WO1996040398A1 - Detection en continu d'un solute particulier dans un effluent, utilisant la spectroscopie par fluorescence - Google Patents
Detection en continu d'un solute particulier dans un effluent, utilisant la spectroscopie par fluorescence Download PDFInfo
- Publication number
- WO1996040398A1 WO1996040398A1 PCT/US1996/009518 US9609518W WO9640398A1 WO 1996040398 A1 WO1996040398 A1 WO 1996040398A1 US 9609518 W US9609518 W US 9609518W WO 9640398 A1 WO9640398 A1 WO 9640398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solute
- interest
- fluid stream
- fluorescent agent
- protein
- Prior art date
Links
- 238000001506 fluorescence spectroscopy Methods 0.000 title claims description 10
- 238000001514 detection method Methods 0.000 title description 10
- 238000000034 method Methods 0.000 claims abstract description 93
- 239000000203 mixture Substances 0.000 claims abstract description 59
- 239000012530 fluid Substances 0.000 claims description 124
- 102000004169 proteins and genes Human genes 0.000 claims description 108
- 108090000623 proteins and genes Proteins 0.000 claims description 108
- 239000003795 chemical substances by application Substances 0.000 claims description 63
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 claims description 42
- 238000000926 separation method Methods 0.000 claims description 27
- 238000009826 distribution Methods 0.000 claims description 23
- 101710120037 Toxin CcdB Proteins 0.000 claims description 20
- 238000013508 migration Methods 0.000 claims description 20
- 230000005012 migration Effects 0.000 claims description 20
- 108060003951 Immunoglobulin Proteins 0.000 claims description 12
- 102000018358 immunoglobulin Human genes 0.000 claims description 12
- 229940072221 immunoglobulins Drugs 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000004587 chromatography analysis Methods 0.000 claims description 10
- 238000001962 electrophoresis Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 238000012544 monitoring process Methods 0.000 claims description 9
- KXXXUIKPSVVSAW-UHFFFAOYSA-K pyranine Chemical group [Na+].[Na+].[Na+].C1=C2C(O)=CC(S([O-])(=O)=O)=C(C=C3)C2=C2C3=C(S([O-])(=O)=O)C=C(S([O-])(=O)=O)C2=C1 KXXXUIKPSVVSAW-UHFFFAOYSA-K 0.000 claims description 9
- HNYAWMSQSBERBE-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) hexanoate Chemical compound CCCCCC(=O)ON1C(=O)CCC1=O HNYAWMSQSBERBE-UHFFFAOYSA-N 0.000 claims description 6
- BPVHBBXCESDRKW-UHFFFAOYSA-N 5(6)-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21.C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BPVHBBXCESDRKW-UHFFFAOYSA-N 0.000 claims description 5
- 102000004411 Antithrombin III Human genes 0.000 claims description 5
- 108090000935 Antithrombin III Proteins 0.000 claims description 5
- 229960005348 antithrombin iii Drugs 0.000 claims description 5
- OQHKPJAZGYJYTB-UHFFFAOYSA-N 6-(bromomethyl)-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC(CBr)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 OQHKPJAZGYJYTB-UHFFFAOYSA-N 0.000 claims description 4
- HWQQCFPHXPNXHC-UHFFFAOYSA-N 6-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=CC=2)OC(=O)C1=CC=2NC1=NC(Cl)=NC(Cl)=N1 HWQQCFPHXPNXHC-UHFFFAOYSA-N 0.000 claims description 4
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 3
- 229960002897 heparin Drugs 0.000 claims description 3
- 229920000669 heparin Polymers 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims 3
- 230000005284 excitation Effects 0.000 claims 2
- 230000002596 correlated effect Effects 0.000 abstract 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 58
- 229940098773 bovine serum albumin Drugs 0.000 description 58
- 239000000523 sample Substances 0.000 description 48
- 241000283707 Capra Species 0.000 description 43
- 239000000243 solution Substances 0.000 description 25
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 21
- 239000000975 dye Substances 0.000 description 16
- 230000004044 response Effects 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 13
- VDABVNMGKGUPEY-UHFFFAOYSA-N 6-carboxyfluorescein succinimidyl ester Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=C2)OC(=O)C1=CC=C2C(=O)ON1C(=O)CCC1=O VDABVNMGKGUPEY-UHFFFAOYSA-N 0.000 description 12
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000007850 fluorescent dye Substances 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 6
- 235000017557 sodium bicarbonate Nutrition 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000012149 elution buffer Substances 0.000 description 5
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 5
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 4
- 229910017912 NH2OH Inorganic materials 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000001917 fluorescence detection Methods 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 3
- 108010062580 Concanavalin A Proteins 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002594 sorbent Substances 0.000 description 3
- 102100022977 Antithrombin-III Human genes 0.000 description 2
- 108010026206 Conalbumin Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000012501 chromatography medium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000012723 sample buffer Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- KFEBWCYYRFZMTJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 7-hydroxy-2-oxochromene-3-carboxylate Chemical compound O=C1OC2=CC(O)=CC=C2C=C1C(=O)ON1C(=O)CCC1=O KFEBWCYYRFZMTJ-UHFFFAOYSA-N 0.000 description 1
- JMQAALOXLOSYCQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 7-methoxy-2-oxochromene-3-carboxylate Chemical compound O=C1OC2=CC(OC)=CC=C2C=C1C(=O)ON1C(=O)CCC1=O JMQAALOXLOSYCQ-UHFFFAOYSA-N 0.000 description 1
- HBOMLICNUCNMMY-KJFJCRTCSA-N 1-[(4s,5s)-4-azido-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1C1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-KJFJCRTCSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- XOGTZOOQQBDUSI-UHFFFAOYSA-M Mesna Chemical compound [Na+].[O-]S(=O)(=O)CCS XOGTZOOQQBDUSI-UHFFFAOYSA-M 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000012504 chromatography matrix Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 125000000332 coumarinyl group Chemical group O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- -1 sulfopropyl Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/84—Preparation of the fraction to be distributed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44704—Details; Accessories
- G01N27/44717—Arrangements for investigating the separated zones, e.g. localising zones
- G01N27/44721—Arrangements for investigating the separated zones, e.g. localising zones by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/80—Fraction collectors
- G01N30/82—Automatic means therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/84—Preparation of the fraction to be distributed
- G01N2030/8429—Preparation of the fraction to be distributed adding modificating material
- G01N2030/8435—Preparation of the fraction to be distributed adding modificating material for chemical reaction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8804—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 automated systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/8813—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
- G01N2030/8831—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving peptides or proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/74—Optical detectors
Definitions
- the present invention relates generally to techniques for detecting a solute of interest in a fluid sample and more particularly to on-line techniques for detecting a solute of interest in an effluent sample produced by a differential migration separation technique.
- Differential migration separation techniques are well-known in the biological and chemical arts and are commonly used to separate a mixture of solutes present in a fluid sample.
- One example of a differential migration separation technique is chromatography. Chromatography typically involves the separation of solutes according to their differential partitioning between two or three phases, the phases frequently being solid and liquid phases. Solute partitioning results from the differing mobilities of the various solutes in the sample through a matrix of solid particles in the presence of a flowing liquid phase, solute transfer through the solid matrix typically being driven by a pressure gradient. Based on the specific type of solid matrix used, chromatography can be used to separate solutes by any number of characteristics, including size, electrical charge, hydrophobicity, hydrophilicity and/or a specific affinity for the matrix or a ligand bound thereon.
- Electrophoresis typically involves the separation of solutes based on their differential electrophoretic mobility through a matrix. Solute transfer in such a system is driven by a voltage gradient from an applied electric field.
- the product of a differential migration separation technique is typically a continuous effluent stream exiting the matrix within which the various solutes of the mixture are spatially separated from one another.
- Determination of the location of the various solutes, or of a particular solute of interest, within the effluent stream has typically been achieved by collecting the effluent stream as a series of discrete fractions and then sampling the fractions by any of a number of means known in the art to identify their contents.
- Examples of techniques known in the art for detecting various analytes in solution include U.S. Patent No. 4,281 ,061 , inventors Zuk et al., which issued July 28, 1981; U.S. Patent No. 4,207,075, inventor Liburdy, which issued June 10, 1980; U.S. Patent No.
- patent relates to an on-line method for rapidly identifying the presence and location of a preselected solute or subset of solutes in an effluent stream and comprises first passing a mixture through a system capable of separating the solutes in the mixture so that they are temporally and spatially separated from one another to some degree as they exit the system in a fluid phase (effluent stream).
- the first system may be a liquid chromatography matrix, e.g., a column, or other means for separating solutes, such as an electrophoresis module.
- the effluent stream from this first solute separation system is then passed through a UV absorbance detector to produce a first output depicting the elution profile of all UV absorbing solutes (e.g., proteins, nucleic acids, etc.) exiting the column.
- Identification of a particular UV absorbing solute of interest within the many UV absorbing solutes is then determined by passing at least a portion of the effluent stream through a second system capable of selectively removing the solute of interest from the fluid phase, preferably using immunoadsorbents and immunoaffinity matrices.
- the effluent stream exiting the second system is then passed through the same or a similar UV detector to produce a second output depicting the elution profile of all UV absorbing solutes exiting the second system. Because the second system selectively removes the solute of interest without altering the temporal and/or spatial arrangement of the other solutes in the effluent stream, the difference between the first and second outputs can be used to determine the presence and location of the solute of interest in the effluent stream.
- IgG is the solute of interest and the second system contains a perfusive Protein A affinity matrix.
- the present inventor has identified several shortcomings with the Afevan et aL technique.
- One such shortcoming is that the second system, which is used to remove the solute of interest from the effluent stream, can quickly become saturated with the solute of interest and, therefore, has to be periodically washed or replaced to prevent the solute from going undetected.
- a second shortcoming with the Afevan et al. technique is that the range of solutes capable of being removed by the second system may be limited by the type of affinity sorbents capable of being immobilized on a matrix. Moreover, even in those instances in which immobilization of the affinity sorbent can be performed, the costs of immobilization can be high, particularly for some affinity sorbents like Protein A and Protein G.
- a third shortcoming with the Afevan et al. technique is that the identification of a difference between the first and second outputs may be difficult to make in those instances in which one or more solutes co-elute from the column with the solute in question.
- a fourth shortcoming with the Afevan et al. technique is that UV absorbance is incapable of detecting quantities of biomolecules less than about 0.1 mg/ml, with even larger quantities being required in the presence of interfering solutes.
- a fifth shortcoming with the Afevan et al. technique is that the affinity matrix used therein might cause some interaction with other solutes present in the effluent sample and thus change the spatial distribution of solutes exiting the affinity matrix, thereby causing some difficulty in identifying the solute of interest.
- a method for detecting the presence of a solute of interest in an effluent sample comprising the steps of: (a) adding to the effluent sample a fluorescent agent which preferentially binds to the solute of interest and whose fluorescence is different when bound to the solute than when not bound to the solute; (b) exciting the effluent sample in such a way as to cause the fluorescent agent to fluoresce in accordance with whether or not the fluorescent agent is bound to the solute; and (c) detecting the fluorescence emitted from the effluent sample, whereby detected fluorescence consistent with the binding of the fluorescent agent to the solute of interest is indicative of the presence of the solute of interest in the effluent sample.
- the effluent sample subjected to the above-described method may be produced by a differential migration separation technique, such as chromatography or electrophoresis.
- the fluorescent agent added to the effluent sample preferably comprises a conjugate of a moiety having an affinity for the solute of interest and a fluorescent moiety that does not give a large positive response to bovine serum albumin (BSA).
- BSA bovine serum albumin
- Most fluorescein dyes give a manageable positive response to BSA and, therefore, are suitable as the fluorescent moiety.
- free fluorescein dye may be added to the sample, together with the fluorescent agent.
- the fluorescent agent is preferably a conjugate of (i) a fluorescein dye and Protein A, (ii) a fluorescein dye and Protein G or (iii) a mixture thereof, such as a 1:1 mixture.
- solute of interest is antithrombin III, 8-hydroxypyrene-1 ,3,6-trisulfonic acid trisodium salt (HPTS) may be used, by itself, as the fluorescent agent or may be conjugated with heparin to form the fluorescent agent.
- HPTS 8-hydroxypyrene-1 ,3,6-trisulfonic acid trisodium salt
- a method for determining the distribution of a solute of interest within a length of a fluid stream comprising the steps of: (a) adding throughout a length of the fluid stream a fluorescent agent which preferentially binds to the solute of interest and whose fluorescence is different when bound to the solute than when not bound to the solute; (b) exciting the length of the fluid stream in such a way as to cause the fluorescent agent to indicate by its fluorescence whether or not the fluorescent agent is bound to the solute; (c) detecting the fluorescence emitted from the length of the fluid stream as a function of location within the length of the fluid stream; and (d) using the results of said detecting step to ascertain the distribution of the solute of interest within the length of the fluid stream.
- a method of determining the presence and location of a solute of interest within a fluid stream comprising the steps of: (a) splitting an effluent sample, the effluent sample preferably generated by a differential migration separation technique, such as chromatography or electrophoresis, into a first fluid stream and a second fluid stream, said first and second fluid streams having a proportionate chemical composition; (b) determining the presence and location of a solute of interest within the first fluid stream using fluorescence spectroscopy; (c) determining the time-correlation between the first and second fluid streams; and (d) using the results of said solute presence and location determining step and said time-correlation determining step to determine the presence and location of the solute of interest in the second fluid stream.
- a differential migration separation technique such as chromatography or electrophoresis
- a method of determining the distribution of a solute of interest in a fluid stream comprising the steps of: (a) splitting an effluent sample, the effluent sample preferably generated by a differential migration separation technique, such as chromatography or electrophoresis, into a first fluid stream and a second fluid stream, said first and second fluid streams having a proportionate chemical composition; (b) determining the distribution of a solute of interest within the first fluid stream using fluorescence spectroscopy; (c) determining the time-correlation between the first and second fluid streams; and (d) using the results of said distribution determining step and said time-correlation determining step to determine the distribution of the solute of interest in the second fluid stream.
- a differential migration separation technique such as chromatography or electrophoresis
- the distribution of the solute of interest in the second fluid stream may be determined, one may collect only that portion of the second fluid stream containing the greatest concentration of the solute of interest.
- the effluent sample is a product of a differential migration separation technique
- the distribution of the solute in the second fluid stream illustrates the efficacy ofthe separation technique employed. Consequently, the aforementioned method provides an on-line tool for rapidly assessing whether any parameters of a separation technique being employed should be altered.
- a method of determining the concentration of a solute of interest at a location within a fluid stream comprising the steps of: (a) splitting an effluent sample, the effluent sample preferably generated by a differential migration separation technique, such as chromatography or electrophoresis, into a first fluid stream and a second fluid stream, said first and second fluid streams having a proportionate chemical composition; (b) determining the concentration of a solute of interest at a location within the first fluid stream using fluorescence spectroscopy; (c) determining the time-correlation between the first and second fluid streams; (d) determining the volume-correlation between the first and second fluid streams; and (e) using the results of said concentration determining step, said time-correlation determining step and said volume-correlation determining step to determine the concentration of the solute of interest at a corresponding location in the second fluid stream.
- a differential migration separation technique such as chromatography or electrophoresis
- a system for monitoring a fluid stream for a solute of interest comprising: (a) means for splitting an effluent sample into a first fluid stream and a second fluid stream, said first and second fluid streams having a proportionate chemical composition; (b) a fluorescent agent which preferentially binds to the solute of interest and whose fluorescence is different when bound to the solute of interest than when not bound to the solute of interest; (c) means for mixing the fluorescent agent into the first fluid stream; (d) means for monitoring the first fluid stream for the solute of interest based upon fluorescence of the fluorescent agent; and (e) means for time- correlating the first and second fluid streams so that the results obtained for the first fluid stream can be applied to the second fluid stream.
- a method of purifying a solute of interest from a mixture of solutes comprising the steps of: (a) subjecting the mixture of solutes to an appropriate differential migration separation procedure which results in the production of an effluent sample in which the solute of interest is separated to some extent from the remaining solutes; (b) splitting the effluent sample into a first fluid stream and a second fluid stream, said first and second fluid streams having a proportionate chemical composition; (c) determining the location of a concentration peak of the solute of interest within the first fluid stream using fluorescence spectroscopy; (d) determining the time-correlation between the first and second fluid streams; (e) using the results of said concentration peak determining step and said time- correlation determining step to determine the location within the second fluid stream of a corresponding concentration peak for the solute of interest; and (f) collecting that portion of the second fluid stream corresponding to the concentration peak for the solute of interest.
- Fig. 1 is a schematic diagram of one embodiment of an automated on-line system for monitoring an effluent sample for a solute of interest, said on-line system being constructed according to the teachings of the present invention
- Figs. 2(a) and 2(b) are graphic representations of the fluorescence intensity signals to 5 ⁇ g HIgG, a mixture of 500 ⁇ g BSA and 5 ⁇ g HIgG, and 500 ⁇ g BSA obtained using Protein G-DTAF without MES and Protein G-DTAF with MES, respectively, as set forth in Example 5;
- Figs. 3(a) and 3(b) are graphic representations of the fluorescence intensity signals to 5 ⁇ g HIgG, a mixture of 500 ⁇ g BSA and 5 ⁇ g HIgG, and 500 ⁇ g BSA obtained using Protein A-HCCS and Protein G-HCCS, respectively, as set forth in Example 6;
- Figs. 4(a) and 4(b) are graphic representations of the fluorescence intensity signals to 5 ⁇ g HIgG, a mixture of 500 ⁇ g BSA and 5 ⁇ g HIgG, and 500 ⁇ g BSA obtained using Protein A-MCCS and Protein G-MCCS, respectively, as set forth in Example 7;
- Fig. 5 is a graphic representation of the fluorescence intensity signals to HIgG, BSA, mlgG, RlgG, BlgG, goat anti-mlgG and goat anti-RIgG produced using a 1:1 mixture of Protein A-CFSE and Protein G-CFSE at a flow rate of 2 ml/min, as set forth in Example 8;
- Fig. 6 is a graphic representation of the fluorescence intensity signals to
- HIgG, BSA, mlgG, RlgG, BlgG, goat anti-mlgG and goat anti-RIgG produced using a 1 :1 mixture of Protein A-FHSE and Protein G-FHSE at a flow rate of 2 ml/min, as set forth in Example 9;
- Fig. 7 is a graphic representation of the fluorescence intensity signals to HIgG, BSA, mlgG, RlgG, BlgG, goat anti-mlgG, goat anti-HIgG and goat anti-RIgG produced using 76-day old Protein G-DTAF, as set forth in Example 10;
- Fig. 8 is a graphic representation ofthe fluorescence intensity signals to goat anti-rabbit IgG, goat anti-mlgG, and HIgG produced using RIgG-CFSE, as set forth in Example 11 ;
- Fig. 9 is a graphic representation ofthe fluorescence intensity signals to goat anti-HIgG and BSA produced using HIgG-CFSE conjugate, as set forth in Example 12;
- Fig. 10 is a graphic representation of the fluorescence intensity signals to goat anti-HIgG, Protein A and BSA produced using HlgG-FITC conjugate, as set forth in Example 13;
- Fig. 11 is a graphic representation of the fluorescence intensity signals to goat anti-HIgG, Protein A and Protein G produced using HlgG-DATF conjugate, as set forth in Example 14;
- Figs. 12(a) and 12(b) are graphic representations of the fluorescence intensity signals to HIgG using goat anti HlgG-DATF conjugate at 0.0002 mg/ml in PBS and at 0.0008 mg/ml in PBS, respectively, as set forth in Example 16;
- Fig. 13 is a graphic representation of the fluorescence intensity signals to goat anti-RIgG and HIgG produced using a complex of Protein A-CFSE and RlgG, as set forth in Example 17;
- Fig. 14 is a graphic representation of the fluorescence intensity signals to goat anti-RIgG and HIgG produced using a complex of Protein G-CFSE and RlgG, as set forth in Example 18;
- Fig. 15 is a graphic representation of the fluorescence intensity signals to RlgG, HIgG, BlgG, mlgG and BSA produced using a complex of Protein G-DTAF and goat anti-RIgG, as set forth in Example 19;
- Fig. 16 is a graphic representation of the fluorescence intensity signals to
- RlgG and HIgG produced using a complex of Protein G-FHSE and goat anti-RIgG, as set forth in Example 20;
- Fig. 17 is a graphic representation of the fluorescence intensity signals to RlgG, HIgG, mlgG and BSA produced using a Kappa Lock-DTAF conjugate, as set forth in Example 21 ;
- Fig. 18 is a graphic representation of the fluorescence intensity signals to RlgG, HIgG, mlgG and BSA produced using a complex of Kappa Lock-DTAF and goat anti-RIgG, as set forth in Example 22;
- Fig. 19 is a graphic representation of the fluorescence intensity signals to RlgG, HIgG, mlgG, BlgG, goat anti-mlgG, goat anti-RIgG and BSA produced using Kappa Lock-FHSE, as set forth in Example 23;
- Fig. 20 is a graphic representation of the fluorescence intensity signal to concanavalin A using a conalbumin-CFSE conjugate as set forth in Example 24;
- Fig. 21 is a graphic representation of the results obtained in Example 25;
- Fig. 22 is a graphic representation of the results obtained in Example 26; and
- Fig. 23 is a graphic representation of the results obtained in Example 27.
- FIG. 1 there is shown a schematic diagram of one embodiment of an automated on-line system for monitoring an effluent sample for a solute of interest, said system being constructed according to the teachings ofthe present invention and being represented generally by reference numeral 11.
- system 11 is in the monitoring of an effluent sample 13 produced by running a fluid sample 15 containing a mixture of solutes through a differential migration separation system 17 capable of physically separating a solute of interest from the remaining solutes in the mixture.
- System 17 may be, for example, a chromatography column, an electrophoretic gel or the like.
- System 11 includes a UV absorbance detection system 21 comprising means (not shown) for irradiating a sample with UV light and means (not shown) for measuring the UV light absorbed by the sample.
- Effluent sample 13 is passed through system 21 to produce a continuous output corresponding to the spatial distribution of all UV-absorbing solutes (e.g., proteins, nucleic acids, etc.) present in sample 13.
- the spatial distribution of such solutes when graphically depicted, typically includes a series of peaks, each peak representing a heightened concentration of one or more solutes at a specific location within sample 13.
- System 11 also includes a stream-splitting valve 25 located downstream from system 21.
- Valve 25 splits effluent sample 13 into a major fluid stream 27 and a minor fluid stream 29, minor stream 29 having the same relative chemical composition as major stream 27 but preferably having a much reduced volume as compared to stream 27.
- the ratio of volumes of stream 29 to stream 27 may be in the range of 1:10, respectively.
- System 11 further includes a mixer 31 located downstream from valve 25 along the path of minor stream 29.
- Mixer 31 is used to continuously mix an analyzing solution 33 to be hereinafter described into minor stream 29 as minor stream 29 flows through mixer 31.
- Mixer 31 may be a micromixer capable of mixing together analyzing solution 33 and minor stream 29 in ⁇ volumes, preferably as low as about 5 ⁇ .
- mixer 31 may be a dynamic mixer capable of mixing together analyzing solution 33 and minor stream 29 in ml volumes, typically about 1 ml.
- a micromixer may enable one to detect a spatial distribution of a solute of interest with greater resolution than may obtained using a dynamic mixer.
- System 11 also includes a pump 35 for pumping analyzing solution 33 into mixer 31 , preferably at a rate of about 1 to 8 ml/min.
- Analyzing solution 33 includes a fluorescent agent which preferentially binds to the solute of interest and whose fluorescence is different in one or more respects (e.g., intensity, decay time, polarization, etc.) when bound to the solute of interest than when not bound to the solute of interest.
- a fluorescent agent is a conjugate of a fluorescent dye and a moiety having an affinity for a solute of interest.
- fluorescein dyes are preferred as the fluorescent dyes because they typically exhibit a manageably small, if any, positive response to bovine serum albumin (BSA).
- fluorescein dyes suitable for use in the present invention include fluorescein isothiocyanate (FITC), 5-bromomethylfluorescein ( B M F) , 5-(a nd 6-)-iod oaceta m id ofl uorescei n ( IAF) , 5-(4 , 6- dichlorotriazinyl)aminofluorescein (DTAF), 5-(and 6-)-carboxyfluorescein succinimidyl ester (CFSE) and 6-(fluorescein-5-(and-6)-carboxamido)hexanoic acid succinimidyl ester) (FHSE).
- FITC fluorescein isothiocyanate
- B M F 5-bromomethylfluorescein
- IAF 5-(a nd 6-)-iod oaceta m id ofl uorescei n
- IAF 5-(4 , 6- dichlorotriazinyl)amino
- CFSE and FHSE are preferred because they do not exhibit any positive response to BSA.
- Additional fluorescent dyes include 1-Alkyloxy-pyrene-3,6,8-trisulfonic acid sodium salt (Cascade Blue) and 5,7-Dimethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY FL).
- Other fluorescent dyes which are small, hydrophilic and lack amino groups also may be suitable as the fluorescent dye where BSA is not the solute of interest but may be in the mixture of solutes.
- Protein A and Protein G each bind to a wide variety of immunoglobulins
- suitable fluorescent agents include (i) a conjugate of a fluorescein dye and Protein A, (ii) a conjugate of a fluorescein dye and Protein G or (iii) a mixture of fluorescein dye/Protein A and fluorescein dye/Protein G conjugates.
- a mixture of Protein A and Protein G conjugates is particularly preferred where the solute of interest is a diverse collection of immunoglobulins since the affinities of Protein A and Protein G are complementary for many immunoglobulins.
- Protein G binds to bovine IgG more strongly than does Protein A.
- the synthesis of conjugates between fluorescein dyes and Protein A or Protein G may be carried out in substantially the fashion disclosed by M. Brinkley in Bioconiugate Chem., Vol. 3, pp. 2-13 (1992), which is incorporated herein by reference.
- the working concentration of the Protein A(or G)/fluorescein dye conjugate in analyzing solution 33 is in the range of 0.0001 to 0.1 mg/ml.
- the fluorescent agent may either be (i) 8-hydroxypyrene-1 ,3,6-trisulfonic acid trisodium salt (HPTS) or (ii) a conjugate of heparin and HPTS.
- HPTS 8-hydroxypyrene-1 ,3,6-trisulfonic acid trisodium salt
- HPTS 8-hydroxypyrene-1 ,3,6-trisulfonic acid trisodium salt
- the fluorescent agent of the present invention also may take the form of a complex between a fluorescein dye/Protein A(or G) conjugate and a moiety having an affinity for both Protein A(or Protein G) and the solute of interest.
- Analyzing solution 33 also includes a buffer solution in which the fluorescent agent is dissolved.
- the function of the buffer system is to maintain the fluorescent agent at a fairly constant pH. This is because the fluorescence intensity of fluorescein dyes tend to increase as pH increases.
- analyzing solution 33 is mixed with minor stream 29, which itself also typically contains a buffer (e.g, a sample buffer or an elution buffer) that may or may not be at the same pH as the buffer in solution 33.
- a strong buffer such as a sodium phosphate buffer (preferably 0.05-0.2M, pH 7-8.9), and/or by keeping the pH of the sample buffer in the range of slightly lower than the elution buffer to about 2 pH units above the elution buffer and/or by using a good micromixer 31 , the types of problems alluded to above will be minimized.
- antigens do not bind as well to Ig in the presence of salt concentrations higher than 0.5 M.
- System 11 also includes a fluorescence detection system 41 located downstream from mixer 31 along the path of minor stream 29.
- Fluorescence detection system 41 includes means (not shown) for exciting the fluorescent agent added to minor stream 29 in such a way as to cause the fluorescent agent to fluoresce in accordance with whether or not the fluorescent agent is bound to the solute of interest and means (not shown) for measuring the resultant fluorescence emitted from the exciting portion of minor stream.
- the measuring means measures fluorescence intensity; however, the measuring means could alternatively measure decay time, polarization, or any other distinguishing fluorescence feature.
- the spatial distribution of the solute of interest typically includes a peak, the peak representing a heightened concentration of the solute at a specific location within stream 29.
- the shape of the peak typically imparts certain information regarding the effectiveness of the separation performed by system 17, a broad peak generally indicating a poorer separation than a sharp peak.
- System 11 further includes a computer 51.
- Computer 51 is electrically connected to and receives the respective outputs from UV absorbance detection system 21 and fluorescence detection system 41. Computer 51 processes these outputs and graphically displays them on a display 53. In addition, computer 51 uses the outputs from systems 21 and 41 , together with data inputted thereto regarding the flow rate of the system (which can be in the range of 0.1 to 30 ml/min), to determine the corresponding location within major stream 27 of the peak concentration of the solute of interest. Computer 51 then uses this information to control a valve 55 located in the path of major stream 27 to selectively collect only that portion of major stream 27 containing the peak concentration of the solute of interest.
- computer 51 is also electrically connected to valve 25 so that sample 13 is split only after a UV absorbing solute has been detected by system 21.
- computer 51 is electrically connected to mixer 31 so that mixer 31 is actuated only when valve 25 splits sample 13 into major stream 27 and minor stream 29.
- system 11 could be used to determine the concentration of a solute of interest in sample 13.
- system 11 can detect solutes of interest at as low a concentration as 0.01 mg/ml whereas the aforementioned UV systems have a detection limit of 0.1 mg/ml. Furthermore, system 11 is capable of detecting as little as 5 ⁇ g IgG in the presence of 500 ⁇ g BSA whereas UV-based systems cannot.
- Protein A-FITC conjugate was synthesized as follows: 0.2 ml of 20 mg/ml Protein A was combined with 0.5 ml of 0.2 M sodium bicarbonate buffer at pH 9. 1 mg of FITC was dissolved in 0.1 ml DMSO by vortexing. The FITC solution was then added to the Protein A solution, and the resulting mixture, after vortexing for 10 seconds, was stirred on a rocker at room temperature for 7 hours. The resultant Protein A-FITC conjugate was purified by gel permeation chromatography (Ultrogel AcA44, BioSepra, Marlborough, MA) using PBS containing 0.02% sodium azide as the loading and elution buffer. The first band (10 ml) was collected for the conjugate. The concentration ofthe conjugate was approximately 0.4 mg/ml, which was then diluted to 0.001 mg/ml in PBS.
- Protein A-DTAF conjugate and Protein G-DTAF conjugate were synthesized in the same fashion as described above in Example 1 for Protein A-FITC, except that the reaction time was 2.5 hours.
- Protein A-FITC, Protein A-DTAF and Protein G-DTAF were each used in an on-line detection system similar to system 11 to detect human IgG (HIgG) in a mixture containing 5 ⁇ g HIgG and 500 ⁇ g BSA. All three conjugates showed a relatively small peak for BSA, as well as a relatively large peak for HIgG. However, the small BSA peak was reduced to the noise level by the addition of about 2 ⁇ of a 0.1 mg/ml solution of hydrolyzed free FITC to 200 ml of a 0.001 mg/ml solution of the conjugate, the final concentration of the free FITC being about 10 "6 mg/ml.
- the free FITC was found to exert a negative response on BSA while exerting a positive response on IgG. In this manner, the negative BSA peak from the free
- Protein A-FITC and Protein G-DTAF were also used in an on-line detection system similar to system 11 to detect 5 ⁇ g quantities of mouse IgG (mlgG), bovine IgG (BlgG) and rabbit IgG (RlgG), respectively. Both conjugates resulted in the generation of easily detectable peaks for all three immunoglobulins.
- a positive peak for rabbit IgG was observed when Protein G-DTAF was used for a mixture containing 5 ⁇ g rabbit IgG and 500 ⁇ g BSA, and a positive peak for mouse IgG was also observed when Protein A-FTIC was used for a mixture containing 5 ⁇ g mouse IgG and 500 ⁇ g BSA.
- Protein A-FITC was used to detect bovine IgG, a weaker peak was observed than was observed when Protein A-FITC was used to detect HIgG, mlgG and RlgG. Without wishing to be limited by any theory, the present inventor believes that this weaker peak was the result of the fact that Protein A binds somewhat weakly to BlgG.
- a Protein A-HCCS (7-hydroxycoumarin-3-carboxylic acid, succinimidyl ester) conjugate was synthesized as follows: 0.2 ml of 20 mg/ml Protein A solution (4 mg Protein A) in 0.5 ml of 0.2 M sodium bicarbonate at pH 8.3 was reacted with 2 mg HCCS in 0.1 ml DMSO at room temperature for 3 hours. The reaction was stopped by adding 0.1 ml of 1 M NH 2 OH followed by stirring the resulting mixture at room temperature for 1 hour. The resultant Protein A-HCCS conjugate was then isolated using GPC and PBS as an elution buffer. A Protein G-HCCS conjugate was made in a comparable fashion. As seen in Figs. 3(a) and 3(b), each of the Protein A-HCCS and Protein G-
- HCCS conjugates produced a fairly strong BSA peak, as well as an HIgG peak. Without wishing to be limited by any theory, the present inventor believes that the strong BSA peak may attributable to a lack of sufficient hydrophilicity in the coumarin moieties.
- Protein A-MCCS (7-methoxycoumarin-3-carboxylic acid, succinimidyl ester) and Protein G-MCCS were synthesized in a manner corresponding to that described in Example 6 for Protein A-HCCS and Protein G-HCCS, respectively. As seen in Figs.4(a) and 4(b), Protein A-MCCS and Protein G-MCCS, respectively, gave even bigger peaks for BSA than did Protein A-HCCS and Protein G-HCCS, respectively. Moreover, Protein A-MCCS and Protein G-MCCS did not respond well to HIgG.
- EXAMPLE 8 Conjugates of Protein A-CFSE (carboxyfluorescein succinimidyl ester), Protein G-CFSE, Protein A-FHSE (6-(fluorescein-5-(and-6-)-carboxamido)hexanoic acid succinimidyl ester) and Protein G-FHSE were synthesized in a manner corresponding to that described in Example 6, except that 2 mg of CFSE and FHSE were used.
- a 1 :1 mixture of Protein A-CFSE (0.0003 mg/ml) and Protein G-CFSE (0.0003 mg/ml) running at a flow rate of 2 ml/min. each pump did not produce any peaks to BSA, but did produce good signals to HIgG, mlgG, RlgG and BlgG and detectable peaks to goat anti-mlgG and goat anti- RIgG.
- EXAMPLE 10 Protein G-DTAF, which had been stored for 76 days in a refrigerator, was used as a peak-tracking agent in a dilute (0.0003 mg/ml) PBS solution. As seen in Fig. 7, the Protein G-DTAF was still effective in producing peaks to HIgG, RlgG, mlgG, BlgG, goat anti-RIgG, goat anti-HIgG and goat anti-mlgG. A small peak to BSA was also detected.
- HlgG-FITC conjugate was purchased from Jackson Immuno Research, West
- HIgG-DTAF conjugate 15 mg was conjugated with 2.3 mg of DTAF in the same manner as set forth in Example 3. As shown in Fig. 11 , HIgG-DTAF conjugate (0.0005 mg/ml in PBS) produced no signal to goat anti-HIgG, a positive signal to Protein A and a negative signal to Protein G.
- EXAMPLE 15 Goat anti-RIgG (1 ml, 2.4 mg/ml) in 0.5 ml of 0.2 M sodium bicarbonate at pH 8.3 was reacted with 1 mg of CFSE in 0.1 ml of DMSO at room temperature for 3 hours. The reaction was stopped by adding 0.1 ml of 1 M NH 2 OH. The reaction mixture was stirred at room temperature for 1 hour. The resultant goat anti RIgG- CFSE conjugate was isolated using GPC. The conjugate (0.0005 mg/ml in PBS) produced no response to RlgG or HIgG.
- Goat anti HIgG-DTAF conjugate was purchased from Pierce, Rockford, Illinois, and used in the peak tracking of HIgG. As shown in Fig. 12(a), the conjugate (0.0002 mg/ml in PBS) showed detectable positive peaks to HIgG and no peak to BSA. Increasing the concentration of the conjugate to 0.0008 mg/ml improved the peak intensity (see Fig. 12(b)) to HIgG.
- Protein A-CFSE conjugate (0.1 ml, 0.3 mg/ml) was mixed with 0.1 ml of 2.3 mg/ml RlgG, which binds Protein A-CFSE well. The resulting mixture was allowed to stand at room temperature for 10 minutes and then was transferred to 100 ml of PBS. The resultant solution was then used in the peak tracking of goat anti- RIgG and HIgG. As can be seen in Fig. 13, no peak to goat anti-RIgG was produced. In addition, no peak to HIgG was produced, indicating that there was no free Protein A-CFSE since all the Protein A-CFSE should have bound to RlgG, which was in excess.
- EXAMPLE 18 The experiment of Example 17 was repeated, except that Protein G-CFSE was used instead of Protein A-CFSE. As can be seen in Fig. 14, no peaks were detected. EXAMPLE 19
- Protein G-DTAF (0.1 ml, 0.3 mg/ml) was incubated with 0.5 mg goat anti- RIgG in 0.5 ml of PBS at room temperature for 10 minutes. The incubated solution was then added to 100 ml of PBS and used to detect RlgG, HIgG, BlgG, mlgG and BSA. As can be seen in Fig. 15, no peaks were detected for RlgG, HIgG, BlgG and BSA. A peak was detected, however, for mlgG. It is believed that this peak is the result of mlgG binding to Protein G-DTAF so strongly that it can compete with RlgG in excess.
- EXAMPLE 20 Protein G-FHSE (0.1 ml, 0.3 mg/ml) was incubated with 1 mg goat anti-RIgG in 0.5 ml of PBS at room temperature for 10 minutes. The resulting solution was added to 100 ml of PBS and used in the peak tracking of RlgG and HIgG. As can be seen in Fig. 16, a broad negative peak to RlgG was detected. No peak to HIgG was detected. EXAMPLE 21
- a sandwich (i.e. complex) between Kappa Lock-DTAF and goat anti-RIgG was formed by combining 0.1 ml of 0.3 mg/ml Kappa Lock-DTAF with 0.5 ml of 2.3 mg/ml goat anti-RIgG and incubating for 10 minutes at room temperature.
- the resultant sandwich was then transferred to 100 ml of PBS to be used as the working solution (0.0003 mg/ml) to detect RlgG, HIgG, mlgG and BSA.
- the sandwich produced peaks similar to those obtained using Kappa Lock-DTAF. In fact, the peak intensity using the sandwich was somewhat worse than that obtained using Kappa Lock-DTAF.
- EXAMPLE 23 Kappa Lock-FHSE conjugate was made by the same technique used in Example 21 , except that 4.2 mg of Kappa Lock in 0.7 ml of 0.2 M sodium bicarbonate at pH 8.3 was reacted with 2 mg of FHSE in 0.1 ml of DMSO at room temperature for 3 hours. The conjugate was then used to detect RlgG, HIgG, mlgG, BlgG, BSA, goat anti-mlgG and goat anti-RIgG. As seen in Fig. 19, Kappa Lock-FHSE did not give a good response to most IgG's, except for MlgG. EXAMPLE 24
- the effluent sample exiting the chromatography media was then monitored using a system similar to system 11 , the analyzing solution comprising a mixture of Protein A-CFSE and Protein G-CFSE in 0.2 M Na2HP04, pH 8.9.
- the first UV peak, corresponding to BSA gave no response to the fluorescence monitoring whereas the second broad UV peak, corresponding to HIgG, produced a good fluorescence peak.
- EXAMPLE 27 A 100 ⁇ sample containing 5 mg/ml BSA and 0.05 mg/ml HIgG in 0.2 M
- Tris, pH 6 was passed through Q-HyperD TM media, a silica oxide/polystyrene composite support with hydrogel filled pores having a quartenary amine ion exchange functionality (also commercially available from BioSepra, Mariborough, MA), and separated using 0.2 M Tris, pH 5.5, and 1 M NaCI gradient elution.
- the effluent sample exiting the chromatography media was then monitored using a system similar to system 11 , the analyzing solution comprising Protein A-FHSE in 0.2 M Tris, pH 8.4. As can be seen in Fig.
- UV absorbance testing unit 21 could be located after valve 25 along the path of major stream 27. All such variations and modifications are intended to be within the scope of the present invention as defined in the appended claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU61608/96A AU6160896A (en) | 1995-06-07 | 1996-06-06 | On line detection of a desired solute in an effluent stream using fluorescence spectroscopy |
JP9501822A JPH11510595A (ja) | 1995-06-07 | 1996-06-06 | 螢光分光光度計測による流体中の所期の溶質のオンライン検出 |
EP96919211A EP0839068A1 (fr) | 1995-06-07 | 1996-06-06 | Detection en continu d'un solute particulier dans un effluent, utilisant la spectroscopie par fluorescence |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48696495A | 1995-06-07 | 1995-06-07 | |
US08/486,964 | 1995-06-07 | ||
US65919996A | 1996-06-04 | 1996-06-04 | |
US08/659,199 | 1996-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996040398A1 true WO1996040398A1 (fr) | 1996-12-19 |
Family
ID=27048852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1996/009518 WO1996040398A1 (fr) | 1995-06-07 | 1996-06-06 | Detection en continu d'un solute particulier dans un effluent, utilisant la spectroscopie par fluorescence |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0839068A1 (fr) |
JP (1) | JPH11510595A (fr) |
AU (1) | AU6160896A (fr) |
CA (1) | CA2223835A1 (fr) |
WO (1) | WO1996040398A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5938932A (en) * | 1997-11-14 | 1999-08-17 | Pharmacopeia, Inc. | High-throughput method and apparatus for identifying, quantitating and determining the purity of chemical compounds in mixtures |
WO1999034220A3 (fr) * | 1997-12-31 | 1999-09-02 | Genentech Inc | Suivi en temps reel d'un analyte par chromatographie en ligne |
US6077438A (en) * | 1998-12-22 | 2000-06-20 | Combichem, Inc. | Automated on-line evaporation light scattering detection to quantify isolated fluid sample compounds in microtiter plate format |
EP1111381A1 (fr) * | 1999-01-25 | 2001-06-27 | Shimadzu Corporation | Chromatographe en phase liquide avec collecteur de fractions |
US6280627B1 (en) | 1999-01-25 | 2001-08-28 | Shimadzu Corporation | Liquid chromatograph with fraction collector |
WO2002014853A1 (fr) * | 2000-08-16 | 2002-02-21 | Novartis Ag | Separateur de micro-ecoulement |
WO2005064335A3 (fr) * | 2003-12-20 | 2005-09-22 | Ehrfeld Mikrotechnik Bts Gmbh | Procede et dispositif de marquage de biomolecules |
EP1525458B1 (fr) * | 2002-07-25 | 2017-03-08 | Icagen, Inc. | Procede et appareil d'ecoulement pour la selection de produits chimiques par micro-fluorescence x |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234586A (en) * | 1991-03-28 | 1993-08-10 | Perseptive Biosystems, Inc. | On-line product identification in a chromatography effluent by subtraction |
-
1996
- 1996-06-06 EP EP96919211A patent/EP0839068A1/fr not_active Withdrawn
- 1996-06-06 CA CA 2223835 patent/CA2223835A1/fr not_active Abandoned
- 1996-06-06 JP JP9501822A patent/JPH11510595A/ja active Pending
- 1996-06-06 WO PCT/US1996/009518 patent/WO1996040398A1/fr not_active Application Discontinuation
- 1996-06-06 AU AU61608/96A patent/AU6160896A/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234586A (en) * | 1991-03-28 | 1993-08-10 | Perseptive Biosystems, Inc. | On-line product identification in a chromatography effluent by subtraction |
Non-Patent Citations (2)
Title |
---|
BIOTECHNOLOGY AND BIOENGINEERING, Vol. 40, 1992, HUANG et al., "Direct and Homogeneous Immunoassay for IgG Analyses", pages 913-918. * |
SNYDER et al., "Introduction to Modern Liquid Chromatography", JOHN WILEY & SONS, INC., NEW YORK, 1979, pages 740-746. * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5938932A (en) * | 1997-11-14 | 1999-08-17 | Pharmacopeia, Inc. | High-throughput method and apparatus for identifying, quantitating and determining the purity of chemical compounds in mixtures |
US6090280A (en) * | 1997-11-14 | 2000-07-18 | Pharmacopeia, Inc. | High-throughput apparatus for identifying, quantitating and determining the purity of chemical compounds in mixtures |
WO1999034220A3 (fr) * | 1997-12-31 | 1999-09-02 | Genentech Inc | Suivi en temps reel d'un analyte par chromatographie en ligne |
US6077438A (en) * | 1998-12-22 | 2000-06-20 | Combichem, Inc. | Automated on-line evaporation light scattering detection to quantify isolated fluid sample compounds in microtiter plate format |
US6210571B1 (en) | 1998-12-22 | 2001-04-03 | Combichem, Inc. | Automated on-line evaporating light scattering detection to quantify isolated fluid sample compounds in microtiter plate format |
US6426006B1 (en) | 1998-12-22 | 2002-07-30 | Deltagen Research Laboratories, L.L.C. | Automated on-line evaporating light scattering detection to quantify isolated fluid sample compounds in microtiter plate format |
EP1111381A1 (fr) * | 1999-01-25 | 2001-06-27 | Shimadzu Corporation | Chromatographe en phase liquide avec collecteur de fractions |
US6280627B1 (en) | 1999-01-25 | 2001-08-28 | Shimadzu Corporation | Liquid chromatograph with fraction collector |
WO2002014853A1 (fr) * | 2000-08-16 | 2002-02-21 | Novartis Ag | Separateur de micro-ecoulement |
EP1525458B1 (fr) * | 2002-07-25 | 2017-03-08 | Icagen, Inc. | Procede et appareil d'ecoulement pour la selection de produits chimiques par micro-fluorescence x |
WO2005064335A3 (fr) * | 2003-12-20 | 2005-09-22 | Ehrfeld Mikrotechnik Bts Gmbh | Procede et dispositif de marquage de biomolecules |
Also Published As
Publication number | Publication date |
---|---|
JPH11510595A (ja) | 1999-09-14 |
AU6160896A (en) | 1996-12-30 |
EP0839068A1 (fr) | 1998-05-06 |
CA2223835A1 (fr) | 1996-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5348633A (en) | Method for quantitating trace amounts of an analyte in a sample by affinity capillary electrophoresis | |
US4895809A (en) | Immobilized antigen-antibody displacement process | |
US5431793A (en) | Quantitative analysis of glycosylated hemoglobin by immunocappillary electrophoresis | |
Chen et al. | Capillary electrophoresis--a new clinical tool | |
Schultz et al. | Rapid immunoassays using capillary electrophoresis with fluorescence detection | |
JP3507853B2 (ja) | 毛細管電気泳動を用いる被検体の均一免疫検定および酵素ベース検定 | |
Issaq | The role of separation science in proteomics research | |
García‐Campaña et al. | LIF detection of peptides and proteins in CE | |
Chen et al. | Characterization of proteins by capillary electrophoresis in fused‐silica columns: Review on serum protein analysis and application to immunoassays | |
Chen et al. | Characterization of digoxigenin-labeled B-phycoerythrin by capillary electrophoresis with laser-induced fluorescence application to homogeneous digoxin immunoassay | |
US20100112597A1 (en) | Methods for Quantifying Protein Leakage From Protein Based Affinity Chromatography Resins | |
US20030054569A1 (en) | Particle based homogeneous assays using capillary electrophoresis with laser-induced fluorescence detection | |
Chen | Characterization of charge-modified and fluorescein-labeled antibody by capillary electrophoresis using laser-induced fluorescence Application to immunoassay of low level immunoglobulin A | |
EP0839068A1 (fr) | Detection en continu d'un solute particulier dans un effluent, utilisant la spectroscopie par fluorescence | |
Wiederkehr et al. | Two-dimensional gel electrophoresis of cerebrospinal fluid proteins from patients with various neurological diseases. | |
Nakamura et al. | Flow immunoassay for detection of human chorionic gonadotrophin using a cation exchange resin packed capillary column | |
Wu et al. | Determination of isoelectric point and investigation of immunoreaction in peanut allergenic proteins–rabbit IgG antibody system by whole‐column imaged capillary isoelectric focusing | |
EP2582723B1 (fr) | Essai de détection de chaînes légères libres par électrophorèse capillaire de zone | |
ES2557942T3 (es) | Método de examen de una diana biológica para determinar interacciones débiles usando cromatografía de afinidad débil | |
EP0848251A2 (fr) | Dosages homogènes en ligne utilisant l'électrophorèse | |
WO1994009185A1 (fr) | Quantification par electrophorese de complexes de liaison specifiques | |
Han et al. | Analysis of glycosylated type II interleukin-1 receptor (IL-1R) by imaged capillary isoelectric focusing (i-cIEF) | |
JP3413654B2 (ja) | アルミニウム測定方法 | |
Khan et al. | Analytical Techniques in Medical Biotechnology | |
US20240319184A1 (en) | Improvements in or relating to a method of analysing a component in a sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2223835 Country of ref document: CA Ref country code: CA Ref document number: 2223835 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 1997 501822 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996919211 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1996919211 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996919211 Country of ref document: EP |