+

WO1995007331A1 - Detergents liquides comportant des tensioactifs d'amides d'acides gras n-alcoxy ou n-aryloxy polyhydroxy - Google Patents

Detergents liquides comportant des tensioactifs d'amides d'acides gras n-alcoxy ou n-aryloxy polyhydroxy Download PDF

Info

Publication number
WO1995007331A1
WO1995007331A1 PCT/US1994/009550 US9409550W WO9507331A1 WO 1995007331 A1 WO1995007331 A1 WO 1995007331A1 US 9409550 W US9409550 W US 9409550W WO 9507331 A1 WO9507331 A1 WO 9507331A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
surfactants
hydrocarbyl
compositions
moiety
Prior art date
Application number
PCT/US1994/009550
Other languages
English (en)
Inventor
Jeffrey John Scheibel
Gregory Stewart Foster
Yi-Chang Fu
Daniel Stedman Connor
Joseph Paul Morelli
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to AU77160/94A priority Critical patent/AU7716094A/en
Publication of WO1995007331A1 publication Critical patent/WO1995007331A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • C11D1/652Mixtures of anionic compounds with carboxylic amides or alkylol amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/525Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/526Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 are polyalkoxylated

Definitions

  • the present invention relates to liquid detergents which are especially useful for laundering fabrics.
  • N-alkoxy and N-aryloxy polyhydroxy fatty acid amide surfactants surprisingly differ from their counterpart N-alkyl polyhydroxy fatty acid amide surfactants in several important and unexpected ways which are of considerable benefit to detergent formulators.
  • the alkoxy and aryloxy- substituted polyhydroxy fatty acid amide surfactants herein substantially reduce interfacial tensions, and thus provide for high cleaning performance in detergent compositions, even at low wash temperatures.
  • the surfactants herein exhibit increased compatibility with other detersive ingredients, even in the presence of water hardness cations such as calcium and magnesium ions. This means that the composi ⁇ tions herein can be more effective even under the so-called "underbuilt" situation that occurs with many nonphosphate builders.
  • the surfactants herein exhibit improved solubility in water over the corresponding N-alkyl polyhydroxy fatty acid amide surfactants, even at low temperatures (5°-30°C).
  • the high solubility of the surfactants herein allows them to be formulated as highly concentrated liquid detergents.
  • the surfactants herein can be easily prepared as low viscosity, pumpable solutions (or melt) at concentrations as high as 70-100%, which allows them to be easily handled in the manufacturing plant.
  • the surfactants herein also have the advantage of providing a lower sudsing profile than the N-methyl polyhydroxy fatty acid amides, which desirably decreases the carry-over of suds into the rinse bath.
  • the surfactants herein can be exhibit improved solubility in water over the corresponding N-alkyl polyhydroxy fatty acid amide surfactants, even at low temperatures (5°-30°C).
  • the high solubility of the surfactants herein allows them to be formulated as highly concentrated liquid detergents.
  • the surfactants herein can be easily prepared as low viscosity, pumpabie solutions (or melt) at concentrations as high as 70-100%, which allows them to be easily handled in the manufacturing plant.
  • the surfactants herein also have the advantage of providing a lower sudsing profile than the N-methyl polyhydroxy fatty acid amides, which desirably decreases the carry-over of suds into the rinse bath.
  • the combined attributes of ease-of-formulation and better, low suds profile is an additional advantage for these surfactants.
  • the surfactants herein can be produced from renewable resources such as fats and sugars, rather than from petrochemicals, and are biodegradable.
  • 5,194,639, 5,174,927 and 5,188,769 and WO 9,206,171, 9,206,151, 9,206,150 and 9,205,764 relate to various polyhydroxy fatty acid amide surfactants and uses thereof.
  • liquid laundry detergents which can be in dilute form, i.e., containing less than about 25% of total surfactants, typically 10%- 20% surfactants, or in concentrated form, i.e., containing at least about 25% by weight of total surfactants, and typically comprising from about 25% to about 50% by weight of total surfactants, with a desirable, highly concentrated form preferably having a viscosity no greater than about 800 cps, and comprising: (a) an amide surfactant of the formula
  • R is a C7-C21 hydrocarbyl moiety
  • R 1 is a C2-Cg hydrocarbyl moiety
  • R* ⁇ is a Cj-Cg hydrocarbyl or oxy-hydrocarbyl moiety
  • Z is a polyhydroxy hydrocarbyl unit having a linear chain with at least two hydroxyls directly connected to the chain;
  • Preferred liquid compositions herein are those wherein Rl is a linear or branched C2-C4 alkylene moiety and R2 is a linear or branched C1-C4 alkyl moiety, and especially wherein substituent -R ⁇ -O-R* ⁇ is a member selected from the group consisting of 2-methoxyethyl and 3-methoxypropyl, and wherein R is C ⁇ ⁇ .
  • the palm fatty acid material provides excellent low sudsing.
  • Z is a substituent which is preferably derived from a member selected from the group consisting of glucose, fructose, maltose, lactose, xylose and glycerol moieties, and mixtures thereof.
  • the invention also encompasses fully-formulated detergent compositions which may additionally comprise a detersive adjunct ingredient which is a member selected from the group consisting of enzymes, builders, bleaches, soil release agents, auxiliary surfactants, and mixtures thereof.
  • a detersive adjunct ingredient which is a member selected from the group consisting of enzymes, builders, bleaches, soil release agents, auxiliary surfactants, and mixtures thereof.
  • the invention herein thus provides a method for cleaning substrates, comprising contacting said substrates with a composition as described above in the presence of water. Typical usage levels range from about 100 ppm to about 10,000 ppm in water. The method is especially useful for laundering fabrics. All percentages, ratios and proportions herein are by weight. All documents cited are incorporated herein by reference.
  • N-alkoxy and N-aryloxy polyhydroxy fatty acid amide surfactants used in the practice of this invention are quite different from traditional ethoxylated nomonics, due to the use of a linear polyhydroxy chain as the hydrophilic group instead of the ethoxylation chain.
  • Conventional ethoxylated nonionic surfactants have cloud points with the less hydrophilic ether linkages. They become less soluble, more surface active and better performing as temperature increases, due to thermally induced randomness of the ethoxylation chain. When the temperature gets lower, ethoxylated nonionics become more soluble by forming micelles at very low concentration and are less surface active, and lower performing, especially when washing time is short.
  • polyhydroxy fatty acid amide surfactants have polyhydroxyl groups which are strongly hydrated and do not exhibit cloud point behavior. It has been discovered that they exhibit Krafft point behavior with increasing temperature and thus higher solubility at elevated temperatures. They also have critical micelle concentrations similar to anionic surfactants, and it has been surprisingly discovered that they clean like anionics.
  • the polyhydroxy fatty acid amides herein are different from the alkyl polyglycosides (APG) which comprise another class of polyhydroxyl nonionic surfactants. While not intending to be limited by theory, it is believed that the difference is in the linear polyhydroxyl chain of the polyhydroxy fatty acid amides vs. the cyclic APG chain which prevents close packing at interfaces for effective cleaning.
  • APG alkyl polyglycosides
  • such surfactants have now been found to have a much wider temperature usage profile than their N-alkyl counte ⁇ arts, and they require no or little cosurfactants for solubility at temperatures as low as 5°C. Such surfactants also provide easier processing due to their lower melting points. It has now further been discovered that these surfactants are biodegradable.
  • HDL's Heavy Duty Liquid Detergents
  • HDG's Heavy Duty Granules
  • N-alkoxy and N-aryloxy polyhydroxy fatty acid amide surfactants used herein comprise amides of the formula:
  • R is C7-C21 hydrocarbyl, preferably C9-C17 hydrocarbyl, including straight-chain (preferred), branched-chain alkyl and alkenyl, as well as substituted alkyl and alkenyl, e.g., 12-hydroxyoleic, or mixtures thereof;
  • R ⁇ is C2-Cg hydrocarbyl including straight-chain, branched-chain and cyclic (including aryl), and is preferably C 2 -C 4 alkylene, i.e., -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 - and -CH2(CH2)2CH2-;
  • R * *** * is Cj-Cg straight-chain, branched-chain and cyclic hydrocarbyl including aryl and oxy-hydrocarbyl, and is preferably C1-C4 alkyl or phenyl;
  • Z is a polyhydroxyhydrocarbyl moiety having a linear hydrocarbyl chain
  • Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl moiety.
  • Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose, as well as glyceraldehyde.
  • high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
  • Z preferably will be selected from the group consisting of -CH 2 -(CHOH) n -CH 2 OH, -CH(CH2OH)-(CHOH) n .!. CH 2 OH, -CH 2 -(CHOH)2(CHOR')(CHOH)-CH2OH, where n is an integer from 1 to 5, inclusive, and R' is H or a cyclic mono- or poly- saccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly -CH2- (CHOH) -CH 2 OH.
  • nonlimiting examples of the amine substituent group -R*-0-R2 can be, for example: 2-methoxyethyl-, 3-meth- oxypropyl-, 4-methoxybutyl-, 5-methoxypentyl-, 6-methoxyhexyl-, 2-ethoxyethyl-, 3- ethoxypropyl-, 2-methoxypropyl, methoxybenzyl-, 2-isopropoxyethyl-, 3-isopro- poxypropyl-, 2-(t-butoxy)ethyl-, 3-(t-butoxy)propyl-, 2-(isobutoxy)ethyl-, 3-(iso- butoxy)propyl-, 3-butoxypropyl, 2-butoxyethyl, 2-phenoxyethyl-, methoxycyclohexyl- , methoxycyclohexylmethyl-, tetrahydrofurfuryl-, te
  • R-CO-N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, ricinolamide, etc.
  • the synthesis method for these surfactants comprises reacting the appropriate N-alkoxy or N-aryloxy-substituted aminopolyols with, preferably, fatty acid methyl esters in a solvent using an alkoxide catalyst (e.g., sodium methoxide or the sodium salts of glycerin or propylene glycol) at temperatures of about 85°C to provide products having desirable low levels (preferably, less than about 10%) of cyclized by-products and also with improved color and improved color stability, e.g., Gardner Colors below about 4, preferably between 0 and 2.
  • an alkoxide catalyst e.g., sodium methoxide or the sodium salts of glycerin or propylene glycol
  • any unreacted N-alkoxy or N-aryloxy amino polyol remaining in the product can be acylated with an acid anhydride, e.g., acetic anhydride, maleic anhydride, or the like, in water at 50°C-85°C to minimize the overall level of such residual amines in the product.
  • an acid anhydride e.g., acetic anhydride, maleic anhydride, or the like
  • Resi- dual sources of straight-chain primary fatty acids which can suppress suds, can be depleted by reaction with, for example, monoethanolamine at 50°C-85°C.
  • the water solubility of the solid N-alkoxy polyhydroxy fatty acid amide surfactants herein can be enhanced by quick cooling from a melt. While not intending to be limited by theory, it appears that such quick cooling re-solidifies the melt into a metastable solid which is more soluble in water than the pure crystalline form of the N-alkoxy polyhydroxy fatty acid amide.
  • Such quick cooling can be accomplished by any convenient means, such as by use of chilled (0°C-10°C) rollers, by casting the melt onto a chilled surface such as a chilled steel plate, by means of refrigerant coils immersed in the melt, or the like.
  • cyclized by-products herein is meant the undesirable reaction by ⁇ products of the primary reaction wherein it appears that the multiple hydroxyl groups in the polyhydroxy fatty acid amides can form ring structures. It will be appreciated by those skilled in the chemical arts that the preparation of the polyhydroxy fatty acid amides herein using the di- and higher saccharides such as maltose will result in the formation of polyhydroxy fatty acid amides wherein linear substituent Z (which contains multiple hydroxy substituents) is naturally "capped” by a polyhydroxy ring structure. Such materials are not cyclized by-products, as defined herein. The following illustrates the synthesis in more detail.
  • N-(2-methoxyethyl)glucosylamine (sugar adduct) is prepared starting with 1728.26 g of 50 wt.% 2-methoxyethylamine in water (11.5 moles, 1.1 mole equivalent of 2-methoxyethylamine) placed under an N2 blanket at 10°C. 2768.57 grams of 50 wt.% glucose in water (10.46 moles, 1 mole equivalent of glucose), which is degassed with N2, is added slowly, with mixing, to the methoxyethylanune solution keeping the temperature below 10°C. The solution is mixed for about 40 minutes after glucose addition is complete. It can be used immediately or stored 0°C- 5°C for several days.
  • Raney Ni Activated Metals & Chemicals, Inc. product A-5000
  • 2 gallon reactor 316 stainless steel baffled autoclave with DISPERSIMAX hollow shaft multi-blade impeller
  • the reactor is heated, with stirring, to 130oC at about 1500 psig hydrogen for 30 minutes.
  • the reactor is then cooled to room temperature and the water removed to 10% of the reactor volume under hydrogen pressure using an internal dip tube.
  • the reactor is vented and the sugar adduct is loaded into the reactor at ambient hydrogen pressure.
  • the reactor is then purged twice with hydrogen.
  • the reactor is then cooled to 50°C and the reaction solution is removed from the reactor under hydrogen pressure via an internal dip tube and through a filter in closed communication with the reactor. Filtering product under hydrogen pressure allows removal of any nickel particles without nickel dissolution.
  • Solid N-(2-methoxyethyl)glucamine is recovered by evaporation of water and excess 2-methoxyethylamine. The product purity is approximately 90% by G.C. Sorbitol is the major impurity at about 10%.
  • the N-(2-methoxyethyl)glucamine can be used as is or purified to greater than 99% by recrystallization from methanol.
  • N-(2-methoxyethyl)glucamine 1195 g (5.0 mole; prepared according to Example I) is melted at 135°C under nitrogen. A vacuum is pulled to 30 inches (762 mm) Hg for 15 minutes to remove gases and moisture.
  • Propylene glycol, 21.1 g (0.28 mole) and fatty acid methyl ester (Procter & Gamble CE 1295 methyl ester) 1097 (5.1 mole) are added to the preheated amine.
  • 25% sodium methoxide 54 g (0.25 mole) is added in halves.
  • Reactants weight 2367.1 g
  • Raney Ni Activated Metals & Chemicals, Inc. product A-5000 or A-5200
  • a 2 gallon reactor 316 stainless steel baffled autoclave with DISPERSIMAX hollow shaft multi-blade impeller
  • the nickel bed is covered with water taking up about 10% of the reactor volume.
  • 1764.8 g (19.8 moles, 1.78 mole equivalent) of 3-methoxypropylamine (99%) is maintained in a separate reservoir which is in closed communication with the reactor.
  • the reservoir is pressurized to about 100 psig with nitrogen.
  • 4000 g of 50 wt.% glucose in water (11.1 moles, 1 mole equivalent of glucose) is maintained in a second separate reservoir which is also in closed communication with the reactor and is also pressurized to about 100 psig with nitrogen.
  • the 3-methoxypropylamine is loaded into the reactor from the reservoir using a high pressure pump. Once all the 3-methoxypropylamine is loaded into the reactor, stirring is begun and the reactor heated to 60°C and pressurized to about 800 psig hydrogen. The reactor is stirred at 60°C and about 800 psig hydrogen for about 1 hour.
  • the glucose solution is then loaded into the reactor from the reservoir using a high pressure pump similar to the amine pump above.
  • the pumping rate on the glucose pump can be varied and on this particular run, it is set to load the glucose in about 1 hour.
  • the pressure is boosted to about 1500 psig hydrogen and the temperature maintained at 60°C for about 1 hour.
  • the temperature is then raised to 70°C for 10 minutes, 80°C for 5 minutes, 90°C for 5 minutes, and finally 100°C for 15 minutes.
  • the reactor is then cooled to 60°C and the reaction solution is removed from the reactor under hydrogen pressure via an internal dip tube and through a filter in closed communication with the reactor. Filtering under hydrogen pressure allows removal of any nickel particles without nickel dissolution.
  • N-(3-methoxypropyl)glucamine is recovered by evaporation of water and excess 3-methoxypropylamine.
  • the product purity is approximately 90% by G.C. Sorbitol is the major impurity at about 3%.
  • the N-(3-methoxypropyl)glucamine can be used as is or purified to greater than 99% by recrystallization from methanol.
  • the reaction mixture is homogeneous within 1 minute of adding the catalyst. It is cooled with warm H2O to 85°C and allowed to reflux in a 5-liter, 4-neck round bottom flask equipped with a heating mantle, Trubore stirrer with Teflon paddle, gas inlet and outlet, Thermowatch, condenser, and air drive motor.
  • time 0.
  • a GC sample is taken and a vacuum of 7 inches (178 mm) Hg is started to remove methanol.
  • another GC sample is taken and the vacuum has been increased to 12 inches (305 mm) Hg.
  • another GC sample is taken and the vacuum has been increased to 20 inches (508 mm) Hg.
  • the remaining weight of methanol in the reaction is 2.9% based on the following calculation: 2386 g current reaction wt. -
  • methylstearate 47.19 g (0.158 mole) is preheated to 130°C and added to the melted amine with rapid stirring along with 9.0 grams of propylene glycol (10 weight % based on reactants). Immediately following, 25% sodium methoxide, 1.7 g (0.0079 mole) is added.
  • the reaction mixture is homogeneous within 2 minutes of adding the catalyst at 130°C. It is allowed to reflux in order to cool to 85-90°C in a 250 ml, 3 neck round bottom flask equipped with a hot oil bath, TRUBORE stirrer with TEFLON paddle, gas inlet and outlet, THERMOWATCH, condenser, and stirrer motor.
  • the reaction requires about 35 minutes to reach 90°C. After 3 hours at 85-90°C a vacuum is applied to remove methanol.
  • the reaction mixture is poured out into a jar after a total of 4 hours.
  • the solid reaction product is recrystallized from 400 mis of acetone and 20 mis of methanol.
  • the filter cake is washed twice with 100 ml portions of acetone and is dried in a vacuum oven.
  • a second recrystallization is performed on 51.91 grams of the product of the first recrystallization using 500 mis acetone and 50 mis methanol to give after filtration, washing with two 100 ml portions of acetone and drying in a vacuum oven a yield of 47.7 grams of the N-octadecanoyl-N-(3- methoxypropyl)glucamine. Melting point of the sample is 80°C-89°C. If desired, the product can be further purified using an acetone/methanol solvent.
  • EXAMPLE VI C j6 Methoxypropyl Glucose Amide -
  • the reaction of Example V is repeated using an equivalent amount of methyl palmitate to replace the methyl stearate.
  • the resulting hexadecanoyl-N-(3-methoxypropyl)glucamine has a melting point of 84°C. If desired, the product can be further purified using an acetone/methanol solvent.
  • EXAMPLE VII Mixed Palm Fatty Acid Methoxypropyl Glucose Amide - N-(3-meth- oxypropy glucamine, 1265 g (5.0 mole) is melted at 145°C under nitrogen. A vacuum is applied to 38.1 cm (15 inches) Hg for 10 minutes to remove gases and moisture. Separately, hardened palm stearine methyl ester, 1375 g (5.0 mole) is preheated to 130°C and added to the melted amine with rapid stirring. Immediately following, 25% sodium methoxide, 54 g (0.25 mole) is added through a dropping funnel. Half the catalyst is added before the reaction is homogeneous to control the hard reflux of methanol. After homogeneity is reached, the other half of the catalyst is added within 10 minutes. Reactants weight: 2694 g
  • (3-methoxypropyl)glucamine is prepared by reacting 49.98 grams of N-(3- methoxypropy glucamine with 61.43 g of methyl oleate in the presence of 4.26 g of 25 wt% NaOCH ⁇ .
  • the oleoyl derivative of N-(2-methoxyethyl) glucamine is prepared in like manner.
  • the corresponding palm kernel oil-derived amides are prepared in like manner.
  • the N-alkoxy and N-aryloxy surfactants used herein may be made directly from natural fats and oils rather than fatty acid methyl esters.
  • This so-called “glyceride process” results in a product which is substantially free of conventional fatty acids such as lauric, myristic and the like, which are capable of precipitating as calcium soaps under wash conditions, thus resulting in unwanted residues on fabrics or filming/spotting in, for example, hard surface cleaners and dishware cleaners.
  • Triglyceride Reactant can be any of the well-known fats and oils, such as those conventionally used as foodstuffs or as fatty acid sources.
  • Non-limiting examples include: CRISCO oil; palm oil; palm kernel oil; corn oil; cottonseed oil; soybean oil; tallow; lard; canola oil; rapeseed oil; peanut oil; tung oil; olive oil; menhaden oil; coconut oil; castor oil; sunflower seed oil; and the corresponding "hardened", i.e., hydrogenated oils.
  • low molecular weight or volatile materials can be removed from the oils by steam-stripping, vacuum stripping, treatment with carbon or "bleaching earths" (diatomaceous earth), or cold tempering to further minimize the presence of malodorous by-products in the surfactants prepared by the glyceride process.
  • N-substituted Polyhydroxy Amine Reactant The N-alkyl, N-alkoxy or N- aryloxy polyhydroxy amines used in the process are commercially available, or can be prepared by reacting the corresponding N-substituted amine with a reducing sugar, typically in the presence of hydrogen and a nickel catalyst as disclosed in the art.
  • Non-limiting examples of such materials include: N-(3-methoxypropyl) glucamine; N-(2-methoxyethyl) glucamine; and the like.
  • Catalyst - The preferred catalysts for use in the glyceride process are the alkali metal salts of polyhydroxy alcohols having at least two hydroxyl groups.
  • the sodium (preferred), potassium or lithium salts may be used.
  • the alkali metal salts of monohydric alcohols e.g., sodium methoxide, sodium ethoxide, etc.
  • Typical, non-limiting examples of such catalysts include sodium glycolate, sodium glycerate and propylene glycolates such as sodium propyleneglycolate (both 1,3- and 1,2-glycolates can be used; the 1,2-isomer is preferred), and 2-methyl-l,3-propyleneglycolate.
  • Sodium salts of NEODOL-type ethoxylated alcohols can also be used.
  • Reaction Medium - The glyceride process is preferably not conducted in the presence of a monohydric alcohol solvent such as methanol, because malodorous acid esters may form.
  • reaction medium will comprise from about 10% to about 25% by weight of the total reactants.
  • the glyceride process is preferably conducted in the melt. N-substituted polyhydroxy amine, the phase transfer agent (preferred NEODOL) and any desired glyceride oil are co-melted at 120°C-140°C under vacuum for about 30 minutes.
  • the catalyst preferably, sodium propylene glycolate
  • the reaction quickly becomes homogeneous.
  • the reaction mixture is immediately cooled to about 85°C. At this point, the reaction is nearly complete. The reaction mixture is held under vacuum for an additional hour and is substantially complete at this point.
  • the NEODOL, oil, catalyst and polyhydroxy amine are mixed at room temperature.
  • the mixture is heated to 85°C-90°C, under vacuum.
  • the reaction becomes clear (homogeneous) in about 75 minutes.
  • the reaction mixture is maintained at about 90°C, under vacuum, for an additional two hours. At this point the reaction is complete.
  • the mole ratio of triglyceride oil: polyhydroxy amine is typically in the range of about 1 :2 to 1:3.1.
  • the product of the glyceride process will contain the polyhydroxy fatty acid amide surfactant and glycerol.
  • the glycerol may be removed by distillation, if desired.
  • the water solubility of the solid polyhydroxy fatty acid amide surfactants can be enhanced by quick cooling from a melt, as noted above.
  • Anionic Surfactants -
  • the compositions herein contain various anionic surfactants. Such surfactants are typically present at levels of from about 5% to about 50% of the compositions.
  • Nonlimiting examples of surfactants useful herein include the conventional Cu-Cj alkyl benzene sulfonates and primary, branched-chain and random C10-C20 alkyl sulfates, the Cio-Cj secondary 2,3) alkyl sulfates of the formula CH 3 (CH 2 ) x (CHOSO3 " M + ) CH3 and CH3 (CH 2 ) y (CHOSO 3 " M + ) CH 2 CH 3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, the C ⁇ Q-C ⁇ alkyl alkoxy sulfates (especially EO 1-5 ethoxy sulfates), CjQ-Cig alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the sulfated Cjo-Ci alkyl polyglycosides, C ⁇ -Cj alpha
  • C ⁇ -Cj alcohol and Cg-C ⁇ alkyl phenol ethoxylates and CjQ-Cig amine oxides can also be used in conjunction with the aforesaid anionic surfactants.
  • Fluid Carrier - Liquid detergent compositions can contain water and other solvents as carriers.
  • Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
  • Monohydric alcohols such as methanol, ethanol or iso-propanol are preferred for solubilizing detergent ingredients, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., 1,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
  • the fluid carrier typically contains some water, anhydrous carriers may also be employed.
  • compositions herein can comprise the N-methoxypropyl polyhydroxy fatty acid amide surfactant dissolved in a liquid (room temperature) ethoxylated alcohol surfactant plus 1,2-propane diol as the liquid carrier, and remain fully stable and soluble on storage without the need for water or other solubilizing agents.
  • the compositions may contain from 5% to 90%, typically 10% to 50% of fluid carriers.
  • compositions herein can optionally include one or more other detergent adjunct materials or other materials for assisting or enhancing cleaning performance, treatment of the substrate to be cleaned, or to modify the aesthetics of the detergent composition (e.g., perfumes, colorants, dyes, etc.).
  • other detergent adjunct materials e.g., perfumes, colorants, dyes, etc.
  • the following are illustrative examples of such adjunct materials.
  • Builders - Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of paniculate soils.
  • the level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least about 1% builder. Liquid formulations typically comprise from about 5% to about 50%, more typically about 5% to about 30%, by weight, of detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.
  • Inorganic detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
  • polyphosphates exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates
  • phosphonates phosphonates
  • phytic acid e.g., silicates
  • carbonates including bicarbonates and sesquicarbonates
  • sulphates sulphates
  • aluminosilicates aluminosilicates
  • compositions herein function su ⁇ risingly well even in the presence of the so-called "weak” builders (as compared with phosphates) such as citrate, or in the so-called “underbuilt” situation that may occur with zeolite or layered silicate builders.
  • the secondary (2,3) alkyl sulfate plus enzyme components perform best in the presence of weak, nonphosphate builders which allow free calcium ions to be present. This is especially true for liquid compositions.
  • silicate builders are the alkali metal silicates, particularly those having a SiO2:Na2O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S.
  • NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2Si ⁇ 5 mo ⁇ hology form of layered silicate. It can be prepared by methods such as those described in German DE-A-3,417,649 and DE-A-3,742,043.
  • SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSi x ⁇ 2 x +i'yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein.
  • Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms.
  • the delta-Na2SiO5 NaSKS-6 form
  • Other silicates may also be useful such as for example magnesium silicate.
  • Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
  • Aluminosilicate builders are useful in the present invention.
  • Aluminosilicate builders can be used in liquid detergent formulations.
  • Aluminosilicate builders include those having the empirical formula:
  • M z (zAlO 2 -yS_O 2 ) wherein M is sodium, potassium, ammonium or substituted ammonium, z is from about 0.5 to about 2; and y is 1; this material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaCO 3 hardness per gram of anhydrous aluminosilicate.
  • Preferred aluminosilicates are zeolite builders which have the formula: Na z [(AlO 2 ) z (SiO 2 ) y ]-xH 2 O wherein z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
  • aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amo ⁇ hous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosili ⁇ cate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
  • the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
  • Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
  • polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
  • Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.
  • polycarboxylate builders include a variety of categories of useful materials.
  • One important category of polycarboxylate builders encompasses the ether polycarboxylates, including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071, issued to Bush et al, on May 5, 1987.
  • Suitable ether polycarboxylates also include cyclic com ⁇ pounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.
  • ether hydroxypolycarboxylates copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6-trisulphonic acid, and carboxymethyloxysuccinic acid
  • various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid
  • polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.
  • Citrate builders e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Oxydisuccinate builders are also useful in such compositions.
  • succinic acid builders include the C5-C 2 ⁇ alkyl and alkenyl succinic acids and salts thereof.
  • a particularly preferred compound of this type is dodecenylsuccinic acid.
  • succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2- dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccin- ates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
  • Fatty acids e.g., C ⁇ 2 -Cj monocarboxylic acids
  • Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.
  • phosphorus-based builders can be used, the various alkali metal phosphates such as the well-known sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
  • Phosphonate builders such as ethane- l-hydroxy-l,l-diphosphonate and other known phosphonates (see, for example, U.S. Patents 3,159,581; 3,213,030; 3,422,021; 3,400,148 and 3,422,137) can also be used.
  • Enzymes - Enzymes can be included in the formulations herein for a wide variety of fabric laundering pu ⁇ oses, including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and for the prevention of refugee dye transfer, and for fabric restoration.
  • the enzymes to be inco ⁇ orated include proteases, amylases, Upases, cellulases, and peroxidases, as well as mixtures thereof. Other types of enzymes may also be included. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fiingal cellulases. Enzymes are normally inco ⁇ orated at levels sufficient to provide up to about
  • compositions herein will typically comprise from about 0.001% to about 5%, preferably 0.01%-1%, by weight of a commercial enzyme preparation.
  • Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
  • proteases are the subtilisins which are obtained from particular strains of B.subtilis and B.licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name ESPERASE. The preparation of this enzyme and analogous enzymes is described in British Patent Specification No. 1,243,784 of Novo.
  • protealytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASE and SAVINASE by Novo Industries A/S (Denmark) and MAXATASE by International Bio-Synthetics, Inc. (The Netherlands).
  • proteases include Protease A (see European Patent Application 130,756, published January 9, 1985) and Protease B (see European Patent Application Serial No. 87303761.8, filed April 28, 1987, and European Patent Application 130,756, Bott et al, published January 9, 1985).
  • Amylases include, for example, a-amylases described in British Patent
  • the cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, issued March 6, 1984, which discloses fungal cellulase produced from Humicola insolens and Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk (Dolabella Auricula Solander).
  • Suitable cellulases are also disclosed in GB- A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
  • Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. See also lipases in Japanese Patent Application 53-20487, laid open to public inspection on February 24, 1978. This lipase is available from Amano Pharmaceutical Co.
  • Lipase P Lipase P
  • Other commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Co ⁇ ., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
  • the LIPOLASE enzyme derived from Humicola lanuginosa and commercially available from Novo is a preferred lipase for use herein.
  • Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
  • Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
  • Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, published October 19, 1989, by O. Kirk, assigned to Novo Industries A/S.
  • Enzyme stabilization systems are also described, for example, in U.S. Patents 4,261,868, 3,600,319, and 3,519,570.
  • Enzyme Stabilizers The enzymes employed herein are stabilized by the presence of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
  • Typical detergents especially liquids, will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 5 to about 15, and most preferably from about 8 to about 12, millimoles of calcium ion per liter of finished composition. This can vary somewhat, depending on the amount of enzyme present and its response to the calcium or magnesium ions.
  • the level of calcium or magnesium ions should be selected so that there is always some minimum level available for the enzyme, after allowing for complexation with builders, fatty acids, etc., in the composition.
  • Any water-soluble calcium or magnesium salt can be used as the source of calcium or magnesium ions, including, but not limited to, calcium chloride, calcium sulfate, calcium malate, calcium maleate, calcium hydroxide, calcium formate, and calcium acetate, and the corresponding magnesium salts.
  • a small amount of calcium ion generally from about 0.05 to about 0.4 millimoles per liter, is often also present in the composition due to calcium in the enzyme slurry and formula water.
  • the formulation may include a sufficient quantity of a water-soluble calcium ion source to provide such amounts in the laundry liquor. In the alternative, natural water hardness may suffice.
  • compositions herein will typically comprise from about 0.05% to about 2% by weight of a water-soluble source of calcium or magnesium ions, or both.
  • the amount can vary, of course, with the amount and type of enzyme employed in the composition.
  • compositions herein may also optionally, but preferably, contain various additional stabilizers, especially borate-type stabilizers.
  • additional stabilizers especially borate-type stabilizers.
  • such stabilizers will be used at levels in the compositions from about 0.25% to about 10%, preferably from about 0.5% to about 5%, more preferably from about 0.75% to about 3%, by weight of boric acid or other borate compound capable of forming boric acid in the composition (calculated on the basis of boric acid).
  • Boric acid is preferred, although other compounds such as boric oxide, borax and other alkali metal borates (e.g., sodium ortho-, meta- and pyroborate, and sodium pentaborate) are suitable.
  • Substituted boric acids can also be used in place of boric acid.
  • Bleaching Compounds - Bleaching Agents and Bleach Activators The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from about 1% to about 30%, more typically from about 5% to about 20%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
  • the bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning pu ⁇ oses that are now known or become known. These include oxygen bleaches as well as other bleaching agents.
  • Perborate bleaches e.g., sodium perborate (e.g., mono- or tetra-hydrate) can be used herein.
  • One category of bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta- chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydo- decanedioic acid.
  • Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1, 1983.
  • Highly preferred bleaching agents also include 6-nonylamino-6- oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.
  • Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate and equivalent "percarbonate” bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.
  • bleaching agents can also be used.
  • Peroxygen bleaching agents, the perborates, the percarbonates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
  • bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
  • NOBS nonanoyloxybenzene sulfonate
  • TAED tetraacetyl ethylene diamine
  • Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
  • One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from about 0.025% to about 1.25%, by weight, of such bleaches, especially sulfonated zinc phthalocyanine.
  • Polymeric Soil Release Agent Any polymeric soil release agent known to those skilled in the art can optionally be employed in the compositions and processes of this invention.
  • Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
  • the polymeric soil release agents useful herein include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (
  • the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from 2 to about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
  • Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO 3 S(CH 2 ) n OCH 2 CH 2 O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
  • Polymeric soil release agents useful in the present invention also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
  • Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., Cj-C ⁇ vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
  • poly(vinyl ester) e.g., Cj-C ⁇ vinyl esters
  • poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
  • Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (West Germany).
  • One type of useful soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
  • This polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
  • Another useful polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units containing 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000.
  • this polymer include the commercially available material ZELCON 5126 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.
  • Another useful polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
  • Suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26,
  • polymeric soil release agents include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoaroyl, end-capped terephthalate esters.
  • soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include ethylenediaminetetraacetates, N-hydroxyethylethylenediaminetriacetates, ni- trilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexaacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates), nitrilotris (methylenephosphonates) and diethylenetriamine- pentakis (methylenephosphonates) as DEQUEST.
  • these amino phos ⁇ phonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • a preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins. If utilized, these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
  • EDDS ethylenediamine disuccinate
  • compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and anti-redeposition properties.
  • Liquid detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylated amines.
  • the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Patent 4,597,898, VanderMeer, issued July 1, 1986.
  • Another group of preferred clay soil removal/antiredeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published June 27, 1984.
  • Other clay soil removal/antiredeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published June 27, 1984; the zwitterionic polymers disclosed in European Patent Application 112,592, Gosselink, published July 4, 1984; and the amine oxides disclosed in U.S.
  • CMC carboxy methyl cellulose
  • Polymeric Dispersing Agents can advantageously be utilized at levels from about 0.1% to about 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders.
  • Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, paniculate soil release peptization, and anti-redeposition.
  • Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
  • Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
  • the presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
  • Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
  • acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
  • the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
  • Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued March 7, 1967.
  • Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
  • Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
  • the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
  • the ratio of acrylate to maleate segments in such copolymers will generally range from about 30: 1 to about 1 :1, more preferably from about 10: 1 to 2: 1.
  • Water- soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982.
  • PEG polyethylene glycol
  • PEG can exhibit dispersing agent performance as well as act as a clay soil removal/antiredeposition agent.
  • Typical molecular weight ranges for these pu ⁇ oses range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
  • Polyaspartate and polyglutamate dispersing agents may also be used, alone or in conjunction with zeolite builders.
  • Brightener - Any optical brighteners or other brightening or whitening agents known in the art can be inco ⁇ orated at levels typically from about 0.05% to about 1.2%, by weight, into the detergent compositions herein.
  • Commercial optical brighteners which may be useful in the present invention can be classified into subgroups which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents.
  • optical brighteners examples include those identified in U.S. Patent 4,790,856, issued to Wixon on December 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona.
  • Tinopal UNPA Tinopal CBS and Tinopal 5BM
  • Ciba-Geigy available from Ciba-Geigy
  • Arctic White CC available from Hilton-Davis, located in Italy
  • 2- (4-styryl-phenyl)-2H- naphthol[l,2-d]triazoles 4,4-bis- ( 1,2,3 -triazol-2-yl)-stil- benes
  • 4,4'-bis(styryl)bisphenyls and the aminocoumarins.
  • these brighteners include 4-methyl-7-diethyl- amino coumarin; l,2-bis(-benzimidazol-2-yl)- ethylene; 1,3-diphenylphrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-styryl- naphth-[l,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [l,2-d]triazole. See also U.S. Patent 3,646,015, issued February 29, 1972 to Hamilton. Suds Suppressors - Compounds for reducing or suppressing the formation of suds can be inco ⁇ orated into the compositions of the present invention.
  • Suds suppression can be of particular importance under conditions such as those found in European-style front loading laundry washing machines, or in the concentrated deter- gency process of U.S. Patents 4,489,455 and 4,489,574, or when the detergent compositions herein optionally include a relatively high sudsing adjunct surfactant.
  • suds suppressors A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
  • One category of suds suppressor of particular interest encompasses monocarboxylic fatty acids and soluble salts therein. See U.S. Patent 2,954,347, issued September 27, 1960 to Wayne St. John.
  • the monocarboxylic fatty acids and salts thereof used as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms.
  • Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
  • the detergent compositions herein may also contain non-surfactant suds suppressors.
  • non-surfactant suds suppressors include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C ⁇ -C4o ketones (e.g. stearone), etc.
  • suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g. K, Na, and Li) phosphates and phosphate esters.
  • the hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form.
  • the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40°C and about 5°C, and a minimum boiling point not less than about 110°C (atmospheric pressure). It is also known to tilize waxy hydrocarbons, preferrably having a melting point below about 100°C.
  • the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al.
  • the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
  • the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
  • Non-surfactant suds suppressors comprises silicone suds suppressors.
  • This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed of fused onto the silica.
  • Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Patent 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published February 7, 1990, by Starch, M. S.
  • silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
  • Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Patent 3,933,672, Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
  • An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of: (i) polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1500 cs. at 25°C; (ii) from about 5 to about 50 parts per 100 parts by weight of (i) of siloxane resin composed of (CH 3 ) 3 SiOj/2 units of SiO 2 units in a ratio of from (CH 3 ) 3 SiO 2 units and to SiO units of from about 0.6:1 to about 1.2:1; and
  • the solvent for a continuous phase is made up of certain polyethylene glycols or polyethylene- polypropylene glycol copolymers or mixtures thereof (preferred), and not polypropylene glycol.
  • the primary silicone suds suppressor is branched/crosslinked and not linear.
  • typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1, preferably from about 0.01 to about 0.7, most preferably from abut 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol.
  • a primary antifoam agent which is a mixture of (a) a polyorgano
  • the silicone suds suppressor herein preferably comprises polyethylene glycol and a copolymer of polyethylene glycol/polypropylene glycol, all having an average molecular weight of less than about 1,000, preferably between about 100 and 800.
  • the polyethylene glycol and polyethylene/polypropylene copolymers herein have a solubility in water at room temperature of more than about 2 weight %, preferably more than about 5 weight %.
  • the preferred solvent herein is polyethylene glycol having an average molecular weight of less than about 1,000, more preferably between about 100 and 800, most preferably between 200 and 400, and a copolymer of polyethylene glycol/polypropylene glycol, preferably PPG 200/PEG 300. Preferred is a weight ratio of between about 1 : 1 and 1:10, most preferably between 1:3 and 1:6, of polyethylene glycol .copolymer of polyethylene-polypropylene glycol.
  • the preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC LIOI.
  • suds suppressors useful herein comprise the secondary alcohols (e.g., 2- alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872.
  • the secondary alcohols include the C ⁇ -Cig alkyl alcohols having a C j -C j g chain.
  • a preferred alcohol is 2- butyl octanol, which is available from Condea under the trademark ISOFOL 12.
  • Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
  • Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 : 5 to 5 : 1.
  • Suds suppressors when utilized, are preferably present in a "suds suppressing amount.”
  • Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
  • compositions herein will generally comprise from 0% to about 5% of suds suppressor.
  • monocarboxylic fatty acids, and salts therein will be present typically in amounts up to about 5%, by weight, of the detergent composition.
  • from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized.
  • Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarly to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing.
  • from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%.
  • these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized.
  • Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from about 0.1% to about 2%, by weight, of the composition.
  • Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used.
  • the alcohol suds suppressors are typically used at 0.2%-3% by weight of the finished compositions.
  • compositions herein can also be used with a variety of other adjunct ingredients which provide still other benefits in various compositions within the scope of this invention.
  • the following illustrates a variety of such adjunct ingredients, but is not intended to be limiting therein.
  • Fabric Softeners Various through-the-wash fabric softeners, especially the impalpable smectite clays of U.S. Patent 4,062,647, Storm and Nirschl, issued December 13, 1977, as well as other softener clays known in the art, can optionally be used typically at levels of from about 0.5% to about 10% by weight in the present compositions to provide fabric softener benefits concurrently with fabric cleaning.
  • Clay softeners can be used in combination with amine and cationic softeners, as disclosed, for example, in U.S. Patent 4,375,416, Crisp et al, March 1, 1983 and U.S. Patent 4,291,071, Harris et al, issued September 22, 1981.
  • the detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents.
  • chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
  • Amino carboxylates useful as optional chelating agents include ethylenediaminetetraacetates, N-hydroxyethylethylenediaminetriacetates, ni- trilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexaacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
  • Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates), nitrilotris (methylenephosphonates) and diethylenetriamine- pentakis (methylenephosphonates) as DEQUEST.
  • these amino phos ⁇ phonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
  • Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al.
  • Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy -3,5-disulfobenzene.
  • EDDS ethylenediamine disuccinate
  • these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
  • Dye Transfer Inhibiting Agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from about 0.01% to about 10% by weight of the composition, preferably from about 0.01% to about 5%, and more preferably from about 0.05% to about 2%.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N-O group can be represented by the following general structures:
  • Rj, R 2 , R 3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferred pKa ⁇ 6.
  • Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10: 1 to 1 : 1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".
  • the most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1 :4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred for use herein.
  • the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis. Vol 113.
  • the PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 : 1 to 0.2: 1, more preferably from 0.8: 1 to 0.3: 1, most preferably from 0.6: 1 to 0.4: 1. These copolymers can be either linear or branched.
  • compositions also may employ a polyvinylpyrrolidone (“PVP”) having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000.
  • PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, inco ⁇ orated herein by reference.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50: 1, and more preferably from about 3:1 to about 10:1.
  • the detergent compositions herein may also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from about 0.01% to 1% by weight of such optical brighteners.
  • hydrophilic optical brighteners useful in the present invention are those having the structural formula:
  • R j is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, mo ⁇ hilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
  • Rj is anilino
  • R is N-2-bis-hydroxyethyl and M is a cation such as sodium
  • the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis- hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Co ⁇ oration. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
  • K ⁇ is anilino
  • R 2 is N-2-hydroxyethyl-N-2- methylamino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-
  • Rj is anilino
  • R 2 is mo ⁇ hilino
  • M is a cation such as sodium
  • the brightener is 4,4'-bis[(4-anilino-6-mo ⁇ hilino-s-triazine-2- yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
  • This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy
  • the specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described.
  • the combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics.
  • the extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
  • the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor.
  • Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
  • other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
  • compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, etc.
  • suds boosters such as the Cio- Cj6 alkanolamides can be inco ⁇ orated into the compositions, typically at 1%-10% levels.
  • the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
  • Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
  • soluble salts such as CaCl 2 , CaSO4, MgCl 2 , MgSO4, and the like, can be added at levels of, typically, 0.1%-2%, to provide additional sudsing and to enhance grease removal performance.
  • detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
  • the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
  • the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
  • a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C ⁇ 3 _i5 ethoxylated alcohol EO(7) nonionic surfactant.
  • the enzyme/surfactant solution is 2.5 X the weight of silica.
  • the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
  • silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
  • the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
  • ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in detergents, including liquid laundry detergent compositions.
  • the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between about 7.0 and about 9-10, preferably between about 7.5 and about 9.5.
  • Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
  • compositions for most pu ⁇ oses contain no phosphates.
  • the liquid laundry detergent of Example I is prepared by dissolving or dispersing the indicated ingredients in an aqueous carrier and adjusting the pH in the preferred range of 7.5-9.0.
  • a liquid laundry detergent composition herein comprises the following.
  • a liquid laundry detergent composition suitable for use at the relatively high concentrations common to front-loading automatic washing machines, especially in Europe, and over a wide range of temperatures is as follows.
  • ⁇ Amylase from NOVO; percentage at 300 KNU/g.
  • ⁇ Silane corrosion inhibitor available as A1130 from Union Carbide or DYNASYLAN TRIAMINO from HOls.
  • *Preferred fatty acid is topped palm kernel, comprising 12% oleic acid and 2% each of stearic and linoleic.
  • Glucamide surfactant 10.50 10.40
  • composition is designed for use at the 0.25 cup (59 mis) level in a conventional U.S. washine machine, or its equivalent.
  • viscosity of an equivalent liquid product comprising a coconutalky N-methyl glucamide surfactant is above 100,000, i.e., a gel.
  • N-alkoxy surfactants with alcohols, typically
  • compositions 5%-20%, preferably 10%- 12% and 1,2-propanediol, typically about 1%-10% and preferably with a soluble polycarboxylate such as citric acid, malic acid, maleic acid or the like, typically at levels of about 0.5%-3%, preferably about 2%, and water provides such compositions, as follows.
  • the unique physical properties and cleaning performance of the N-alkoxy and N-aryloxy polyhydroxy fatty acid amides herein allow the formulation of effective detergent compositions containing little, or no, anionic surfactants.
  • detergent compositions free of anionic surfactants, or at nonionic surfactant: anionic surfactant ratios in the range of from about 1:1, preferably about 2:1, to about 100:1 can be formulated.
  • liquid laundry detergent comprising:
  • R is a C7-C 2 ⁇ hydrocarbyl moiety
  • R 1 is a C -Cg hydrocarbyl moiety
  • R 2 is a Cj-Cg hydrocarbyl or oxy-hydrocarbyl moiety
  • Z is a polyhydroxy hydrocarbyl unit having a linear chain with at least two hydroxyls directly connected to the chain; and (b) optional detersive adjuncts;
  • compositions with little or no anionic surfactants preferably employ amide surfactants wherein R* is a C 2 -C4 alkylene moiety and R 2 is a C -C4 alkyl moiety, especially wherein substituent -R1-0-R2 is a member selected from the group consisting of 2-methoxyethyl and 3 -methoxypropyl and wherein R is C ⁇ ⁇ and wherein Z is as defined above.
  • Such compositions may additionally comprises a detersive adjunct ingredient which is a member selected from the group consisting of enzymes, builders, bleaches, soil release agents, optional auxiliary surfactants, dye transfer inhibiting agents, and mixtures thereof.
  • compositions may comprise from about 1% to about 50% by weight of the amide surfactant, and are preferably provided in concentrated form comprising at least about 25% by weight of said amide surfactant.
  • the amide surfactant can be used in combination with conventional nonionics, such as the alcohol and alkylphenol ethoxylates, e.g., coconut alkyl EO(1-10).
  • the invention also encompasses a method for cleaning substrates, comprising contacting said substrates with said composition in the presence of water, preferably at concentrations of amide surfactant of at least about 15 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

On prépare des compositions de lessive détergente liquide comprenant des tensioactifs anioniques classiques, différents produits d'appoint détersifs éventuels, tels que des adjuvants, des enzymes, des éclaircissants par exemple, avec des véhicules liquides, au moyen de tensioactifs d'amides d'acides gras N-alcoxy ou N-aryloxy polyhydroxy. On utilise également des tensioactifs d'amides, tels que les acides gras d'huile de palme de N-(3-méthoxypropyle)glucamide et N-(2-méthoxy-éthyle)glucamide dans des détergentes liquides non anioniques caractérisés par des performances de nettoyage optimisées et par des viscosités relativement basses même sous une forme concentrée.
PCT/US1994/009550 1993-09-09 1994-08-24 Detergents liquides comportant des tensioactifs d'amides d'acides gras n-alcoxy ou n-aryloxy polyhydroxy WO1995007331A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU77160/94A AU7716094A (en) 1993-09-09 1994-08-24 Liquid detergents with n-alkoxy or n-aryloxy polyhydroxy fatty acid amide surfactants

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11886593A 1993-09-09 1993-09-09
US08/118,865 1993-09-09
US27885894A 1994-07-26 1994-07-26
US08/278,858 1994-07-26

Publications (1)

Publication Number Publication Date
WO1995007331A1 true WO1995007331A1 (fr) 1995-03-16

Family

ID=26816824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/009550 WO1995007331A1 (fr) 1993-09-09 1994-08-24 Detergents liquides comportant des tensioactifs d'amides d'acides gras n-alcoxy ou n-aryloxy polyhydroxy

Country Status (3)

Country Link
AU (1) AU7716094A (fr)
TR (1) TR27817A (fr)
WO (1) WO1995007331A1 (fr)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133214A (en) * 1998-07-15 2000-10-17 Henkel Kommanditgesellschaft Auf Aktien Portioned detergent composition
US6225276B1 (en) 1997-02-07 2001-05-01 Henkel Kommanditgesellschaft Auf Aktien pH-controlled release of detergent components
US6228827B1 (en) 1998-12-14 2001-05-08 Henkel Kommanditgesellschaft Auf Aktien Use of protease in liquid to gel-form detergents
US6274546B1 (en) 1997-11-26 2001-08-14 Henkel Kommanditgesellschaft Auf Aktien Stable high viscosity liquid detergents
US6329335B1 (en) 1997-03-07 2001-12-11 Henkel Kommanditgesellschaft Auf Aktien Detergent tablets
US6340664B1 (en) 1999-08-26 2002-01-22 Henkel Kommanditgesellschaft Auf Aktien (Kgaa) Laundry detergent or cleaning product tablets with partial coating
US6342472B1 (en) 1997-11-26 2002-01-29 Henkel Kommanditgesellschaft Auf Aktien (Kgaa) Low-concentration highly viscous liquid detergents
US6372703B1 (en) 1998-07-15 2002-04-16 Henkel Komanditgesellschaft Auf Aktien Non-aqueous bleach-containing liquid detergents
US6380147B1 (en) 1998-06-03 2002-04-30 Henkel Kommanditgesellschaft Auf Aktien Detergents containing amylase and protease
US6448212B1 (en) 1999-07-09 2002-09-10 Henkel Kommanditgesellschaft Auf Aktien Laundry/dishwasher detergent portion
US6468957B1 (en) 1998-09-29 2002-10-22 Henkel Kommanditgesellschaft Auf Aktien Granulation method
US6528474B1 (en) 1999-08-04 2003-03-04 Henkel Kommanditgesellschaft Auf Aktien Method of manufacturing a detergent with soluble builder
WO2003038028A2 (fr) 2001-10-30 2003-05-08 Henkel Kommanditgesellschaft Auf Aktien Detergent ou nettoyant dispersible sensiblement exempt de sediments
US6649085B2 (en) 2000-11-25 2003-11-18 Clariant Gmbh Cyclic sugar ketones as catalysts for peroxygen compounds
US6683042B1 (en) 1998-09-29 2004-01-27 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Granulation method
US6698516B2 (en) 2001-02-16 2004-03-02 Scientific Drilling International Method for magnetizing wellbore tubulars
US6746996B2 (en) 2001-01-19 2004-06-08 Clariant Gmbh Use of transition metal complexes having oxime ligands as bleach catalysts
US6750193B1 (en) 1998-07-15 2004-06-15 Henkel Kommanditgesellschaft Auf Aktien Method for producing multi-phase cleaning and washing agent shaped bodies
US6812200B2 (en) 2000-12-23 2004-11-02 Henkel Kommanditgesellschaft Auf Aktien Process for coating detergent tablets
US6841614B1 (en) 1998-10-29 2005-01-11 Henkel Kommanditgesellschaft Auf Aktien Polymer granules produced by fluidized bed granulation
US6875734B2 (en) 2003-02-03 2005-04-05 Clariant Gmbh Use of transition metal complexes as bleach catalysts
US7098178B2 (en) 2000-03-16 2006-08-29 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Silicic acid ester mixtures
WO2006111223A1 (fr) 2005-04-19 2006-10-26 Henkel Kommanditgesellschaft Auf Aktien Procede pour produire des preparations liquides contenant des solides
DE102007016391A1 (de) 2007-04-03 2008-10-09 Henkel Ag & Co. Kgaa Farbschützendes Wasch- oder Reinigungsmittel
US7446086B2 (en) 2003-08-19 2008-11-04 Henkel Kommanditgesellschaft Auf Aktien Agents that are absorbed on the surfaces of substrates
DE102007023805A1 (de) 2007-05-21 2008-11-27 Henkel Ag & Co. Kgaa Textilpflegemittel
DE102007038457A1 (de) 2007-08-14 2009-02-19 Henkel Ag & Co. Kgaa Textilpflegemittel
US7557145B2 (en) 2003-06-17 2009-07-07 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Inhibition of the asexual reproduction of fungi by eugenol and/or derivatives thereof
EP2083067A1 (fr) 2008-01-25 2009-07-29 Basf Aktiengesellschaft Utilisation de complexants organiques et/ou de liaisons contenant des groupes d'acides de carbone polymères dans une composition de produit de lavage ou de nettoyage
US7585825B2 (en) 2004-04-23 2009-09-08 Henkel Ag & Co. Kgaa Scented solid substances comprising a non-ionic surfactant-impregnated carrier
US7749332B2 (en) 2004-08-23 2010-07-06 Henkel Kgaa Detergent/cleaning agents with a gellan gum thickening system, methods for using the same and cleaning substrates containing the same
US7910647B2 (en) 2003-12-13 2011-03-22 Henkel Ag & Co. Kgaa Adhesion inhibition of microorganisms by non-ionic surfactants
US7947087B2 (en) 2006-03-14 2011-05-24 Henkel Ag & Co. Kgaa Color transfer inhibitors, detergent compositions containing the same and uses therefor
WO2011098571A1 (fr) 2010-02-12 2011-08-18 Basf Se Utilisation d'un copolymère comme épaississant dans les lessives liquides à tendance au grisage réduite
WO2011157777A1 (fr) 2010-06-17 2011-12-22 Basf Se Polymères à groupes latéraux saccharide et leurs applications
US20120022165A1 (en) * 2002-09-20 2012-01-26 Microdermis Corporation Transdermal compositions
WO2012095481A1 (fr) 2011-01-13 2012-07-19 Basf Se Utilisation de thioéthers éventuellement oxydés d'alcoxylates d'alcools dans des détergents et produits de nettoyage
WO2012095482A1 (fr) 2011-01-13 2012-07-19 Basf Se Utilisation de thioéthers éventuellement oxydés de poly(oxydes d'alkylène) dans des agents de lavage et de nettoyage
US8263541B2 (en) 2005-08-19 2012-09-11 Henkel Ag & Co. Kgaa Triazine derivative dye transfer inhibitors, washing products containing the same and uses therefor
WO2012171849A1 (fr) 2011-06-15 2012-12-20 Basf Se Polyesters ramifiés contenant des groupes sulfonate
WO2013068388A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère à base de monomères associatifs et pouvant être obtenu par polymérisation en émulsion inverse
WO2013068392A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère à base de monomères associatifs
WO2013068387A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère cationique pouvant être obtenu par polymérisation en émulsion inverse
WO2013068394A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère cationique
US8524649B2 (en) 2007-08-03 2013-09-03 Basf Se Associative thickener dispersion
WO2013178700A3 (fr) * 2012-05-30 2014-07-03 Clariant International Ltd. Composition contenant de la n-méthyl-n-acylglucamine
US8846599B2 (en) 2011-06-15 2014-09-30 Basf Se Branched polyesters with sulfonate groups
US8951955B2 (en) 2011-01-13 2015-02-10 Basf Se Use of optionally oxidized thioethers of alcohol alkoxylates in washing and cleaning compositions
US8987183B2 (en) 2011-01-13 2015-03-24 Basf Se Use of optionally oxidized thioethers of polyalkylene oxides in washing and cleaning compositions
WO2015059084A1 (fr) 2013-10-21 2015-04-30 Basf Se Polymérisation par précipitation en présence d'un groupe amine tertiaire et d'un anhydride
DE102013226098A1 (de) 2013-12-16 2015-06-18 Henkel Kgaa Silylenolether von Riechstoffketonen oder -aldehyden
DE102013226216A1 (de) 2013-12-17 2015-06-18 Henkel Ag & Co. Kgaa Michael-Systeme für die Duftstoff-Stabilisierung
DE102013226602A1 (de) 2013-12-19 2015-06-25 Henkel Ag & Co. Kgaa Verwendung von CNGA2-Agonisten zur Verstärkung der olfaktorischen Wirkung eines Riechstoffs
US9200242B2 (en) 2011-11-11 2015-12-01 Basf Se Thickener comprising at least one cationic polymer
EP2963103A1 (fr) 2014-07-04 2016-01-06 Henkel AG & Co. KGaA Nanocapsules sensibles au pH
DE102015002877A1 (de) 2015-03-09 2016-09-15 Henkel Ag & Co. Kgaa Granulares Wasch- oder Reinigungsmittel mit verbesserter Lösegeschwindigkeit
WO2017158002A1 (fr) 2016-03-16 2017-09-21 Basf Se Films polymères à action détergente et nettoyante, procédé pour les produire et leur utilisation
US9796951B2 (en) 2013-09-16 2017-10-24 Basf Se Use of modified polyaspartic acids in dishwashing detergents
WO2018029021A1 (fr) 2016-08-08 2018-02-15 Basf Se Formulation liquide de blanchisserie
WO2018109201A1 (fr) 2016-12-16 2018-06-21 Basf Se Films multicouche à action détergente et nettoyante, procédé de production desdits films et utilisation correspondante
WO2018109200A1 (fr) 2016-12-16 2018-06-21 Basf Se Feuilles multicouches, leur procédé de fabrication et leur utilisation
WO2019016336A1 (fr) 2017-07-21 2019-01-24 Basf Se Polymère à base de monomères anioniques ou non ioniques présentant une distribution au moins bimodale des masses moléculaires
WO2019016334A1 (fr) 2017-07-21 2019-01-24 Basf Se Procédé d'obtention d'un polymère à base de monomères anioniques ou non ioniques présentant une distribution de poids moléculaires au moins bimodale
WO2019048474A1 (fr) 2017-09-06 2019-03-14 Basf Se Films polymères actifs de lavage et de nettoyage, leur procédé de production et leur utilisation
US10233286B2 (en) 2013-09-16 2019-03-19 Basf Se Methods for producing polyaspartic acids in the presence of methanesulfonic acid
WO2019068505A1 (fr) 2017-10-06 2019-04-11 Henkel Ag & Co. Kgaa Éthers d'énol sylilé, non stables au cours de l'hydrolyse, de cétones parfumantes ou d'aldéhydes parfumants
WO2019076588A1 (fr) 2017-10-20 2019-04-25 Henkel Ag & Co. Kgaa Précurseurs de parfums thermolabiles issus de cétones odorantes
DE102017124612A1 (de) 2017-10-20 2019-04-25 Henkel Ag & Co. Kgaa Hydrolyselabile Dienolsilylether von Riechstoffketonen oder -aldehyden
DE102017127776A1 (de) 2017-11-24 2019-05-29 Henkel Ag & Co. Kgaa Hydrolyselabile Heterocyclen von Riechstoffketonen oder -aldehyden
US10370620B2 (en) 2015-09-08 2019-08-06 Basf Se Method for producing polyaspartic acid under reflux cooling
WO2020011627A1 (fr) 2018-07-11 2020-01-16 Basf Se Procédé de production de polymères stables contenant du vinylimidazole
WO2020035567A1 (fr) 2018-08-16 2020-02-20 Basf Se Films polymères hydrosolubles d'homopolymères ou de copolymères d'oxyde d'éthylène, procédé de calandrage pour leur production et leur utilisation
WO2021191175A1 (fr) 2020-03-24 2021-09-30 Basf Se Formulation d'un détergent sous la forme d'un corps tridimensionnel
US11136534B2 (en) 2011-11-11 2021-10-05 Basf Se Thickener comprising at least one cationic polymer preparable by inverse emulsion polymerization
EP4324900A1 (fr) 2022-08-17 2024-02-21 Henkel AG & Co. KGaA Composition détergente comprenant des enzymes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285768A1 (fr) * 1987-04-08 1988-10-12 Hüls Aktiengesellschaft Utilisation de N-polyhydroxyalkyl d'amides d'acides gras comme agents épaississants pour systèmes tensio-actifs liquides aqueux
JPH03246265A (ja) * 1990-02-22 1991-11-01 Kao Corp 脂肪酸アミドの製造方法
WO1992006162A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Detergent contenant des tensioactifs de sulfate d'alkyle et d'amide de l'acide gras de polyhydroxy
WO1992006172A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Amides d'acide gras de polyhydroxy compris dans des compositions detersives liquides contenant un agent d'azurage
WO1992006164A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Amides de l'acide gras de polyhydroxy dans des detergents contenant des adjuvants au polycarboxylate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285768A1 (fr) * 1987-04-08 1988-10-12 Hüls Aktiengesellschaft Utilisation de N-polyhydroxyalkyl d'amides d'acides gras comme agents épaississants pour systèmes tensio-actifs liquides aqueux
JPH03246265A (ja) * 1990-02-22 1991-11-01 Kao Corp 脂肪酸アミドの製造方法
WO1992006162A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Detergent contenant des tensioactifs de sulfate d'alkyle et d'amide de l'acide gras de polyhydroxy
WO1992006172A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Amides d'acide gras de polyhydroxy compris dans des compositions detersives liquides contenant un agent d'azurage
WO1992006164A1 (fr) * 1990-09-28 1992-04-16 The Procter & Gamble Company Amides de l'acide gras de polyhydroxy dans des detergents contenant des adjuvants au polycarboxylate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 9150, Derwent World Patents Index; AN 91-365819[50], "Preparation of polyhydroxyamine fatty acid amide." *

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225276B1 (en) 1997-02-07 2001-05-01 Henkel Kommanditgesellschaft Auf Aktien pH-controlled release of detergent components
US6407052B2 (en) 1997-02-07 2002-06-18 Henkel Kommanditgesellschaft Auf Aktien pH-controlled release of detergent components
US6329335B1 (en) 1997-03-07 2001-12-11 Henkel Kommanditgesellschaft Auf Aktien Detergent tablets
US6274546B1 (en) 1997-11-26 2001-08-14 Henkel Kommanditgesellschaft Auf Aktien Stable high viscosity liquid detergents
US6342472B1 (en) 1997-11-26 2002-01-29 Henkel Kommanditgesellschaft Auf Aktien (Kgaa) Low-concentration highly viscous liquid detergents
US6380147B1 (en) 1998-06-03 2002-04-30 Henkel Kommanditgesellschaft Auf Aktien Detergents containing amylase and protease
US6133214A (en) * 1998-07-15 2000-10-17 Henkel Kommanditgesellschaft Auf Aktien Portioned detergent composition
US6372703B1 (en) 1998-07-15 2002-04-16 Henkel Komanditgesellschaft Auf Aktien Non-aqueous bleach-containing liquid detergents
US6750193B1 (en) 1998-07-15 2004-06-15 Henkel Kommanditgesellschaft Auf Aktien Method for producing multi-phase cleaning and washing agent shaped bodies
US6683042B1 (en) 1998-09-29 2004-01-27 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Granulation method
US6468957B1 (en) 1998-09-29 2002-10-22 Henkel Kommanditgesellschaft Auf Aktien Granulation method
US6841614B1 (en) 1998-10-29 2005-01-11 Henkel Kommanditgesellschaft Auf Aktien Polymer granules produced by fluidized bed granulation
US6228827B1 (en) 1998-12-14 2001-05-08 Henkel Kommanditgesellschaft Auf Aktien Use of protease in liquid to gel-form detergents
US6448212B1 (en) 1999-07-09 2002-09-10 Henkel Kommanditgesellschaft Auf Aktien Laundry/dishwasher detergent portion
US6528474B1 (en) 1999-08-04 2003-03-04 Henkel Kommanditgesellschaft Auf Aktien Method of manufacturing a detergent with soluble builder
US6340664B1 (en) 1999-08-26 2002-01-22 Henkel Kommanditgesellschaft Auf Aktien (Kgaa) Laundry detergent or cleaning product tablets with partial coating
US7098178B2 (en) 2000-03-16 2006-08-29 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Silicic acid ester mixtures
US6649085B2 (en) 2000-11-25 2003-11-18 Clariant Gmbh Cyclic sugar ketones as catalysts for peroxygen compounds
US6812200B2 (en) 2000-12-23 2004-11-02 Henkel Kommanditgesellschaft Auf Aktien Process for coating detergent tablets
US6746996B2 (en) 2001-01-19 2004-06-08 Clariant Gmbh Use of transition metal complexes having oxime ligands as bleach catalysts
US6698516B2 (en) 2001-02-16 2004-03-02 Scientific Drilling International Method for magnetizing wellbore tubulars
WO2003038028A2 (fr) 2001-10-30 2003-05-08 Henkel Kommanditgesellschaft Auf Aktien Detergent ou nettoyant dispersible sensiblement exempt de sediments
US20120022165A1 (en) * 2002-09-20 2012-01-26 Microdermis Corporation Transdermal compositions
US9084821B2 (en) 2002-09-20 2015-07-21 Microdermis Corporation Transdermal compositions
US8536228B2 (en) * 2002-09-20 2013-09-17 Microdermis Corporation Transdermal compositions
US6875734B2 (en) 2003-02-03 2005-04-05 Clariant Gmbh Use of transition metal complexes as bleach catalysts
US7557145B2 (en) 2003-06-17 2009-07-07 Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) Inhibition of the asexual reproduction of fungi by eugenol and/or derivatives thereof
US7446086B2 (en) 2003-08-19 2008-11-04 Henkel Kommanditgesellschaft Auf Aktien Agents that are absorbed on the surfaces of substrates
US7910647B2 (en) 2003-12-13 2011-03-22 Henkel Ag & Co. Kgaa Adhesion inhibition of microorganisms by non-ionic surfactants
US7585825B2 (en) 2004-04-23 2009-09-08 Henkel Ag & Co. Kgaa Scented solid substances comprising a non-ionic surfactant-impregnated carrier
US7749332B2 (en) 2004-08-23 2010-07-06 Henkel Kgaa Detergent/cleaning agents with a gellan gum thickening system, methods for using the same and cleaning substrates containing the same
WO2006111223A1 (fr) 2005-04-19 2006-10-26 Henkel Kommanditgesellschaft Auf Aktien Procede pour produire des preparations liquides contenant des solides
US8741830B2 (en) 2005-04-19 2014-06-03 Henkel Ag & Co. Kgaa Method for producing liquid preparations having a solid body content
US8263541B2 (en) 2005-08-19 2012-09-11 Henkel Ag & Co. Kgaa Triazine derivative dye transfer inhibitors, washing products containing the same and uses therefor
US7947087B2 (en) 2006-03-14 2011-05-24 Henkel Ag & Co. Kgaa Color transfer inhibitors, detergent compositions containing the same and uses therefor
DE102007016391A1 (de) 2007-04-03 2008-10-09 Henkel Ag & Co. Kgaa Farbschützendes Wasch- oder Reinigungsmittel
DE102007023805A1 (de) 2007-05-21 2008-11-27 Henkel Ag & Co. Kgaa Textilpflegemittel
US8524649B2 (en) 2007-08-03 2013-09-03 Basf Se Associative thickener dispersion
DE102007038457A1 (de) 2007-08-14 2009-02-19 Henkel Ag & Co. Kgaa Textilpflegemittel
EP2083067A1 (fr) 2008-01-25 2009-07-29 Basf Aktiengesellschaft Utilisation de complexants organiques et/ou de liaisons contenant des groupes d'acides de carbone polymères dans une composition de produit de lavage ou de nettoyage
WO2011098571A1 (fr) 2010-02-12 2011-08-18 Basf Se Utilisation d'un copolymère comme épaississant dans les lessives liquides à tendance au grisage réduite
US8865639B2 (en) 2010-02-12 2014-10-21 Basf Se Use of a copolymer as thickener in liquid detergents having lower graying tendency
WO2011157777A1 (fr) 2010-06-17 2011-12-22 Basf Se Polymères à groupes latéraux saccharide et leurs applications
WO2012095482A1 (fr) 2011-01-13 2012-07-19 Basf Se Utilisation de thioéthers éventuellement oxydés de poly(oxydes d'alkylène) dans des agents de lavage et de nettoyage
WO2012095481A1 (fr) 2011-01-13 2012-07-19 Basf Se Utilisation de thioéthers éventuellement oxydés d'alcoxylates d'alcools dans des détergents et produits de nettoyage
US8987183B2 (en) 2011-01-13 2015-03-24 Basf Se Use of optionally oxidized thioethers of polyalkylene oxides in washing and cleaning compositions
US8951955B2 (en) 2011-01-13 2015-02-10 Basf Se Use of optionally oxidized thioethers of alcohol alkoxylates in washing and cleaning compositions
WO2012171849A1 (fr) 2011-06-15 2012-12-20 Basf Se Polyesters ramifiés contenant des groupes sulfonate
US8846599B2 (en) 2011-06-15 2014-09-30 Basf Se Branched polyesters with sulfonate groups
WO2013068392A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère à base de monomères associatifs
WO2013068388A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère à base de monomères associatifs et pouvant être obtenu par polymérisation en émulsion inverse
WO2013068394A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère cationique
WO2013068387A1 (fr) 2011-11-11 2013-05-16 Basf Se Épaississant contenant au moins un polymère cationique pouvant être obtenu par polymérisation en émulsion inverse
US11136534B2 (en) 2011-11-11 2021-10-05 Basf Se Thickener comprising at least one cationic polymer preparable by inverse emulsion polymerization
US9200242B2 (en) 2011-11-11 2015-12-01 Basf Se Thickener comprising at least one cationic polymer
CN104520417A (zh) * 2012-05-30 2015-04-15 科莱恩金融(Bvi)有限公司 包含n-甲基-n-酰基葡糖胺的组合物
WO2013178700A3 (fr) * 2012-05-30 2014-07-03 Clariant International Ltd. Composition contenant de la n-méthyl-n-acylglucamine
US10233286B2 (en) 2013-09-16 2019-03-19 Basf Se Methods for producing polyaspartic acids in the presence of methanesulfonic acid
US9796951B2 (en) 2013-09-16 2017-10-24 Basf Se Use of modified polyaspartic acids in dishwashing detergents
WO2015059084A1 (fr) 2013-10-21 2015-04-30 Basf Se Polymérisation par précipitation en présence d'un groupe amine tertiaire et d'un anhydride
DE102013226098A1 (de) 2013-12-16 2015-06-18 Henkel Kgaa Silylenolether von Riechstoffketonen oder -aldehyden
DE102013226216A1 (de) 2013-12-17 2015-06-18 Henkel Ag & Co. Kgaa Michael-Systeme für die Duftstoff-Stabilisierung
DE102013226602A1 (de) 2013-12-19 2015-06-25 Henkel Ag & Co. Kgaa Verwendung von CNGA2-Agonisten zur Verstärkung der olfaktorischen Wirkung eines Riechstoffs
EP2963103A1 (fr) 2014-07-04 2016-01-06 Henkel AG & Co. KGaA Nanocapsules sensibles au pH
DE102015002877B4 (de) 2015-03-09 2024-09-12 Henkel Ag & Co. Kgaa Wasch- oder reinigungsaktive Extrudate, deren Herstellung und Verwendung in granularen Wasch- oder Reinigungsmitteln
DE102015002877A1 (de) 2015-03-09 2016-09-15 Henkel Ag & Co. Kgaa Granulares Wasch- oder Reinigungsmittel mit verbesserter Lösegeschwindigkeit
US10370620B2 (en) 2015-09-08 2019-08-06 Basf Se Method for producing polyaspartic acid under reflux cooling
WO2017158002A1 (fr) 2016-03-16 2017-09-21 Basf Se Films polymères à action détergente et nettoyante, procédé pour les produire et leur utilisation
US10822443B2 (en) 2016-03-16 2020-11-03 Basf Se Washing- and cleaning-active polymer films, process for the production thereof and use thereof
WO2018029021A1 (fr) 2016-08-08 2018-02-15 Basf Se Formulation liquide de blanchisserie
WO2018109201A1 (fr) 2016-12-16 2018-06-21 Basf Se Films multicouche à action détergente et nettoyante, procédé de production desdits films et utilisation correspondante
WO2018109200A1 (fr) 2016-12-16 2018-06-21 Basf Se Feuilles multicouches, leur procédé de fabrication et leur utilisation
WO2019016334A1 (fr) 2017-07-21 2019-01-24 Basf Se Procédé d'obtention d'un polymère à base de monomères anioniques ou non ioniques présentant une distribution de poids moléculaires au moins bimodale
WO2019016336A1 (fr) 2017-07-21 2019-01-24 Basf Se Polymère à base de monomères anioniques ou non ioniques présentant une distribution au moins bimodale des masses moléculaires
WO2019048474A1 (fr) 2017-09-06 2019-03-14 Basf Se Films polymères actifs de lavage et de nettoyage, leur procédé de production et leur utilisation
WO2019068505A1 (fr) 2017-10-06 2019-04-11 Henkel Ag & Co. Kgaa Éthers d'énol sylilé, non stables au cours de l'hydrolyse, de cétones parfumantes ou d'aldéhydes parfumants
DE102017123282A1 (de) 2017-10-06 2019-04-11 Henkel Ag & Co. Kgaa Hydrolyselabile Silylenolether von Riechstoffketonen oder -aldehyden
WO2019076589A1 (fr) 2017-10-20 2019-04-25 Henkel Ag & Co. Kgaa Éthers de diénols silylés instables à l'hydrolyse issus de cétones odorantes ou d'aldéhydes odorants
WO2019076588A1 (fr) 2017-10-20 2019-04-25 Henkel Ag & Co. Kgaa Précurseurs de parfums thermolabiles issus de cétones odorantes
DE102017124611A1 (de) 2017-10-20 2019-04-25 Henkel Ag & Co. Kgaa Thermolabile Duftspeicherstoffe von Riechstoffketonen
DE102017124612A1 (de) 2017-10-20 2019-04-25 Henkel Ag & Co. Kgaa Hydrolyselabile Dienolsilylether von Riechstoffketonen oder -aldehyden
DE102017127776A1 (de) 2017-11-24 2019-05-29 Henkel Ag & Co. Kgaa Hydrolyselabile Heterocyclen von Riechstoffketonen oder -aldehyden
WO2019101444A1 (fr) 2017-11-24 2019-05-31 Henkel Ag & Co. Kgaa Hétérocycles instables à l'hydrolyse issus de cétones odorantes ou d'aldéhydes odorants
WO2020011627A1 (fr) 2018-07-11 2020-01-16 Basf Se Procédé de production de polymères stables contenant du vinylimidazole
WO2020035567A1 (fr) 2018-08-16 2020-02-20 Basf Se Films polymères hydrosolubles d'homopolymères ou de copolymères d'oxyde d'éthylène, procédé de calandrage pour leur production et leur utilisation
WO2021191175A1 (fr) 2020-03-24 2021-09-30 Basf Se Formulation d'un détergent sous la forme d'un corps tridimensionnel
EP4324900A1 (fr) 2022-08-17 2024-02-21 Henkel AG & Co. KGaA Composition détergente comprenant des enzymes

Also Published As

Publication number Publication date
TR27817A (tr) 1995-08-29
AU7716094A (en) 1995-03-27

Similar Documents

Publication Publication Date Title
WO1995007331A1 (fr) Detergents liquides comportant des tensioactifs d'amides d'acides gras n-alcoxy ou n-aryloxy polyhydroxy
US5510049A (en) Bar composition with N-alkoxy or N-aryloxy polyhydroxy fatty acid amide surfactant
EP0550606B1 (fr) Systemes tensioactifs non ioniques contenant des amides d'acides gras de polyhydroxy et un ou plusieurs tensioactifs non ioniques supplementaires
USH1513H (en) Oleoyl sarcosinate with polyhydroxy fatty acid amides in cleaning products
EP0550557B1 (fr) Detergent contenant des tensioactifs de sulfate d'alkyle et d'amide d'acide gras polyhydroxyle
EP0551396B1 (fr) Compositions detergentes contenant des tensioactifs d'amides de l'acide gras de polyhydroxy et de sulfonates d'ester d'alkyle
EP0551390B1 (fr) Amides de l'acide gras de polyhydroxy dans des compositions detergentes contenant un agent antisalissures
EP0550695B1 (fr) Tensioactifs d'amides de l'acide gras de polyhydroxy destines a ameliorer l'efficacite des enzymes
EP0550634B1 (fr) Amides d'acide gras de polyhydroxy compris dans des compositions detersives liquides contenant un agent d'azurage
US5318728A (en) Low sudsing polyhydroxy fatty acid amide detergents
EP0687292B1 (fr) Produits detergents a base d'acides ethylenediamine-n,n'-diglutarique et 2-hydroxypropylenediamine-n,n'-disuccinique
EP0550644B1 (fr) Compositions detergentes contenant un amide de l'acide gras de polyhydroxy et un sulfate d'alkyle alcoxyle
EP0550692B1 (fr) Compositions detergentes contenant un tensioactif d'amide de l'acide gras de polyhydroxy et un agent dispersant polymere
EP0551413B1 (fr) Compositions detergentes contenant un amide de l'acide gras de polyhydroxy et un sulfonate d'alkyle benzene
EP0551393B1 (fr) Amides de l'acide gras de polyhydroxy dans des detergents contenant des adjuvants au polycarboxylate
EP0591397B1 (fr) Detergents de blanchissage contenant un amide d'acide gras polyhydroxy et de l'alcool ethoxyle insoluble
EP0717767B1 (fr) Detergent en granules comportant un tensioactif d'amides d'acides gras n-alcoxy
US5750485A (en) Laundry detergent containing a polyhydroxy fatty amide and insoluble ethoxylated alcohol
WO1995007334A1 (fr) Compositions detergentes comportant un melange d'amides d'acides gras n-alkoxy ou n-aryloxy polyhydroxy et d'un tensioactif de carboxylate alkoxyle
WO1995007333A1 (fr) Particules detergentes contenant des tensioactifs anioniques et des amides d'acides gras n-alkoxy ou n-aryloxy
CA2092562C (fr) Systemes surfactifs non ioniques renfermant des amides d'acides gras polyhydroxyles et un ou plusieurs surfactifs non ioniques supplementaires

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ FI GE HU JP KG KP KR KZ LK LT LV MD MG MN NO NZ PL RO RU SI SK TJ TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载