WO1995009613A1 - Controlled release microspheres - Google Patents
Controlled release microspheres Download PDFInfo
- Publication number
- WO1995009613A1 WO1995009613A1 PCT/US1993/010611 US9310611W WO9509613A1 WO 1995009613 A1 WO1995009613 A1 WO 1995009613A1 US 9310611 W US9310611 W US 9310611W WO 9509613 A1 WO9509613 A1 WO 9509613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microspheres
- controlled release
- bupivacaine
- local anesthetic
- acid esters
- Prior art date
Links
- 239000004005 microsphere Substances 0.000 title claims abstract description 83
- 238000013270 controlled release Methods 0.000 title claims abstract description 30
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims abstract description 36
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000003589 local anesthetic agent Substances 0.000 claims abstract description 30
- 229920001577 copolymer Polymers 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 20
- 229920002732 Polyanhydride Polymers 0.000 claims abstract description 17
- 239000004310 lactic acid Substances 0.000 claims abstract description 13
- 235000014655 lactic acid Nutrition 0.000 claims abstract description 13
- 241001465754 Metazoa Species 0.000 claims abstract description 12
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- 206010002091 Anaesthesia Diseases 0.000 claims abstract description 8
- 230000037005 anaesthesia Effects 0.000 claims abstract description 8
- 230000002035 prolonged effect Effects 0.000 claims abstract description 8
- 239000002745 poly(ortho ester) Substances 0.000 claims abstract description 4
- 229920001710 Polyorthoester Polymers 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 39
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 claims description 31
- 229920000642 polymer Polymers 0.000 claims description 25
- 229960003150 bupivacaine Drugs 0.000 claims description 23
- 238000009472 formulation Methods 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000000243 solution Substances 0.000 claims description 12
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 11
- 229920000954 Polyglycolide Polymers 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- 150000002148 esters Chemical class 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 238000001694 spray drying Methods 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims description 5
- XFDUHJPVQKIXHO-UHFFFAOYSA-N 3-aminobenzoic acid Chemical class NC1=CC=CC(C(O)=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-N 0.000 claims description 4
- SHSGDXCJYVZFTP-UHFFFAOYSA-N 4-ethoxybenzoic acid Chemical class CCOC1=CC=C(C(O)=O)C=C1 SHSGDXCJYVZFTP-UHFFFAOYSA-N 0.000 claims description 4
- VTUSIVBDOCDNHS-UHFFFAOYSA-N Etidocaine Chemical compound CCCN(CC)C(CC)C(=O)NC1=C(C)C=CC=C1C VTUSIVBDOCDNHS-UHFFFAOYSA-N 0.000 claims description 4
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 claims description 4
- 150000001558 benzoic acid derivatives Chemical class 0.000 claims description 4
- 229960003976 etidocaine Drugs 0.000 claims description 4
- 229960004194 lidocaine Drugs 0.000 claims description 4
- 229960001807 prilocaine Drugs 0.000 claims description 4
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 claims description 4
- OYCGKECKIVYHTN-UHFFFAOYSA-N pyrrocaine Chemical compound CC1=CC=CC(C)=C1NC(=O)CN1CCCC1 OYCGKECKIVYHTN-UHFFFAOYSA-N 0.000 claims description 4
- 229950000332 pyrrocaine Drugs 0.000 claims description 4
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical class NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 claims description 3
- 241000282412 Homo Species 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 230000037396 body weight Effects 0.000 claims description 3
- INWLQCZOYSRPNW-UHFFFAOYSA-N mepivacaine Chemical compound CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C INWLQCZOYSRPNW-UHFFFAOYSA-N 0.000 claims description 3
- 229960002409 mepivacaine Drugs 0.000 claims description 3
- 150000002905 orthoesters Chemical class 0.000 claims description 3
- 239000003981 vehicle Substances 0.000 claims description 3
- 229940079593 drug Drugs 0.000 abstract description 46
- 239000003814 drug Substances 0.000 abstract description 46
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- -1 poly(malic acid) Polymers 0.000 description 14
- 238000000638 solvent extraction Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 238000004090 dissolution Methods 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229960005015 local anesthetics Drugs 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000003094 microcapsule Substances 0.000 description 4
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- BXMFKNRZTLNAFY-UHFFFAOYSA-N Metabutethamine Chemical compound CC(C)CNCCOC(=O)C1=CC=CC(N)=C1 BXMFKNRZTLNAFY-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 208000004550 Postoperative Pain Diseases 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 238000009506 drug dissolution testing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000002690 local anesthesia Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000036407 pain Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 208000002881 Colic Diseases 0.000 description 1
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- YQKAVWCGQQXBGW-UHFFFAOYSA-N Piperocaine Chemical compound CC1CCCCN1CCCOC(=O)C1=CC=CC=C1 YQKAVWCGQQXBGW-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 1
- CAJIGINSTLKQMM-UHFFFAOYSA-N Propoxycaine Chemical compound CCCOC1=CC(N)=CC=C1C(=O)OCCN(CC)CC CAJIGINSTLKQMM-UHFFFAOYSA-N 0.000 description 1
- 206010040030 Sensory loss Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 208000003443 Unconsciousness Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003096 antiparasitic agent Substances 0.000 description 1
- 229940125687 antiparasitic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229920005578 aromatic polyanhydride Polymers 0.000 description 1
- VXJABHHJLXLNMP-UHFFFAOYSA-N benzoic acid [2-methyl-2-(propylamino)propyl] ester Chemical compound CCCNC(C)(C)COC(=O)C1=CC=CC=C1 VXJABHHJLXLNMP-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229950009376 butethamine Drugs 0.000 description 1
- WDICTQVBXKADBP-UHFFFAOYSA-N butethamine Chemical compound CC(C)CNCCOC(=O)C1=CC=C(N)C=C1 WDICTQVBXKADBP-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 229940005494 general anesthetics Drugs 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- YGSFZBYOMFZJPV-UHFFFAOYSA-N isobucaine Chemical compound CC(C)CNC(C)(C)COC(=O)C1=CC=CC=C1 YGSFZBYOMFZJPV-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229950007594 meprylcaine Drugs 0.000 description 1
- 229960000774 metabutethamine Drugs 0.000 description 1
- LJQWYEFHNLTPBZ-UHFFFAOYSA-N metabutoxycaine Chemical compound CCCCOC1=C(N)C=CC=C1C(=O)OCCN(CC)CC LJQWYEFHNLTPBZ-UHFFFAOYSA-N 0.000 description 1
- 229950004316 metabutoxycaine Drugs 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- RFKMCNOHBTXSMU-UHFFFAOYSA-N methoxyflurane Chemical compound COC(F)(F)C(Cl)Cl RFKMCNOHBTXSMU-UHFFFAOYSA-N 0.000 description 1
- 229960002455 methoxyflurane Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- OWWVHQUOYSPNNE-UHFFFAOYSA-N parethoxycaine Chemical compound CCOC1=CC=C(C(=O)OCCN(CC)CC)C=C1 OWWVHQUOYSPNNE-UHFFFAOYSA-N 0.000 description 1
- 229960003899 parethoxycaine Drugs 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229960001045 piperocaine Drugs 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 1
- 229920000218 poly(hydroxyvalerate) Polymers 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920001855 polyketal Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 229950003255 propoxycaine Drugs 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- JCQBWMAWTUBARI-UHFFFAOYSA-N tert-butyl 3-ethenylpiperidine-1-carboxylate Chemical group CC(C)(C)OC(=O)N1CCCC(C=C)C1 JCQBWMAWTUBARI-UHFFFAOYSA-N 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008307 w/o/w-emulsion Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
- A61K9/1647—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
- A61K31/24—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
- A61K31/245—Amino benzoic acid types, e.g. procaine, novocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
Definitions
- the present invention is related to biodegradable con- trolled release formulations for the administration of locally active drugs, in particular, local anesthetics.
- the duration of action of a local anesthetics is proportional to the time during which it is in actual contact with the nervous tissues. Consequently, procedures or formulations that maintain localization of the drug at the nerve greatly prolong anesthesia. All local anesthetics are toxic, and therefore it is of great importance that the choice of drug, concentration, rate and site of administration, as well as other factors, be considered in their use.
- a local anesthetic must remain at the site long enough to allow sufficient time for the localized pain to subside.
- U.S. Patent Nos. 4,725,442 and 4,622,219 are directed to microdroplets of methoxyflurane-containing microdroplet ⁇ coated with a phospholipid prepared by soni- cation, which are suitable for intradermal or intravenous injection into a patient for inducing local anesthesia.
- Such microdroplets are said to cause long-term local anesthesia when injected intradermally, giving a duration of anesthesia considerably longer than the longest acting conventional local anesthetic (bupivacaine) .
- U.S. Patent No. 5,188,837 relates to a micro- suspension system containing lipospheres having a layer of a phospholipid imbedded on their surface.
- the core of the liposphere is a solid substance to be delivered, or the substance to be delivered is dispersed in an inert vehicle.
- the substance to be delivered can be, e.g., nonsteroidal anti-inflammatory compounds, local anesthetics, water in- soluble chemotherapeutic agents and steroids.
- U.S. Patent No. 5,061,492 related to prolonged release microcapsules of a water-soluble drug in a biodegradable polymer matrix which is composed of a copolymer of glycolic acid and a lactic acid.
- the microcapsules are prepared as an injectable preparation in a pharmaceutically acceptable vehicle.
- the particles of water soluble drug is retained in a drug- retaining substance dispersed in a matrix of the lactic/ glycolic acid copolymer in a ratio of 100/0 to 50/50 and an average molecular weight of 5,000-200,000.
- the injectable preparation is made by preparing a water-in-oil emulsion of aqueous layer of drug and drug retaining substance and an oil layer of the polymer, thickening and then water-drying.
- U.S. Patent No. 4,938,763 (Dunn, et al. ) is related to a biodegradable polymer for use in providing syringeable, in-situ forming, solid biodegradable implants for animals.
- a thermosetting system is utilized which utilizes copolymers which may be derived from polylactides and/or polyglycolides, combinations and mixtures of these and other polymers.
- U.S. Patent No. 4,293,539 (Ludwig, et al. ) is directed to controlled release formulations comprised of a microbial agent dispersed throughout a copolymer derived from lactic acid and glycolic acid.
- the copolymer is derived from 60- 95% lactic acid and 40-5% glycolic acid by weight, and has a molecular weight of 6,000-35,000.
- An effective amount of the copolymeric formulation is administered by subcutaneous or intramuscular administration.
- a biodegradable controlled release formulation capable of delivering an effective dose of a local anesthetic over a prolonged period of time, comprising microspheres of from about 5 to about 95 percent of a local anesthetic, and from about 5 to about 95 percent of a polymeric material selected from the group consisting of a polylactide, a polyglycolide, a poly(lactide-co-glycolide) , a polyanhydride, a polyortho- ester and mixtures of any of the foregoing.
- the polymeric material is derived from about 0 to about 100 percent lactic acid and from about 100 to about 0 percent glycolic acid, by weight.
- microspheres of the biodegradable controlled re- lease formulation are preferably dispersed in a pharmaceu- tically acceptable medium for injection into humans or animals.
- biodegradable controlled release formulations of the present invention provide a desired prolonged release of drug at the site of treatment, and may provide the desired effect, e.g., for 1-3 days or longer, even as long as months.
- the present invention also relates to a method of providing prolonged anesthesia in a localized area in an animal or human, comprising injecting into a localized area to be treated an effective amount of controlled release biodegradable microspheres comprising from about 5 to about 95 percent of a local anesthetic and from about 5 to about 95 percent by weight of a polymeric material selected from the group consisting of a polylactide, a polyglycolide, a poly(lactide-co-glycolide) , a polyanhydride, a polyortho ⁇ ester, a polyanhydride, a polyorthoester, and mixtures of any of the foregoing.
- a polymeric material selected from the group consisting of a polylactide, a polyglycolide, a poly(lactide-co-glycolide) , a polyanhydride, a polyortho ⁇ ester, a polyanhydride, a polyorthoester, and mixtures of any of
- Fig. 1 is a graphical representation of the dissolu- tion data obtained for Examples 1-3;
- Fig. 2 is a graphical representation comparing the dissolution data obtained for Example 6 (spray-drying process) and Example 9 (solvent extraction process) ;
- Fig. 3 is a graphical representation of the dissolution data obtained for Examples 4-5 (spray-drying process) and Examples 7-8 (solvent extraction process) .
- the controlled release microspheres of the present invention are comprised of the therapeutically active agent (i.e., drug), and a polymeric material selected from the group consisting of a polylactide, a polyglycolide, a poly(lactide-co-glycolide) , a polyanhydride, a polyortho ⁇ ester and mixtures of any of the foregoing.
- the microspheres include from about 5% to about 95% drug and from about 5% to about 95% polymer, by weight.
- the drug is included in the microspheres in an amount from about 20% to about 75%, and more preferably from about 25%-40% (low-load microspheres) and from about 40% to about 75% (high-load microspheres) .
- microspheres are defined for purposes of the present invention as particles comprising local anesthetic and the aforementioned polymeric materials (used as a controlled release carrier for the drug) which are preferably anywhere from about 20 microns to about 200 microns, and more preferably from about 45 to about 90 microns in diameter.
- the microspheres are preferably formed in such a size as to be injectable.
- microsphere encompasses "microparticle” and "microcapsule”.
- the polymeric material used in the microspheres of the present invention prefer ⁇ ably have a molecular weight from about 5,000 to about 200,000.
- biodegradable polymers which may be useful in the present invention are block copolymers of polyethylene oxide and lactide/glycolide, polyglutamic acid polymers, polycaprolactones, polydioxanones, polyketals, polycarbon ⁇ ates, polyorthocarbonates, polyamides, polyesteramides, polyurethanes, polyphosphazenes, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates and succinates, poly(malic acid), poly(amino acids), polyvinylpyrollidone, chitan, chitosan, and mixtures of any of the foregoing.
- the polymeric material used in the present invention is a polylactic acid polymer, a polyglycolic acid polymer, or a copolymer derived from a combination of lactic acid and glycolic acid.
- the polymeric material may be prepared by any method known to those skilled in the art.
- this copolymer may be prepared by the procedure set forth in U.S. Patent No. 4,293,539 (Ludwig, et al.) , hereby incorporated by reference.
- the copolymers are prepared by condensation of lactic acid and glycolic acid in the presence of a readily removable polymerization catalyst (e.g., a strong acid ion- exchange resin such as Dowex HCR-W2-H) .
- a readily removable polymerization catalyst e.g., a strong acid ion- exchange resin such as Dowex HCR-W2-H
- the amount of catalyst is not critical to the polymerization, but typic ⁇ ally is form about 0.01 to about 20 parts by weight rela- tive to the total weight of combined lactic acid and gly ⁇ colic acid.
- the polymerization reaction may be conducted without solvents at a temperature from about 100° C to about 250° C for about 48 to about 96 hours, preferably under a reduced pressure to facilitate removal of water and by-products.
- the copolymer is then recovered by filtering the molten reaction mixture to remove substantially all of the catalyst, or by cooling and then dissolving the reac ⁇ tion mixture in an organic solvent such as dichloromethane or acetone and then filtering to remove the catalyst.
- Polyanhydrides may be prepared in accordance with the methods set forth in U.S.
- polyanhydrides may be synthesized by melt polycondensation of highly pure dicarboxylic acid monomers converted to the mixed anhydride by reflux in acetic anhydride, isolation and purification of the isolated prepolymers by recrystallization, and melt polymerization under low pressure (10 " mm) with a dry ice/acetone trap at a temperature between 140"-250° C. for 10-300 minutes.
- High molecular weight polyanhydrides are obtained by inclusion of a catalyst which increases the rate of anhydride interchain exchange, for example, alka ⁇ line earth metal oxides such as CaO, BaO and CaC0 3 .
- Poly ⁇ orthoester polymers may be prepared, e.g., as set forth in U.S. Patent No. 4,070,347, hereby incorporated by refer- ence.
- PLGA poly (lactide-co- glycolide) materials
- poly(d,l-lactic-co-glycolic acid) are commercially avail- able from Medisorb Technologies International L.P. (Cincin ⁇ nati, OH) .
- a preferred product commercially available from Medisorb is a 50:50 poly (D,L) lactic co-glycolic acid known as MEDISORB 5050 DL. This product has a mole percent composition of 50% lactide and 50% glycolide.
- Suitable suit- able commercially available products are Medisorb 65:35 DL, 75:25 DL, 85:15 DL and poly(d,1-lactic acid) (d,l-PLA).
- Poly(lactide-co-glycolides) are also commercially available from Boerhinger Ingelheim (Germany) under its Resomer ® mark, e.g., PLGA 50:50 (Resomer RG 502), PLGA 75:25 (Resomer RG 752) and d,l-PLA (resomer RG 206), and from
- polyanhydrides which are useful in the present invention have a water-labile anhyd ⁇ ride linkage.
- the rate of drug release can be controlled by the particular polyanhydride polymer utilized and its molecular weight.
- the polyanhydride polymer may be branched or linear.
- PCPP poly[bis(p-carboxyphenoxy)propane anhydride]
- PCPM poly[bis(p-carboxy)methane an
- the biodegradable controlled release microspheres of the present invention may be prepared by any procedure known to those skilled in the art.
- the microspheres may be obtained by utilizing a solvent extraction technique (reactor process) which involves dissolving the drug and the polymer in an organic solvent such as ethyl acetate.
- This solution thereby obtained (the dispersed phase) is added to a solu- tion of, e.g., polyvinyl alcohol (PVA) in water (the con ⁇ tinuous phase) with stirring.
- PVA polyvinyl alcohol
- the emulsion thereby formed is then added to water in order to extract the solvent and to harden the microspheres.
- the mixture is then filtered and the microspheres are dried.
- the organic solvent utilized is preferably ethyl acetate; however, any pharmaceutically acceptable organic solvent may be utilized, such as acetone, ethanol, diethyl ether, methanol, benzyl alcohol, methylene chloride, petroleum ether or others. This procedure is particularly useful for preparing microspheres of bupivacaine base.
- the microspheres of bupivacaine base may be prepared by dissolving the drug and polymer in ethyl acetate and thereafter spray drying the solution.
- the microspheres may be prepared using a coacervation/ phase separation rather than the solvent extraction technique described above.
- the solvent extraction technique can be used with bupiva ⁇ caine HC1 due to its low water solubility at pH 7.4 and above.
- the coacervation/phase separation technique util ⁇ ized involves dissolving the polymer in ethyl acetate and suspending micronized bupivacaine HC1 in the solution. Silicone oil is then added to form the microspheres. This mixture is then added to heptane to harden the micro ⁇ spheres, which are then separated by filtration. The microspheres are dried under a vacuum at room temperature. The desired particle size fraction is then collected by sieving.
- microspheres prepared using bupivacaine HC1 may be accomplished by suspending the drug in a solu ⁇ tion of polymer in ethyl acetate or in methylene chloride and methanol and spray drying.
- the bupivacaine HC1 may be dissolved in water, and the polymer may be dissolved in ethyl acetate.
- the water phase then can be added to the organic phase and homogenized to yield a W/O emulsion.
- the drug being in the water phase would then be surrounded by polymer (oil phase) .
- This is then added to the PVA solution in water with stirring to form a W/O/W emulsion.
- the solvent would diffuse out, leaving microspheres. Additional cold water can be added to harden the microspheres. This process may yield more uniform microspheres without requiring microni- zation of the drug.
- the release of the drug may be more uniform and would be diffusion-controlled.
- the ultimate drug content of the microspheres accord- ing to the present invention may be varied substantially, depending upon whether a high load or a low load formula ⁇ tion procedure is utilized.
- the drug content of the high-load microspheres may be from about 40% to about 95% of the total weight of the microsphere, and the drug content of the low-load microspheres may be from about 5% to about 40%.
- the drug included in the microspheres may be one which would be useful in a localized setting, such as a local anesthetic, anti-inflammatory, antifungal agents, antiviral agents, anti-parasitic agents or antibiotic.
- vir ⁇ tually any bioactive compound can be utilized in the micro ⁇ spheres of the present invention, including, but not limited to, vitamins, nucleic acids, polynucleotides, poly- saccharides, immunomodulators, dyes, radiolabels, radio- opaque compounds, fluorescent compounds, hormones, neuro- transmitters, glycoproteins, lipoproteins, immumoglobulins, peptides, proteins, enzymes, and the like.
- the drug included in the microspheres is a local anesthetic either of the ester or amide type.
- Suitable local anesthe ⁇ tics of the ester type include the benzoic acid esters (e.g., piperocaine, meprylcaine, isobucaine) , the para- aminobenzoic acid esters (e.g., procaine, tetracaine, bute- thamine, propoxycaine, chloroprocaine) ; meta-aminobenzoic acid esters (e.g., metabutethamine, primacaine) , paraeth- oxybenzoic acid esters (e.g., parethoxycaine) , and their pharmaceutically acceptable salts.
- benzoic acid esters e.g., piperocaine, meprylcaine, isobucaine
- the para- aminobenzoic acid esters e.g., procaine, tetracaine, bute- thamine, propoxycaine, chloro
- the non-esters include, e.g., lidocaine, mepivacaine, pyrrocaine, prilocaine, bupivacaine, etidocaine, pharmaceutically acceptable salts.
- a most preferred local anesthetic is bupivacaine.
- the microspheres incorporate bupivacaine as the drug in an amount from about 45% to about 70% by weight, the copolymer being PLGA 50:50 of a molecular weight from about 5,000 to about 200,000.
- the microspheres of the present invention preferably provide a sustained action in the localized area to be treated.
- the drug included in the micro- spheres is bupivacaine
- the formulations can therefore, of course, be modified in order to obtain such a desired result.
- the microspheres of the present invention may be utilized as a controlled release formulation preferably by incorporating an effective amount of the same into a pharmaceutically acceptable solution (e.g., water) or suspension for injection.
- the final reconstituted product viscosity may be in a range suitable for the route of administration.
- the final reconsti ⁇ tuted product viscosity may be, e.g., about 35 cps.
- Admin ⁇ istration may be via the subcutaneous or intramuscular route.
- alternative routes are also contemplated, and the formulations may be applied to the localized site in any manner known to those skilled in the art, such that a localized effect is obtained.
- the microspheric formula ⁇ tions of the present invention can be implanted at the site to be treated. Thereby, the formulations of the present invention, when including a local anesthetic, may be used in the control of post-operative pain.
- the dosage of the controlled release microsphere form ⁇ ulations of the present invention is dependent upon the kind and amount of the drug to be administered, the recip- ient animal, and the objectives of the treatment.
- the formulation may in ⁇ clude, e.g., from about 0.7 to about 2 mg/kg body weight. For a 70 kg human or animal, this would be from about 50 to about 150 mg. Since the formulations of the present in ⁇ vention are controlled release, it is contemplated that formulations may include as much as 120 mg/kg bupivacaine or more.
- bupivacaine microspheres are prepared by dissolving the bupivacaine base and the polymer in ethyl acetate.
- the polymer is 50:50 poly (D,L) lactic co- glycolic acid which has a mole percent composition of 50% lactide and 50% glycolide (commercially available from Medisorb under the tradename Medisorb 5050 DL) .
- This dispersed phase is then added to a solution of polyvinyl alcohol (PVA) in water (the continuous phase) with stir- ring.
- PVA polyvinyl alcohol
- the resulting emulsion is monitored for droplet size, which is in turn controlled by the rate of stirring.
- the emulsion is then added to water to extract the solvent and to harden the microspheres.
- the mixture is then filtered and the microspheres are dried under vacuum at room temperature.
- the desired particle size fraction is then collected by sieving.
- Example 1 Each of Examples 1-3 are prepared such that the microspheres have a relatively high drug content.
- the theoretical drug content is about 60%, and the size of the microspheres range from about 45 to about 90 microns.
- Example 2 the theoretical drug content is about 61%, and the range in the size of the microspheres is from about 45 to about 63 microns.
- Example 3 the theoretical drug content is about 65%, and the range in particle size of the microspheres is from about 45 to about 63 microns.
- microspheres of Examples 1-3 are then suspended in a suitable media for injection, in this case water. There ⁇ after, the microspheres are subjected to in-vitro dissolu- tion testing.
- An automated dissolution test method is utilized using the USP/NF Paddle Method II.
- the dissolu ⁇ tion medium is 900 ml of Tris buffer with 0.05% sodium dodecyl sulfate at pH 7.4 at 37° C with a stirring speed of about 50 RPM.
- the surfactant is added in order to prevent the microspheres from floating on the surface of the dis ⁇ solution medium.
- the dissolution data for the microspheres of Examples 1-3 are presented in Fig. 1, and further information concerning these formulations is presented in Table 1 below.
- Example 3 It was expected that the formulation of Example 3 would release drug faster than that of Example 1 because of a higher drug content. However, the in-vitro release for Example 3 was slower than expected. It is hypothesized that this is due to the glass transition temperature of the polymer being lowered (below about 37°C) by the high drug content. This situation may or may not be translated into in-vivo results.
- Example 4-9 the bupivacaine base and the polymer utilized in Examples 1-3 are once again dissolved in ethyl acetate, but this time the microspheres are obtained by spray-drying the solution.
- Example 4 utilizes a relatively high drug content
- Example 5 utilizes a relatively low drug content.
- microspheres having a substantially similar drug content to Examples 4-5 are prepared using the solvent extraction technique utilized in Examples 1-3. Details of the formulations are presented in Table 2 below.
- Example 9 the actual percentage of bupivacaine base in the microspheres is 51%, the molecular weight of the 50:50 dl-PLGA polymer is 18,000, the micro ⁇ spheres were about 45-63 microns, and in-vitro dissolution conducted as in Examples 1-3 showed that 61% of the bupivacaine was released in 22 hours.
- microspheres of Examples 6 and 9 are suspended in a suitable injection medium (e.g., water) and then sub ⁇ jected to in-vitro dissolution testing via the procedures set forth in Examples 1-3.
- a suitable injection medium e.g., water
- the in-vitro dissolution results are determined for 22 hours, and are graphically depicted in Fig. 2.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU58959/94A AU5895994A (en) | 1993-10-04 | 1993-11-04 | Controlled release microspheres |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13128793A | 1993-10-04 | 1993-10-04 | |
| US08/131,287 | 1993-10-04 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1995009613A1 true WO1995009613A1 (en) | 1995-04-13 |
Family
ID=22448761
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1993/010611 WO1995009613A1 (en) | 1993-10-04 | 1993-11-04 | Controlled release microspheres |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU5895994A (en) |
| WO (1) | WO1995009613A1 (en) |
Cited By (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5618563A (en) * | 1992-09-10 | 1997-04-08 | Children's Medical Center Corporation | Biodegradable polymer matrices for sustained delivery of local anesthetic agents |
| US5700485A (en) * | 1992-09-10 | 1997-12-23 | Children's Medical Center Corporation | Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid |
| WO1999036071A1 (en) * | 1998-01-19 | 1999-07-22 | Korea Research Institute Of Chemical Technology | Biodegradable polymer matrices for sustained delivery of anesthetics |
| EP0954301A4 (en) * | 1996-06-24 | 2006-03-08 | Euro Celtique Sa | Methods for providing safe local anesthesia |
| RU2403017C2 (en) * | 2006-05-11 | 2010-11-10 | Пептрон Ко., Лтд. | Method for making slow-release microspheres with improved dispersibility and syringe needle permeability |
| US8846072B2 (en) | 2004-09-17 | 2014-09-30 | Durect Corporation | Controlled delivery system |
| US8945614B2 (en) | 2002-12-13 | 2015-02-03 | Durect Corporation | Oral drug delivery system |
| US8956644B2 (en) | 2006-11-03 | 2015-02-17 | Durect Corporation | Transdermal delivery systems |
| WO2015103447A1 (en) | 2013-12-31 | 2015-07-09 | Rapamycin Holdings, Llc | Oral rapamycin nanoparticle preparations and use |
| WO2015161139A1 (en) | 2014-04-16 | 2015-10-22 | Rapamycin Holdings, Llc | Oral rapamycin preparation and use for stomatitis |
| CN105748412A (en) * | 2014-09-26 | 2016-07-13 | 柯惠Lp公司 | Drug loaded microspheres for post-operative chronic pain |
| US9555113B2 (en) | 2013-03-15 | 2017-01-31 | Durect Corporation | Compositions with a rheological modifier to reduce dissolution variability |
| US9592204B2 (en) | 2007-12-06 | 2017-03-14 | Durect Corporation | Oral pharmaceutical dosage forms |
| US9616055B2 (en) | 2008-11-03 | 2017-04-11 | Durect Corporation | Oral pharmaceutical dosage forms |
| WO2019040355A1 (en) * | 2017-08-21 | 2019-02-28 | President And Fellows Of Harvard College | Poly(acid) microcapsules and related methods |
| US10471002B2 (en) | 2002-06-25 | 2019-11-12 | Durect Corporation | Short duration depot formulations |
| US10471016B2 (en) | 2013-11-08 | 2019-11-12 | President And Fellows Of Harvard College | Microparticles, methods for their preparation and use |
| US11083796B2 (en) | 2005-07-26 | 2021-08-10 | Durect Corporation | Peroxide removal from drug delivery vehicle |
| US11123297B2 (en) | 2015-10-13 | 2021-09-21 | President And Fellows Of Harvard College | Systems and methods for making and using gel microspheres |
| US11202754B2 (en) | 2017-10-06 | 2021-12-21 | Foundry Therapeutics, Inc. | Implantable depots for the controlled release of therapeutic agents |
| CN114377200A (en) * | 2022-01-12 | 2022-04-22 | 北京冠合医疗科技有限公司 | Biodegradable hydrophilic polymer microsphere for facial injection filling and preparation method thereof |
| US11401550B2 (en) | 2008-09-19 | 2022-08-02 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
| US11400019B2 (en) | 2020-01-13 | 2022-08-02 | Durect Corporation | Sustained release drug delivery systems with reduced impurities and related methods |
| RU2816232C1 (en) * | 2020-05-20 | 2024-03-27 | Интервет Интернэшнл Б.В. | Injectable pharmaceutical compositions and use thereof |
| US11964076B2 (en) | 2015-03-31 | 2024-04-23 | Foundry Therapeutics, Inc. | Multi-layered polymer film for sustained release of agents |
| CN118717718A (en) * | 2024-05-15 | 2024-10-01 | 中国科学院宁波材料技术与工程研究所 | A biodegradable microsphere sustained-release preparation containing bupivacaine and a preparation method thereof |
| US12274794B2 (en) | 2016-07-06 | 2025-04-15 | Orient Pharma Co., Ltd. | Oral dosage form with drug composition, barrier layer and drug layer |
| US12303619B2 (en) | 2018-08-28 | 2025-05-20 | Foundry Therapeutics, Inc. | Polymer implants |
| US12364792B2 (en) | 2018-01-08 | 2025-07-22 | Foundry Therapeutics, Inc. | Devices, systems, and methods for treating intraluminal cancer via controlled delivery of therapeutic agents |
| US12433877B2 (en) | 2021-01-12 | 2025-10-07 | Durect Corporation | Sustained release drug delivery systems and related methods |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4384975A (en) * | 1980-06-13 | 1983-05-24 | Sandoz, Inc. | Process for preparation of microspheres |
| US4623588A (en) * | 1984-02-06 | 1986-11-18 | Biotek, Inc. | Controlled release composite core coated microparticles |
-
1993
- 1993-11-04 WO PCT/US1993/010611 patent/WO1995009613A1/en active Application Filing
- 1993-11-04 AU AU58959/94A patent/AU5895994A/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4384975A (en) * | 1980-06-13 | 1983-05-24 | Sandoz, Inc. | Process for preparation of microspheres |
| US4623588A (en) * | 1984-02-06 | 1986-11-18 | Biotek, Inc. | Controlled release composite core coated microparticles |
Cited By (52)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5618563A (en) * | 1992-09-10 | 1997-04-08 | Children's Medical Center Corporation | Biodegradable polymer matrices for sustained delivery of local anesthetic agents |
| US5700485A (en) * | 1992-09-10 | 1997-12-23 | Children's Medical Center Corporation | Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid |
| US6214387B1 (en) | 1992-09-10 | 2001-04-10 | Children's Medical Center Corporation | Biodegradable polymer matrices for sustained delivery of local anesthetic agents |
| EP0954301A4 (en) * | 1996-06-24 | 2006-03-08 | Euro Celtique Sa | Methods for providing safe local anesthesia |
| WO1999036071A1 (en) * | 1998-01-19 | 1999-07-22 | Korea Research Institute Of Chemical Technology | Biodegradable polymer matrices for sustained delivery of anesthetics |
| US10471001B2 (en) | 2002-06-25 | 2019-11-12 | Durect Corporation | Short duration depot formulations |
| US10471002B2 (en) | 2002-06-25 | 2019-11-12 | Durect Corporation | Short duration depot formulations |
| US11179326B2 (en) | 2002-06-25 | 2021-11-23 | Durect Corporation | Short duration depot formulations |
| US9918982B2 (en) | 2002-12-13 | 2018-03-20 | Durect Corporation | Oral drug delivery system |
| US9517271B2 (en) | 2002-12-13 | 2016-12-13 | Durect Corporation | Oral drug delivery system |
| US8974821B2 (en) | 2002-12-13 | 2015-03-10 | Durect Corporation | Oral drug delivery system |
| US8945614B2 (en) | 2002-12-13 | 2015-02-03 | Durect Corporation | Oral drug delivery system |
| US8951556B2 (en) | 2002-12-13 | 2015-02-10 | Durect Corporation | Oral drug delivery system |
| US9233160B2 (en) | 2002-12-13 | 2016-01-12 | Durect Corporation | Oral drug delivery system |
| US8846072B2 (en) | 2004-09-17 | 2014-09-30 | Durect Corporation | Controlled delivery system |
| US11083796B2 (en) | 2005-07-26 | 2021-08-10 | Durect Corporation | Peroxide removal from drug delivery vehicle |
| RU2403017C2 (en) * | 2006-05-11 | 2010-11-10 | Пептрон Ко., Лтд. | Method for making slow-release microspheres with improved dispersibility and syringe needle permeability |
| US8956644B2 (en) | 2006-11-03 | 2015-02-17 | Durect Corporation | Transdermal delivery systems |
| US9592204B2 (en) | 2007-12-06 | 2017-03-14 | Durect Corporation | Oral pharmaceutical dosage forms |
| US9655861B2 (en) | 2007-12-06 | 2017-05-23 | Durect Corporation | Oral pharmaceutical dosage forms |
| US10206883B2 (en) | 2007-12-06 | 2019-02-19 | Durect Corporation | Oral pharamaceutical dosage forms |
| US12116631B2 (en) | 2008-09-19 | 2024-10-15 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
| US11401550B2 (en) | 2008-09-19 | 2022-08-02 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
| US9616055B2 (en) | 2008-11-03 | 2017-04-11 | Durect Corporation | Oral pharmaceutical dosage forms |
| US9884056B2 (en) | 2008-11-03 | 2018-02-06 | Durect Corporation | Oral pharmaceutical dosage forms |
| US10328068B2 (en) | 2008-11-03 | 2019-06-25 | Durect Corporation | Oral pharmaceutical dosage forms |
| US9855333B2 (en) | 2013-03-15 | 2018-01-02 | Durect Corporation | Compositions with a rheological modifier to reduce dissolution variability |
| US10300142B2 (en) | 2013-03-15 | 2019-05-28 | Durect Corporation | Compositions with a rheological modifier to reduce dissolution variability |
| US9907851B2 (en) | 2013-03-15 | 2018-03-06 | Durect Corporation | Compositions with a rheological modifier to reduce dissolution variability |
| US9572885B2 (en) | 2013-03-15 | 2017-02-21 | Durect Corporation | Compositions with a rheological modifier to reduce dissolution variability |
| US9555113B2 (en) | 2013-03-15 | 2017-01-31 | Durect Corporation | Compositions with a rheological modifier to reduce dissolution variability |
| US10471016B2 (en) | 2013-11-08 | 2019-11-12 | President And Fellows Of Harvard College | Microparticles, methods for their preparation and use |
| WO2015103447A1 (en) | 2013-12-31 | 2015-07-09 | Rapamycin Holdings, Llc | Oral rapamycin nanoparticle preparations and use |
| WO2015161139A1 (en) | 2014-04-16 | 2015-10-22 | Rapamycin Holdings, Llc | Oral rapamycin preparation and use for stomatitis |
| CN105748412A (en) * | 2014-09-26 | 2016-07-13 | 柯惠Lp公司 | Drug loaded microspheres for post-operative chronic pain |
| US11964076B2 (en) | 2015-03-31 | 2024-04-23 | Foundry Therapeutics, Inc. | Multi-layered polymer film for sustained release of agents |
| US12290616B2 (en) | 2015-03-31 | 2025-05-06 | Foundry Therapeutics, Inc. | Multi-layered polymer film for sustained release of agents |
| US11123297B2 (en) | 2015-10-13 | 2021-09-21 | President And Fellows Of Harvard College | Systems and methods for making and using gel microspheres |
| US12274794B2 (en) | 2016-07-06 | 2025-04-15 | Orient Pharma Co., Ltd. | Oral dosage form with drug composition, barrier layer and drug layer |
| WO2019040355A1 (en) * | 2017-08-21 | 2019-02-28 | President And Fellows Of Harvard College | Poly(acid) microcapsules and related methods |
| US12290595B2 (en) | 2017-10-06 | 2025-05-06 | Foundry Therapeutics, Inc. | Implantable depots for the controlled release of therapeutic agents |
| US11969500B2 (en) | 2017-10-06 | 2024-04-30 | Foundry Therapeutics, Inc. | Implantable depots for the controlled release of therapeutic agents |
| US11224570B2 (en) | 2017-10-06 | 2022-01-18 | Foundry Therapeutics, Inc. | Implantable depots for the controlled release of therapeutic agents |
| US11202754B2 (en) | 2017-10-06 | 2021-12-21 | Foundry Therapeutics, Inc. | Implantable depots for the controlled release of therapeutic agents |
| US12364792B2 (en) | 2018-01-08 | 2025-07-22 | Foundry Therapeutics, Inc. | Devices, systems, and methods for treating intraluminal cancer via controlled delivery of therapeutic agents |
| US12303619B2 (en) | 2018-08-28 | 2025-05-20 | Foundry Therapeutics, Inc. | Polymer implants |
| US11771624B2 (en) | 2020-01-13 | 2023-10-03 | Durect Corporation | Sustained release drug delivery systems with reduced impurities and related methods |
| US11400019B2 (en) | 2020-01-13 | 2022-08-02 | Durect Corporation | Sustained release drug delivery systems with reduced impurities and related methods |
| RU2816232C1 (en) * | 2020-05-20 | 2024-03-27 | Интервет Интернэшнл Б.В. | Injectable pharmaceutical compositions and use thereof |
| US12433877B2 (en) | 2021-01-12 | 2025-10-07 | Durect Corporation | Sustained release drug delivery systems and related methods |
| CN114377200A (en) * | 2022-01-12 | 2022-04-22 | 北京冠合医疗科技有限公司 | Biodegradable hydrophilic polymer microsphere for facial injection filling and preparation method thereof |
| CN118717718A (en) * | 2024-05-15 | 2024-10-01 | 中国科学院宁波材料技术与工程研究所 | A biodegradable microsphere sustained-release preparation containing bupivacaine and a preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| AU5895994A (en) | 1995-05-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1995009613A1 (en) | Controlled release microspheres | |
| US5747060A (en) | Prolonged local anesthesia with colchicine | |
| CA2260750C (en) | Methods for providing safe local anesthesia | |
| EP0729353B2 (en) | Preparation of biodegradable microparticles containing a biologically active agent | |
| US5776885A (en) | Sustained and controlled release of water insoluble polypeptides | |
| US6290983B1 (en) | Preparation of biodegradable, biocompatible microparticles containing a biologically active agent | |
| JP3834331B2 (en) | Bioresorbable polymer microspheres containing no surfactant, their production and their application as drugs | |
| JPH07309897A (en) | Octreotide-pamonate salt and method for producing the same | |
| JPH0774143B2 (en) | Method for producing poly (lactide-co-glycolide) polymer | |
| CA2265561A1 (en) | Formulations and methods for providing prolonged local anesthesia | |
| Jain et al. | Biodegradable polymers in drug delivery | |
| US5652220A (en) | Encapsulation of TRH or its analog | |
| JP2744240B2 (en) | Oral pharmaceutical formulation with delayed release of active substance | |
| JPS6341416A (en) | Production of microcapsule containing analgesic peptide | |
| WO2000074709A2 (en) | Modified biodegradable polyester microspheres for stabilizing and improving the release profile of drugs encapsulated within the microspheres | |
| AU770226B2 (en) | Methods for providing safe local anaesthesia | |
| HK1028549A (en) | Preparation of biodegradable microparticles containing a biologically active agent |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| EX32 | Extension under rule 32 effected after completion of technical preparation for international publication |
Free format text: GE |
|
| ENP | Entry into the national phase |
Ref country code: US Ref document number: 1996 605021 Date of ref document: 19960408 Kind code of ref document: A Format of ref document f/p: F |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: CA |