WO1995008827A1 - Nuclear fuel sintered body and process for producing it - Google Patents
Nuclear fuel sintered body and process for producing it Download PDFInfo
- Publication number
- WO1995008827A1 WO1995008827A1 PCT/EP1994/003060 EP9403060W WO9508827A1 WO 1995008827 A1 WO1995008827 A1 WO 1995008827A1 EP 9403060 W EP9403060 W EP 9403060W WO 9508827 A1 WO9508827 A1 WO 9508827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nuclear fuel
- sintered body
- surface film
- boron
- particles
- Prior art date
Links
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims description 14
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052796 boron Inorganic materials 0.000 claims abstract description 44
- 239000002245 particle Substances 0.000 claims abstract description 32
- 229910052770 Uranium Inorganic materials 0.000 claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 13
- 239000000446 fuel Substances 0.000 claims abstract description 11
- 229910052776 Thorium Inorganic materials 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 10
- 229910052778 Plutonium Inorganic materials 0.000 claims abstract description 7
- 150000001639 boron compounds Chemical class 0.000 claims abstract description 6
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 3
- 150000002910 rare earth metals Chemical group 0.000 claims abstract description 3
- 239000000956 alloy Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 238000003825 pressing Methods 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 5
- 238000005253 cladding Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- -1 ammonia compound Chemical class 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 239000010948 rhodium Substances 0.000 claims description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 3
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims description 2
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 claims description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910039444 MoC Inorganic materials 0.000 claims description 2
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 2
- 229910026551 ZrC Inorganic materials 0.000 claims description 2
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 2
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 claims description 2
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000292 calcium oxide Substances 0.000 claims description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 2
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 claims description 2
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 2
- DTSBBUTWIOVIBV-UHFFFAOYSA-N molybdenum niobium Chemical compound [Nb].[Mo] DTSBBUTWIOVIBV-UHFFFAOYSA-N 0.000 claims description 2
- 229910021344 molybdenum silicide Inorganic materials 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 claims description 2
- 229910021342 tungsten silicide Inorganic materials 0.000 claims description 2
- 229910021332 silicide Inorganic materials 0.000 claims 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims 9
- 229910052710 silicon Inorganic materials 0.000 claims 7
- 239000010703 silicon Substances 0.000 claims 7
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 claims 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 239000010955 niobium Substances 0.000 claims 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 1
- 229910003470 tongbaite Inorganic materials 0.000 claims 1
- 239000000843 powder Substances 0.000 description 13
- 239000006096 absorbing agent Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 6
- 230000002349 favourable effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000002843 nonmetals Chemical class 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 2
- 229910007948 ZrB2 Inorganic materials 0.000 description 2
- 150000001638 boron Chemical class 0.000 description 2
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- ZAASRHQPRFFWCS-UHFFFAOYSA-P diazanium;oxygen(2-);uranium Chemical compound [NH4+].[NH4+].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[U].[U] ZAASRHQPRFFWCS-UHFFFAOYSA-P 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- WEAMLHXSIBDPGN-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl) thiocyanate Chemical compound CC1=CC(SC#N)=CC=C1O WEAMLHXSIBDPGN-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 1
- VKTGMGGBYBQLGR-UHFFFAOYSA-N [Si].[V].[V].[V] Chemical compound [Si].[V].[V].[V] VKTGMGGBYBQLGR-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229940083916 aluminum distearate Drugs 0.000 description 1
- RDIVANOKKPKCTO-UHFFFAOYSA-K aluminum;octadecanoate;hydroxide Chemical compound [OH-].[Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O RDIVANOKKPKCTO-UHFFFAOYSA-K 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QPXOIGGWJBMJIH-UHFFFAOYSA-N bis(boranylidyne)uranium Chemical compound B#[U]#B QPXOIGGWJBMJIH-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
- DSERHVOICOPXEJ-UHFFFAOYSA-L uranyl carbonate Chemical compound [U+2].[O-]C([O-])=O DSERHVOICOPXEJ-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910021355 zirconium silicide Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
- G21C3/623—Oxide fuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S376/00—Induced nuclear reactions: processes, systems, and elements
- Y10S376/90—Particular material or material shapes for fission reactors
- Y10S376/901—Fuel
Definitions
- the invention relates to a nuclear fuel sintered body according to claim 1, a nuclear reactor fuel element according to claim 13 and a method for producing a nuclear fuel sintered body according to claim 14.
- EP-A1-0 239 843 discloses a nuclear fuel sintered body made of U ⁇ 2 (U, Pu) ⁇ 2 and (U, Th) ⁇ 2.
- This known nuclear fuel sintered body is obtained by producing a mixture of uranium oxide powder or uranium mixed oxide powder with uranium boride or boron carbide powder and pressing it into compacts, which are then sintered in a sintering furnace in a reducing sintering atmosphere to form nuclear fuel sintered bodies.
- the boron is thus distributed uniformly everywhere in the sintered matrix.
- Boron in uranium-containing nuclear fuel sintered bodies is a neutron absorber that can be burned off in terms of physical physics and, after a certain period of use, these nuclear fuel sintered bodies lose their property as an absorber for thermal neutrons in a nuclear reactor.
- Nuclear reactor fuel elements with fuel rods which contain uranium-containing nuclear fuel sintered bodies are used in the nuclear reactor, for example, during four successive, generally equally long fuel element cycles. At the end of a fuel element cycle, some of the nuclear reactor fuel elements in the nuclear reactor are replaced by fresh, unirradiated nuclear reactor fuel elements.
- the fresh, unirradiated nuclear reactor fuel elements would bring about a relatively high reactivity in the nuclear reactor compared to the already irradiated nuclear reactor fuel elements.
- the boron in the nuclear fuel sintered bodies of these fresh, unirradiated nuclear reactor fuel elements initially dampens the reactivity brought about by these nuclear reactor fuel elements by initially absorbing thermal neutrons.
- the nuclear fuel of fresh and unirradiated nuclear reactor fuel elements gradually burns off in the nuclear reactor by nuclear fission, but at the same time a combustible neutron absorber present in this nuclear fuel gradually burns off neutron physically, so that this neutron absorber finally has little or no thermal energy Neutrons absorb. That is why even freshly inserted unirradiated nuclear reactor fuel elements in the nuclear reactor can have about the same reactivity in the nuclear reactor during their entire service life in the nuclear reactor as the nuclear reactor fuel elements that have already undergone a fuel element cycle in the nuclear reactor.
- Boron as a neutron absorber in the nuclear fuel is compared to other combustible neutron absorbers such as rare earths
- the fuel element cycles are relatively long, e.g. are longer than 12 months, since boron prevents heat build-up in the nuclear fuel.
- the invention is based on the object of developing the known nuclear fuel sintered body so that there is no increase in reactivity which is too rapid and too high when starting up a nuclear reactor if this nuclear fuel sintered body is freshly introduced into this nuclear reactor in the unirradiated state .
- the particles of boron or a chemical boron compound with a are provided surface film that holds back boron, this boron cannot escape from the nuclear fuel sintered body according to the invention. This ensures an increase in reactivity which is damped with regard to its speed and height.
- the surface film advantageously contains no boron at all.
- Claims 2 to 12 are directed to advantageous further developments of the nuclear fuel sintered body according to claim 1.
- the further development according to claim 9 ensures good retention of boron
- the further development according to claim 10 ensures a largely uniform distribution of the particles of boron or chemical boron compound in the sintered matrix of the nuclear fuel sintered body enables.
- Claim 13 relates to a nuclear reactor fuel element with a fuel rod which contains such a nuclear fuel sintered body in a cladding tube.
- the method according to claim 14 allows a relatively simple production of a nuclear fuel sintered body which contains particles of boron and / or a chemical boron compound provided with the surface film.
- Claims 14 and 15 are directed to advantageous developments of this method.
- UO2 powder is used as the powdered starting oxide and is obtained, for example, in accordance with the ammonium uranyl carbonate or AUC process (for example, Gemelin Handbook of Inorganic Chemistry, Uranium, Supplement Volume A3, 1981, pplOl to 104).
- This U ⁇ 2 "powder has an average particle diameter of 15 to 20 .mu.m.
- the U ⁇ 2 ⁇ powder can also by another method, such as the ammonium diuranate (ADU) process (e.g.
- crystalline boron powder 300 ppm of crystalline boron powder, the average particle diameter of which is 20 to 25 ⁇ m, is added to the U ⁇ 2 ⁇ powder.
- the particles of this crystalline boron powder have a surface film made of metallic molybdenum, the film thickness of which is approximately 5 ⁇ m. This surface film is in a sputtering device (e.g. E. Lang, "Coatings For High Temperature
- the sputtering device has an electrically conductive anode body, for example made of aluminum, on which crystalline boron powder was located. Furthermore, a cathode body is made of The crystalline starting boron powder with a mean starting particle size of about 15 ⁇ m is treated between anode and cathode body in a argon atmosphere at a direct electrical voltage of about 2000 V during a sputtering time of about 2.
- the crystalline boron powder rolls again and again during this sputtering on an inclined plane from the anode body, so that a uniformly thick, firmly adhering and all-round dense surface film of molybdenum is achieved on the boron powder particles.
- the surface film can also consist of at least one of the metals, ruthenium, tungsten and chromium or of at least one of the alloys molybdenum-based alloy, ruthenium-based alloy, tungsten-based alloy and chromium-based alloy. It is favorable if this surface film from a
- Chromium-nickel alloy or a molybdenum-niobium alloy exists.
- the metals of these two alloys all have one relatively small capture cross section for thermal neutrons.
- the metals rhenium, rhodium and hafnium and the base alloys of these metals are also suitable for the surface film, since these metals have a large initial cross section for thermal neutrons, but do not burn out neutron physically as quickly as boron Therefore, in conjunction with boron, particularly long fuel element cycles are possible.
- the surface film can also consist of at least one of the non-metals tantalum carbide, niobium carbide, titanium carbide, tantalum carbide, niobium carbide, titanium carbide, zirconium carbide, chro carbide, vanadium carbide, tungsten carbide, molybdenum carbide, tantalum nitride, niobium nitride, titanium nitride, zirconium nitride, zirconium nitride Vanadium silicide, tungsten silicide, molybdenum silicide, zirconium silicide, magnesium oxide, beryllium oxide, chromium oxide, calcium oxide, cerium oxide and zirconium oxide exist.
- the surface film consists of at least one of the substances silicon carbide and silicon nitride, preferably Si3N4.
- the capture cross section for thermal neutrons of these non-metals is particularly small.
- These non-metals are advantageously applied in the form of a surface film to the boron powder particles by precipitating the reaction product of a chemical gas phase reaction of chemical compounds which contain the components of the surface film (for example chemical vapor deposition (CVD) processes according to E. Lang , “Coating For High Temperature Applications", 1983, Applied Science Publishers, London and New York, pp.33 to 78). In this way, however, a metallic surface film can also be applied to the boron powder particles.
- CVD chemical vapor deposition
- 0.2% by weight of powdered zinc stearate is also added to the UO2 powder with the added crystalline boron powder as a pressing aid.
- powdered aluminum distearate can also be used as a pressing aid.
- the UO2 powder with the added boron powder and the added pressing aid is then mixed intimately in a tumbling mixer for 15 minutes.
- about 5% powdered U3O3 can be added to the powder in the tumble mixer as a pore former.
- compacts are pressed from the mixture obtained by intimate mixing, which are sintered in a hydrogen atmosphere at a sintering temperature of 1750 ° C. for three hours.
- the nuclear fuel sintered bodies After cooling, the nuclear fuel sintered bodies have a specific density of approximately 10.30 g / cm 3 to 10.55 g / cm 3 while the specific density of the boron particles in the sintered matrix is 7 to 9 g / cm 3 , that is to say in the favorable range of 5 g / cm 3 to 10 g / cm 3 .
- Boron analysis of the nuclear fuel sintered bodies after sintering shows a boron concentration of 295 ppm, that is to say only a very small boron loss within the measuring accuracy.
- the equivalent diameter of the boron particles (diameter of a sphere whose spherical volume is equal to the boron particle volume) in the sintered matrix is in the favorable range from 5 ⁇ m to 300 ⁇ m.
- the thickness of the surface film on these boron particles, which consists of a different material than the sinter matrix and the boron particles is in the favorable range from 0.3 ⁇ m to 30 ⁇ m.
- Such boron particles show practically no tendency to segregate, in particular in UO2 powder which has been obtained by the processes indicated above. No boron escapes from them during sintering.
- the boron concentration in the sinter matrix of the nuclear fuel sintered body is in the range from 100 ppm to 10,000 ppm; because on the one hand a strong damping of the speed and amount of the increase in reactivity can be achieved in a nuclear reactor into which such nuclear fuel sintered bodies are introduced as part of a fresh nuclear reactor fuel element, but on the other hand the formation of cracks in the sintered matrix of the nuclear fuel sintered body is avoided.
- the isotope B] _Q in the boron in the boron or in the boron-containing chemical compounds used is enriched compared to the natural isotope composition of boron. This can be achieved in a known manner, for example by cyclotron, diffusion or separation nozzle enrichment. This isotope B I _ Q practically absorbs the thermal neutrons. Due to its accumulation in the boron, which is located in the sintered matrix of the nuclear fuel sintered body, the concentration of this boron can be chosen to be relatively low.
- a nuclear reactor fuel element for a nuclear reactor.
- a nuclear reactor fuel element is advantageously provided for a light water nuclear reactor, in particular for a pressurized water nuclear reactor or a boiling water nuclear reactor.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Powder Metallurgy (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94926937A EP0720766A1 (en) | 1993-09-22 | 1994-09-13 | Nuclear fuel sintered body and process for producing it |
JP7509538A JPH09503858A (en) | 1993-09-22 | 1994-09-13 | Nuclear fuel sintered body, nuclear reactor fuel element having nuclear fuel sintered body, and method for manufacturing nuclear fuel sintered body |
KR1019960701486A KR960705324A (en) | 1993-09-22 | 1996-03-22 | Nuclear fuel sintered body and its manufacturing method (NUCLEAR FUEL SINTERED BODY AND PROCESS FOR PRODUCING IT) |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93115342.3 | 1993-09-22 | ||
EP93115342 | 1993-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995008827A1 true WO1995008827A1 (en) | 1995-03-30 |
Family
ID=8213295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1994/003060 WO1995008827A1 (en) | 1993-09-22 | 1994-09-13 | Nuclear fuel sintered body and process for producing it |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0720766A1 (en) |
JP (1) | JPH09503858A (en) |
KR (1) | KR960705324A (en) |
TW (1) | TW257869B (en) |
WO (1) | WO1995008827A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2814584A1 (en) * | 2000-09-27 | 2002-03-29 | Commissariat Energie Atomique | NUCLEAR FUEL COMPRISING A CONSUMABLE POISON AND ITS MANUFACTURING METHOD |
KR100746800B1 (en) | 2002-03-11 | 2007-08-06 | 우렌코 네덜란드 비.브이. | A method of providing a nuclear fuel, and a fuel component provided with a nuclear fuel obtained by the method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2787370B1 (en) * | 1998-12-22 | 2001-03-16 | Franco Belge Combustibles | METHOD FOR JOINING TWO COAXIAL TUBULAR PARTS, TOOL FOR MAKING THE SAME AND USE THEREOF |
KR100331483B1 (en) * | 1999-06-02 | 2002-04-03 | 장인순 | Method of manufacturing oxide fuel pellets containing neutron-absorbing materials |
KR101436499B1 (en) * | 2012-11-05 | 2014-09-01 | 한국원자력연구원 | Fabrication method of burnable absorber nuclear fuel pellet using rapid sintering, and the burnable absorber nuclear fuel pellet thereby |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1414598A (en) * | 1963-11-25 | 1965-10-15 | Int Research & Dev Co Ltd | Improvements in materials containing boron and in the processes for their production |
US3917768A (en) * | 1969-02-25 | 1975-11-04 | Fiat Spa | Sintered nuclear fuel and method of preparing same |
US4671927A (en) * | 1984-12-03 | 1987-06-09 | Westinghouse Electric Corp. | Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber |
EP0239843A1 (en) * | 1986-03-24 | 1987-10-07 | Siemens Aktiengesellschaft | Sintered nuclear-fuel body, and method of manufacturing it |
ES2002719A6 (en) * | 1986-07-22 | 1988-10-01 | Westinghouse Electric Corp | Nuclear fuel pellets |
JPH01155294A (en) * | 1987-12-14 | 1989-06-19 | Toshiba Corp | Neutron absorber |
EP0418578A1 (en) * | 1989-09-18 | 1991-03-27 | General Electric Company | Fissionable nuclear fuel composition |
-
1994
- 1994-08-25 TW TW083107798A patent/TW257869B/zh active
- 1994-09-13 JP JP7509538A patent/JPH09503858A/en active Pending
- 1994-09-13 EP EP94926937A patent/EP0720766A1/en not_active Ceased
- 1994-09-13 WO PCT/EP1994/003060 patent/WO1995008827A1/en not_active Application Discontinuation
-
1996
- 1996-03-22 KR KR1019960701486A patent/KR960705324A/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1414598A (en) * | 1963-11-25 | 1965-10-15 | Int Research & Dev Co Ltd | Improvements in materials containing boron and in the processes for their production |
US3917768A (en) * | 1969-02-25 | 1975-11-04 | Fiat Spa | Sintered nuclear fuel and method of preparing same |
US4671927A (en) * | 1984-12-03 | 1987-06-09 | Westinghouse Electric Corp. | Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber |
EP0239843A1 (en) * | 1986-03-24 | 1987-10-07 | Siemens Aktiengesellschaft | Sintered nuclear-fuel body, and method of manufacturing it |
ES2002719A6 (en) * | 1986-07-22 | 1988-10-01 | Westinghouse Electric Corp | Nuclear fuel pellets |
JPH01155294A (en) * | 1987-12-14 | 1989-06-19 | Toshiba Corp | Neutron absorber |
EP0418578A1 (en) * | 1989-09-18 | 1991-03-27 | General Electric Company | Fissionable nuclear fuel composition |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section Ch Week 8929, Derwent World Patents Index; Class E32, AN 89-208673 * |
DATABASE WPI Section Ch Week 8930, Derwent World Patents Index; Class K05, AN 89-217108 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2814584A1 (en) * | 2000-09-27 | 2002-03-29 | Commissariat Energie Atomique | NUCLEAR FUEL COMPRISING A CONSUMABLE POISON AND ITS MANUFACTURING METHOD |
EP1193717A1 (en) * | 2000-09-27 | 2002-04-03 | Commissariat A L'energie Atomique | Nuclear fuel comprising a burable poison and method of manufacture therefor |
KR100746800B1 (en) | 2002-03-11 | 2007-08-06 | 우렌코 네덜란드 비.브이. | A method of providing a nuclear fuel, and a fuel component provided with a nuclear fuel obtained by the method |
Also Published As
Publication number | Publication date |
---|---|
EP0720766A1 (en) | 1996-07-10 |
KR960705324A (en) | 1996-10-09 |
JPH09503858A (en) | 1997-04-15 |
TW257869B (en) | 1995-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0239843B1 (en) | Sintered nuclear-fuel body, and method of manufacturing it | |
DE69017328T2 (en) | Nuclear fuel material composition. | |
DE1300177B (en) | Fuel element for nuclear reactors with a burnable neutron poison | |
US3088892A (en) | Dispersion element consisting of chromium coated uo2 particles uniformly distributedin a zircaloy matrix | |
DE3003061A1 (en) | NON-VAPORABLE TERNAERE GETTING ALLOY AND THEIR USE FOR SORBING OXYGEN AND HYDROGEN FROM WATER AND WATER VAPOR | |
WO1995004994A1 (en) | Sintered compact made of uranium-containing nuclear fuel | |
US4231976A (en) | Process for the production of ceramic plutonium-uranium nuclear fuel in the form of sintered pellets | |
JPH0658420B2 (en) | Method for operating a spectrum-shifting reactor and nuclear reactor with water displacement clusters | |
WO1995008827A1 (en) | Nuclear fuel sintered body and process for producing it | |
DE3406084A1 (en) | METHOD FOR PRODUCING OXIDIC FUEL INTERMEDIATES | |
DE69706506T2 (en) | ABSORBER BAR FOR CORE REACTOR CONTROL BUNDLES AND METHOD FOR PRODUCING THE SAME | |
DE3688818T2 (en) | Process for the production of sintered nuclear fuel bodies. | |
DE1238118B (en) | Nuclear reactor fuel | |
DE19636563C1 (en) | Nuclear reactor fuel assemblies with high burn-up and process for their production | |
DE3322637C2 (en) | ||
DE68914561T2 (en) | Method for suppressing tritium diffusion and the associated device. | |
DE1564409A1 (en) | Radioisotope generator | |
Bremier et al. | Fission gas release and fuel swelling at burn-ups higher than 50 MWd/kgU | |
EP0403955B1 (en) | Method of reducing the content of plutonium in nuclear fuel and nuclear fuel element for nuclear reactor | |
US3271265A (en) | Fuels for nuclear reactors | |
US3291697A (en) | Fuel element for nuclear reactor | |
EP0713601A1 (en) | Sintered compact made of uranium-containing nuclear fuel | |
EP0855083A1 (en) | Modified, rim effect-delaying nuclear fuel | |
DE1439836A1 (en) | Nuclear fuel | |
CH382304A (en) | Procedure for converting Th232 to U233 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1994926937 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1996 621158 Date of ref document: 19960322 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 1994926937 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1994926937 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1994926937 Country of ref document: EP |