化
本発明酵素の活性に与える無機イオン、 EDTA (エチレンジアミン四酢酸) など の影響を調べるために、 これらの化合物を反応液に添加し、 4一 MU— KDN法 にしたがって酵素反応をおこなった。 その結果、 カルシウムイオン (Ca2+), マグ ネシゥムイオン (Mg2 + ), マンガンイオン (Mn2+) の各二価陽イオン及び EDTA は、 1 m の濃度で調べたところ活性に影響を与えなかった。
本発明酵素に対するイオン強度の影響を調べた結果を図 10に示す。 酵素活性 は、 イオン強度の増加にともなって急激に上昇し、 300 mM NaCl存在下で最高値を 示した。 50 mM以下の低イオン強度下では、 活性は極めて低かった。
本発明酵素は、 遊離の KDN(3m ) によって阻害された。 一方、 KDNの構造 アナログである遊離のシアル酸によっては阻害されなかった。 本発明酵素の基質 とならないことがわかった N—ァセチルノイラミン酸または N—グリコリルノィ ラミン酸を含有する複合糖質及び糖質によっても阻害されなかった。 また、 公知 のシァリダ一ゼ (N—ァシルノイラミン酸のケトシド結合を切断) の特異的な阻 害剤である 2,3—デヒドロー 2—デォキシ— N—ァセチルノイラミン酸によって阻 害されなかった。
本発明酵素は、 界面活性剤である Triton X- 100によっては阻害されなかった。 また、 本発明酵素の酵素活性は、 0.5%コール酸ナトリゥム(sodium cholate)によ りほぼ消失したが、 0.1%のコール酸ナトリゥム(sodium cholate)では約 90%の活 性が保持された。
(6) ミカエリス定数の測定
本発明酵素に対して、 基質として 4ーメチルゥンベリフヱリル KDN(4- MU- KD N)を用いたときのミカエリス定数 (Km)及び酵素反応最大速度 (Vmax) を求めた。
32ミ リュニッ 卜の酵素と 6.7 ^1<の基質4-1«1-1(0?^とを216^1の反応液 (0.1 mg/ml ゥシ血清アルブミンを含む 0.1 M トリス一酢酸緩衝液 (pH 6.0)Z0.1 M NaCl) 中、 25 で反応させたところ、 4ーメチルゥンベリフヱロン(4-MU) の遊離は、 1 時間以内で直線的であった。
この酵素濃度下で 4- MU- KDNを 21 167^Mの範囲の様々な濃度に変えて、 同一反 応液中で 25 で 30分間反応させて、 反応初速度を測定した。 Lineweaver-Burkプロ ットをおこない、 ミカエリス定数を算出した結果、 本発明酵素に対する 4-MU-KDN 加水分解の Vmaxは、 0.19^M/min または 7.4 mM/min/mgタンパク質であり、 Kmは 19 Mであった。
(7) ァミノ酸分析
精製した KDNa s e (単一精製酵素) を、 6 N塩酸で 105 X:で 24時間加 水分解し、 アミノ酸組成を調べた。 結果を以下に示す。 なお、 数字はモル%を示 す。
ァスパラギン及びァスパラギン酸 : 5. 3
グルタミン及びグルタミン酸 : 5. 5
セリン . 13. 6
グリシン • 19. 8
ヒスチジン 2. 0
アルギニン 2. 0
スレオニン 6. 7
ァラニン 9. 0
プロリン 3. 5
チロシン 5. 6
バリン 5. 9
メチォニン 7. 6
イソロイシン 3. 5
ロイシン 4. 9
フェニルァラニン 3. 2
リ 2. 0 実施例 3 KDN含有糖銷の合成
40 mM KDNと 40 mMラクトースの混合液 50^1に、 本発明酵素 1ュニットを加え、 .1 M トリスー酢酸緩衝液 (pH 6.0) 中、 25 で放置したところ、 30分後の反応 液中に、 KDN含有ラク トースの存在が確認された。 産業上の利用可能性 本発明の微生物は、 新規 K D N a s eを産生する。 この K D N a s eは、 公知 のシァリダーゼが作用する N—ァシルノイラミン酸残基に対しては、 反応性を持 たないことに加えて、 公知のシァリダーゼが極めて切断しにくいデァミノノイラ ミン酸残基に作用してそのケトシド結合を加水分解することができる。
本発明酵素は、 デアミノノィラミン酸の構造や機能の解析などの研究に有用な 試薬などへの活用が期待される。 さらに本発明酵素は、 K D Nのケトシド結合に 対して極めて特異性が高いので、 K D Nのケトシド結合の検出への応用が期待さ れる。
また、 本発明酵素を、 加水分解反応の逆反応に利用することによって、 新しい デァミノノイラミン酸含有複合糖質または糖質を創出することができる。 このよ うな新しいデァミノノイラミン酸含有複合糖質及び糖質は、 そのアナログである N—ァシルノイラミン酸含有複合糖質及び糖質の機能改変の可能性、 あるいは新 しい生理活性物質としての利用などが期待される。

Claims

請求の範囲
1 . 下記の酵素学的性質を有するデァミノノイラミニダーゼ。
①作用:
デアミノノイラミン酸を含有する複合糖質もしくは糖質に作用し、 デアミノノ イラミン酸ケトシド結合を加水分解して、 デアミノノイラミン酸を含有しない複 合糖質もしくは糖質、 またはデァミノノィラミン酸が部分的に除去された複合糖 質もしくは糖質と遊離のデァミノノィラミ ン酸とを生成する。
②基質特異性:
デァミノノィラミン酸を含有する複合糖質もしくは糖質には作用するが、 N— ァセチルノイラミン酸又は N—グリコリルノイラミン酸を含有する複合糖質もし くは糖質における、 N—ァセチルノイラミン酸または N—グリコリルノイラミン 酸のケトシド結合には作用しない。
2 . 下記の理化学的性質を有する請求項 1記載のデァミノノイラミニダーゼ。
(i)至適反応 p H :
P H 6付近
(ii)安定 p H範囲:
2 5 において p H 4〜9で安定
(iii)至適反応温度:
2 5 付近
(iv)熱安定性:
2 5 で少なくとも 4 8時間失活しない。
(V)阻害及び安定化:
遊離のデァミノノイラミン酸によって阻害される。 ゥシ血清アルブミンなどの 夕ンパク質存在下で安定化される。
3 . スフインゴバクテリゥム m O L 1 2— 4 sによって産生されることを 特徴とする請求項 1または 2記載のデァミノノイラミニダーゼ。
4 . スフインゴバクテリウム属に属し、 デアミノノィラミニダ一ゼ生産能を 有する細菌を培養し、 その培養物から請求項 1記載のデァミノノイラミニダーゼ を採取することを特徴とするデァミノノイラミニダ一ゼの製造方法。
5 . デァミノノィラミニダ一ゼ生産能を有するスフインゴパ、クテリゥム m 0し 1 2 - 4 s 。
6 . デァミノノィラミン酸と、 糖質及びノ又は複合糖質と、 請求項 1記載の デァミノノイラミニダ一ゼとを共存させることを特徴とするデァミノノィラミン 酸含有糖質及び 又は複合糖質の製造方法。
PCT/JP1995/001213 1994-06-28 1995-06-19 Nouvelle deaminoneuraminidase et procede de production WO1996000781A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/765,491 US5834288A (en) 1994-06-28 1995-06-19 KDN-specific deminoneuraminidase from Sphingobacterium multivorum
EP95921985A EP0771868B1 (en) 1994-06-28 1995-06-19 Novel deaminoneuraminidase and process for producing the same
AU26832/95A AU692562B2 (en) 1994-06-28 1995-06-19 Novel deaminoneuraminidase and process for producing the same
DE69529986T DE69529986T2 (de) 1994-06-28 1995-06-19 Deaminoneuraminidase und herstellungsverfahren dafür
JP50300196A JP3647873B2 (ja) 1994-06-28 1995-06-19 新規デアミノノイラミニダーゼとその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6146820A JPH089972A (ja) 1994-06-28 1994-06-28 新規デアミノノイラミニダーゼとその製造方法
JP6/146820 1994-06-28

Publications (1)

Publication Number Publication Date
WO1996000781A1 true WO1996000781A1 (fr) 1996-01-11

Family

ID=15416274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001213 WO1996000781A1 (fr) 1994-06-28 1995-06-19 Nouvelle deaminoneuraminidase et procede de production

Country Status (8)

Country Link
US (2) US5834288A (ja)
EP (1) EP0771868B1 (ja)
JP (2) JPH089972A (ja)
CN (1) CN1073156C (ja)
AU (1) AU692562B2 (ja)
CA (1) CA2193500A1 (ja)
DE (1) DE69529986T2 (ja)
WO (1) WO1996000781A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103380A (ja) * 1997-09-26 1999-04-13 Minolta Co Ltd 画像読み取り装置
JP4544663B2 (ja) * 1999-06-21 2010-09-15 生化学工業株式会社 デアミノノイラミン酸誘導体、デアミノノイラミニダーゼの精製方法及びデアミノノイラミン酸結合性物質の検出方法
CN103525785B (zh) * 2013-09-24 2015-03-25 西北大学 一种分离纯化神经氨酸酶(禽流感病毒)的方法
CN108265094B (zh) * 2017-01-04 2021-03-19 河南科技学院 一种α-2,3脱氨基唾液酸乳果糖制备方法
JP7343890B2 (ja) * 2019-04-26 2023-09-13 国立大学法人東海国立大学機構 シアリダーゼ活性を有する酵素剤及びその利用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508461A (en) * 1993-06-04 1996-04-16 Daicel Chemical Industries, Ltd. Optically active 1-phenyl-2-substituted propane derivatives and methods of producing the same
US5449615A (en) * 1994-09-26 1995-09-12 Li; Yuh-Teh KDN-cleaving sialidase isolated from hepatopancreas of mollusks

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, Vol. 310, No. 1, (1994), pages 243-246. *
GLYCOBIOLOGY, Vol. 4, No. 4, (1994), pages 517-523. *
JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 268, No. 4, (1993), pages 2640-2648. *
JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 269, No. 34, (1994), pages 21415-21419. *
PROTEIN NUCLEIC ACID ENZYME, Vol. 37, No. 11, (1992), pages 1976-1981. *
See also references of EP0771868A4 *

Also Published As

Publication number Publication date
EP0771868B1 (en) 2003-03-19
JPH089972A (ja) 1996-01-16
CN1073156C (zh) 2001-10-17
AU2683295A (en) 1996-01-25
DE69529986D1 (de) 2003-04-24
EP0771868A1 (en) 1997-05-07
US5834288A (en) 1998-11-10
JP3647873B2 (ja) 2005-05-18
US6001635A (en) 1999-12-14
CA2193500A1 (en) 1996-01-11
AU692562B2 (en) 1998-06-11
CN1156480A (zh) 1997-08-06
EP0771868A4 (en) 1999-08-25
DE69529986T2 (de) 2004-01-08

Similar Documents

Publication Publication Date Title
US5888776A (en) Bacteria and enzymes for production of alternant fragments
JPS59187792A (ja) 酵素法リン脂質糖類誘導体の製法
US6087146A (en) Recombinant thermostable enzyme for converting maltose into trehalose
Ashida et al. Purification and characterization of membrane‐bound endoglycoceramidase from Corynebacterium sp.
WO1996000781A1 (fr) Nouvelle deaminoneuraminidase et procede de production
US5234828A (en) Process for producing novel heat-resistant β-galactosyltransferase
US6562600B1 (en) Production of cyclic alternan tetrasaccharides from oligosaccharide substrates
US5153128A (en) Heat-resistant β-galactosyltransferase, its production process and its use
JP2970932B2 (ja) 新規耐熱性β―ガラクトシル基転移酵素、その製造法及びその用途
JP3100012B2 (ja) 新規なノイラミニダーゼ、その製造法及びそれを使用するシアル酸結合化合物の製造法
JP3795558B2 (ja) 新規グリコペプチダーゼとその製造方法
JPH0928375A (ja) トレハロースホスホリラーゼおよびその調製法
JP2688854B2 (ja) 糖転移活性の強いα―ガラクトシダーゼの製造法
JP3752295B2 (ja) エンド−β−N−アセチルグルコサミニダーゼ及びその製造方法
JP3557276B2 (ja) 酵素をコードするdnaとそれを含む組換えdna並びに形質転換体
JPH04200386A (ja) β―フラクトフラノシダーゼ及びその製造方法
JPH01199577A (ja) イソアミラーゼ活性を有するポリペプチドとその用途
JPH0398583A (ja) 新規α―L―フコシダーゼ
JP2854541B2 (ja) 糖化合物の水解方法
JPH0568239B2 (ja)
Fujisaki et al. Purification and properties of Acinetobacter sp. endo-β-N-acetylglucosaminidase acting on complex oligosaccharides of glycoproteins
WO2003072776A1 (fr) Gene codant une nouvelle enzyme catalysant une reaction de transfert de glycosyl et procede de preparation de l&#39;enzyme
JPH0349682A (ja) 新規なα―L―フコシダーゼおよびその製造方法
JPH07308189A (ja) エキソ型β1,3−D−ガラクトシダーゼ及びその製造方法
JPH10271991A (ja) 新規糖質加水分解酵素

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95194792.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN FI HU JP KR NO RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2193500

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1995921985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08765491

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995921985

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995921985

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载