WO1995011435A1 - Banc de mesure pour diagnostic automobile - Google Patents
Banc de mesure pour diagnostic automobile Download PDFInfo
- Publication number
- WO1995011435A1 WO1995011435A1 PCT/FR1994/001174 FR9401174W WO9511435A1 WO 1995011435 A1 WO1995011435 A1 WO 1995011435A1 FR 9401174 W FR9401174 W FR 9401174W WO 9511435 A1 WO9511435 A1 WO 9511435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measuring
- measurement
- modules
- input
- circuit
- Prior art date
Links
- 238000003745 diagnosis Methods 0.000 title abstract description 5
- 230000007704 transition Effects 0.000 claims abstract description 15
- 238000004891 communication Methods 0.000 claims abstract description 4
- 238000005259 measurement Methods 0.000 claims description 60
- 238000001914 filtration Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 10
- 239000000523 sample Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/05—Testing internal-combustion engines by combined monitoring of two or more different engine parameters
Definitions
- the present invention relates to a measurement bench for automotive diagnostics.
- test benches have specialized circuits for each of the measurements to be carried out on the vehicle, and therefore have a complicated structure which is less and less suited to the multiplicity and to the complexity of the tests to be carried out on motor vehicles.
- the measurements to be carried out relate to sensors (Hall effect probes, electromagnetic probes, lambda probes) of the actuators (injectors, solenoid valves for example for idling regulation), measurements of the signals coming from the ignition (coil), temperature (thermocouple) or pressure signals, or vehicle beam tests.
- the subject of the present invention is a measurement bench for automobile diagnostics which has a modular structure capable of simplifying the design and / or production thereof relative to known measurement benches.
- the invention thus relates to a measurement bench for automobile diagnostics, characterized in that it comprises:
- main element comprising a central unit
- the first asynchronous link presenting a first communication protocol making it possible to put at least one module in transmission mode and the second asynchronous link presenting a second protocol making it possible to convey between the modules event transitions generated by the measurement modules.
- This architecture makes it possible to simplify the communication protocol, in that only one module at a time is capable of transmitting towards the central unit, while the logical synchronization information, which concerns the inter-module dialogue, is conveyed by a bus connecting the microprocessor of the modules.
- the central unit of the main element advantageously comprises a means for downloading the microprocessor programs from the measurement modules.
- the first protocol can be used to program each module either in transmission mode, in reception mode, or in high impedance mode.
- the first protocol comprises means for programming a single module in transmission mode on the second asynchronous link.
- the measurement bench according to the invention can be characterized in that the measurement circuit of at least one module comprises a measurement unit having a single input for at least two measurement devices.
- the measuring devices can be sensors and / or actuators of a motor vehicle.
- the invention also relates to a measurement unit (or card) comprising
- the multiplexer and the filtering circuit being controlled by said microprocessor so as to select a range of measurements as a function of the measurement device coupled to the input stage.
- the measurement unit comprises a digital-analog converter controlled by the microprocessor and the output of which is connected to an input of an offset voltage control circuit disposed between the filtering circuit and the analog-to-converter. digital.
- the input stage may include a calibration circuit allowing its inputs to be grounded, the calibration circuit being controlled by the microprocessor.
- the measurement unit can also include a threshold discrimination circuit having an input coupled to the output of the filtering circuit and having at least one output producing said synchronization transitions.
- the above circuit (or measurement card) can be incorporated into the measurement circuit of at least one module.
- FIG. 1 a measurement bench having an architecture according to the invention
- an automatic switching measurement card to receive as input the signals from different types of sensors or actuators.
- a main element designated by the general reference 1 consists of a measurement carriage having a central processing unit 3 with a microcomputer, for example of the PC type, and a screen 2 for displaying signals. It is connected by an asynchronous serial bus 10 to measurement modules 31, 32, 33 and 34 each having a microprocessor respectively 21, 22, 23 and 24 and one or more measuring devices (respectively 25, 26, 27 and 28 connected to sensors, actuators, or to generators of measurement signals, referenced 41, 42 and 43 for module 31, 44 and 45 for module 32, 46 for module 33 and 47, 48, 49 and 50 for module 34.
- An asynchronous serial bus 20 also connects the microprocessors 21 to 24 together, but is not connected to the central unit 3 of the main element 1.
- Bus 10 can be of the RS485 type operating, for example, under the ISO 8802-30 protocol which is a simplified version of the CSMA / CRCD protocol with deterministic collision resolution.
- the bus 10 makes it possible to retransmit the measurement signals between the modules 31 to 34 and the main element 1 and to select the operating mode of the bus 20.
- Bus 20 using for example the physical RS485 medium, is governed by a protocol, reduced to transmission reception, of logic signals representative of transitions of physical events, the transmission speed and format of which are not pre-defined.
- the bus 20 therefore makes it possible to broadcast to all the modules 21 to 24 signals representing logic levels or transitions characteristic of vehicle events and which are used for measurement triggering purposes.
- the central unit 3 downloads via the bus 10, as in itself, the programs of the microprocessors 21 to 24.
- the central unit which is capable, by the protocol adopted, of configuring any of the microprocessors 22 to 24 in one of three modes on the bus 20 , namely the transmission mode, the reception mode and the high impedance (or inactive) mode, programs one of the microprocessors ("slaves"), for example the one referenced 22 and it alone, in transmission mode on the bus 20. This selects the module 32, and only it, to send transitions which are sent on the bus 20 for the other modules.
- Bus 20 the operating mode of which, once initialized by the central unit 3, is independent of this allows logic information to flow between the microcomputers 21 to 24 of the modules 31 to 34.
- one or more of the modules 31 to 34 trigger measurements and transmit them to the central unit 3 by the bus 10 (interactive mode).
- One or more modules can operate in interactive mode at the same time as one or more other modules operate in independent mode.
- the microprocessor 24 sends the corresponding logic signal (or transition) on the bus 20 to all the other modules.
- the microprocessor of an active module detects this transition and then begins to transmit on bus 10 the signals from a sensor.
- the logic signal therefore fulfills the function of a trigger synchronization signal for the signals from this sensor.
- the microprocessor 22 can also transmit said transition on the bus 10 to the central unit 3.
- an automatic switching measurement card designated by the general reference 60 has a single differential input for different sensors and / or actuators, for example for a sensor (lambda probe for measuring oxygen content in a catalytic converter) and two actuators (injector and idle control solenoid valve). These probes and actuators deliver very different signals as to their level (low or high), their frequency spectrum. For example, an injector has voltage peaks of up to 80 V, while a lambda probe delivers very low frequency signals of low level.
- the measurement card comprises two input resistors R ⁇ and R2 of high value, and an input stage with differential amplifier AQ mounted so as to produce an attenuation (for example in a ratio 100) (resistors R3 to R7).
- a relay switch C controlled by the internal bus 50 to the microprocessor MP and which allows, in a position to connect in series R ⁇ to R3 and R2 to R4 to make a measurement, and in the other position, ground the inputs of the amplifier AQ to adjust the overall offset voltage of the measurement card .
- the output of the amplifier AQ attacks in parallel the input of three amplifiers A ⁇ , A2, A3 counter-reacted (respectively Rg, Rj]; R9 Rj2 and RlO . R13) To obtain gains in stages for example 1 for A ⁇ , 10 for A2 and 100 for A3.
- the output of amplifiers Ai to A3 drives a multiplexer MUX controlled by the bus 50 of the microprocessor MP.
- This multiplexer can be of the type
- the bus 50 can automatically route the output of the most suitable amplifier among Ai, A2 and A3 to the output of the multiplexer MUX.
- the output of the multiplexer MUX drives a filtering circuit F, here of the low-pass type, the cut-off frequency of which can be programmed between 2 Hz and 25 kHz for example, by the microprocessor MP via the bus 50.
- the circuit F can for example be of the MAX 291 to 296 type from the company MAXIM Inc.
- the output of the filter F drives an input of a differential amplifier A6 of unity gain (Ri 4, Ri 5, Ri 6) the other input of which receives from a multiple DAC digital-analog converter controlled by the bus 50, a signal adjustable offset voltage.
- the output of filter F also attacks an input of a differential amplifier A4 (comparator) and a differential amplifier A5 (comparator), the other input of which receives one of two threshold signals generated by the DAC converter controlled by bus 50. This gives the output of A4 a high threshold signal H and a low threshold signal B at the output of A5.
- the DAC converter can be of the MAX 528 type from the company MAXIM Inc.
- An OR gate receives the H signals at its inputs and makes it possible to generate the T transitions.
- the H and L signals and the T transitions are introduced into logic inputs of the microprocessor MP.
- the logic card of FIG. 2 can be incorporated into one or more modules of FIG. 1, in which case the microprocessor MP is constituted by the corresponding microprocessor 21, 22, 23 and / or 24 of the corresponding module. Since the modules 31 to 34 are configurable by the central unit 3, it is possible to use modules 31 to 34 which are wholly or partly identical.
- the output of amplifier A drives an input from an analog-to-digital converter ADC for digitizing the measurement signals.
- the output of the ADC converter is delivered to the microprocessor MP.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Abstract
L'invention concerne un banc de mesure pour diagnostic automobile, caractérisé en ce qu'il comporte: un élément principal (1) comportant une unité centrale (3), des modules de mesure (31, 32, 33, 34) présentant chacun un circuit de mesure (25, 26, 27, 28) pour au moins un dispositif de mesure (41, 42 ... 50) et un microprocesseur (21, 22, 23, 24), le circuit de mesure (25 ... 28) générant des signaux de mesure, une première liaison asynchrone (10) entre l'élément principal (1) et chacun des modules de mesure (31, 32, 33, 34) et véhiculant les signaux de mesure entre les modules (31 ... 34) et une deuxième liaison asynchrone (20) entre les modules de mesure (31 ... 34). La première liaison asynchrone (10) présente un premier protocole de communication permettant de mettre au moins un module en mode d'émission et la deuxième liaison asynchrone (20) présentant un deuxième protocole permettant de véhiculer entre les modules (31 ... 34) des transitions de synchronisation générées par les modules de mesure (31 ... 34).
Description
BANC DE MESURE POUR DIAGNOSTIC AUTOMOBILE
La présente invention a pour objet un banc de mesure pour diagnostic automobile.
On connaît déjà des bancs de mesure pour diagnostic automobile, mettant en oeuvre un microprocesseur (par exemple de type PC) pilotant plusieurs prises de mesure pour réaliser un diagnostic d'ensemble sur un véhicule.
De tels bancs de mesure présentent des circuits spécialisés pour chacune des mesures à effectuer sur le véhicule, et ont de ce fait une structure compliquée qui est de moins en moins adaptée à la multiplicité et à la complexité des tests à réaliser sur les véhicules automobiles.
On notera en particulier que pour un véhicule automobile, les mesures à réaliser concernent des capteurs (sondes à effet Hall, sondes électromagnétiques, sondes lambda) des actionneurs (injecteurs, électrovannes par exemple de régulation de ralenti), des mesures des signaux provenant de l'allumage (bobine), des signaux de température (thermocouple) ou de pression, ou bien encore des tests de faisceaux du véhicule.
La présente invention a pour objet un banc de mesure pour diagnostic automobile qui présente une structure modulaire apte à en simplifier la conception et/ou la réalisation par rapport aux bancs de mesures connus.
L'invention concerne ainsi un banc de mesure pour diagnostic automobile, caractérisé en ce qu'il comporte :
- un élément principal comportant une unité centrale
- des modules de mesure présentant chacun un circuit de mesure pour au moins un dispositif de mesure et un microprocesseur, le circuit de mesure générant des signaux de mesure
- une première liaison asynchrone entre l'élément principal et chacun des modules de mesure et véhiculant les signaux de mesure entre les modules et
- une deuxième liaison asynchrone entre les modules de mesure, la première liaison asynchrone présentant un premier protocole de communication permettant de mettre au moins un seul module en mode d'émission et la deuxième liaison asynchrone présentant un deuxième protocole permettant de véhiculer entre les modules des transitions d'événements générées par les modules de mesure.
Cette architecture permet de simplifier le protocole de communication, en ce qu'un seul module à la fois est à même d'émettre en direction de l'unité centrale, alors que les informations logiques de synchronisation, qui intéressent le dialogue inter-module, est véhiculé par un bus reliant le microprocesseur des modules.
L'unité centrale de l'élément principal comporte avantageusement un moyen de téléchargement des programmes de microprocesseurs des modules de mesure.
Une telle architecture permet ainsi une standardisation des modules. Ceux- ci peuvent être ainsi au moins en partie identiques.
Le premier protocole peut permettre de programmer chaque module soit en mode d'émission, soit en mode de réception, soit en mode haute impédance.
Selon un mode préféré, le premier protocole comporte un moyen pour programmer un seul module en mode d'émission sur la deuxième liaison asynchrone.
Le banc de mesure selon l'invention peut être caractérisée en ce que le circuit de mesure d'au moins un module comporte une unité de mesure présentant une entrée unique pour au moins deux dispositifs de mesure. Les dispositifs de mesure peuvent être des capteurs et/ou des actionneurs d'un véhicule automobile.
L'invention concerne également une unité (ou carte) de mesure comportant
- un étage d'entrée pour au moins deux dispositifs de mesure
- au moins deux étages amplificateurs disposés en parallèle et dont l'entrée est couplée à la sortie de l'étage d'entrée et dont la sortie est couplée à autant d'entrées d'un multiplexeur
- ledit multiplexeur dont la sortie est couplée à l'entrée d'un circuit de filtrage
- un convertisseur analogique-numérique ayant une entrée couplée à la sortie du circuit de filtrage
- le multiplexeur et le circuit de filtrage étant commandés par ledit microprocesseur de manière à sélectionner une gamme de mesures en fonction du dispositif de mesure couplé à l'étage d'entrée.
Selon une variante avantageuse, l'unité de mesure comporte un convertisseur numérique-analogique commandé par le microprocesseur et dont la sortie est connectée à une entrée d'un circuit de commande de tension de décalage disposé entre le circuit de filtrage et le convertisseur analogique-numérique.
L'étage d'entrée peut comporter un circuit de calibrage permettant de mettre ses entrées à la masse, le circuit de calibrage étant commandé par le microprocesseur.
L'unité de mesure peut également comporter un circuit de discrimination de seuil présentant une entrée couplée à la sortie du circuit de filtrage et présentant au moins une sortie produisant desdites transitions de synchronisation.
Le circuit (ou carte de mesure) précité peut être incorporé dans le circuit de mesure d'au moins un module.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, en liaison avec les dessins qui représentent :
- la figure 1, un banc de mesure présentant une architecture selon l'invention,
- la figure 2, une carte de mesure à commutation automatique pour recevoir en entrée les signaux de différents types de capteurs ou actionneurs.
Selon la figure 1, un élément principal désigné par le repère général 1 consiste en un chariot de mesure présentant une unité centrale de traitement 3 à micro¬ ordinateur par exemple de type PC et un écran 2 de visualisation de signaux. Il est connecté par un bus série asynchrone 10 à des modules de mesure 31, 32, 33 et 34
présentant chacun un microprocesseur respectivement 21, 22, 23 et 24 et un ou plusieurs dispositifs de mesure (respectivement 25, 26, 27 et 28 reliés à des capteurs, des actionneurs, ou à des générateurs de signaux de mesure, référencés 41, 42 et 43 pour le module 31, 44 et 45 pour le module 32, 46 pour le module 33 et 47, 48, 49 et 50 pour le module 34.
Un bus série asynchrone 20 relie également les microprocesseurs 21 à 24 entre eux, mais n'est pas relié à l'unité centrale 3 de l'élément principal 1.
Le bus 10 peut être du type RS485 fonctionnant par exemple sous le protocole ISO 8802-30 qui est une version simplifiée du protocole CSMA/CRCD à résolution de collisions déterministe.
Le bus 10 permet de retransmettre les signaux de mesure entre les modules 31 à 34 et l'élément principal 1 et de sélectionner le mode de fonctionnement du bus 20.
Le bus 20, utilisant par exemple le support physique RS485 est régi par un protocole, réduit à l'émission réception, de signaux logiques représentatifs de transitions d'événements physiques, dont la vitesse de transmission et le format ne sont pas pré-définis. Le bus 20 permet donc de diffuser à tous les modules 21 à 24 des signaux représentant des niveaux logiques ou transitions caractéristiques d'événements du véhicule et qui servent à des buts de déclenchement de mesure.
Le déroulement d'un diagnostic de véhicule automobile peut alors être le suivant :
Lors de la mise sous tension de l'installation, l'unité centrale 3 télé charge, via le bus 10, de manière comme en soi, les programmes des microprocesseurs 21 à 24.
Pour le déroulement de la séquence de mesure, l'unité centrale ("maître") qui est capable, de par le protocole adopté, de configurer n'importe lequel des microprocesseurs 22 à 24 en l'un de trois modes sur le bus 20, à savoir le mode émission, le mode réception et le mode haute impédance (ou inactif), programme l'un des microprocesseurs ("esclaves"), par exemple celui référencé 22 et lui seul, en mode émission sur le bus 20. Ceci sélectionne le module 32, et lui seul, pour émettre des transitions qui sont envoyées sur le bus 20 à l'intention des autres modules. Le bus 20, dont le mode opératoire, une fois initialisé par l'unité centrale 3, est indépendant de
celle-ci, permet de faire circuler des informations logiques entre les micro-ordinateurs 21 à 24 des modules 31 à 34.
Sur détection d'une ou plusieurs transitions, un ou plusieurs des modules 31 à 34 déclenchent des mesures et les transmettent à l'unité centrale 3 par le bus 10 (mode interactif). Il existe également un mode indépendant où un ou plusieurs modules effectuent des mesures et les retransmettant à l'unité centrale 3. Un ou plusieurs modules peuvent fonctionner en mode interactif en même temps qu'un ou plusieurs autres modules fonctionnent en mode indépendant.
En effet, supposons que la mesure du capteur 44 du module 32 sélectionné ne soit significative que lorsque le signal délivré par le capteur 49 du module (non sélectionné) 34 à atteint un certain seuil haut H ou bas B, et qu'il ne doit donc être envoyé sur le bus 10 que lorsque ce seuil est atteint.
Dans ce cas, lorsque ledit seuil est atteint, le microprocesseur 24 envoie le signal logique (ou transition) correspondant sur le bus 20 vers tous les autres modules. Le microprocesseur d'un module actif détecte cette transition et commence alors à émettre sur le bus 10 les signaux d'un capteur. Le signal logique remplit donc la fonction d'un signal de synchronisation du déclenchement pour les signaux de ce capteur. Le microprocesseur 22 peut également émettre ladite transition sur le bus 10 vers l'unité centrale 3.
On notera que, étant donné que les modules 31 à 34 sont pilotés par l'unité centrale 3, il n'est pas besoin pour le microprocesseur 22 d'identifier l'origine de la transition, puisque, par définition, dans la configuration donnée seul le capteur 43 est susceptible de générer un signal logique.
Selon la figure 2, une carte de mesure à commutation automatique désignée par le repère général 60 comporte une entrée différentielle unique pour différents capteurs et/ou actionneurs, par exemple pour un capteur (sonde lambda de mesure de teneur en oxygène dans un pot catalytique) et deux actionneurs (iηjecteur et électrovanne de régulation du ralenti). Ces sondes et actionneurs délivrent des signaux très différents quant à leur niveau (faible ou élevé), leur spectre de fréquence. Par exemple, un injecteur présente des crêtes de tension pouvant atteindre 80 V, alors qu'une sonde lambda délivre des signaux à très basse fréquence de faible niveau.
La carte de mesure comprend deux résistances d'entrée R\ et R2 de valeur élevée, et un étage d'entrée à amplificateur différentiel AQ monté de manière à produire une atténuation (par exemple dans un rapport 100) (résistances R3 à R7).
En série entre les résistances R\ et R2 et les résistances d'entrée respectivement R3 et R4 de l'amplificateur AQ est disposé un commutateur à relais C commandé par le bus interne 50 au microprocesseur MP et qui permet, dans une position de relier en série R\ à R3 et R2 à R4 pour réaliser une mesure, et dans l'autre position, de mettre les entrées de l'amplificateur AQ à la masse pour régler la tension de décalage ("offset") globale de la carte de mesure.
La sortie de l'amplificateur AQ attaque en parallèle l'entrée de trois amplificateurs A\, A2, A3 contre-réactionnés (respectivement Rg, Rj ] ; R9 Rj2 et RlO. R13) P°ur procurer des gains étages par exemple 1 pour A\, 10 pour A2 et 100 pour A3.
La sortie des amplificateurs Ai à A3 attaque un multiplexeur MUX commandé par le bus 50 du microprocesseur MP. Ce multiplexeur peut être du type
MAX 508 ou MAX 509 de la firme MAXIM Inc.
En fonction du type de capteur auquel l'entrée différentielle (El, E2) est connecté, le bus 50 peut aiguiller automatiquement la sortie de l'amplificateur le plus adapté parmi Ai , A2 et A3 vers la sortie du multiplexeur MUX.
Ceci peut s'effectuer soit parce que le microprocesseur MP connaît, de manière positive de quel type de capteur il s'agit, soit par une procédure automatique de détection de gamme, puis détermination automatique de la gamme de mesure par approximations successives permettant d'obtenir la dynamique la plus grande sans écrêtage du signal ("auto-ranging").
La sortie du multiplexeur MUX attaque un circuit de filtrage F, ici du type passe-bas, dont la fréquence de coupure peut être programmée entre 2 Hz et 25 kHz par exemple, par le microprocesseur MP par l'intermédiaire du bus 50. Le circuit F peut être par exemple du type MAX 291 à 296 de la firme MAXIM Inc.
La sortie du filtre F attaque une entrée d'un amplificateur différentiel A6 de gain unité (Ri 4, Ri 5, Ri 6) dont l'autre entrée reçoit d'un convertisseur numérique- analogique DAC multiple commandé par le bus 50, un signal de tension de décalage ("offset") ajustable. La sortie du filtre F attaque également une entrée d'un
amplificateur différentiel A4 (comparateur) et d'un amplificateur différentiels A5 (comparateur) dont l'autre entrée reçoit un de deux signaux de seuil générés par le convertisseur DAC commandé par le bus 50. Ceci donne en sortie de A4 un signal de seuil haut H et un signal de seuil bas B en sortie de A5. Le convertisseur DAC peut être du type MAX 528 de la firme MAXIM Inc.
Une porte OU reçoit à ses entrées, les signaux H et permet de générer les transitions T. Les signaux H et L et les transitions T sont introduits dans des entrées logiques du microprocesseur MP.
La carte logique de la figure 2 peut être incorporée dans un ou plusieurs modules de la figure 1, auquel cas le microprocesseur MP est constitué par le microprocesseur correspondant 21, 22, 23 et/ou 24 du module correspondant. Etant donné que les modules 31 à 34 sont configurables par l'unité centrale 3, il est possible de mettre en oeuvre des modules 31 à 34 qui soient en tout ou partie identiques.
La sortie de l'amplificateur A attaque une entrée d'un convertisseur analogique numérique ADC permettant de numériser les signaux de mesure. La sortie du convertisseur ADC est délivrée au microprocesseur MP.
Claims
1. Banc de mesure pour diagnostic automobile, caractérisé en ce qu'il comporte :
- un élément principal (1) comportant une unité centrale (3)
- des modules de mesure (31, 32, 33, 34) présentant chacun un circuit de mesure (25, 26, 27, 28) pour au moins un dispositif de mesure (41, 42 ... 50) et un microprocesseur (21, 22, 23, 24), le circuit de mesure (25 .... 28) générant des signaux de mesure
- une première liaison asynchrone (10) entre l'élément principal (1) et chacun des modules de mesure (31, 32, 33, 34) et véhiculant les signaux de mesure entre les modules (31 ... 34) et
- une deuxième liaison asynchrone (20) entre les modules de mesure (31 ... 34),.
la première liaison asynchrone (10) présentant un premier protocole de communication permettant de mettre au moins un module en mode d'émission et la deuxième liaison asynchrone (20) présentant un deuxième protocole permettant de véhiculer entre les modules (31 ... 34) des transitions d'événements générées par les modules de mesure (31 ... 34).
2. Banc de mesure selon la revendication 1, caractérisé en ce que l'unité centrale (3) de l'élément principal (1) comporte un moyen de téléchargement des microprocesseurs des programmes des modules de mesure (31 ... 34).
3. Banc de mesure selon la revendication 1, caractérisé en ce que le premier protocole comporte un moyen pour programmer chaque module (31 ... 34) soit en mode d'émission soit en mode de réception, soit en mode haute impédance.
4. Banc de mesure selon la revendication 1, caractérisé en ce que le premier protocole comporte un moyen pour programmer un seul module en mode d'émission sur la deuxième liaison asynchrone (20).
5. Banc de mesure selon une des revendications précédentes, caractérisé en ce que le circuit de mesure (25 ... 28) d'au moins un module (31 ... 34) comporte une unité de mesure (60) présentant une entrée unique pour au moins deux dispositifs de mesure (41 ... 50).
6. Banc de mesure selon la revendication 5, caractérisé en ce que les dispositifs de mesure (41 ... 50) sont des capteurs et/ou des actionneurs d'un véhicule automobile.
7. Banc de mesure selon une des revendications 5 ou 6, caractérisé en ce que l'unité de mesure comporte :
- un étage d'entrée (A) pour au moins deux dispositifs de mesure (41 ... 50)
- au moins deux étages amplificateurs (Aj, A2. A3) disposés en parallèle et dont l'entrée est couplée à la sortie de l'étape d'entrée (AQ) et dont la sortie est couplée à autant d'entrées d'un multiplexeur (MUX)
- ledit multiplexeur (MUX) dont la sortie est couplée à l'entrée d'un circuit de filtrage (F)
- un convertisseur analogique-numérique (ADC) ayant une entrée couplée à la sortie du circuit de filtrage (F)
- le multiplexeur (MUX) et le circuit de filtrage (F) étant commandés par ledit microprocesseur (MP) de manière à sélectionner une gamme de mesures en fonction du dispositif de mesure (41 ... 50) couplé à l'étage d'entrée
8. Banc de mesure selon la revendication 7, caractérisé en ce que l'unité de mesure compte un convertisseur numérique-analogique (DAC) commandé par le microprocesseur (MP) et dont la sortie est connectée à une entrée d'un circuit de commande de tension de décalage (A6) disposé entre le circuit de filtrage (F) et le convertisseur analogique-numérique (ADC).
9. Banc de mesure selon une des revendications 7 ou 8, caractérisé en ce que l'étage d'entrée (Aυ) de l'unité de mesure comporte un circuit de calibrage (C) permettant de mettre ses entrées à la masse, le circuit de calibrage (C) étant commandé par le microprocesseur (MP).
10. Banc de mesure selon une des revendications 7 à 9, caractérisé en ce que l'étage d'entrée (An) est un étage atténuateur.
11. Banc de mesure selon une des revendications 7 à 10, caractérisé en ce que l'unité de mesure (60) comprend un circuit de discrimination de seuil (A4, A5) présentant une entrée couplée à la sortie du circuit de filtrage (F) et présentant au moins une sortie produisant desdites transitions de synchronisation (T).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94929591A EP0676044A1 (fr) | 1993-10-21 | 1994-10-07 | Banc de mesure pour diagnostic automobile |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9312581A FR2711795B1 (fr) | 1993-10-21 | 1993-10-21 | Banc de mesure pour diagnostic automobile. |
FR93/12581 | 1993-10-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995011435A1 true WO1995011435A1 (fr) | 1995-04-27 |
Family
ID=9452091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1994/001174 WO1995011435A1 (fr) | 1993-10-21 | 1994-10-07 | Banc de mesure pour diagnostic automobile |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0676044A1 (fr) |
FR (1) | FR2711795B1 (fr) |
WO (1) | WO1995011435A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858433A (ja) * | 1981-10-02 | 1983-04-07 | Automob Antipollut & Saf Res Center | 自動車の診断方法 |
EP0090756A1 (fr) * | 1982-03-29 | 1983-10-05 | United Technologies Corporation | Support portatif pour des capteurs |
US4467323A (en) * | 1981-12-04 | 1984-08-21 | Bear Automotive Service Equipment Company | Engine analyzer with simulated analog meter display |
US4796206A (en) * | 1986-06-02 | 1989-01-03 | International Business Machines Corporation | Computer assisted vehicle service featuring signature analysis and artificial intelligence |
JPH028728A (ja) * | 1988-02-29 | 1990-01-12 | Fuji Heavy Ind Ltd | 車輌診断システム |
WO1992015852A1 (fr) * | 1991-02-27 | 1992-09-17 | Bear Automotive Service Equipment Company | Appareil et procede de topographie de moteurs a combustion interne |
-
1993
- 1993-10-21 FR FR9312581A patent/FR2711795B1/fr not_active Expired - Fee Related
-
1994
- 1994-10-07 EP EP94929591A patent/EP0676044A1/fr not_active Withdrawn
- 1994-10-07 WO PCT/FR1994/001174 patent/WO1995011435A1/fr not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5858433A (ja) * | 1981-10-02 | 1983-04-07 | Automob Antipollut & Saf Res Center | 自動車の診断方法 |
US4467323A (en) * | 1981-12-04 | 1984-08-21 | Bear Automotive Service Equipment Company | Engine analyzer with simulated analog meter display |
EP0090756A1 (fr) * | 1982-03-29 | 1983-10-05 | United Technologies Corporation | Support portatif pour des capteurs |
US4796206A (en) * | 1986-06-02 | 1989-01-03 | International Business Machines Corporation | Computer assisted vehicle service featuring signature analysis and artificial intelligence |
JPH028728A (ja) * | 1988-02-29 | 1990-01-12 | Fuji Heavy Ind Ltd | 車輌診断システム |
WO1992015852A1 (fr) * | 1991-02-27 | 1992-09-17 | Bear Automotive Service Equipment Company | Appareil et procede de topographie de moteurs a combustion interne |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 14, no. 148 (P - 1024) 24 March 1990 (1990-03-24) * |
PATENT ABSTRACTS OF JAPAN vol. 7, no. 146 (P - 206) 25 June 1983 (1983-06-25) * |
Also Published As
Publication number | Publication date |
---|---|
FR2711795B1 (fr) | 1996-02-02 |
EP0676044A1 (fr) | 1995-10-11 |
FR2711795A1 (fr) | 1995-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0285478B1 (fr) | Circuit convertisseur de signaux analogiques en signaux logiques | |
JP3568540B2 (ja) | 自動車のサブシステムを検査するための診断装置 | |
FR2604811A1 (fr) | Systeme de controle de conditions d'un vehicule, module d'acquisition de donnees et convertisseur analogique numerique associes | |
FR2800190A1 (fr) | Procede et systeme pour l'autodiagnostic d'une voiture | |
EP0329514B1 (fr) | Interface de raccordement pour un système de transmission d'informations, notamment dans un véhicule automobile | |
FR3090925A1 (fr) | Dispositif de détection automatique de couplage entre dispositifs électronique | |
FR2969430A1 (fr) | Module electronique de communication pour le verrouillage/deverrouillage d'un ouvrant de vehicule automobile, unite centrale de commande associee et systeme d'acces mains-libres | |
EP0676044A1 (fr) | Banc de mesure pour diagnostic automobile | |
EP0564330B1 (fr) | Emetteur de commandes, récepteur adapté et système de commande pour dispositif d'essuyage de véhicule | |
FR2542813A1 (fr) | Circuit electronique de mise hors fonction d'un dispositif de regulation de vitesse | |
WO2014173981A1 (fr) | Dispositif d'acquisition differentielle de courant et procede de commande d'un tel dispositif d'acquisition | |
FR3026073A1 (fr) | Dispositif actuateur/capteur | |
FR2596147A1 (fr) | Transducteur de position non lineaire destine a detecter la position d'une valve de commande du debit d'air admis dans les cylindres d'un moteur thermique | |
GB2224869A (en) | Digital comparator trigger signal | |
WO2007038983A1 (fr) | Analyse de flux de donnees de diagnostic de vehicule utilisant un film du flux de donnees enregistre | |
EP3983896A1 (fr) | Procédé de diagnostic d'un calculateur esclave communiquant avec un calculateur maître | |
FR2695780A1 (fr) | Procédé de détection d'un court-circuit entre les lignes d'un bus transmettant des données numériques sous forme de signaux différentiels de tension. | |
WO2022017719A1 (fr) | Dispositif de détection automatique de couplage entre dispositifs électroniques | |
EP3147162B1 (fr) | Feu arrière de véhicule et système de commande d'un accessoire d'un véhicule | |
FR2799284A1 (fr) | Systeme de diagnostic du fonctionnement d'organes fonctionnels d'un vehicule automobile | |
EP3554102A1 (fr) | Procédé d' établissement automatique d'une connexion sans fil entre un terminal mobile et un calculateur multimédia d'un véhicule | |
EP2912646B1 (fr) | Détecteur sil2 polyvalent doté de deux sorties et d'une entrée de test | |
FR2773623A1 (fr) | Procede de surveillance de la commande d'un organe de reglage, notamment dans un vehicule automobile | |
EP1195292B1 (fr) | Dispositif de correction d'assiette à câblage simplifié pour véhicule automobile | |
EP3107751B1 (fr) | Procédé et dispositif d'acquisition de données provenant d'un dispositif d'autorisation de démarrage d'un véhicule, et véhicule comprenant ledit dispositif |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1994929591 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWP | Wipo information: published in national office |
Ref document number: 1994929591 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1994929591 Country of ref document: EP |