WO1995024867A1 - Concentration d'energie laser dans un instrument chirurgical a laser - Google Patents
Concentration d'energie laser dans un instrument chirurgical a laser Download PDFInfo
- Publication number
- WO1995024867A1 WO1995024867A1 PCT/US1995/003306 US9503306W WO9524867A1 WO 1995024867 A1 WO1995024867 A1 WO 1995024867A1 US 9503306 W US9503306 W US 9503306W WO 9524867 A1 WO9524867 A1 WO 9524867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tissue
- chamber
- zone
- distal end
- tissue receiving
- Prior art date
Links
- 239000012141 concentrate Substances 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 4
- 239000012530 fluid Substances 0.000 claims abstract description 4
- 239000000835 fiber Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 230000002262 irrigation Effects 0.000 claims 1
- 238000003973 irrigation Methods 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 claims 1
- 230000001902 propagating effect Effects 0.000 claims 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 13
- 239000011780 sodium chloride Substances 0.000 abstract description 13
- 239000013307 optical fiber Substances 0.000 abstract description 11
- 230000035939 shock Effects 0.000 description 8
- 239000000523 sample Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 208000002177 Cataract Diseases 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/26—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for producing a shock wave, e.g. laser lithotripsy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B2017/22024—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement with a part reflecting mechanical vibrations, e.g. for focusing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting in contact-lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
Definitions
- This invention relates in general to a laser powered surgical instrument and more particularly to a technique for generating plasma from input laser pulses wherein the plasma creates Shockwaves that are used to fracture tissue positioned
- One application of the instrument is for the removal of a cataract. More than one thousand pulses may be
- the target has to be sufficiently thick so that it will withstand the large number of pulses * 25 required for the operation and yet have target material present in the path of the laser pulses at the end of the operation. It is important that the laser pulses never impinge directly on tissue. There is too much risk of damage to tissue if such occurs.
- this invention provides a technique for generating plasma from the laser pulses, so that Shockwaves will in turn be developed, in a fashion that assures isolation of the laser pulses from tissue of the patient involved.
- this isolation of laser pulses from tissue be in the context of a small diameter probe which will make a minimum size incision and which will provide a combined function of directing Shockwaves to the tissue to be fractured, and adequately aspirating the tissue as it is fractured.
- a surgical instrument in the form of a two mm diameter needle has a distal port for receiving tissue.
- An optical fiber extends along the length of the needle and has its distal end positioned in a distal chamber of the needle.
- the chamber is filled with saline and is in communication with the port.
- Pulses of laser energy are delivered to the distal end of the optical fiber.
- Neodymium-YAG laser pulses of, for example, 20 nano ⁇ seconds width and 15 illi-joule energy per pulse at a rep. rate of 10 pulses per second are provided.
- a lens having a very short focal length of, for example, 0.5 mm is connected to the distal end of the optical fiber. The lens concentrates the pulses of laser energy to a focal point within the chamber.
- the laser energy is sufficiently great and the focal zone is sufficiently small so that the focused laser energy produces plasma at the focal point from the saline in the chamber.
- the generation of plasma creates Shockwaves that travel through the saline to the port where they strike and fracture tissue held at the port.
- a partially spherical concave inner wall of the chamber also receives Shockwaves. This wall reflects and because of its curvature concentrates those Shockwaves at the port thereby providing an additional Shockwave for fracturing tissue held at the port.
- FIG. l is a longitudinal cross-section of an embodiment of the present invention.
- FIG. 2 is a block diagram illustrating the use of a pulsed laser generator to provide the input energy to the fiber optic element of the surgical instrument.
- a surgical probe 10 of this invention has a tubular outside wall 12 with an outer diameter of approximately 2 millimeters (2 mm) and a wall thickness of approximately 0.25 mm. Within wall 12 there is an inner tubular wall 14 that also has a wall thickness of about 0.25 mm.
- Passageway 16 permits infusion of saline through the wall opening 18 into the operating area.
- Passageway 20 is an aspirating passageway. Fractured tissue and fluid are drawn in through the front port 22 and aspirated out through the passageway 20.
- a front wall 24 defines the distal end of the probe 10.
- An optical fiber 26 extends through the passageway 16 and has its distal end held in position by a opening in an insert 28.
- a lens 30 having a very short focal length is held in position by insert 28 at the distal end of optical fiber 26. Pulses of laser energy are delivered through optical fiber 26 and focused by lens 30 to a point P which is within chamber 32 at the distal end of probe 10.
- the laser energy that is focused by lens 30 is concentrated into a very small zone, sufficiently small so that the energy density required to create plasma from the saline is attained.
- that zone will be called a point P herein because it is such a small zone. It should be understood that the point P is not a geometric point, but a relatively small three dimensional zone.
- the focusing of these laser pulses at point P creates such an intense concentration of energy that the saline at the point P in the chamber 32 forms a plasma.
- the plasma formation generates a Shockwave that travels through the liquid medium (essentially saline) that fills chamber 32 at the distal end of probe 10.
- the Shockwave impinges on any tissue that is held at port 22 and causes tissue that is positioned there to fracture. Fractured tissue is aspirated through passageway 20.
- the insert 28 has a fairly complex structure and can, of course, be constituted by two or more inserts to the extent that such would facilitate fabrication and assembly. However, for present purposes the insert 28 can be considered a single insert. It has a proximal portion that is essentially cylindrical and serves to hold and position the laser fiber 26. It has a distal portion which includes the front wall 24 having a concave spherical inner surface 34. This spherical surface 34 is a portion of a sphere and extends around the axis of the fiber 26 down to approximately the line 36. The radius of curvature of this spherical segment 34 is such that the center of the radius falls approximately at the port 22.
- the spherical surface 34 will reflect that portion of a Shockwave that impinges on it toward the port 22 and because of the curvature tends to concentrate the reflected Shockwave at the port 22. In this fashion any shock provided by a reflected wave is maximized at the port 22 and serves to further fracture tissue held at the port 22.
- the front wall 24 is important to shield tissue from direct laser energy and light. Not all laser energy will be focused at the point P and thus it is important that there be a wall directly in front of the distal end of the laser fiber 26.
- Shockwaves travels to the point 22 at which tissue fracture occurs. It also travels out to contact the curved inner surface
- the reflected Shockwave is directed and concentrated at port 22 to provide a Shockwave that may further fracture any tissue held at the port 22.
- the distance between the point P and the wall 34 be at least three times as great as the focal distance between the lens 30 and the point P.
- the quartz material of the fiber 26 and lens 30 are less subject to damage than is the stainless steel of the insert 28.
- the curved wall surface 34 is preferably a spherical segment, it is possible that optimum design will call for deviation from a spherical segment in order to accommodate other dimensional requirements of the instrument and in order to better position the point at which the reflected Shockwave energy is concentrated.
- the creation of the plasma at point P generates a primary shock wave that travels out in all directions.
- the plasma necessarily collapses a short time after its creation.
- the collapse of the plasma generates a secondary shock wave.
- the secondary shock waves have a much smaller magnitude than the primary shock waves. As a result, the secondary shock waves are unimportant for the present invention.
- the reflected shock wave could serve to substantially reduce the magnitude of the primary shock wave created by the next successive pulse.
- the dimensions of the chamber 32 and the position of the focal point P should be selected to minimize this cancellation effect.
- the laser used to provide laser pulses is a Neodymium- YAG pulsed Q switched laser 30. It provides laser energy with a wavelength of 1,064 nano-meters.
- the laser energy provides pulses having a duration which ranges between two and thirty nano-seconds. Each pulse has energy between five and twenty milli-joules.
- the optimum trade-off between pulse waves and pulse energy depends upon how well the particular pulse can be focused. Accordingly, a twenty nano-second pulse width having five milli-joules of energy which is well focused could provide a better result than a fifteen nano-second pulse width with 5 twenty milli-joules of energy which is not as well focused.
- the pulses have a pulse repetition rate of approximately five to twenty pulses per second. Thus, the energy provided is between one-hundred milli-joules per second and four-hundred milli-joules per second.
- the presently preferred laser fiber 26 is one that has a 320 micron core and an overall 400 micron
- Lens 30 can be a micro lens known as a Selfoc® lens. Such a lens is available from SG America, Inc. of Som erset, New Jersey. A focal length of 0.5 mm is a useful focal length. A
- 25 plano-convex lens would be the preferred lens to use.
- lens 30 can be created by heating the
- an optical fiber to form a ball at the distal end.
- a ball can operate as a lens to focus the pulses of laser energy to a concentration sufficient to generate the plasma in the saline.
- One technique of creating this ball is to employ a carbon dioxide laser to provide laser energy at the distal end of the fiber. This energy will collect at the distal end of the fiber so as to melt the quartz of the laser fiber.
- this has to be done in a controlled fashion and, although applicant has created such a ball focal arrangement by examining the distal end of the fiber through a microscope as the laser - energy supplied builds up, applicant has not yet determined a technique where this can be practically done on a large scale basis.
- the cylindrical walls 12 and 14 and the insert 28 are all preferably made of stainless steel.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electromagnetism (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Laser Surgery Devices (AREA)
Abstract
Un instrument chirurgical en forme d'aiguille présente un orifice distal destiné à recevoir le tissu. L'extrémité distale d'une fibre optique s'étendant sur toute la longueur de l'aiguille est placée dans une chambre distale de cette dernière. La chambre communique avec ledit orifice. Des impulsions d'énergie laser sont délivrées à l'extrémité distale de la fibre optique. Une petite lentille prévue au niveau de l'extrémité distale de la fibre optique concentre les impulsions d'énergie laser dans un foyer situé dans la chambre qui est normalement remplie d'une solution saline. L'énergie laser est suffisamment importante et la zone focale est suffisamment petite pour que l'énergie laser concentrée produise un plasma au niveau du foyer à partir de la solution saline se trouvant dans la chambre. La génération de plasma crée des ondes de choc qui traversent la solution saline dans la chambre et viennent heurter le tissu maintenu au niveau de l'orifice de réception de tissu et le fracturent. La paroi interne de la chambre est un segment sphérique qui reçoit également les ondes de choc. Cette paroi réfléchit et, de par sa courbure, concentre ces ondes de choc au niveau de l'orifice de réception de tissu, une onde de choc supplémentaire étant ainsi créée pour fracturer le tissu maintenu au niveau de l'orifice. Le tissu fracturé conjointement avec le liquide d'irrigation est évacué par une passage d'aspiration.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21012994A | 1994-03-15 | 1994-03-15 | |
US08/210,129 | 1994-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995024867A1 true WO1995024867A1 (fr) | 1995-09-21 |
Family
ID=22781680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/003306 WO1995024867A1 (fr) | 1994-03-15 | 1995-03-15 | Concentration d'energie laser dans un instrument chirurgical a laser |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1995024867A1 (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000048525A3 (fr) * | 1999-02-19 | 2000-12-14 | Scimed Life Systems Inc | Dispositif de lithotritie extra-corporelle au laser avec aspiration |
US6517531B2 (en) | 2001-04-27 | 2003-02-11 | Scimed Life Systems, Inc. | Medical suction device |
WO2008073985A2 (fr) * | 2006-12-12 | 2008-06-19 | Zelickson Brian D | Dispositif a energie laser permettant le retrait de tissu mou |
WO2009135213A2 (fr) * | 2008-05-02 | 2009-11-05 | Zelickson Brian D | Dispositifs à énergie laser et procédés d'enlèvement de tissu mou |
US20200406009A1 (en) * | 2019-06-26 | 2020-12-31 | Boston Scientific Scimed, Inc. | Focusing element for plasma system to disrupt vascular lesions |
WO2024047455A1 (fr) * | 2022-09-02 | 2024-03-07 | Alcon Inc. | Dispositifs et procédés d'amélioration du suivi dans des procédures oculaires par laser |
US12232753B2 (en) | 2021-12-14 | 2025-02-25 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
US12274485B2 (en) | 2021-01-12 | 2025-04-15 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
US12274497B2 (en) | 2019-12-18 | 2025-04-15 | Bolt Medical, Inc. | Multiplexer for laser-driven intravascular lithotripsy device |
US12295654B2 (en) | 2021-06-01 | 2025-05-13 | Boston Scientific Scimed, Inc. | System and method for maintaining balloon integrity within intravascular lithotripsy device with plasma generator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0192833A2 (fr) * | 1985-02-22 | 1986-09-03 | Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung | Méthode et installation pour la destruction d'une concrétion |
DE3727003A1 (de) * | 1986-08-13 | 1988-02-25 | Messerschmitt Boelkow Blohm | Applikationsteil fuer ein starres oder flexibles endoskop |
WO1991006271A1 (fr) * | 1989-10-25 | 1991-05-16 | Jack Murray Dodick | Instrument chirurgical avec transducteur de puissance d'entree |
WO1993020895A1 (fr) * | 1992-04-10 | 1993-10-28 | Premier Laser Systems, Inc. | Appareil et procede de chirurgie oculaire |
EP0571306A1 (fr) * | 1992-05-22 | 1993-11-24 | LASER MEDICAL TECHNOLOGY, Inc. | Dispositif et procédé pour enlever des dépôts sur les parois de passages |
-
1995
- 1995-03-15 WO PCT/US1995/003306 patent/WO1995024867A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0192833A2 (fr) * | 1985-02-22 | 1986-09-03 | Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung | Méthode et installation pour la destruction d'une concrétion |
DE3727003A1 (de) * | 1986-08-13 | 1988-02-25 | Messerschmitt Boelkow Blohm | Applikationsteil fuer ein starres oder flexibles endoskop |
WO1991006271A1 (fr) * | 1989-10-25 | 1991-05-16 | Jack Murray Dodick | Instrument chirurgical avec transducteur de puissance d'entree |
WO1993020895A1 (fr) * | 1992-04-10 | 1993-10-28 | Premier Laser Systems, Inc. | Appareil et procede de chirurgie oculaire |
EP0571306A1 (fr) * | 1992-05-22 | 1993-11-24 | LASER MEDICAL TECHNOLOGY, Inc. | Dispositif et procédé pour enlever des dépôts sur les parois de passages |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6375651B2 (en) | 1999-02-19 | 2002-04-23 | Scimed Life Systems, Inc. | Laser lithotripsy device with suction |
US6726681B2 (en) | 1999-02-19 | 2004-04-27 | Scimed Life Systems, Inc. | Laser lithotripsy device with suction |
US7104983B2 (en) | 1999-02-19 | 2006-09-12 | Boston Scientific Scimed, Inc. | Laser lithotripsy device with suction |
WO2000048525A3 (fr) * | 1999-02-19 | 2000-12-14 | Scimed Life Systems Inc | Dispositif de lithotritie extra-corporelle au laser avec aspiration |
US8100892B2 (en) | 2001-04-27 | 2012-01-24 | Boston Scientific Scimed, Inc. | Medical suction device |
US6517531B2 (en) | 2001-04-27 | 2003-02-11 | Scimed Life Systems, Inc. | Medical suction device |
US8672928B2 (en) | 2001-04-27 | 2014-03-18 | Boston Scientific Scimed, Inc. | Medical suction device |
US7540868B2 (en) | 2001-04-27 | 2009-06-02 | Boston Scientific Scimed, Inc. | Medical suction device |
WO2008073985A2 (fr) * | 2006-12-12 | 2008-06-19 | Zelickson Brian D | Dispositif a energie laser permettant le retrait de tissu mou |
WO2008073985A3 (fr) * | 2006-12-12 | 2008-09-04 | Brian D Zelickson | Dispositif a energie laser permettant le retrait de tissu mou |
WO2009135213A3 (fr) * | 2008-05-02 | 2010-01-21 | Zelickson Brian D | Dispositifs à énergie laser et procédés d'enlèvement de tissu mou |
WO2009135213A2 (fr) * | 2008-05-02 | 2009-11-05 | Zelickson Brian D | Dispositifs à énergie laser et procédés d'enlèvement de tissu mou |
US20200406009A1 (en) * | 2019-06-26 | 2020-12-31 | Boston Scientific Scimed, Inc. | Focusing element for plasma system to disrupt vascular lesions |
US12186499B2 (en) | 2019-06-26 | 2025-01-07 | Boston Scientific Scimed, Inc. | Light guide protection structures for plasma system to disrupt vascular lesions |
US12280223B2 (en) | 2019-06-26 | 2025-04-22 | Boston Scientific Scimed, Inc. | Focusing element for plasma system to disrupt vascular lesions |
US12274497B2 (en) | 2019-12-18 | 2025-04-15 | Bolt Medical, Inc. | Multiplexer for laser-driven intravascular lithotripsy device |
US12274485B2 (en) | 2021-01-12 | 2025-04-15 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
US12295654B2 (en) | 2021-06-01 | 2025-05-13 | Boston Scientific Scimed, Inc. | System and method for maintaining balloon integrity within intravascular lithotripsy device with plasma generator |
US12232753B2 (en) | 2021-12-14 | 2025-02-25 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
WO2024047455A1 (fr) * | 2022-09-02 | 2024-03-07 | Alcon Inc. | Dispositifs et procédés d'amélioration du suivi dans des procédures oculaires par laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0634947B1 (fr) | Appareil de chirurgie oculaire | |
US5644585A (en) | High repetition rate Eribum-YAG laser for tissue ablation | |
US11439465B2 (en) | Surgical laser systems and laser lithotripsy techniques | |
US5151098A (en) | Apparatus for controlled tissue ablation | |
US5224942A (en) | Surgical method and apparatus utilizing laser energy for removing body tissue | |
US5324282A (en) | Surgical instrument with input power transducer | |
US5738676A (en) | Laser surgical probe for use in intraocular surgery | |
US5906611A (en) | Surgical instrument with laser target | |
US6544254B1 (en) | Combination ultrasound and laser method and apparatus for removing cataract lenses | |
US5074861A (en) | Medical laser device and method | |
US4694828A (en) | Laser system for intraocular tissue removal | |
AU626339B2 (en) | Multiwavelength medical laser system | |
EP3231385B1 (fr) | Dispositif de coupage au laser avec une pointe d'émission pour l'utilisation sans contact | |
US20020013574A1 (en) | Method and arrangement for phacoemulsification | |
KR20000010666A (ko) | 광-음향 혈전 용해법 | |
EP0397777A1 (fr) | Procede et appareil de chirurgie au laser | |
WO1991010403A1 (fr) | Procede et appareil de fragmentation de substances dures | |
WO1995024867A1 (fr) | Concentration d'energie laser dans un instrument chirurgical a laser | |
US20220370130A1 (en) | Surgical laser systems and laser lithotripsy techniques | |
US6083192A (en) | Pulsed ultrasound method for fragmenting/emulsifying and removing cataractous lenses | |
RU2157158C2 (ru) | Устройство для офтальмохирургических операций | |
AU699994B2 (en) | Apparatus and method for performing eye surgery | |
CN117083028A (zh) | 用于微创手术的飞秒激光器装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |