+

WO1995019109A1 - Organic disease control system - Google Patents

Organic disease control system Download PDF

Info

Publication number
WO1995019109A1
WO1995019109A1 PCT/US1995/000401 US9500401W WO9519109A1 WO 1995019109 A1 WO1995019109 A1 WO 1995019109A1 US 9500401 W US9500401 W US 9500401W WO 9519109 A1 WO9519109 A1 WO 9519109A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagule
stimulus
disease control
disease
encapsulant
Prior art date
Application number
PCT/US1995/000401
Other languages
French (fr)
Inventor
Richard J. Ii. Stoner
Richard J. Stoner
James C. Linden
Kenneth W. Knutson
John H. Kreisher
Original Assignee
Envirogen, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envirogen, Inc. filed Critical Envirogen, Inc.
Priority to EP95907397A priority Critical patent/EP0739165A1/en
Priority to AU15643/95A priority patent/AU1564395A/en
Publication of WO1995019109A1 publication Critical patent/WO1995019109A1/en
Priority to US08/680,320 priority patent/US6193988B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/06Coating or dressing seed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action

Definitions

  • this invention relates to organic techniques for controlling disease in growing plants. Specifically the invention focuses upon techniques to organically control diseases which attack the potato plant under field conditions.
  • the potato is unique in several regards. While it is a crop plant which has great commercial demand, it is also a tuber which is very vulnerable to fungus, bacteria, and viral diseases and often has a relatively short growing season. As it relates to the present invention, the potato's short growing season makes its early development very important to a successful crop. Although the present invention may be applied to a great variety of propagules, the potato's often extreme sensitivity highlights the benefit and function of the present invention.
  • the potato is very vulnerable to a variety of diseases. This is in part due to the fact that the potato is tuber propagated. Its sensitivity may be so extreme that at times entire crops have been impacted by the presence of only one disease in a specific area. Because these diseases can be spread very easily, the entire agricultural system with respect to potatoes has evolved somewhat uniquely. For instance an entire regulatory system has evolved in order to minimize the risks posed by diseases for this particular crop plant. As one example, the concern over introducing a disease to a crop may be so extreme that regulations have been enacted which make it literally illegal to import used farming equipment for use with the potato crop from one state to another. Additionally, the regulatory system at times limits the number of reproductions that a particular farmer may allow. This in essence mandates that every few years an entirely new, test-tube grown potato crop must be utilized by the farmer.
  • the second approach to the problem of disease control has been very traditional — the use of pesticides. Often, this solution has not always been acceptable; consumers have expressed a desire for organically grown produce free of pesticides. In addition, the use of pesticides, although often fairly effective, has been accompanied by other problems. First, the pesticides need to be applied. This can be challenging in that broadcast application on a field basis may not provide the concentrated amount necessary at the particular plant. Second, to the extent the pesticide does not break down and remains in the soil, it may produce byproducts, or residual pesticide which can pose a problem of contamination. Thus pesticides can often result in unacceptable contamination of the remaining soils after the crop has been harvested.
  • the present invention takes an entirely different approach to the problem of the disease control. It presents a system which utilizes naturally occurring substances which are not harmful to the propagule and yet which trigger that propagule's own natural defense mechanisms. Thus, the propagule itself is prompted to provide a defensive substance in the vicinity of the propagule so that when a disease enters this vicinity, it is controlled even before the propagule may sense its presence.
  • the invention acts in a manner to intensely trigger the plant's natural defensive mechanisms.
  • the stimulating substances may have been known for years, by causing an intense stimulation the present invention is able to achieve an entirely different and unexpected result.
  • the present invention discloses both the fundamental understandings and some specific arrangements which achieve a level of organic disease control for a propagule.
  • the invention involves a system including an encapsulated propagule (such as a potato minituber) .
  • This encapsulant includes an intense stimulus such as chitin.
  • the intense stimulus is not only non-damaging to the propagule, it also acts through various means to cause the propagule itself to release an amount of a -naturally defensive substance.
  • this naturally defensive substance may be chitinase.
  • the naturally defensive substance is released regardless of whether there is any disease present and is kept within the vicinity of the propagule so it is available when needed.
  • the naturally defensive substance is sufficient to disable or destroy the disease's ability to negatively impact the propagule.
  • the invention also encompasses techniques for varying the system to accommodate a great variety of specific propagules, diseases, and needs. Once the disease is disabled, the system can automatically avoid impacting the propagule's growth. The propagule is allowed to naturally develop free from the effects of the disease. In this fashion, a very natural result is achieved. The system may thus assure an organically grown, naturally developed product.
  • a goal is to avoid the use of chemicals such as pesticides, to avoid any genetic changes within the propagule itself, and to utilize the plant's own defensive capability in achieving disease control.
  • a more specific goal is to provide an insulated impact on the plant.
  • one goal is to allow an external stimulus to trigger the propagule's own processes and achieve disease control.
  • another goal is to avoid any change in the natural growth development of the propagule.
  • the present invention avoids any genetic changes and merely triggers the propagule's own natural processes.
  • a further goal is to allow the plant to develop naturally and not have any changes except that of keeping the disease from negatively impacting the propagule's development.
  • a goal is to allow the plant to grow naturally without either a positive or a negative impact on its own developmental cycles.
  • Another broadly stated goal of the present invention is to provide a protection which lasts until the propagule is ready to do without that protection.
  • the present invention affords an encapsulation which may exist over a several week period until that propagule has grown beyond a need for it. Naturally this is achieved while avoiding any utilization of potentially harmful substances.
  • Yet another general goal of the invention is to minimize the impact on the growing environment.
  • the invention concentrates its effects at the most important locations, near the propagule. This may reduce field application costs, and may avoid the residual impacts of using a broadly applied substance.
  • it is a goal to avoid any application of the end disease control substance. Rather the goal is to utilize a naturally occurring intermediate substance which triggers the plant to achieve its own disease control.
  • a further object of the invention is to take into account regulatory, unknown, and psychological factors which lead to broad commercial acceptance.
  • the invention has as a goal the utilization of naturally occurring substances to cause the triggering of the effect within the tissue itself. This is achieved through an insulated approach whereby a stimulus acts through several different mechanisms before causing the existence of the naturally defensive substance. Thus, the placement of unnatural, potentially harmful, or otherwise unnecessary substances near the propagule is completely avoided.
  • Figure l is a cross section view of an embodiment of the encapsulation according to the present invention.
  • Figure 2a-2d are sequential views of the developmental cycle of a potato plant according to the present invention.
  • Figure 3 is an enlarged view of the encapsulation shown in figure 1 showing a tegumented outer casing construction.
  • Figure 1 shows a cross-section view of an encapsulated tuber. This represents a preferred embodiment of the present invention.
  • encapsulant (1) may completely surround some propagule such as tuber (2) .
  • Encapsulant (1) may also include or be composed of a non-damaging stimulus (3) . As discussed in detail later on, non-damaging stimulus (3) acts to organically control disease and thus achieve some of the goals of the present invention.
  • non-damaging stimulus (3) may be provided in a vicinity of the propagule.
  • This vicinity (4) may represent some spherical volume surrounding tuber (2) (as shown) or may merely be within some distance of the propagule. This distance should, however, be sufficiently close so that non-damaging stimulus (3) or its effects can, through some mechanism, be communicated to the propagule so as to affect it.
  • non-damaging stimulus (3) acts to provoke the propagule to release a natural defensive substance (5) . Since the invention is fundamental in nature and thus encompasses a great variety of types or combinations of substances, naturally, the specific distances encompassed by the term "vicinity" includes a large variety.
  • the term is functionally based to allow for a variety of situations through which non-damaging stimulus (3) might cause the desired affect on the propagule. For those substances which act at a large distance, the vicinity will accordingly be very large. Conversely, in instances where the particular substances chosen act only within a short distance, the vicinity will be appropriately smaller. Those skilled in the art could readily ascertain and compute or empirically determine when this function were present. Thus the term "vicinity" acts flexibly depending upon the particular mechanisms involved, the particular type of substances comprising the non-damaging stimulus, and the naturally defensive substance released by the particular propagule.
  • Naturally defensive substance (5) is not fully confined and may travel in a relatively unimpeded fashion away from the propagule such as tuber (2) .
  • naturally defensive substance (5) may be concentrated in the vicinity of tuber (2) .
  • naturally defensive substance (5) may travel in some fashion away from tuber (2) so that it may act at some distance from tuber (2).
  • the distance at which naturally defensive substance (5) acts may vary dependent upon the particular substances, diseases, propagules, and environments involved. It may also travel in primarily one direction (such as up) if that is the direction the particular disease tends to come from.
  • encapsulant (1) may be accomplished by proper shaping of encapsulant (1) .
  • an inverted cone shape may be utilized.
  • encapsulant (1) may not only completely envelope tuber (2) but it may substantially surround tuber (2) .
  • tuber (2) is protected from all directions at some distance.
  • encapsulant (1) may include or have separately applied to it some type of outer casing (6) .
  • Outer casing (6) may act in a variety of ways. First, it may provide for a seal to further protect tuber (2) both mechanically and biologically. In the event outer casing (6) acts as a seal, it may be important to balance the degree to which outer casing (6) actually seals against the transfer of gases, liquids and the like. As those skilled in the art would readily appreciate, it may be important to allow some level of gas exchange between the outside environment through outer casing (6) . It may also be appropriate to substantially seal tuber (2) against such effects.
  • outer casing (6) is actually some conditioned portion of encapsulant (1)
  • the amount of sealing may be adjusted by the particular processes used in drying or curing encapsulant (1) . Although this is discussed in more detail later with respect to the use of flaked chitin and the particular processes used to create encapsulant (1) , it may be readily understood that by more rapidly or completely drying encapsulant (1) outer casing (6) may be formed in a more or less permeable manner. Again, the variation in outer casing (6) is broad as it may be adjusted as appropriate depending upon the needs of the particular propagule or the environment involved.
  • encapsulant (1) By appropriately conditioning encapsulant (1) or separately applying outer casing (6) it may even be possible to achieve an inner environment of encapsulant (1) which is moist and conducive to plant growth while at the same time having an outer casing (6) which is relatively dry and further shields tuber (2) from undesirable impacts.
  • encapsulant (1) may have a variable size and shape. Utilizing the particular substances and propagules of the preferred embodiment, it may be appropriate to size encapsulant (1) large. This may encompass the sizing of from 1/2" to 1-1/2" in diameter when spherical encapsulation is utilized in conjunction with the particular propagule and substances of the preferred embodiment. Again, the term “large” encompasses a broad variety of sizes as it must necessarily be allowed to vary depending upon the particular type of propagule involved, the particular defensive mechanisms available, and even the particular substances and environments anticipated. As those skilled in the art could readily ascertain, the term is functionally based to allow for a variety of situations through which encapsulant (1) might assist in achieving one or more of the desired affects for the propagule.
  • encapsulant (1) be sized sufficiently large so that naturally defensive substance (5) might adequately protect the propagule or encapsulant (1) might be sized sufficiently large to allow the propagule to significantly develop before substantially exceeding the effects of encapsulant (1) and thus being exposed directly to the outside environment or encapsulant might be sized sufficiently large to accommodate easy planting by the farmer.
  • encapsulant might be sized sufficiently large to accommodate easy planting by the farmer.
  • Those skilled in the art could compute or empirically determine this aspect. As to when a propagule is considered to have substantially developed, this will vary based upon when the propagule is able to withstand disease on its own.
  • This age is sufficient to allow the potato's own natural defenses to develop so that by the time it breaks out of encapsulant (1) it is more readily able to overcome the effects of disease as may exist in the external environment. Again, this may vary based upon the particular diseases, propagules, and substances involved in any specific application.
  • encapsulant (1) In addition to actually locating non-damaging stimulus (3) in vicinity (4) of tuber (2) , encapsulant (1) also serves to enable naturally defensive substance (5) to remain proximate to the propagule. Again, by the term "proximate”, a variety of distances is intended once again depending upon the particular substances, plants, and environments involved. Functionally, it is important that a sufficient amount of naturally defensive substance (5) remain near the propagule so that disease is unable to substantially impact the propagule. Those skilled in the art could readily ascertain these limitations and could even compute or empirically determine when the necessary function is accomplished.
  • the function of limiting substantial impacts upon the propagule may be accomplished by either acting at a distance from the propagule or by acting with sufficient intensity near the propagule so that the ultimate result — disease control — is achieved.
  • the distance within which naturally defensive substance (5) may remain proximate may be coextensive or may be a separate distance (larger or smaller) from that distance defining a vicinity within which non-damaging stimulus (3) is located. As shown in Figure 1, non-damaging stimulus (3) is located throughout and within encapsulant (1) .
  • Naturally defensive substance (5) is also located within encapsulant (1), however, it is located in a smaller volume as shown.
  • the particular substances selected for encapsulant (1) should enable naturally defensive substance (5) to be unaffected as to its ability to destroy or disable disease.
  • encapsulant (1) may allow naturally defensive substance (5) to physically remain near the propagule. Chemically, it may avoid particular substances or include other substances which allow naturally defensive substance (5) to remain effective. For instance, since certain enzymes can break down certain naturally defensive substances; these enzymes may not be present within encapsulant (1) or proximate to the propagule to enhance the ability of naturally defensive substance (5) to continue to function.
  • Encapsulant (1) may contain a non-damaging stimulus (3) so that it may cause the propagule to release naturally defensive substance (5) substantially continuously. Unlike many chemical impacts upon a plant which are transient in nature, the present invention causes the plant to release a naturally defensive substance over a fairly long period of time. This release may be continuous so that the plant is constantly generating a larger and larger amount or additional amounts of naturally defensive substance (5) . This not only allows the propagule to increasingly expand the area proximate to it within which disease is controlled, it also may allow it to prepare itself for exposure to the outside environment. Since it is anticipated that tuber (2) will be placed within encapsulant (1) in a disease-free environment, tuber (2) may begin to generate naturally defensive substance (5) even prior to its being planted.
  • the tuber (2) may already have naturally defensive substance (5) proximate to it when it is exposed to diseases and other aspects through planting. Further, through the planting system of the present invention, the propagule will first be exposed to the potential of disease after it has already significantly developed the ability to control disease. Thus, storage and the like as a may be typically encountered may naturally enhance the -desirability and abilities of the planting system according to the present invention.
  • the materials selected for encapsulant (1) may also be selected so as to allow encapsulant (1) to be somewhat flexible. Not only may some degree of flexibility allow encapsulant (1) to continue to surround tuber (2) even though subjected to mechanical shocks from handling and the like, but it may also allow encapsulant (1) to adapt somewhat as tuber (2) grows. For instance, as shown in Figures 2a-2d it can be seen that tuber (2) grows and eventually expands beyond the boundaries of encapsulant (1) . As shown in Figure 2b, to some extent encapsulant (1) may flex to accommodate the changing size and ⁇ hap ⁇ of tuber (2) . The degree with which encapsulant (l) is considered flexible will of course vary based upon the substances and propagules involved.
  • encapsulant (1) may be made of some flexible substance or may be constructed so as to be flexible.
  • the flexible substance may be contained throughout encapsulant (1) or only in outer casing (6) .
  • this flexible substance may be both the flake-sized chitin which also serves as non-damaging stimulus (3) and the pentosan (8) or binder.
  • the construction technique may allow for flexibility. Again, through the use of flaked chitin, a tile-like or tegumented construction may be effected wherein each flake of chitin may move and shift and yet still maintain the appropriate sealing at outer casing (6) .
  • the present invention meets not only the disease control desires but also the ability to accommodate the needs of the farmer and allows for planter handling while avoiding damage to encapsulant (1) .
  • the development shown in Figures 2a-2d demonstrates, in growing beyond the confines of encapsulant (1) , the propagule is achieving completely natural growth. Growth is not altered, enhanced, or reduced by the effects of the chitin. Rather, the chitin merely acts to prevent disease from negatively impacting the propagule. This disease may be fungal as well as viral as it is possible that chitinase acts to kill certain viral concerns.
  • encapsulant (1) can reduce the need for field fertilization or preparation and can make it easier for the farmer to plant the propagule.
  • the end result may actually allow for more automated planting and may thus reduce the labor and cost which most farmers face.
  • the design may accommodate the farmer's need to be able to store the propagules and may serve to maintain them in a storage environment with diminished concerns.
  • tuber (2) prior to planting the farmer may receive a planting system which greatly simplifies his or her tasks.
  • the resulting oat substance is then repeatedly rinsed in 50 milliliters of water (distilled or not) . This may be accomplished three times to yield an oats-based binding substance. This substance is then further soaked in 70 milliliters of some acid such as hydrochloric acid and again rinsed with 50 milliliters of water. This final rinsing may remove oligosaccharides and may appropriately establish the pH factor of the resulting substance. In this regard it should be noted that for potatoes a pH of approximately 4.6 to 5.5 seems appropriate. The resulting polysaccharide substance may then be mixed with one gram of clean, practical grade chitin.
  • chitin serves two purposes, namely, providing the non- damaging stimulus as discussed earlier as well as affording the tegumented construction also discussed earlier, it may be best to utilize practical grade, flaked chitin rather than chitin powder.
  • some type of nutrient concentrate such as "Hydrosol” may be added along with two grams sucrose, and one gram of amino acids. Each of these serve as an appropriate fertilizer as those skilled in the art would readily understand.
  • To the resulting substance 1/2 teaspoon of activated carbon may be added and again mixed with three grams of practical grade, flaked chitin. The final substance is then utilized to form the appropriately sized encapsulant around a disease-free potato minituber which is furnished for eventual planting.
  • the resulting odorless encapsulated propagule may be dried above 34° in a humidity of less than 20% for about 36 hours. This results in an appropriate outer casing as discussed earlier. After dried, it has been found that the encapsulated minituber will store for weeks or months without negative effect. Further, once planted, encapsulant (1) not only acts flexibly but also causes the propagule to control disease in an enhanced fashion.
  • encapsulant (1) may include not only non- damaging stimulus (3) but also other substances. As those skilled in the art would readily appreciate these other substances may enhance the overall planting system.
  • One of the unique substances employed is that of activated carbon.
  • the activated carbon serves a variety of functions. First, its nature allows air or other substance retention for ultimate release. In this regard it should be understood that the activated carbon or some other similar substance might be included within encapsulant (1) in an impregnated fashion so as to facilitate time-release or contact-based release of the particular substances when desired. Not only might the activated carbon release air to allow more complete sealing of outer casing (6) , it may also release nutrients or even other chemicals should such be deemed desirable.
  • This release may occur over time or only when tuber (2) begins to grow and comes into contact with portions of encapsulant (1) .
  • oxygen molecules may be stored in the activated carbon to be released to activate primordia root development and inhibit growth of anaerobic potato pathogens.
  • the activated carbon also controls ion bonding for phosphate, iron, and copper.
  • the activated carbon may act as an absorbent itself to further minimize the migration of toxins, nitrates, contaminated ground water or other substances toward the propagule.
  • the activated carbon is a natural substance which does not leave any undesirable residue or materials in the field after the propagule has ultimately grown and been harvested.
  • both the carbon and the chitin may act simultaneously to protect the propagule.
  • Encapsulant (1) may also contain other substances. While the nutrients are discussed to be primarily additives such as sucrose and the like, they may also encompass hormones, pesticides (fungicides, insecticides, herbicides, etc.) and other such substances. Admittedly, although pesticide usage is desired to be minimized through the present invention, the present invention does accommodate such usage in instances -where it is necessary or desirable. Particularly is should be understood that it may not be possible to control all diseases or viruses through the organic means described in this invention. Thus combinations of effects may be desired. Further, encapsulant (1) might also include enzymes, acids, alkalines, and other fluids or substances as may be desirable for the specific propagule and environments involved.
  • a unique aspect of encapsulant (1) is that it utilizes a natural binding material.
  • the binding material may be derived from the oats and may be pentosan.
  • the pentosan serves to flexibly hold the other substances of encapsulant (1) . It also tends to break down when placed in the presence of water.
  • the pentosan binder tends to yield more readily to the needs of the propagule.
  • the binder is not made so viscous as to inhibit natural development of the propagule; it's viscosity is believed to be less than a few thousand (ie. 4000) cps viscosity.
  • spacing substance to hold the binder material away from the propagule since it may be water absorbent.
  • a spacer is not necessary, if included it might be desirable that such a spacer not be a water absorbent so as to avoid drying out tuber (2) .
  • the binding material may also serve — either alone or in conjunction with other substances — as a medium through which other substances may be communicated to the propagule and through which yet other substances (particularly the naturally defensive substance) may be transported or communicated from the propagule.
  • a unique aspect of such communications as envisioned for the preferred embodiment, is that these communications and the communication medium may be controlled or controllable, that is, both the timing and level of such communication may be affected externally. This is accomplished by utilizing a substance which when dry can close or reduce the pathway to communicate substances to or from the propagule and yet when moistened actually facilitates such communications. While a variety of materials may exhibit this property, in the present embodiment pentosan is utilized.
  • pentosan a natural substance as discussed earlier, it also exhibits the property of being able to block or reduce osmotic or other communication when dry while yet remaining able to be re-moistened and thus re-open the communication pathways. Not only does its viscosity change as may be necessary to facilitate natural development of the propagule, the entire communication of stimulants, naturally defensive substances, and other substances may thus be controlled.
  • This control may include establishing a level or time of communication and thus the level or time of the ensuing process or result. The degree of such communication may be adjusted by specifying the amount of drying (and, therefore, the amount of communication) when constructing the encapsulant or the amount of moistening after it has been constructed.
  • the encapsulant and communication medium may not be completely dried.
  • the non-damaging stimulant may be fully communicated to the propagule even prior to planting so that it may build up some amount of the naturally defensive substance in advance of planting and exposure to disease and other harmful substances.
  • greater drying may be accomplished to harden an outer casing and not only enhance its protective effect but to also reduce the communication of the non-damaging stimulant to the propagule.
  • the timing may be controlled by allowing the introduction of another substance such as water to open the communication pathway. Since the introduction of water may cause the growth process to commence, this may conveniently coordinate the two events to occur simultaneously.
  • the arrangement may serve to adjust the mechanical, chemical, and even biological level or timing of protection afforded the propagule.
  • the pentosan When exposed to water either through planting or intentionally to enhance disease control in advance of planting, the pentosan has reduced viscosity and may also activate the communication pathway. This may allow the stimulant, nutrients, or other substances to affect the propagule. Again for the preferred embodiment each of these may be controlled either at the point of manufacture or by the farmer prior to or upon planting as appropriate for the particular circumstances.
  • an encapsulant according to the preferred structure may form outer casing (6) .
  • outer casing (6) involve a combination of flaked chitin (7) and pentosan (8) .
  • Flaked chitin (7) serves to form the tile-like or tegumented construction which assists in sealing encapsulant (1) from the environment at its exterior.
  • Flaked chitin (7) may be held together by pentosan (8) at various locations. This may not only allow outer casing (6) of encapsulant (1) to flex and still maintain some type of seal but it also may act as a seal while still allowing some degree of gas exchange.
  • the pentosan has been constructed of primarily of polysaccharides, it is believed that either poly- or oligo- saccharides may be utilized.
  • the oats-based binder may also be composed of or include glutaraldehyde.
  • the binder or some other substance in encapsulant (1) may serve as an osmotic pathway and thus act as some type of communication medium through which non-damaging stimulus (3) might affect the propagule.
  • the communication medium is shown as the material comprising encapsulant (1) , it need not be. Further, this communication medium may also allow the unimpeded release of naturally defensive substance (5) . This may occur through a variety of mechanisms but importantly, the communication medium should not substantially restrict the ability of the propagule to release naturally defensive substance (5) .
  • the non-damaging stimulus (3) which is provided in vicinity (4) is chitin.
  • This particular substance has been selected because it yields the appropriate response for the particular potato propagule involved.
  • chitin stimulates the release of a naturally defensive substance from a potato tuber.
  • the chitin itself does not act upon the disease, rather, it causes the propagule to respond in such a fashion that the propagule itself controls the disease.
  • flaked chitin encapsulant (1) can be constructed so as to achieve the tegumented exterior which assists in sealing tuber (2) from the environment. Additionally the chitin is intensely provided so that it sufficiently triggers the release of naturally defensive substance (5) in order to achieve the result of disease control.
  • the term "intensely” is functionally based as the specific mechanisms, substances, propagules, and environments may vary. While extraordinarily sensitive reactions may be discovered, as yet it appears that with the combination of chitin and the potato tuber the stimulation must be intense to the degree indicated in order to achieve the function of disease control. Again, those skilled in the art could readily ascertain when the function were present and could even compute or empirically determine when it were accomplished.
  • the functionally based aspect for the preferred embodiment is that the non-damaging stimulus (3) be provided to a sufficient degree near or in vicinity (4) of the propagule so as to cause disease control.
  • non-damaging stimulus (3) acts to cause the propagule to control certain diseases.
  • This disease control may result in either killing the disease or in some fashion disabling it so that it may not affect the propagule.
  • This control is further achieved from a natural substance which is emitted by the propagule's own processes. This natural substance thus acts defensively to protect the propagule from disease or other ill effects.
  • the chitin touches the exterior of tuber (2), it is believed that the chitin impinges upon receptors in the plasmalemma which interact with a phosphoinositide signalling system.
  • the oligosaccharides bind to receptors on the potato and induce enzyme production through a G-protein, inositoltriphosphate calcium flux process called signal transduction.
  • Molecules are formed which interact with the cytoplasm of the cell to cause the release of calcium from the cell's endoplasmic reticulum.
  • This calcium is regarded as a secondary messenger or intermediate stimulant which may directly or indirectly interact with the cell nucleus to cause the release of messenger RNA.
  • This mRNA may code for chitinase through a process involving particular enzymes.
  • enzymes including protease inhibitors, phenylalanine lyase, chitinase, or B 1,3 glucanase
  • mRNA is believed to act also as an intermediate stimulant to ultimately result in the release of enzymes such as chitinase from the cell through the cell wall.
  • the chitin acts to provoke the release of naturally defensive substance (5) .
  • the entire process is not fully understood and may involve the combination of certain enzymes, through such basic understanding it is believed that it should be possible to vary the particular stimulus to suit the various diseases and plants. Although this process is somewhat akin to an immune reaction it is not entirely analogous to it.
  • the chitin is a naturally occurring substance. Chitin occurs.on insects and shellfish in great abundance. Second, the chitin is a non-damaging substance in that it is not an analog of the disease but rather merely something which causes the release of naturally defensive substance (5) which then may act upon the disease. The chitin will not likely be controversial nor will it have any propensity to cause disease on its own accord.
  • the mechanisms described are selected to further insulate the propagule from outside effects.
  • the non-damaging stimulus is less likely to be undesirable. Rather, an intermediate stimulus such as the calcium or the messenger RNA may be involved. This might occur either within the cell or external to the cell as may be readily appreciated.
  • an intermediate stimulus such as the calcium or the messenger RNA may be involved. This might occur either within the cell or external to the cell as may be readily appreciated.
  • the present process involves an intermediate stimulus within the cell and then a second stimulant from the cell nucleus itself. Each of these may be caused to exist within the cell's cytoplasm without damaging the cell wall. This specific process may also involve an intermediate stimulant which is a material from the cell nucleus, namely, messenger RNA.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Soil Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A planting system involving a non-damaging stimulus (3) which is placed in the vicinity of a propagule (2) causes a naturally defensive substance (5) to be produced by the propagule. This substance may exist within an encapsulant (1) for a period of time so that the propagule may have enhanced disease control until it develops sufficiently to fend for itself. In one embodiment a large encapsulant surrounds a potato tuber. This encapsulant may include chitin to cause the release of chitinase through intermediate stimulants such as mRNA and activated carbon to absorb or release particular substances. The encapsulant is bound through the use of pentosan which acts with flaked chitin to achieve an outer casing and further protect the propagule both mechanically and chemically.

Description

ORGANIC DISEASE CONTROL SYSTEM
I. TECHNICAL FIELD
Generally this invention relates to organic techniques for controlling disease in growing plants. Specifically the invention focuses upon techniques to organically control diseases which attack the potato plant under field conditions.
II. BACKGROUND ART
In any crop production endeavor, it has been desirable to produce not only high quantities, but also disease-free yields. These goals can be fairly easy to achieve or may be quite difficult depending upon the specific plant types involved. Often the farmer need only plant the beneficial specimens in a nurturing environment. The cultivars themselves then may develop relatively free from disease with little outside assistance. This can be especially true for cultivars or propagules which are reproduced through seed propagation. Host of the time the seed coating itself acts as a protective environment which allows the juvenile propagule not only to be stored relatively disease free, but also to begin its growth in a somewhat protected environment. The problem of disease control is, however, much more challenging for propagules which do not have the benefit of some shell-like protective coating. One group of propagules which do not have a shell-like coating is called tubers. Tubers include crop plants such as potatoes. Of this group, much attention has focused upon the problem of disease control for the potato.
The potato is unique in several regards. While it is a crop plant which has great commercial demand, it is also a tuber which is very vulnerable to fungus, bacteria, and viral diseases and often has a relatively short growing season. As it relates to the present invention, the potato's short growing season makes its early development very important to a successful crop. Although the present invention may be applied to a great variety of propagules, the potato's often extreme sensitivity highlights the benefit and function of the present invention.
As mentioned, the potato is very vulnerable to a variety of diseases. This is in part due to the fact that the potato is tuber propagated. Its sensitivity may be so extreme that at times entire crops have been impacted by the presence of only one disease in a specific area. Because these diseases can be spread very easily, the entire agricultural system with respect to potatoes has evolved somewhat uniquely. For instance an entire regulatory system has evolved in order to minimize the risks posed by diseases for this particular crop plant. As one example, the concern over introducing a disease to a crop may be so extreme that regulations have been enacted which make it literally illegal to import used farming equipment for use with the potato crop from one state to another. Additionally, the regulatory system at times limits the number of reproductions that a particular farmer may allow. This in essence mandates that every few years an entirely new, test-tube grown potato crop must be utilized by the farmer.
Even these extreme precautions often break down. When this happens if even one potato tuber is discovered to be infected by a disease, typically the entire crop must be destroyed and the crop residue rendered sterile. Some crops are even gamma ray irradiated to avoid the spread of that disease. Once this is accomplished the farmer must purchase certified seed tubers to begin a new growing cycle. While naturally the purchase of these certified seed tubers could be used every season, it is not economical to do so. Instead the potato farmer typically plants the offspring of that first season and continues that cycle for several years until, by regulation, they must start again with seed tubers which have been grown in essence in laboratory conditions and therefore are certified to be disease free.
As can be seen with respect to potato crops, the problem of disease control can be acute. In spite of these needs, there is also a need to minimize one's utilization of chemicals, pesticides, additives, and the like with respect to food production. It has become very desirable for any crop production intended for consumptive use to be able to be grown organically or at least to be grown in an environment which minimizes the utilization of unnatural effects such as the use of pesticides (fungicides, insecticides and herbicides) , genetically engineered changes, irradiation, and the like. While the desirability of a completely naturally grown product can rarely be debated, the actual implementation of these desires has, on a large scale, been very difficult to realize until the present invention. This has been especially true for very sensitive crops such as the potato. The present invention presents a system for organically controlling disease which may have particular applicability, but not be limited to, potato crops.
As mentioned, the desire for disease control has existed for years. Until the present invention two key techniques were prevalent for crops such as the potato crop. The regulatory approach mentioned earlier attempts to minimize the spread of undesirable diseases. This approach has met with only limited success. There still exist outbreaks of disease. Naturally, these vary in location and time; at present several concerns are bacteria ring rot and potato virus Y for the potato crop. Basically it simply has not been possible to completely eliminate the spread of disease through regulatory approaches. In addition, as markets have evolved, the demand for crops which are less likely to contain any disease has increased. Thus, while most regulatory approaches permit the utilization of a crop such as the potato to be reproduced for up to six growing seasons before its replacement with new, test-tube grown seed tubers, the consumers themselves have pushed for earlier crops such as those occurring in the third year.
The second approach to the problem of disease control has been very traditional — the use of pesticides. Often, this solution has not always been acceptable; consumers have expressed a desire for organically grown produce free of pesticides. In addition, the use of pesticides, although often fairly effective, has been accompanied by other problems. First, the pesticides need to be applied. This can be challenging in that broadcast application on a field basis may not provide the concentrated amount necessary at the particular plant. Second, to the extent the pesticide does not break down and remains in the soil, it may produce byproducts, or residual pesticide which can pose a problem of contamination. Thus pesticides can often result in unacceptable contamination of the remaining soils after the crop has been harvested.
The present invention takes an entirely different approach to the problem of the disease control. It presents a system which utilizes naturally occurring substances which are not harmful to the propagule and yet which trigger that propagule's own natural defense mechanisms. Thus, the propagule itself is prompted to provide a defensive substance in the vicinity of the propagule so that when a disease enters this vicinity, it is controlled even before the propagule may sense its presence.
This is an entirely different approach from the main efforts in this field. By utilizing a known, naturally occurring trigger substance such as chitin, the invention acts in a manner to intensely trigger the plant's natural defensive mechanisms.
Although the stimulating substances may have been known for years, by causing an intense stimulation the present invention is able to achieve an entirely different and unexpected result.
As mentioned, others may have utilized the particular substances involved. Even those inventions which utilize the chitin material have utilized it for vastly different purposes and had not applied it in the intense manner of the present invention. Their techniques have not been directed toward and have not achieved the unique results of the present invention. Rather they have sought completely different results. For instance, US Patents No. 4,812,159 and 4,964,894 to Freepons each sought to utilize chitosan (deacetylated chitin) to change the growth of specific plants. Contrary to the goals of the present invention, these references are aimed at altering a plant's natural growth and development; they also involve applying chitin at levels thousands of times less than the present invention. Similarly, the present invention takes an entirely different approach from that disclosed in US Patent No. 4,940,040 to Suslow in which genetically-altered bacteria were placed near a plant. The resultant man-made bacterial strains of Suslow take an entirely different direction from the organic approach of the present invention. Perhaps most illustrative of the vastly different directions taken by some is contained in US Patent No. 4,670,037 to Kistner. Somewhat like the Suslow reference, this reference involves intentionally placing a fungus near certain plants. Again it is directed away from the direction of the present invention as it is the separate organism, not the propagule, which accomplished the desired result. The Kistner reference also does not address the need for disease control; instead it might be characterized as tempting fate (let alone regulatory requirements) by purposefully placing a fungus near the a plant.
While there has unquestionably been a long-felt need to control diseases for potatoes, this need has not been completely satisfied even though the implementing substances and elements of the present invention had long been available. The inability of those skilled in the art to view the problem from the perspectives of the present inventors has, perhaps. been in part due to the fact that prior to the present invention those skilled in the art had not fully appreciated the nature of the problem. Rather than considering the possibility of an organic solution to the problem, the acute nature of the problem may have caused those skilled in the art to focus upon the pesticide approach mentioned earlier. They apparently had not fully appreciated that the problem of disease control could be achieved through organic means. While substantial attempts had been made by those skilled in the art to achieve disease control and to avoid the destruction of entire crops, the understanding which is the underpinning of the present invention and results it has been able achieve had not fully been understood.
Rather than taking the approach of utilizing a substance which stimulates the propagule's own natural defensive mechanisms, those skilled in the art actually taught away from this direction by utilizing an external substance which itself caused the disease control. Perhaps especially with respect to the present invention, the results achieved have been somewhat unexpected because those skilled in the art had utilized similar substances on similar propagules without the ability to achieve the results of the present invention. This has been attended by some degree of disbelief and incredulity on the part of those skilled in the art, however, by expanding the fundamental understanding of the mechanisms within the plant itself, the present invention may not only convince those skeptical of its approach, it may also cause further progress in this area.
III. DISCLOSURE OF THE INVENTION
The present invention discloses both the fundamental understandings and some specific arrangements which achieve a level of organic disease control for a propagule. In its preferred embodiment, the invention involves a system including an encapsulated propagule (such as a potato minituber) . This encapsulant includes an intense stimulus such as chitin. The intense stimulus is not only non-damaging to the propagule, it also acts through various means to cause the propagule itself to release an amount of a -naturally defensive substance. For crops such as the potato, this naturally defensive substance may be chitinase. The naturally defensive substance is released regardless of whether there is any disease present and is kept within the vicinity of the propagule so it is available when needed. Importantly, the naturally defensive substance is sufficient to disable or destroy the disease's ability to negatively impact the propagule. The invention also encompasses techniques for varying the system to accommodate a great variety of specific propagules, diseases, and needs. Once the disease is disabled, the system can automatically avoid impacting the propagule's growth. The propagule is allowed to naturally develop free from the effects of the disease. In this fashion, a very natural result is achieved. The system may thus assure an organically grown, naturally developed product.
Accordingly it is an object of the invention to achieve a natural and effective method for disease control for organized living cells. This includes propagules of those members of the plant kingdom which are of commercial interest (excluding fungi, bacteria, viruses and the like). Thus a goal is to avoid the use of chemicals such as pesticides, to avoid any genetic changes within the propagule itself, and to utilize the plant's own defensive capability in achieving disease control. In keeping with this general goal a more specific goal is to provide an insulated impact on the plant. Thus one goal is to allow an external stimulus to trigger the propagule's own processes and achieve disease control. Similarly another goal is to avoid any change in the natural growth development of the propagule. The present invention avoids any genetic changes and merely triggers the propagule's own natural processes. A further goal is to allow the plant to develop naturally and not have any changes except that of keeping the disease from negatively impacting the propagule's development. Thus a goal is to allow the plant to grow naturally without either a positive or a negative impact on its own developmental cycles.
Another broadly stated goal of the present invention is to provide a protection which lasts until the propagule is ready to do without that protection. In keeping with this goal the present invention affords an encapsulation which may exist over a several week period until that propagule has grown beyond a need for it. Naturally this is achieved while avoiding any utilization of potentially harmful substances.
Yet another general goal of the invention is to minimize the impact on the growing environment. Thus the invention concentrates its effects at the most important locations, near the propagule. This may reduce field application costs, and may avoid the residual impacts of using a broadly applied substance. In order to achieve this specific goal, it is a goal to avoid any application of the end disease control substance. Rather the goal is to utilize a naturally occurring intermediate substance which triggers the plant to achieve its own disease control.
A further object of the invention is to take into account regulatory, unknown, and psychological factors which lead to broad commercial acceptance. Thus, the invention has as a goal the utilization of naturally occurring substances to cause the triggering of the effect within the tissue itself. This is achieved through an insulated approach whereby a stimulus acts through several different mechanisms before causing the existence of the naturally defensive substance. Thus, the placement of unnatural, potentially harmful, or otherwise unnecessary substances near the propagule is completely avoided. In keeping with this goal, it is an object of the invention to afford advantages to the farmer who is charged with actually implementing the system. By providing a system which can be uniformly sized and therefore achieve many of the goals of the farmer, the present invention is designed to be easily implemented and yet effective.
Naturally further objects of the invention are disclosed throughout other areas of the specification and claims.
IV. BRIEF DESCRIPTION OF DRAWINGS
Figure l is a cross section view of an embodiment of the encapsulation according to the present invention.
Figure 2a-2d are sequential views of the developmental cycle of a potato plant according to the present invention.
Figure 3 is an enlarged view of the encapsulation shown in figure 1 showing a tegumented outer casing construction.
V. BEST MODE FOR CARRYING OUT THE INVENTION
As can be seen from the drawings, the basic concepts of the present invention may be embodied in many different ways. Figure 1 shows a cross-section view of an encapsulated tuber. This represents a preferred embodiment of the present invention. As shown, encapsulant (1) may completely surround some propagule such as tuber (2) . Encapsulant (1) may also include or be composed of a non-damaging stimulus (3) . As discussed in detail later on, non-damaging stimulus (3) acts to organically control disease and thus achieve some of the goals of the present invention.
As shown in Figure l it can be seen that non-damaging stimulus (3) may be provided in a vicinity of the propagule. This vicinity (4) may represent some spherical volume surrounding tuber (2) (as shown) or may merely be within some distance of the propagule. This distance should, however, be sufficiently close so that non-damaging stimulus (3) or its effects can, through some mechanism, be communicated to the propagule so as to affect it. Preferably, non-damaging stimulus (3) acts to provoke the propagule to release a natural defensive substance (5) . Since the invention is fundamental in nature and thus encompasses a great variety of types or combinations of substances, naturally, the specific distances encompassed by the term "vicinity" includes a large variety. The term is functionally based to allow for a variety of situations through which non-damaging stimulus (3) might cause the desired affect on the propagule. For those substances which act at a large distance, the vicinity will accordingly be very large. Conversely, in instances where the particular substances chosen act only within a short distance, the vicinity will be appropriately smaller. Those skilled in the art could readily ascertain and compute or empirically determine when this function were present. Thus the term "vicinity" acts flexibly depending upon the particular mechanisms involved, the particular type of substances comprising the non-damaging stimulus, and the naturally defensive substance released by the particular propagule.
Importantly, particular combinations of substances contained by or comprising encapsulant (1) may be selected so as to allow the propagule to release naturally defensive substance (5) . Thus, naturally defensive substance (5) is not fully confined and may travel in a relatively unimpeded fashion away from the propagule such as tuber (2) . As shown in Figure 1, naturally defensive substance (5) may be concentrated in the vicinity of tuber (2) . As shown, naturally defensive substance (5) may travel in some fashion away from tuber (2) so that it may act at some distance from tuber (2). Again, the distance at which naturally defensive substance (5) acts may vary dependent upon the particular substances, diseases, propagules, and environments involved. It may also travel in primarily one direction (such as up) if that is the direction the particular disease tends to come from. This may be accomplished by proper shaping of encapsulant (1) . For instance, an inverted cone shape may be utilized. As shown in Figure 1, encapsulant (1) may not only completely envelope tuber (2) but it may substantially surround tuber (2) . Thus, by encapsulating tuber (2) in a fashion which substantially surrounds tuber (2), tuber (2) is protected from all directions at some distance.
As also shown in Figure 1, encapsulant (1) may include or have separately applied to it some type of outer casing (6) . Outer casing (6) may act in a variety of ways. First, it may provide for a seal to further protect tuber (2) both mechanically and biologically. In the event outer casing (6) acts as a seal, it may be important to balance the degree to which outer casing (6) actually seals against the transfer of gases, liquids and the like. As those skilled in the art would readily appreciate, it may be important to allow some level of gas exchange between the outside environment through outer casing (6) . It may also be appropriate to substantially seal tuber (2) against such effects. In instances in which outer casing (6) is actually some conditioned portion of encapsulant (1) , the amount of sealing may be adjusted by the particular processes used in drying or curing encapsulant (1) . Although this is discussed in more detail later with respect to the use of flaked chitin and the particular processes used to create encapsulant (1) , it may be readily understood that by more rapidly or completely drying encapsulant (1) outer casing (6) may be formed in a more or less permeable manner. Again, the variation in outer casing (6) is broad as it may be adjusted as appropriate depending upon the needs of the particular propagule or the environment involved. By appropriately conditioning encapsulant (1) or separately applying outer casing (6) it may even be possible to achieve an inner environment of encapsulant (1) which is moist and conducive to plant growth while at the same time having an outer casing (6) which is relatively dry and further shields tuber (2) from undesirable impacts.
As mentioned earlier, encapsulant (1) may have a variable size and shape. Utilizing the particular substances and propagules of the preferred embodiment, it may be appropriate to size encapsulant (1) large. This may encompass the sizing of from 1/2" to 1-1/2" in diameter when spherical encapsulation is utilized in conjunction with the particular propagule and substances of the preferred embodiment. Again, the term "large" encompasses a broad variety of sizes as it must necessarily be allowed to vary depending upon the particular type of propagule involved, the particular defensive mechanisms available, and even the particular substances and environments anticipated. As those skilled in the art could readily ascertain, the term is functionally based to allow for a variety of situations through which encapsulant (1) might assist in achieving one or more of the desired affects for the propagule. Specifically, it may be desirable that either encapsulant (1) be sized sufficiently large so that naturally defensive substance (5) might adequately protect the propagule or encapsulant (1) might be sized sufficiently large to allow the propagule to significantly develop before substantially exceeding the effects of encapsulant (1) and thus being exposed directly to the outside environment or encapsulant might be sized sufficiently large to accommodate easy planting by the farmer. Those skilled in the art could compute or empirically determine this aspect. As to when a propagule is considered to have substantially developed, this will vary based upon when the propagule is able to withstand disease on its own. With respect to the preferred embodiment involving a potato tuber as tuber (2), chitin as non-damaging stimulus (3), and chitinase as naturally defensive substance (5) , it has been found that sizing of approximately 1" in diameter for a spherical encapsulation meets the confines of the term "large." This particular size appears to be sufficient with respect to the current concern of diseases for the potato crop, specifically that of rhizoctonia. It also is sufficient to allow the potato tuber to adequately develop (about two weeks) before substantially breaking out of encapsulant (1) . This age is sufficient to allow the potato's own natural defenses to develop so that by the time it breaks out of encapsulant (1) it is more readily able to overcome the effects of disease as may exist in the external environment. Again, this may vary based upon the particular diseases, propagules, and substances involved in any specific application.
In addition to actually locating non-damaging stimulus (3) in vicinity (4) of tuber (2) , encapsulant (1) also serves to enable naturally defensive substance (5) to remain proximate to the propagule. Again, by the term "proximate", a variety of distances is intended once again depending upon the particular substances, plants, and environments involved. Functionally, it is important that a sufficient amount of naturally defensive substance (5) remain near the propagule so that disease is unable to substantially impact the propagule. Those skilled in the art could readily ascertain these limitations and could even compute or empirically determine when the necessary function is accomplished. The function of limiting substantial impacts upon the propagule may be accomplished by either acting at a distance from the propagule or by acting with sufficient intensity near the propagule so that the ultimate result — disease control — is achieved. The distance within which naturally defensive substance (5) may remain proximate may be coextensive or may be a separate distance (larger or smaller) from that distance defining a vicinity within which non-damaging stimulus (3) is located. As shown in Figure 1, non-damaging stimulus (3) is located throughout and within encapsulant (1) . Naturally defensive substance (5) is also located within encapsulant (1), however, it is located in a smaller volume as shown. The particular substances selected for encapsulant (1) should enable naturally defensive substance (5) to be unaffected as to its ability to destroy or disable disease. It may also permit naturally defensive substance (5) to remain active near the propagule. This may be accomplished either biologically, mechanically, or chemically. Mechanically, encapsulant (1) may allow naturally defensive substance (5) to physically remain near the propagule. Chemically, it may avoid particular substances or include other substances which allow naturally defensive substance (5) to remain effective. For instance, since certain enzymes can break down certain naturally defensive substances; these enzymes may not be present within encapsulant (1) or proximate to the propagule to enhance the ability of naturally defensive substance (5) to continue to function.
Encapsulant (1) may contain a non-damaging stimulus (3) so that it may cause the propagule to release naturally defensive substance (5) substantially continuously. Unlike many chemical impacts upon a plant which are transient in nature, the present invention causes the plant to release a naturally defensive substance over a fairly long period of time. This release may be continuous so that the plant is constantly generating a larger and larger amount or additional amounts of naturally defensive substance (5) . This not only allows the propagule to increasingly expand the area proximate to it within which disease is controlled, it also may allow it to prepare itself for exposure to the outside environment. Since it is anticipated that tuber (2) will be placed within encapsulant (1) in a disease-free environment, tuber (2) may begin to generate naturally defensive substance (5) even prior to its being planted. Thus, the tuber (2) may already have naturally defensive substance (5) proximate to it when it is exposed to diseases and other aspects through planting. Further, through the planting system of the present invention, the propagule will first be exposed to the potential of disease after it has already significantly developed the ability to control disease. Thus, storage and the like as a may be typically encountered may naturally enhance the -desirability and abilities of the planting system according to the present invention.
In one embodiment, the materials selected for encapsulant (1) may also be selected so as to allow encapsulant (1) to be somewhat flexible. Not only may some degree of flexibility allow encapsulant (1) to continue to surround tuber (2) even though subjected to mechanical shocks from handling and the like, but it may also allow encapsulant (1) to adapt somewhat as tuber (2) grows. For instance, as shown in Figures 2a-2d it can be seen that tuber (2) grows and eventually expands beyond the boundaries of encapsulant (1) . As shown in Figure 2b, to some extent encapsulant (1) may flex to accommodate the changing size and βhapβ of tuber (2) . The degree with which encapsulant (l) is considered flexible will of course vary based upon the substances and propagules involved. It is intended to encompass a functionally oriented aspect rather than one which is quantified. Further, encapsulant (1) may be made of some flexible substance or may be constructed so as to be flexible. The flexible substance may be contained throughout encapsulant (1) or only in outer casing (6) . In the preferred embodiment this flexible substance may be both the flake-sized chitin which also serves as non-damaging stimulus (3) and the pentosan (8) or binder. Further, the construction technique may allow for flexibility. Again, through the use of flaked chitin, a tile-like or tegumented construction may be effected wherein each flake of chitin may move and shift and yet still maintain the appropriate sealing at outer casing (6) . In keeping with the general goals of the invention by affording a flexible encapsulant, the present invention meets not only the disease control desires but also the ability to accommodate the needs of the farmer and allows for planter handling while avoiding damage to encapsulant (1) . As the development shown in Figures 2a-2d demonstrates, in growing beyond the confines of encapsulant (1) , the propagule is achieving completely natural growth. Growth is not altered, enhanced, or reduced by the effects of the chitin. Rather, the chitin merely acts to prevent disease from negatively impacting the propagule. This disease may be fungal as well as viral as it is possible that chitinase acts to kill certain viral concerns.
Through the construction described earlier, encapsulant (1) can reduce the need for field fertilization or preparation and can make it easier for the farmer to plant the propagule. By uniformly sizing encapsulant (1) , the end result may actually allow for more automated planting and may thus reduce the labor and cost which most farmers face. Further, the design may accommodate the farmer's need to be able to store the propagules and may serve to maintain them in a storage environment with diminished concerns. Thus, by encapsulating tuber (2) prior to planting the farmer may receive a planting system which greatly simplifies his or her tasks. Naturally, it may also be possible to encapsulate the propagule at the time of planting.
Having discussed the overall invention in general terms, the specific preparation process may now be understood. While this process is discussed and has been developed with preparation on a small scale, it may naturally be adapted as appropriate to allow for large-scale production of encapsulated propagules. At present, however, only initial development techniques are most refined. Focusing upon the use of encapsulant (1) in conjunction with tuber (2) such as a potato tuber, small scale encapsulation has been successfully achieved. In reviewing the following process, it should be understood that the amounts utilized may be varied within keeping with the broad scope of the present invention. For small scale production, first about 16 grams of raw oats are selected and soaked in a sodium hydroxide solution for about two hours. The resulting oat substance is then repeatedly rinsed in 50 milliliters of water (distilled or not) . This may be accomplished three times to yield an oats-based binding substance. This substance is then further soaked in 70 milliliters of some acid such as hydrochloric acid and again rinsed with 50 milliliters of water. This final rinsing may remove oligosaccharides and may appropriately establish the pH factor of the resulting substance. In this regard it should be noted that for potatoes a pH of approximately 4.6 to 5.5 seems appropriate. The resulting polysaccharide substance may then be mixed with one gram of clean, practical grade chitin. Since the chitin serves two purposes, namely, providing the non- damaging stimulus as discussed earlier as well as affording the tegumented construction also discussed earlier, it may be best to utilize practical grade, flaked chitin rather than chitin powder. To this combination 15 drops of some type of nutrient concentrate such as "Hydrosol" may be added along with two grams sucrose, and one gram of amino acids. Each of these serve as an appropriate fertilizer as those skilled in the art would readily understand. To the resulting substance 1/2 teaspoon of activated carbon may be added and again mixed with three grams of practical grade, flaked chitin. The final substance is then utilized to form the appropriately sized encapsulant around a disease-free potato minituber which is furnished for eventual planting. Once formed the resulting odorless encapsulated propagule may be dried above 34° in a humidity of less than 20% for about 36 hours. This results in an appropriate outer casing as discussed earlier. After dried, it has been found that the encapsulated minituber will store for weeks or months without negative effect. Further, once planted, encapsulant (1) not only acts flexibly but also causes the propagule to control disease in an enhanced fashion.
As mentioned, encapsulant (1) may include not only non- damaging stimulus (3) but also other substances. As those skilled in the art would readily appreciate these other substances may enhance the overall planting system. One of the unique substances employed is that of activated carbon. The activated carbon serves a variety of functions. First, its nature allows air or other substance retention for ultimate release. In this regard it should be understood that the activated carbon or some other similar substance might be included within encapsulant (1) in an impregnated fashion so as to facilitate time-release or contact-based release of the particular substances when desired. Not only might the activated carbon release air to allow more complete sealing of outer casing (6) , it may also release nutrients or even other chemicals should such be deemed desirable. This release may occur over time or only when tuber (2) begins to grow and comes into contact with portions of encapsulant (1) . Through this process oxygen molecules may be stored in the activated carbon to be released to activate primordia root development and inhibit growth of anaerobic potato pathogens. The activated carbon also controls ion bonding for phosphate, iron, and copper.
Additionally, the activated carbon may act as an absorbent itself to further minimize the migration of toxins, nitrates, contaminated ground water or other substances toward the propagule. Importantly, the activated carbon is a natural substance which does not leave any undesirable residue or materials in the field after the propagule has ultimately grown and been harvested. In protecting the propagule through their absorbent properties, both the carbon and the chitin (which is also absorbent) may act simultaneously to protect the propagule.
Encapsulant (1) may also contain other substances. While the nutrients are discussed to be primarily additives such as sucrose and the like, they may also encompass hormones, pesticides (fungicides, insecticides, herbicides, etc.) and other such substances. Admittedly, although pesticide usage is desired to be minimized through the present invention, the present invention does accommodate such usage in instances -where it is necessary or desirable. Particularly is should be understood that it may not be possible to control all diseases or viruses through the organic means described in this invention. Thus combinations of effects may be desired. Further, encapsulant (1) might also include enzymes, acids, alkalines, and other fluids or substances as may be desirable for the specific propagule and environments involved.
A unique aspect of encapsulant (1) is that it utilizes a natural binding material. In the preferred embodiment the binding material may be derived from the oats and may be pentosan. The pentosan serves to flexibly hold the other substances of encapsulant (1) . It also tends to break down when placed in the presence of water. Thus, when the propagule starts growing, the pentosan binder tends to yield more readily to the needs of the propagule. Further, through the process described earlier, the binder is not made so viscous as to inhibit natural development of the propagule; it's viscosity is believed to be less than a few thousand (ie. 4000) cps viscosity. Further, it is possible to include some type of spacing substance to hold the binder material away from the propagule since it may be water absorbent. Although in the preferred construction such a spacer is not necessary, if included it might be desirable that such a spacer not be a water absorbent so as to avoid drying out tuber (2) .
Further, the binding material may also serve — either alone or in conjunction with other substances — as a medium through which other substances may be communicated to the propagule and through which yet other substances (particularly the naturally defensive substance) may be transported or communicated from the propagule. A unique aspect of such communications as envisioned for the preferred embodiment, is that these communications and the communication medium may be controlled or controllable, that is, both the timing and level of such communication may be affected externally. This is accomplished by utilizing a substance which when dry can close or reduce the pathway to communicate substances to or from the propagule and yet when moistened actually facilitates such communications. While a variety of materials may exhibit this property, in the present embodiment pentosan is utilized. Not only is pentosan a natural substance as discussed earlier, it also exhibits the property of being able to block or reduce osmotic or other communication when dry while yet remaining able to be re-moistened and thus re-open the communication pathways. Not only does its viscosity change as may be necessary to facilitate natural development of the propagule, the entire communication of stimulants, naturally defensive substances, and other substances may thus be controlled. This control may include establishing a level or time of communication and thus the level or time of the ensuing process or result. The degree of such communication may be adjusted by specifying the amount of drying (and, therefore, the amount of communication) when constructing the encapsulant or the amount of moistening after it has been constructed. For example, in applications where it is known that planting may occur within a relatively short time from encapsulation, the encapsulant and communication medium may not be completely dried. Thus, the non-damaging stimulant may be fully communicated to the propagule even prior to planting so that it may build up some amount of the naturally defensive substance in advance of planting and exposure to disease and other harmful substances. Conversely, greater drying may be accomplished to harden an outer casing and not only enhance its protective effect but to also reduce the communication of the non-damaging stimulant to the propagule. The timing may be controlled by allowing the introduction of another substance such as water to open the communication pathway. Since the introduction of water may cause the growth process to commence, this may conveniently coordinate the two events to occur simultaneously. The arrangement may serve to adjust the mechanical, chemical, and even biological level or timing of protection afforded the propagule. When exposed to water either through planting or intentionally to enhance disease control in advance of planting, the pentosan has reduced viscosity and may also activate the communication pathway. This may allow the stimulant, nutrients, or other substances to affect the propagule. Again for the preferred embodiment each of these may be controlled either at the point of manufacture or by the farmer prior to or upon planting as appropriate for the particular circumstances.
Referring to Figure 3 it can be seen how an encapsulant according to the preferred structure may form outer casing (6) . As shown, outer casing (6) involve a combination of flaked chitin (7) and pentosan (8) . Flaked chitin (7) serves to form the tile-like or tegumented construction which assists in sealing encapsulant (1) from the environment at its exterior. Flaked chitin (7) may be held together by pentosan (8) at various locations. This may not only allow outer casing (6) of encapsulant (1) to flex and still maintain some type of seal but it also may act as a seal while still allowing some degree of gas exchange. Further, although the pentosan has been constructed of primarily of polysaccharides, it is believed that either poly- or oligo- saccharides may be utilized. Through the preferred construction, the oats-based binder may also be composed of or include glutaraldehyde. Regardless, when not dried out, the binder or some other substance in encapsulant (1) may serve as an osmotic pathway and thus act as some type of communication medium through which non-damaging stimulus (3) might affect the propagule. While in Figure 1, the communication medium is shown as the material comprising encapsulant (1) , it need not be. Further, this communication medium may also allow the unimpeded release of naturally defensive substance (5) . This may occur through a variety of mechanisms but importantly, the communication medium should not substantially restrict the ability of the propagule to release naturally defensive substance (5) .
In the preferred embodiment the non-damaging stimulus (3) which is provided in vicinity (4) is chitin. This particular substance has been selected because it yields the appropriate response for the particular potato propagule involved. Specifically chitin stimulates the release of a naturally defensive substance from a potato tuber. The chitin itself does not act upon the disease, rather, it causes the propagule to respond in such a fashion that the propagule itself controls the disease. Further, by using cleaned, flaked chitin encapsulant (1) can be constructed so as to achieve the tegumented exterior which assists in sealing tuber (2) from the environment. Additionally the chitin is intensely provided so that it sufficiently triggers the release of naturally defensive substance (5) in order to achieve the result of disease control. This is not just a difference of degree but rather the entire result and processes involved are different. While others have indicated that they might apply chitin to certain plants for different purposes, the amount of chitin utilized for those applications is thousands of times less then that utilized by the present invention. The present invention utilizes approximately one-sixth of a gram of chitin per propagule. In contrast some others have applied chitin on the order of grams per acre. These are extraordinarily different levels. First, due to the short-lived nature of certain free enzymes, without intensely stimulating the propagule to release naturally defensive substance (5) , disease control does not appear to be achieved. Second, by intensely stimulating the release, the propagule continuously releases naturally defensive substance (5) to develop a greater level of disease control then would exist naturally. While naturally defensive substance (5) might decay or lose its effectiveness over time, by intensely triggering its release the propagule may replenish this release or even expand the amount of substance in its proximity. Further, by providing the chitin intensely near the propagule the effect is concentrated at its most important point, namely, at the propagule. This differs dramatically from broadcast or other types of applications. While those types of field-based applications might still be utilized in keeping with the present invention, at present it is believed that an encapsulation technique works most effectively. Thus while there may be tens of thousands of propagules planted per acre, non-damaging stimulus (3) is provided in the vicinity of the propagule through an encapsulation technique. Again, the term "intensely" is functionally based as the specific mechanisms, substances, propagules, and environments may vary. While extraordinarily sensitive reactions may be discovered, as yet it appears that with the combination of chitin and the potato tuber the stimulation must be intense to the degree indicated in order to achieve the function of disease control. Again, those skilled in the art could readily ascertain when the function were present and could even compute or empirically determine when it were accomplished. The functionally based aspect for the preferred embodiment is that the non-damaging stimulus (3) be provided to a sufficient degree near or in vicinity (4) of the propagule so as to cause disease control.
Once provided, non-damaging stimulus (3) acts to cause the propagule to control certain diseases. This disease control may result in either killing the disease or in some fashion disabling it so that it may not affect the propagule. This control is further achieved from a natural substance which is emitted by the propagule's own processes. This natural substance thus acts defensively to protect the propagule from disease or other ill effects.
In keeping with the goal of providing an organic and natural disease control technique, natural processes are used to the largest extent possible. When a non-damaging stimulus such as chitin is placed near tuber (2) , the chitin or some effect from it is communicated to the propagule. This may be accomplished either by the chitin actually touching the propagule or by some diffusion or sloughing process. It may also occur through some intermediate communication mode such as the non-damaging stimulus stimulating the release of yet another substance which then impacts the propagule. At present it is believed that the chitin sloughs off small portions to affect the propagule. These portions are communicated through the communication medium of encapsulant (1) to diffuse toward and ultimately touch the propagule. This process allows non- damaging stimulus (3) to affect the propagule.
Once the chitin touches the exterior of tuber (2), it is believed that the chitin impinges upon receptors in the plasmalemma which interact with a phosphoinositide signalling system. The oligosaccharides bind to receptors on the potato and induce enzyme production through a G-protein, inositoltriphosphate calcium flux process called signal transduction. Molecules are formed which interact with the cytoplasm of the cell to cause the release of calcium from the cell's endoplasmic reticulum. This calcium is regarded as a secondary messenger or intermediate stimulant which may directly or indirectly interact with the cell nucleus to cause the release of messenger RNA. This mRNA may code for chitinase through a process involving particular enzymes. These enzymes (including protease inhibitors, phenylalanine lyase, chitinase, or B 1,3 glucanase) may then individually or in combination with other substances or enzymes act to naturally defend the cell. Thus the mRNA is believed to act also as an intermediate stimulant to ultimately result in the release of enzymes such as chitinase from the cell through the cell wall. Through this process, the chitin acts to provoke the release of naturally defensive substance (5) . Although the entire process is not fully understood and may involve the combination of certain enzymes, through such basic understanding it is believed that it should be possible to vary the particular stimulus to suit the various diseases and plants. Although this process is somewhat akin to an immune reaction it is not entirely analogous to it. First, the chitin is a naturally occurring substance. Chitin occurs.on insects and shellfish in great abundance. Second, the chitin is a non-damaging substance in that it is not an analog of the disease but rather merely something which causes the release of naturally defensive substance (5) which then may act upon the disease. The chitin will not likely be controversial nor will it have any propensity to cause disease on its own accord.
Additionally the mechanisms described are selected to further insulate the propagule from outside effects. By not directly triggering the release of naturally defensive substance (5) , the non-damaging stimulus is less likely to be undesirable. Rather, an intermediate stimulus such as the calcium or the messenger RNA may be involved. This might occur either within the cell or external to the cell as may be readily appreciated. In keeping with the concept of insulating the propagule from specific effects it can be seen that the present process involves an intermediate stimulus within the cell and then a second stimulant from the cell nucleus itself. Each of these may be caused to exist within the cell's cytoplasm without damaging the cell wall. This specific process may also involve an intermediate stimulant which is a material from the cell nucleus, namely, messenger RNA. This again further insulates the process from being considered artificial and makes it less likely that unintended effects or results are involved. Ultimately the chitinase is released as naturally defensive substance (5) and is caused to exist proximate to the propagule for some period of time. With respect to potato tubers this may be several weeks after growth has begun so that the potato tuber may adequately develop its defense mechanisms. As shown in Figure 2c at some point the potato tuber will break out of encapsulant (1) however at this point the propagule should have sufficient abilities to fend for itself without enhanced protection.
While the chitin/chitinase process seems to work well with respect to diseases currently of concern for the potato crop, it should be noted that chitinase does not work for every disease. It is anticipated that chitin-producing fungi are not affected by chitinase. Naturally the particular substances may be varied and yet still fall within the scope of the present patent. For instance, there has been some suggestion that β 1,3 glucanase might alone or in combination with other substances (such as chitinase) cause the destruction of blue mold. Similarly, it may be possible to utilize protease inhibitors, phenylalanine lyase, chitinase, or β 1,3 glucanase to achieve the desired end results. Further the propagule might also be varied as well as the process to produce the naturally defensive substance. For instance, it appears that the following plants are capable of producing chitinase as one possible naturally defensive substance:
Papaya latex Fig latex Turnip root Wheat germ Tomato Stem Bean leaf Hevea latex Yam tuber Soybean seed Rubus cell Tobacco leaf Parthenocissus cell Carrot cell Melon plant Cucumber leaf Barley seed Pea pod Potato leaf
Naturally, other such plants may be discovered. An organic disease control system according to the present invention might be implemented for each as well as other plants which produce other naturally defensive substances. It may also be possible that certain combinations might be utilized to achieve disease control for more than one disease. Again, in keeping with the broad disclosure of the present invention and the scope of the patent granted to it, each of these variations would fall within the scope of protection for the present invention.
The foregoing discussion and the claims which follow describe the preferred embodiments of the present invention. Particularly with respect to the claims, it should be understood that changes may be made without departing from its essence. In this regard, it is intended that such changes would still fall within the scope of the present invention. It simply is not practical to describe and claim all possible revisions to the present invention which may be accomplished. To the extent such revisions utilize the essence of the present invention, each would naturally fall within the breadth of protection encompassed by this patent. This is particularly true for the present invention since its basic concepts and understandings are fundamental in nature and can be broadly applied.

Claims

VI. CLAIMSWe claim:
1. A method for organic disease control comprising the steps of: a) furnishing a propagule; b) providing a non-damaging stimulus in a vicinity of said propagule; c) communicating said stimulus to affect said propagule; d) provoking said propagule to release a naturally defensive substance in response to said stimulus; and e) allowing said propagule to release said naturally defensive substance.
2. A method for organic disease control as described in claim 1 wherein said stimulus is a naturally occurring substance.
3. A method for organic disease control as described in claim 1 and further comprising the step of allowing unimpacted natural development of said propagule.
4. A method for organic disease control as described in claim 1 wherein at least one disease is present and further comprising the step of destroying said disease through action of said naturally defensive substance.
5. A method for organic disease control as described in claim l wherein said step of providing a non-damaging stimulus in a vicinity of said propagule comprises the step of intensely providing said non-damaging stimulus.
6. A method for organic disease control as described in claim 5 wherein at least one disease is present and further comprising the step of destroying said disease through action of said naturally defensive substance.
7. A method for organic disease control as described in claim 1, 5, or 6 wherein said step of providing a non-damaging stimulus in a vicinity of said propagule comprises the step of encapsulating said propagule prior to planting.
8. A method for organic disease control as described in claim 7 and further comprising the step of enabling said natural defensive substance to remain proximate to said propagule.
9. A method for organic disease control as described in claim 7 wherein said step of encapsulating said propagule prior to planting comprises the step of flexibly enveloping said propagule prior to planting.
10. A method for organic disease control as described in claim 9 wherein said step of encapsulating said propagule prior to planting comprises the step of creating an encapsulant which is large enough for said propagule to develop within said encapsulant until said propagule has significantly developed.
11. A method for organic disease control as described in claim 7 wherein said step of encapsulating said propagule prior to planting comprises the step of utilizing pentosan.
12. A method for organic disease control as described in claim 7 wherein said step of encapsulating said propagule prior to planting comprises the step of utilizing activated carbon.
13. A method for organic disease control as described in claim 1 wherein said step of provoking said propagule to release a naturally defensive substance in response to said stimulus is substantially continuous.
14. A method for organic disease control as described in claim 8 wherein said step of provoking said propagule to release a naturally defensive substance in response to said stimulus is substantially continuous.
15. A method for organic disease control as described in claim 1 wherein said step of provoking said propagule to release a naturally defensive substance in response to said stimulus exists until said propagule has significantly developed.
16. A method for organic disease control as described in claim 1 and further comprising the step of planting said propagule and wherein said step of provoking said propagule to release a naturally defensive substance in response to said stimulus exists for at least two weeks after accomplishing said step of planting of said propagule.
17. A method for organic disease control as described in claim 13 wherein said propagule is a tuber.
18. A method for organic disease control as described in claim 13 wherein said propagule is a potato.
19. A method for organic disease control as described in claim 1 wherein said step of communicating is controlled.
20. A method for organic disease control as described in claim l wherein said step of communicating said stimulus to affect said propagule comprises the step of touching said stimulus to said propagule.
21. A method for organic disease control as described in claim 1 wherein said step of communicating said stimulus to affect said propagule comprises the step of diffusing said stimulus toward said propagule.
22. A method for organic disease control as described in claim 1 wherein said step of communicating said stimulus to affect said propagule comprises the step of prompting the existence of an intermediate stimulant by action of said stimulus.
23. A method for organic disease control as described in claim 22 wherein said propagule has at least one cell and wherein said step of prompting the existence of an intermediate stimulant by action of said stimulus comprises the step of causing the existence of said intermediate stimulant within said cell.
24. A method for organic disease control as described in claim
23 wherein said cell has a cell nucleus and wherein said intermediate stimulant is a material from said cell nucleus.
25. A method for organic disease control as described in claim
24 wherein said intermediate stimulant is a messenger RNA.
26. A method for organic disease control as described in claim l wherein said propagule has at least one cell and wherein said step of communicating said stimulus to affect said propagule comprises the steps of: a. prompting the existence of an intermediate stimulant by action of said stimulus; and b. causing the existence of a second stimulant within said cell through action of said intermediate stimulant.
27. A method for organic disease control as described in claim 26 wherein said cell has a cytoplasm and a cell nucleus and wherein said intermediate stimulant is caused to exist within said cytoplasm and wherein said second stimulant is caused to exist by action of said cell nucleus.
28. A method for organic disease control as described in claim 1 wherein said naturally defensive substance comprises chitinase, B 1,3 glucanase, protease inhibitors, or phenylalanine lyase.
29. A method for organic disease control as described in claim 1 or 6 wherein said step of providing a non-damaging stimulus in a vicinity of said propagule comprises the step of placing chitin near said propagule.
30. A method for organic disease control as described in claim 10 wherein said step of providing a non-damaging stimulus in a vicinity of said propagule comprises the step of placing chitin near said propagule.
31. A method for organic disease control as described in claim 12 wherein said step of providing a non-damaging stimulus in a vicinity of said propagule comprises the step of placing chitin near said propagule.
32. A method for organic disease control as described in claim 26 wherein said step of providing a non-damaging stimulus in a vicinity of said propagule comprises the step of placing chitin near said propagule and wherein said propagule is a potato.
33. A disease controlled propagule planting system comprising: a. a propagule; b. a non-damaging stimulus wherein said non-damaging stimulus is intensely provided in a vicinity of said propagule; c. a communication medium wherein said communication medium allows said non-damaging stimulus to affect said propagule.
34. A disease controlled propagule planting system as described in claim 33 and further comprising an encapsulant within said vicinity of said propagule.
35. A disease controlled propagule planting system as described in claim 33 wherein said encapsulant substantially surrounds said propagule.
36. A disease controlled propagule planting system as described in claim 33 wherein said non-damaging stimulus causes the release a naturally defensive substance from said propagule.
37. A disease controlled propagule planting system as described in claim 34 wherein said non-damaging stimulus causes the release a naturally defensive substance from said propagule.
38. A disease controlled propagule planting system as described in claim 34 wherein said communication medium is controllable.
39. A disease controlled propagule planting system as described in claim 37 wherein said communication medium allows the unimpeded release of said naturally defensive mechanism.
40. A disease controlled propagule planting system as described in claim 36 wherein said non-damaging stimulus comprises a natural substance.
41. A disease controlled propagule planting system as described in claim 34 or 36 wherein said non-damaging stimulus comprises chitin.
42. A disease controlled propagule planting system as described in claim 37 wherein said encapsulant comprises a flexible substance.
43. A disease controlled propagule planting system as described in claim 34 or 36 wherein said encapsulant is large enough for said propagule to develop within said encapsulant until said propagule has significantly developed.
44. A disease controlled propagule planting system as described in claim 43 wherein said non-damaging stimulus comprises chitin.
45. A disease controlled propagule planting system as described in claim 34 or 42 wherein said encapsulant comprises pentosan.
46. A disease controlled propagule planting system as described in claim 44 wherein said encapsulant comprises pentosan.
47. A disease controlled propagule planting system as described in claim 34 or 42 wherein said encapsulant comprises activated carbon.
48. A disease controlled propagule planting system as described in claim 44 wherein said encapsulant comprises activated carbon.
49. A disease controlled propagule planting system as described in claim 47 wherein said non-damaging stimulus comprises chitin.
50. A disease controlled propagule planting system as described in claim 48 wherein said non-damaging stimulus comprises chitin.
51. A disease controlled propagule planting system as described in claim 33 or 37 wherein said propagule comprises a tuber.
52. A disease controlled propagule planting system as described in claim 43 wherein said propagule comprises a tuber.
53. A disease controlled propagule planting system as described in claim 33 or 37 wherein said propagule comprises a potato.
54. A disease controlled propagule planting system as described in claim 43 wherein said propagule comprises a potato.
55. A disease controlled propagule planting system as described in claim 37 wherein said non-damaging stimulus remains in said vicinity until said propagule has significantly developed.
56. A disease controlled propagule planting system as described in claim 36 wherein said naturally defensive substance comprises chitinase, B 1,3 glucanase, protease inhibitors, or phenylalanine lyase.
PCT/US1995/000401 1994-01-13 1995-01-12 Organic disease control system WO1995019109A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95907397A EP0739165A1 (en) 1994-01-13 1995-01-12 Organic disease control system
AU15643/95A AU1564395A (en) 1994-01-13 1995-01-12 Organic disease control system
US08/680,320 US6193988B1 (en) 1994-01-13 1996-07-12 Tuber planting system comprising chitin or chitosan

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US18158094A 1994-01-13 1994-01-13
US08/181,580 1994-01-13
CA002181200A CA2181200A1 (en) 1994-01-13 1996-07-15 Propagule disease control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US18158094A Division 1994-01-13 1994-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/680,320 Division US6193988B1 (en) 1994-01-13 1996-07-12 Tuber planting system comprising chitin or chitosan

Publications (1)

Publication Number Publication Date
WO1995019109A1 true WO1995019109A1 (en) 1995-07-20

Family

ID=25678555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/000401 WO1995019109A1 (en) 1994-01-13 1995-01-12 Organic disease control system

Country Status (4)

Country Link
EP (1) EP0739165A1 (en)
AU (1) AU1564395A (en)
CA (1) CA2181200A1 (en)
WO (1) WO1995019109A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247435A1 (en) * 2001-04-02 2002-10-09 Dainichiseika Color & Chemicals Mfg. Co. Ltd. Compositions and method for treating potted seedlings, and method for planting same
US6743752B2 (en) 2003-03-28 2004-06-01 Northern Quinoa Corporation Method of protecting plants from bacterial diseases

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1574883A (en) * 1968-05-17 1969-07-18
WO1989001288A1 (en) * 1987-08-14 1989-02-23 Washington State University Research Foundation, I Method for treating cereal crop seed with chitosan to enhance yield, root growth, and stem strength
WO1989007395A1 (en) * 1988-02-19 1989-08-24 Bentech Laboratories, Inc. Treatment of plants with salts of chitosan
WO1989011795A1 (en) * 1988-06-10 1989-12-14 Norris Dale M Method for inducing resistance in plants using environmentally safe antioxidants
WO1991018512A1 (en) * 1990-05-25 1991-12-12 Washington State University Research Foundation, Inc. Method of inducing plant defense mechanisms
WO1993010095A1 (en) * 1991-11-19 1993-05-27 Bayer Aktiengesellschaft Substituted pyridin-4-carboxylic acid amides and their use for protecting plants against infection by microorganisms

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1574883A (en) * 1968-05-17 1969-07-18
WO1989001288A1 (en) * 1987-08-14 1989-02-23 Washington State University Research Foundation, I Method for treating cereal crop seed with chitosan to enhance yield, root growth, and stem strength
WO1989007395A1 (en) * 1988-02-19 1989-08-24 Bentech Laboratories, Inc. Treatment of plants with salts of chitosan
WO1989011795A1 (en) * 1988-06-10 1989-12-14 Norris Dale M Method for inducing resistance in plants using environmentally safe antioxidants
WO1991018512A1 (en) * 1990-05-25 1991-12-12 Washington State University Research Foundation, Inc. Method of inducing plant defense mechanisms
WO1993010095A1 (en) * 1991-11-19 1993-05-27 Bayer Aktiengesellschaft Substituted pyridin-4-carboxylic acid amides and their use for protecting plants against infection by microorganisms

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1247435A1 (en) * 2001-04-02 2002-10-09 Dainichiseika Color & Chemicals Mfg. Co. Ltd. Compositions and method for treating potted seedlings, and method for planting same
US7222574B2 (en) 2001-04-02 2007-05-29 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Compositions and method for treating potted seedlings, and method for planting same
US6743752B2 (en) 2003-03-28 2004-06-01 Northern Quinoa Corporation Method of protecting plants from bacterial diseases

Also Published As

Publication number Publication date
AU1564395A (en) 1995-08-01
EP0739165A1 (en) 1996-10-30
CA2181200A1 (en) 1998-01-16

Similar Documents

Publication Publication Date Title
Auld et al. Advances in bioherbicide formulation
Sauerborn et al. The role of biological control in managing parasitic weeds
CA2885952C (en) Attraction systems for pests and use thereof
Dhanapal et al. Management of broomrape (Orobanche spp.)–a review
US20080072494A1 (en) Micronutrient elicitor for treating nematodes in field crops
US6193988B1 (en) Tuber planting system comprising chitin or chitosan
CN109221197A (en) A kind of plant disease-resistant inducer and its application
Sathiyabama et al. Suppression of dry root rot disease caused by Rhizoctonia bataticola (Taub.) Butler in chickpea plants by application of thiamine loaded chitosan nanoparticles
CN105519389B (en) The prevention method of shallot pest and disease damage
Dutta et al. Innovative integrated pest management paradigm for sustainable crop production with special reference to North East India
Habimana et al. Management of orobanche in field crops-a review.
Gunaeni et al. The Effect of Plant Growth Regulators and Planting Density against Viral Infection and the Production from Bulbs of True Shallot Seed in the Highlands
EP0739165A1 (en) Organic disease control system
Hastuti et al. Wheat bran soil inoculant of sumateran nematode-trapping fungi as biocontrol agents of the root-knot nematode meloidogyne incognita on deli tobacco (nicotiana tabaccum l) cv. deli 4
CN102578155A (en) Peanut grub prevention and control agent and production method thereof
Walia et al. Techniques for improving microbial inoculants as a tool for sustainable development
EA011106B1 (en) A slow-release agrochemical dispenser (embodiments), method for dispensing of agrochemicals, method of treating parasitic weeds and crops and method for controlling parasitic weeds growth
JPH05262614A (en) Preparation of biological control agent
Martin et al. Biological control of soilborne pathogens with antagonists
US20230354821A1 (en) Gel Capsules Including Silica Gel, and Related Methods
Fraley Commercialization of genetically modified plants: progress towards the marketplace
CN211921374U (en) Novel slow-release granular fertilizer
RU2759603C1 (en) Method for detoxification of soils contaminated with herbicides
Said Parasitic Weeds of Jordan: Species, Hosts, Distribution and Management-Part I: Root Parasites; Orobanchaceae, Santalaceae & Cynomoryaceae
Kurme et al. Nectar water-A bio-pesticide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AT AU BB BG BR BY CA CH CN CZ CZ DE DE DK DK EE ES FI FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NL NO NZ PL PT RO RU SD SE SI SK SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1995907397

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2180826

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1995907397

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1995907397

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载