+

WO1995006252A1 - Procede d'identification d'une substance immunologique au moyen d'un systeme multimembranaire - Google Patents

Procede d'identification d'une substance immunologique au moyen d'un systeme multimembranaire Download PDF

Info

Publication number
WO1995006252A1
WO1995006252A1 PCT/FR1994/001023 FR9401023W WO9506252A1 WO 1995006252 A1 WO1995006252 A1 WO 1995006252A1 FR 9401023 W FR9401023 W FR 9401023W WO 9506252 A1 WO9506252 A1 WO 9506252A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugate
immunological
membrane
immobilized
enzyme
Prior art date
Application number
PCT/FR1994/001023
Other languages
English (en)
Inventor
Anne-Marie Vissac
Cristiano Padula
Gabriella Cellentani
Jean Amiral
Original Assignee
Societe Diagnostica-Stago
Alfa Biotech S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Diagnostica-Stago, Alfa Biotech S.P.A. filed Critical Societe Diagnostica-Stago
Priority to JP7507390A priority Critical patent/JPH09502799A/ja
Priority to EP94925527A priority patent/EP0715718A1/fr
Publication of WO1995006252A1 publication Critical patent/WO1995006252A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
    • G01N33/538Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody by sorbent column, particles or resin strip, i.e. sorbent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a new method for identifying an immunological substance chosen from the group consisting of antigens and antibodies, said method using a multimembrane system for visually separating and detecting the product of an immunological reaction: antigen + antibody -> antigen-antibody It also relates, as new industrial products, to said multimembrane system, on the one hand, and to the kits or assay kits containing said multimembrane system, on the other hand.
  • Patent issued US-A-4,446,232 (Lance A. LIOTTA) recommends a multimembrane device for the identification of an antigen, which comprises: - a first porous zone which contains an antigen and an antibody coupled to a labeling enzyme , said antigens and antibodies being capable of reacting immunologically with one another, said first zone comprising at least two layers: an upper layer containing the antibody coupled to an enzyme, and a lower layer containing the immobilized antigen specific for said antibody, and - a second porous zone containing the substrate of the labeling enzyme and its developer.
  • the antibody coupled to an enzyme which is an immunological substance comprising two active sites, one of these sites being used for coupling with the labeling enzyme, the other for the bond with the antigen likely to be present in the liquid sample to be analyzed, being such that it (i) crosses the first zone when it reacted with the antigen to be identified if the latter is present in said sample, or (ii) does not cross said first zone due to its fixation on the immobilized antigen when it has not reacted with the antigen to be identified if the latter is not present in said sample.
  • This multimembrane device is also useful, according to US-A-4,446,232, for the identification of an antibody when it is replaced in the first zone. on the one hand the antibody coupled to an enzyme by an antigen coupled to the labeling enzyme, and on the other hand, the antigen not immobilized by an antibody not immobilized.
  • US-A-4 446 232 further indicates that the two porous zones may each consist of paper, in particular a nitrocellulose paper or a so-called diazobenzyloxylated paper (see column 4 lines 40-47 and example 1).
  • the main drawback of the multimembrane device according to US-A-4,446,232 lies in the fact that this device has poor sensitivity.
  • the liquid sample containing the antigen to be identified passes too quickly through the first zone, in particular through the nitrocellulose membrane where the antibody material coupled to an enzyme is present: consequently the reaction of said antigen to be identified with said antibody coupled to an enzyme either is incomplete or could not be carried out.
  • a non-negligible part of the antibody coupled to the labeling enzyme is immobilized by adsorption on the membrane (s) of the first zone.
  • FR-A-2 666 896 Jacques TOLEDANO. It implements a multimembrane device for the identification of an antigen (or vice versa of an antibody) capable of being contained in an aqueous liquid sample, said device, in which a plurality of membranes is provided, delaying the passage of said sample. More precisely, according to the indications provided in the description of FR-
  • this multimembrane device includes:
  • a filter in particular made of cellulose, polyamide or polycarbonate, intended to receive the liquid sample to be analyzed and capable of containing an antigen to be identified,
  • a double permeable membrane which is underlying the filter (A) and is formed of a first sheet (B1) comprising a mobile or immobilized reagent (RI) recognizing said antigen to be identified, on the one hand, and a second sheet (B2) which is underlying the first sheet (B1) and comprises a reagent (R2) complementary to (RI), the contact of said antigen to be identified with the reagent (RI) transmitting a signal to the reagent (R2) which in turn activates the mechanisms of the underlying layers, on the other hand,
  • RI mobile or immobilized reagent
  • this film (Ml) being at least waterproof vis-à-vis the liquid sample to be analyzed serving here as eluent, then being degraded by said liquid sample so as to allow its passage to the next layer,
  • a porous zone (D) comprising the means for revealing the presence or absence of the antigen in the liquid sample to be analyzed.
  • FR-A-2 666 896 overcomes, thanks to the films Ml and M2, the aforementioned major drawback of the technical solution of US-A-4 446 232 with regard to the completion of the reaction of the antigen to be identified with an antibody coupled to a non-immobilized enzyme, or a sufficient evolution of said reaction.
  • This technical solution which uses a membrane supporting an antibody coupled to a labeling enzyme and not immobilized and an anti-enzyme antibody immobilized on another membrane, has the drawback of giving rise to parasitic reactions with enzymes contained in the sample to be analyzed, either at the level of the immunological reaction of the abovementioned antigen-antibody type, or (above all) at the level of the revelation of the labeling enzyme.
  • the technical solution of the multimembrane system of FR-A-2 666 896 is defective in view of the small thickness (less than 0.1 mm) of the membrane (B1 or B2) which comprises the immobilized immunological reagent (RI or R2).
  • the membranes Ml and M2 are not used.
  • the passage of the liquid through a porous membrane with a thickness of less than 0.1 mm is so rapid that the immunological reaction is poor and that said porous membrane is used at best at 0.01 to 0.1% of its capacity.
  • 50 to 100 ⁇ g of immobilized DDi retain only 3 to 5 ng of anti-monoclonal antibody conjugate (DDi) coupled to peroxidase.
  • a method for identifying an immunological substance belonging to the set of antigens and antibodies and capable of being contained in a liquid sample to be analyzed it is proposed to provide a method for identifying an immunological substance belonging to the set of antigens and antibodies and capable of being contained in a liquid sample to be analyzed.
  • a multimembrane device as a new industrial product, for the implementation of said method.
  • a kit, kit or assay kit containing said multimembrane device with if necessary (i) one or more complementary reagents, and / or (ii) a dilution medium.
  • the new technical solution which is recommended according to the invention comprises the distribution (i) of an aqueous mixture of a liquid sample capable of containing an immunological substance to be identified [i.e. X] with a conjugate [anti (X)] of said immunological substance coupled to an enzyme [E *], said mixture being such that the reaction X + anti (X) -E * -> X-anti (X) -E * could have been triggered and lead to the production of a relatively large quantity of X-anti (X) -E complex *, on (ii) a selective phase constituted by a porous membrane comprising an immobilized immunological reagent which is chosen from group consisting of (a) immunological materials which react specifically with the conjugate [anti (X)] and the conjugate coupled to an enzyme [anti (X) -E *], but which do not react with the above-mentioned reaction product [X-anti (X) -E *], or
  • a method of identifying an immunological substance (X) belonging to all of the antigens and antibodies and therefore capable of being present in a liquid sample to be analyzed is therefore recommended, said method, which highlights performs the reaction of said immunological substance with one of its conjugates [anti (X)] and the use of a multimembrane system, being characterized in that it comprises the steps consisting in
  • a first zone comprising a porous membrane provided with an immobilized immunological reagent which is chosen from the group consisting of
  • a second zone comprising at least one porous membrane, which is underlying the membrane containing said immobilized immunological reagent and which contains a specific substrate for the labeling enzyme (E *) for revealing the presence of said enzyme.
  • a variant of this method is also recommended according to which a mixture of the sample to be analyzed is prepared in step (1 °) capable of containing the immunological substance X to be identified with a conjugate directed against anti (X) and coupled to the labeling enzyme, this conjugate being a complex corresponding to the formula anti [anti (anti)) - E * and such that
  • step 2 said mixture with the anti compound (X ) immobilized at the level of a porous membrane, before proceeding to reveal the anti [anti (anti (X)] - E * complex conjugate not retained by the immobilized anti (X) reagent due to the presence of X (generally in excess ).
  • a method is provided which comprises the steps consisting in:
  • a multimembrane device comprising - a first zone comprising a porous membrane comprising the conjugate [anti (X)] as an immunological reagent, the weight quantity of said immobilized immunological reagent / surface area of the porous membrane provided with said immunological reagent being between 10 and 150 ⁇ g / cm *****, and the active sites of said membrane not used for immobilizing said immunological reagent being blocked; and, - A second zone comprising at least one porous membrane, which is subjacent to the membrane containing said immobilized immunological reagent and which contains a specific substrate for the labeling enzyme (E) for revealing the presence of said enzyme.
  • a multimembrane system is also recommended which comprises the first and second areas mentioned above.
  • kit, kit or assay kit for the identification of an immunological substance in accordance with the above process, said kit, kit or assay kit being characterized in that it includes said multimembrane system and, where appropriate, additional reagents and / or a dilution medium.
  • a AEECC denotes 3-amino-9-ethylcarbazole
  • bCG denotes the gonadotropin of the bovine chorion
  • BCIP denotes 5-bromo-4-chloro-3-indolyl phosphate
  • BSA denotes bovine serum albumin (from English: "bovine serum albumin”)
  • C CMMVV denotes a cytomegalovirus
  • D denotes a particular monomer fragment belonging to the set of FnDPs;
  • DDi denotes a particular dimeric D fragment belonging to the set of FnDPs
  • EIA designates an enzyme immunoassay (from the English: "enzymeimmunoassay”);
  • F (ab) denotes a fragment of an antibody of the Ig type comprising the branches a and b and obtained by cleavage of said antibody by papain
  • F (ab ') 2 denotes a fragment of an antibody of the Ig type comprising the branches a and b and obtained by cleavage of the said antibody by pepsin
  • Fc denotes a fragment of an antibody of the Ig type essentially constituted by the branch c and obtained by chemical or enzymatic cleavage; the Fc fragments are homologous but structurally different according to the mode of cleavage [see for this purpose the indications provided in the publication FR-A-2 645 647 as regards the Fc separated from F (ab) and F (ab ') - * * *];
  • FDP designates degradation products of the FgDP or FnDP type; FgDP designates the fibrinogen degradation products; FnDP designates fibrin degradation products; GMV denotes a rubella virus (from the English: "German measles virus");
  • HBcAb is a core antibody to the hepatitis B virus (in English:
  • HBcAg denotes a hepatitis B virus core antigen (in English: "hepatitis B core antigen");
  • HBsAb denotes a hepatitis B virus surface antibody (in English: hepatitis B surface antibody ");
  • HBsAg is a hepatitis B virus surface antigen (in English:
  • hCG hepatitis B surface antigen
  • gonadotropin of the human chorion, (in English: “human chorionic gonadotropin”
  • HCV is a hepatitis C virus
  • HIV denotes a human immunodeficiency virus (in English: "human immunodeficiency virus”);
  • HSV denotes a herpes virus (in English: “herpes simplex virus”);
  • I denotes an immunoglobulin
  • IV A denotes an influenza A virus (in English: “influenza A virus”);
  • IV B denotes a type B influenza virus (in English: "influenza B virus”);
  • MES denotes 2- (N-morpholino) ethanesulfonic acid
  • MPB denotes methoxynaphthyl-galactoside
  • NTB denotes tetrazonium blue (in English: "nitro-blue tetrazonium”);
  • OD denotes optical density
  • PAI denotes an inhibitor of plasminogen activators
  • PAI-1 denotes inhibitor 1 of plasminogen activators.
  • PBS denotes a physiological phosphate buffer solution (in English: "phosphate-buffered saline”);
  • PVP denotes polyvinylpyrrolidone
  • RF stands for rheumatoid factor
  • RIA means a radioimmunoassay (from English:
  • RSV is a respiratory syncinesia virus (in English:
  • RT indicates the ambient temperature (15-25 ° C), preferably RT will be between 18 and 25 ° C;
  • TMB denotes 3, 3 ',, 5' -tetramethylbenzidine
  • tPA designates any tissue type plasminogen activator (English: “tissue plasminogen activator”) and includes sctPA (tissue type plasminogen activator with single-strand structure, in English: “single-chain tissue plasminogen activator”) and tctPA (tissue type plasminogen activator with double strand structure, in English: "two-chain tissue plasminogen activator”);
  • TV denotes a toxoplasmosis virus
  • uPA denotes any urokinase-type plasminogen activator (from English: “urokinase plasminogen activator”) and includes scuPA (urokinase-type plasminogen activator with single-strand structure, in English: “single-chain urokinase plasminogen activator", also called prourokinase) and tcuPA (urokinase-type plasminogen activator with double-stranded structure, in English:: two-chain urokinase plasminogen activator ", also called urokinase);
  • FIGS. 1-5 schematically illustrate multimembrane systems according to the invention, in which the immunological reagent is immobilized essentially on the upper surface and / or in the mass of the porous membrane comprising it;
  • Figures la-4a and lb-4b respectively illustrate the reaction mechanisms involved in the multimembrane systems of Figures 1-4 corresponding, when the latter are used in a "negative” test (absence of immunological substance X in the sample to analyze) and respectively in a "positive” test (presence of said immunological substance in the sample to be analyzed);
  • Figures 5a and 5b schematically illustrate the mechanisms involved in the multimembrane system of Figure 5, when the concentration of the immunological substance X, present in the sample to be analyzed is lower (Figure 5a: “negative” test) or higher ( Figure 5b: “positive test”) at a predetermined concentration; and,
  • FIG. 6 schematically illustrate in section multi-membrane systems according to the invention, in which the immobilized immunological reagent is disposed essentially in the mass of the porous membrane comprising it.
  • immunological substance any element of a couple (antigen / antibody) involved in an immunological reaction: antigen + antibody> antigen-antibody Couples (antigen / antibody) include here not only couples
  • immunological couples (antigenic substance / antibody) but also the immunological couples (agomste / antagonist) or (conjugated / anticonjugate) such as the couples (biotin / avidin) and (activator / inhibitor) [in particular the couples (tPA / PAI)].
  • antigenic substances here is meant the antigens themselves, on the one hand, and the substances from which antibodies can be generated, on the other hand. Among these latter substances, mention may in particular be made of haptens, peptides, medicaments comprising at least one peptide fragment. alkaloids and generally any substance with an immunological structure.
  • conjugate of a given substance (X or respectively anti-X) is meant a partner [anti-X or respectively anti (anti-X)] specific for said substance in an immunological reaction. According to this definition, the term “conjugate does not necessarily imply that said pair is coupled to a marker, of the enzyme type for example.
  • the preferred pairs (antigen / antibody) according to the invention are the pairs
  • the immunological substance to be identified may be an antigenic substance.
  • an antigenic substance such as in particular DDi, FgDP, FnDP.
  • Protein C Protein S. ⁇ - antitrypsin, hCG, bCG, PAI (in particular PAI-1), tPA (especially sctPA and tctPA), uPA (especially scuPA and tcuPA), an antigen of bacterial or viral origin such as HBcAg , HBsAg, IV ⁇ antigen, IVg antigen or RSV antigen, or an antibody present in or directed against an envelope or nucleus po ⁇ ion of bacteria, mold or virus such as HBcAb, HBsAb, CMV antibody, GMV, HCV , HIV (especially HIV-1, HIV-2 or HIV-3), HSV, MCV, RCV or TV.
  • said immunological substance is here an immunological material intervening (i) in the mechanisms of hemostasis, (ii) in the bacteriological or virological field, (iii) in the mechanisms of fertilization / implantation, or also (iv ) the food industry (research in particular for the presence of an antigen or antibody specific for the strains of
  • the conjugate of said immunological substance is advantageously here a monoclonal antibody directed against (in English: "raised against”) said immunological substance.
  • Said monoclonal antibody as used according to the invention is a highly purified and bifunctional material.
  • the monoclonal antibody conjugate coupled to an enzyme of formula anti (X) -E as used herein must be purified. It is indeed important that this antibody coupled to an enzyme is essentially devoid of free enzyme to avoid parasitic staining of the developer of the labeling enzyme.
  • the sample likely to contain the immunological substance to be identified is an aqueous liquid, in particular a body liquid such as in particular blood (mainly plasma, and if necessary serum), urine, saliva, sweat, milk, or an aqueous liquid, synthetic or semi-synthetic medium containing a product, in particular food, of vegetable or animal origin, in liquid or ground form.
  • a body liquid such as in particular blood (mainly plasma, and if necessary serum), urine, saliva, sweat, milk, or an aqueous liquid, synthetic or semi-synthetic medium containing a product, in particular food, of vegetable or animal origin, in liquid or ground form.
  • the immobilized immunological reagent is placed on the upper surface of the porous membrane and / or in the mass of said porous membrane.
  • the immunological reagent immobilized at the level of the selective phase is chosen from immunological materials which react specifically with said anti (X) conjugate and said conjugate coupled to an anti (X) -E enzyme but do not react with the product of the reaction of step (1 °), namely X-anti (X) -E *.
  • the immobilized immunological reagent is then
  • the anti [anti (X)] reagent which is immobilized at the level of the porous membrane of the first zone, will advantageously be a monoclonal or polyclonal antibody directed against a fragment or an active site of the anti (X) antibody, namely especially :
  • the negative results result in an absence of coloration
  • the positive results result in the development of coloration
  • the immobilized immunological reagent is chosen from antibodies directed against the immunological substance to be identified, and advantageously specific to an epitope different from the epitope against which the anti (X) antibody intervening in the reaction was generated. step (1 °).
  • the negative results result in the development of a coloration
  • the positive results result in an absence of coloration.
  • the anti (X) material which is used according to the invention, is a bifunctional or divalent immunological substance, that is to say a substance comprising two active sites: a first active site for reacting with X or anti [anti (X)] and a second active site serving for the binding with the labeling enzyme or for immobilization at the level of the porous membrane of the selective phase.
  • the membrane of the selective phase has according to the invention a thickness greater than or equal to 0.1 mm and in general less than or equal to 10 mm.
  • a thickness of 0.1 mm constitutes a threshold below which the porous membrane of the selective phase gradually loses its capacities and is therefore unusable.
  • a porous membrane having a thickness between 0.2 and 10 mm and better a thickness between 0.2 and 1 mm will be used for the selective phase.
  • the porous membrane of the selective phase has a porosity (evaluated by comparison with the diameter of its pores) of between 0.2 and 10 ⁇ m and preferably between 0.3 and 6 ⁇ m, and better still a porosity of less than 1 ⁇ m. (in particular 0.3-0.8 ⁇ m).
  • This membrane is used for fixing either by covalence or by adsorption of the immunological reagent to be immobilized on its upper face and / or in its mass.
  • membranes useful for immobilization by covalent mention may in particular be made of porous membranes of the polymer or copolymer type such as VERSAPOR R (acrylic membranes sold by the company called GELMAN), LOPRODYNE R (polyamide membranes sold by the company called PALL), TRUFFIN R , SUPPOR R and THERMAPOR R (polysulfone membranes sold by the company called GELMAN).
  • the membranes specially adapted for the field of immunodiagnosis and which are advantageous according to the invention comprise in particular nitrocellulose membranes, for immobilization by adsorption (in particular the mtrocellulose membranes sold by the company known as SCHLEICHER & SCHUELL), and for immobilization by covalence of the membranes IMMUNODYNE R (porous polyamide membranes marketed by the company called PALL), IMMOBILON R (porous membranes in hydrophilic polyfluorocarbon marketed by the company called MILLIPORE) and ULTRABIND R (porous polysulfone membranes marketed by the company called GELMAN) . These membranes can be suppo ⁇ ées.
  • the suppo ⁇ (constituted by a polymer material, for example made of polyamide, making the membranes more manipulable and less fragile), is in particular incorporated in the nitrocellulose membranes and the IMMUNODYNE R membranes (which allows use on both sides, a of the faces being however more reactive than the other), or linked to one of the faces as is the case in the ULTRABIND R membranes (in this case one can only use for immobilization the other face).
  • the reaction mixture which is distributed at the level of the porous membrane of the selective phase passes through by (i) capillarity or (ii) by capillarity and gravity, said porous membrane is perpendicularly (ie in the thickness direction, it is that is to say in a direction perpendicular to the plane of the membrane) or, more advantageously, longitudinally (ie in the direction of the length of the membrane).
  • the weight quantity of immunological reagent immobilized at the level of the selective phase compared to the surface unit (ie "surface density” or "surface concentration"), is between 10 and 150 ⁇ g / cm 2 .
  • the surface of the membrane of the selective phase is here that of the upper or lower face; it is not that of the edge of said membrane.
  • this surface density will be between 20 and 100 ⁇ g / cm ⁇ .
  • the surface density is a function of the immobilization method chosen.
  • a membrane is immersed in a liquid medium containing the immunological material which one wishes to immobilize in such a way that the height of the liquid extends up to approximately 2 mm above the surface of the membrane to be treated, it is found in many cases that covalently the surface density of the immobilized product increases up to a certain value and that it decreases or is constant beyond this value; there is a phenomenon of salting out or saturation even before all the active sites of the membrane are completely saturated.
  • an impregnation liquid containing more than 150 ⁇ g / ml of immunological reagent cannot be used.
  • the immobilization of the immunological reagent by adsorption is carried out under the same conditions, it is found that the immobilization is no longer reliable when the impregnation liquid contains more than 400 ⁇ g / ml of immunological reagent. For this purpose, see the immobilization tests on the membrane provided below.
  • immobilization by adsorption provides a surface concentration in general greater than immobilization by covalence, however immobilization by adsorption is more sensitive to the phenomena of salting out than immobilization by covalence. This explains why it is advisable to limit the surface concentration of immunological reagent immobilized by covalence or adsorption.
  • the active sites of the membrane of the selective phase remaining still free after the immobilization of the immunological reagent are essentially all blocked.
  • This blocking or saturation is required to avoid any parasitic immobilization during the implementation of the method of the invention.
  • the blocking means suitable for this purpose are, in order of preferably increasing, TWEEN R 20, polyvinylpyrrolidone, casein, serum bovine albumin and diet milk powder.
  • REGILAIT R diet milk powder used at a concentration of 1 to 5% w / v has proven to be the most effective means here.
  • one or more drops of the mixture which consists of the liquid sample and the conjugate of the immunological substance [X] coupled to a enzyme, of formula [anti (X) -E *], which contains the product of the immunological reaction [X-anti (X) -E *] when the immunological substance X is present in said sample, and which was prepared in a suitable reactor, in particular a flask, a cuvette or a tube) at the level of the membrane of the selective phase comprising the immobilized immunological reagent.
  • said mixture is produced by pouring one or more drops of the liquid sample, capable of containing the immunological substance to be identified, onto another porous membrane situated above the membrane of the selective phase.
  • this other membrane has its essentially saturated active sites and comprises a deposit on its upper face, either entirely or by pad, of the conjugate coupled to an enzyme of formula anti (X) - E which is not immobilized.
  • said conjugate coupled to an enzyme is advantageously recommended to coat said conjugate coupled to an enzyme with a water-permeable polymer or with a glass fiber membrane, in order to protect it (after crosslinking of the polymer when it is used) during storage and handling by the user.
  • it should not touch with the finger said conjugate coupled to a non-immobilized enzyme to avoid distorting the dosage by removal of said conjugate.
  • the labeling enzyme in particular peroxidase, an alkaline phosphatase, ⁇ -galactosidase or urease. is revealed by means of its specific substrate.
  • the revealing complex will comprise a substrate, namely in particular the D-glucose / glucose oxidase mixture which supplies hydrogen peroxide, according to the mechanism: glucose oxidase D-glucose + 2H2O - O2> gluconic acid + H2O2 on a membrane underlying that of the selective phase, and the colored indicator, TMB, on a layer underlying that containing the substrate.
  • a system comprising three membranes may be used: a first membrane for D-glucose, a second membrane for glucose oxidase and a third membrane for TMB.
  • the TMB can also be replaced by the AEC.
  • the labeling enzyme is an alkaline phosphatase
  • the developer may be a BCIP / NBT mixture.
  • the colored developer may be MPB.
  • the multimembrane device according to the invention will be housed in an opaque envelope, or else the reading window which must reveal the variation in color will be closed during storage by an opaque non-stick tape which must be peeled before use.
  • the choice of the labeling enzyme generally depends on the co ⁇ oreal liquid medium capable of containing substance X to be identified.
  • said co ⁇ orel liquid may contain peroxidase and / or catalase (as may be the case in the field of identification of substances involved in the mechanisms of hemostasis)
  • peroxidase and / or catalase as may be the case in the field of identification of substances involved in the mechanisms of hemostasis
  • the peroxidase or catalase present in the sample would then react with the substrate of the peroxidase at the level of the second zone.
  • the glucose oxidase used for revealing peroxidase is also sensitive to catalase, it is important that said glucose oxidase is substantially pure.
  • the preferred labeling enzyme according to the invention will be a ⁇ -galactosidase, that is to say an enzyme which is not found in blood, plasma or serum.
  • liquid sample likely to contain substance X to be determined contains an identical enzyme or which may interfere with the marker E *, it is possible to treat said sample with one of the inhibitors of said enzyme before implementing the method of l 'invention.
  • E * can represent, according to the invention, colloidal gold, colloidal silver (in particular colloidal gold doped with silver) or particles of colored latex with a particle size of less than 0.1 ⁇ m (for example colored latex particles having a particle size of 25-60 nm).
  • the second zone may either be deleted or be made up of a porous membrane devoid of an enzyme substrate and which is similar in nature or analogous to the membrane of the selective phase of the first zone.
  • the porous membranes which can be used for supposing the non-immobilized immunological reagent will have a thickness and a porosity similar to those of the porous membrane of the selective phase. From a practical point of view, it is preferred that the porosity of these membranes be greater than 1 ⁇ m and advantageously between 3 and 6 ⁇ m.
  • the additional porous slowing membranes will have a porosity similar to that of the selective immunological phase.
  • the labeling enzyme is peroxidase. a section, and the revelation of this enzyme is carried out by means of a set of two porous membranes, one comprising the generator of H2O2 (peroxidase substrate), namely the D-glucose / glucose oxidase mixture, the other underlying component comprising the developer, namely TMB, on the other side; (we can of course use a set of three membranes here as indicated above).
  • the labeling enzyme can be different from the peroxidase and the development can be obtained with one or more membranes for the substrate / colored developer assembly.
  • the labeling enzyme is alkaline phosphatase
  • the colored developer will be the BCIP / NBT mixture
  • the labeling enzyme is ⁇ -galactosidase
  • the colored developer will be MPB
  • ⁇ -galactosidase being the preferred labeling enzyme according to the invention for the reasons given above.
  • the immunological substance to be identified is presented as being an antigenic substance.
  • the multimembrane device 1 comprises a first porous membrane 10 whose upper surface 11 and at least one po ⁇ ion of the mass comprise covalently bonded (preferably) or by adso ⁇ tion an immobilized antigen 5 identical to the antigenic substance (X) to identify and likely to be contained in a sample 4a or 4b of co ⁇ oreal fluid to be tested, of a section, and a set of two porous membranes 2 and 3, the porous membrane 2 comprising (in its mass) the substrate D- glucose / glucose oxidase, the porous membrane 3 comprising (in its mass) the colored developer TMB, on the other side.
  • the multimembrane device 1 can also comprise a porous membrane 12 which comprises on its upper surface 13 a conjugate 14.
  • the conjugate 14 is a monoclonal antico ⁇ s 15 (directed against the antigenic substance X, referenced 5, to be identified) coupled to the labeling enzyme 6, for example peroxidase.
  • the conjugate 14, which corresponds to the formula anti (X) -E *, is simply deposited on the upper surface 13 of the membrane 12 without being immobilized both by covalence and by adsorption.
  • the active sites which are still free from the porous membrane 10 and all the active sites which are free from the porous membrane 12, when the latter is present, are completely and previously saturated or blocked by an appropriate means, preferably by means of REGILAIT diet milk powder.
  • the deposition of the conjugate 14 of anti (X) -E * formula on the surface 13 is carried out by zones (one or more pads, in practice a single pad is sufficient) or over the entire said surface 13.
  • the stud (s) are advantageously identified by a ca ⁇ ouche, in particular a circumference, drawn and materialized on said surface 13.
  • a porous membrane 12 is used as suppo ⁇ of the anti (X) -E * conjugate, if necessary, it is recommended to have at least one additional porous membrane (not shown) above or below said membrane 12.
  • porous membrane 12 in particular a porous glass fiber membrane
  • conjugate 14 se ⁇ to slow the passage, through said membrane 12, of the sample 4a or 4b to be analyzed, and to ensure sufficient production for the following stages of the X-anti (X) -E * complex produced according to the reaction:
  • FIG. 1b schematically illustrates the reaction mechanisms which take place when the sample to be analyzed contains said antigenic substance X.
  • a mixture generally 1 drop
  • the mechanisms involved are as follows.
  • the conjugate 14 which could not react with the absent antigenic substance X and which therefore has a free reactive function, binds to the antigenic substance X, referenced 5, immobilized and does not cross the membrane 10. Said conjugate 14 thus captured cannot be detected by the substrate / developer assembly of the porous membranes 2 and 3.
  • the assay according to FIG. 1a constitutes a non-colored negative test.
  • the X-anti (X) -E complex formed and contained in the reaction medium is entrained without being retained by the antigenic substance X, referenced 5, in excess and immobilized, as soon as the two reactive functions of the antico ⁇ s anti (X), referenced 15 are occupied in said complex X-anti (X) -E by the labeling enzyme and substance X.
  • the immobilized substance X fixes the conjugate 14 which has not reacted with X.
  • the X-anti (X) -E * complex which does not react with immobilized substance X crosses the porous membrane 10 and its enzymatic activity is demonstrated by the action of labeling enzyme on the substrate assembly revealing the porous membranes 2 and 3.
  • the assay according to FIG. 1b constitutes a positive colored test.
  • the multimembrane device 20 compo ⁇ e. like the device 1 of FIG. 1, porous membranes 10, 2 and 3.
  • the porous membrane 10 comprises a monoclonal antico ⁇ s conjugate 15 of anti formula (X) directed against the antigenic substance X referenced 5.
  • This monoclonal antico ⁇ s is immobilized by covalence (preferably) or by adso ⁇ tion on the upper surface 11 and at least one po ⁇ ion of the mass of the membrane 10.
  • the multimembrane device 20 can also comprise a porous membrane 12 disposed above the membrane 10. On the upper surface 13 of said membrane 12 or on a po ⁇ ion of said surface 13, is deposited non-immobilized a conjugate 24 conjugate 15.
  • Conjugate 24, which is of the anti [anti (X)] - E * type, is constituted here by a monoclonal or polyclonal anti [F (ab ') 2] referenced 25 directed against the F (ab ') 2 of the anti-monoclonal antico ⁇ s anti (X) 15 and coupled to the labeling enzyme 6.
  • one or more additional porous slowing membranes are arranged above and / or below the porous membrane 12; each additional slowing membrane is identical or different from the membrane 12 but is devoid of the anti-anti [F (ab ') 2].
  • the deposition of the conjugate 24 can be carried out on the entire upper surface 13 of the membrane 12 or on a po ⁇ ion of said surface 13.
  • the active sites still free of the membrane 10 after immobilization of anti (X) and the active sites of the other membranes (ie the membrane 12 and the additional porous slowing membranes) when these are present, are saturated, preferably by means REGILAIT R , prior to mounting or assembling the multimembrane device.
  • anti [F (ab ') 2l is fixed on anti (X).
  • anti [F (ab ') 2] can only be fixed on anti (X) after the fixation of substance X available on anti (X).
  • anti [F (ab ') 2] has an affinity for anti (X) lower than that of X.
  • the mechanisms involved are as follows.
  • the anti [F (ab ') 2] po ⁇ ion of the anti [F (ab') 2J-E * conjugate is recognized by the immobilized antiico ⁇ s anti (X) and the labeling enzyme 6 of the resulting complex cannot be revealed at the porous membranes 2 and 3.
  • the assay according to FIG. 2a constitutes a non-colored negative test.
  • the antigen X comes to saturate the immobilized anti-monoclonal antico ⁇ s (X) by preventing the attachment of the anti conjugate [F (ab ') 2] -E *. Consequently, anti [F (ab ') 2] -E * crosses the porous membrane 10 and its enzymatic activity is demonstrated by its action on the substrate / developer assembly of the porous membranes 2 and 3.
  • the assay according to the figure 2b constitutes a positive colored test.
  • the multimembrane device 30 illustrated in FIGS. 3, 3a and 3b constitutes a variant of the device 20 in FIGS.
  • the selective phase of the device 30 comprises an antico ⁇ s anti [F (ab ') 2] immobilized on the upper surface and in at least one po ⁇ ion of the mass of the porous membrane 10.
  • a mixture (generally 1 drop) of (i) the sample to be analyzed 4a not containing the antigenic substance X or the sample 4b containing said antigenic substance X to be identified with (ii) the conjugate 34 of formula anti (X) - E, which is an anti-monoclonal antico ⁇ s anti (X), referenced 15, directed against the antigenic substance X, referenced 5, and coupled to the labeling enzyme 6.
  • the resulting reaction medium contains in particular said conjugate 34 according to FIG. 3a in the absence of X, or the X-anti (X) -E * complex according to FIG. 3b in the presence of X.
  • one or more additional porous membranes can be provided for slowing down above and / or below the porous membrane 12; the deposition of the conjugate 34 can be carried out on the entire upper surface 13 of the membrane 12 or on a po ⁇ ion of said surface 13; and the active sites still free of the membrane 10 after immobilization of anti (X) and the active sites of the other membranes (ie the membrane 12 and the additional porous slowing membranes) when these are present, are saturated, preferably at REGILAIT, prior to mounting or assembling the multimembrane device.
  • the mechanisms involved are the following.
  • the conjugate 34 which is an anti-monoclonal antico ⁇ s (X), referenced 15, coupled to the labeling enzyme 6, is retained by the monoclonal or polyclonal antico l'ants immobilized anti [F (ab ') • ->] referenced 25. Said conjugate 34 thus immobilized cannot be revealed by the assembly substrate / developer of porous membranes 2 and 3.
  • the assay according to FIG. 3 a constitutes a non-colored negative test.
  • the X-anti (X) -E * complex is not recognized by the immobilized anti-monoclonal or polyclonal antico ⁇ s [F (ab ' ) 2].
  • This complex therefore crosses the porous membrane 10 and its enzymatic activity is demonstrated in the membranes 2 and 3.
  • the assay according to FIG. 3b constitutes a positive colored test.
  • the anti-monoclonal or polyclonal anti [F (ab ') - * - *] can in particular be a rabbit or goat antico ⁇ s directed against the F (ab') 2 fragment of an antico ⁇ s of mouse.
  • antico ⁇ s anti [F (ab ') 2] can be replaced here by an antico ⁇ s anti [anti (X)] equivalent having regard to the relative affinity by rappo ⁇ to X vis-à-vis anti (X ).
  • anti [anti (anti (X)] antico ⁇ s which are suitable for this purpose, there may be mentioned in particular the monoclonal antico ⁇ s (in particular of rat) anti ⁇ kappa chain (in particular of mouse), of a pan, and the monoclonal or polyclonal antico ⁇ s anti -idiotype of a monoclonal antico ⁇ s (in particular of mouse) produced in another animal (in particular goat or rabbit), of other side.
  • the multimembrane device 40 is designed to implement an EIA sandwich method by means of two monoclonal antibodies reacting on sites distinct from the antigenic substance X.
  • the device 40 of FIG. 4 comprises, like that of FIG. 2, a selective phase consisting of a porous membrane 10 comprising on its upper surface 11 and in at least one po ⁇ ion of its mass an immobilized monoclonal antico ⁇ s 15 of formula anti (X) ** -, a pan, and a revelation zone constituted here of porous membranes 2 and 3 for the substrate / developer assembly, on the other side.
  • Said anti (X) *** monoclonal antico ⁇ s, referenced 15 is directed against a first active site or epitope of the antigenic substance X referenced 5.
  • sample 4a devoid of substance X, or sample 4b containing said substance X The mixture of the sample to be analyzed (sample 4a devoid of substance X, or sample 4b containing said substance X) with a conjugate 44, which is a monoclonal antico ⁇ s of formula anti (X) 2, referenced 45, directed against a second site active or epitope of the antigenic substance X and coupled to the enzyme marking 6. is distributed according to arrow 7 on the upper surface 11 of the selective phase.
  • This mixture contains, when the substance X to be identified is present in the sample to be analyzed, the product of the immunological reaction: X + anti (X) 2 -E * -> X-anti (X) 2 -E *
  • X + anti (X) 2 -E * -> X-anti (X) 2 -E * it is possible to distribute, on at least one po ⁇ ion (or pad) of the upper surface 13 of the porous membrane 12 coated with the non-immobilized conjugate 44, the sample 4a or 4b, the resulting reaction medium passing through said membrane 12 and s' then flowing according to arrow 7.
  • one or more additional porous membranes for slowing down can be arranged, as indicated above, above and / or below the porous membrane 12.
  • the deposition of the conjugate 44 can be carried out on the entire upper surface 13 of the membrane 12 or on a po ⁇ ion of said surface 13.
  • the active sites still free of the membrane 10 after immobilization of anti ( X) *** and the active sites of the other membranes (ie the membrane 12 and the additional porous slowing membranes) when these are present, are saturated, preferably by means of REGILAIT, prior to the assembly or assembly of the multimembrane device .
  • the conjugate 44 which could not react with substance X, due to the absence of X in the sample 4b, is not recognized by the immobilized monoclonal antico ⁇ s 15; it therefore crosses the porous membrane 10 of the selective phase and its enzymatic activity is revealed by the revealing substrate assembly of the porous membranes 2 and 3.
  • the assay according to FIG. 4a constitutes a colored negative test.
  • the assay according to FIG. 4b constitutes a positive non-colored test.
  • FIGS. 5, 5a and 5b illustrate a particular technique for identifying an antigenic substance X, referenced 5, which implements the methods described above with regard to the device 1 of FIG. 1.
  • the operating methods envisaged with the multimembrane device 50 of FIG. 5 include, for the determination of a greater than normal amount of an antigenic substance X naturally present in a sample of co ⁇ orel fluid (this case occurs in particular in the field of identification of DDi in plasma),
  • Steps (a) and (b) can be carried out in a flask, microcuvette or tube. They can also be carried out directly in the multimembrane device, in this case, there is provided above the membrane 10 a set of two layers, namely (i) a second selective phase consisting of a porous membrane 510 comprising the antico ⁇ s anti (X) 2 , referenced 55, immobilized on its upper surface 511 and in at least a portion of its mass, and (ii) a porous membrane 12 comprising the conjugate 14, which is a monoclonal anti (X) 2 antico ⁇ s, referenced 15, coupled to the labeling enzyme 6 and corresponding to the formula anti (X) 2 -E *. said conjugate 14 being deposited on the upper surface 13 of said membrane 12 and not immobilized on said surface 13.
  • a second selective phase consisting of a porous membrane 510 comprising the antico ⁇ s anti (X) 2 , referenced 55, immobilized on its upper surface 511 and in at least a
  • the mechanisms involved are as follows.
  • the antigen X existing in the sample 54a is picked up by the immobilized monoclonal antibody 55 of formula anti (X) ** -, and the conjugate 14 of formula anti (X) 2 -E * is retained during its passage on the selective phase by the antigen X immobilized on the upper surface 11 and in at least one po ⁇ ion of the mass of the porous membrane 10.
  • the assay according to FIG. 5a constitutes a non-colored negative test.
  • any of the devices 1, 20, 30, 40 and 50 of FIGS. 1, 2, 3, 4 can be used. and 5; for the identification of antigenic materials (or antico ⁇ s) of bacterial or viral origin, it is recommended rather to use the multimembrane devices 20, 30 and 40 of Figures 2, 3 and 4 to avoid any risk of contamination of the personnel in contact with said multimembrane devices, by an antigen (or antico ⁇ s) X, which would be immobilized at the level of the membrane 10.
  • the selective phases of the multimembrane devices of FIGS. 1, 1a and 1b to 5, 5a and 5b can comprise the immobilized immunological reagent either in their masses or on their upper faces.
  • FIGS. 6 to 8 relate to multimembrane devices which each comprise a selective phase traversed longitudinally by the mixture constituted by the sample to be tested and the anti (X) or anti [anti (anti)) conjugate coupled to a non-enzyme immobilized.
  • FIG. 6 illustrates a multimembrane device 60 according to the invention.
  • This device 60 includes:
  • a well 66 formed in a covering sheet 67 and into which one or more drops (1 to 5 ⁇ l) of the sample to be analyzed are introduced, capable of containing the immunological substance X to be identified and previously mixed with a conjugate coupled to an enzyme, for example anti (X) -E * or anti [anti (X)] - E *, as a variant said conjugate coupled to an enzyme can be deposited not immobilized on a porous membrane suppo ⁇ housed in said well 66;
  • affinity a porous membrane (called affinity) 61 intervening as a selective phase, which contains in its mass an immobilized immunological reagent, which is in capillary relation by one of its ends 63 with the well 66 and which is supplied with liquid (test sample / conjugate mixture coupled to a non-immobilized enzyme) through said well 66 when it has been loaded with said liquid;
  • porous membranes 62 for revealing the labeling enzyme, this or these porous revealing membranes being observable by means of an opening 68 formed on the opposite side 69 of the cover sheet 67 and longitudinally offset by compared to well 66, said porous membrane (s) 62 being in capillary relation via the other end 65 of porous membrane 61 of said selective phase and being supplied with liquid reaction medium by said porous membrane 61.
  • FIG. 1 In the embodiment of FIG.
  • the multimembrane device 60 is advantageously housed inside a substantially monobloc enclosure after assembly, consisting of two assemblies 167 and 169 complementary to one another and integral with one another, during the assembly in particular by means of a latching system, for example of the tenon / mo ⁇ aise type not shown, and which is provided with a well 66 and an opening or fen be read 68.
  • a latching system for example of the tenon / mo ⁇ aise type not shown, and which is provided with a well 66 and an opening or fen be read 68.
  • the conjugate coupled to an enzyme according to the multimembrane device 60 is the anti (X) -E * product
  • a complex of formula X-anti (X) -E * is formed in the presence of the antigenic substance X which does not is not retained by the porous membrane 61 of the selective phase, which is entrained by the liquid flow and which reaches by capillary action the porous revealing membrane (s) 62 where the labeling enzyme is revealed.
  • the porous membrane 61 here contains in its mass the immobilized immunological reagent which is in this case either X or anti (X) as indicated above.
  • the porous membrane 61 of the selective phase which contains the immobilized immunological reagent of formula anti (X), fixes said anti [anti (anti (anti) X)] - E if the antigenic substance X is not present in the test sample, and does not fix said anti [anti (X)] product - E * if the antigenic substance X is present in said sample.
  • the product of the X-anti [anti (X)] - E reaction not retained reaches by capillary action the porous revelation membrane (s) 62 where the labeling enzyme is revealed.
  • FIG. 7 illustrates a multimembrane device 70 according to the invention similar to that of FIG. 6, with the difference that the porous membrane 71 is no longer substantially horizontal but is rather substantially vertical and is traversed by gravity and capillarity.
  • the other references in FIG. 7 are those described above with regard to FIG. 6.
  • FIG. 8 illustrates a multimembrane device 80 according to the invention comprising two wells 86a and 86b on its upper part. This device includes:
  • a first selective phase in capillary connection via one of its ends 83a with the well 86a and supplied by the latter when it has been loaded with liquid (here the aqueous sample to be tested), said first selective phase consisting of a first porous membrane 81a comprises in its mass a first immobilized immunological reagent, e.g. anti (X) - * -, ⁇ a quantity of said immobilized first immunological reagent being such that it corresponds to the setting of a predetermined amount of antigenic substance X,
  • a first immobilized immunological reagent e.g. anti (X) - * -, ⁇ a quantity of said immobilized first immunological reagent being such that it corresponds to the setting of a predetermined amount of antigenic substance X
  • a second well 86b formed in the covering sheet, longitudinally offset by comparison with the first well 86a, in capillary connection with the other end 83b of the porous membrane 81a of the first selective phase, supplied with liquid flow by said first selective phase , and comprising in its bottom a conjugate coupled to a non-immobilized labeling enzyme, for example anti (X) 2 - E *.
  • said conjugate coupled to a non-immobilized labeling enzyme which may be in particular in the form of a microporous pellet (i) whose upper surface is protected by a glass fiber membrane and (ii) which is disposed in well 86b before dosing,
  • a second selective phase in capillary connection via one of its ends 85a with the well 86b, supplied by the latter in liquid flow (reaction medium having passed through the first selective phase and having been brought into contact with said conjugate coupled to a non-immobilized labeling enzyme present in said well 86b) and consisting of a second porous membrane 81b comprising in its mass a second immobilized immunological reagent, for example X, said second porous membrane 81b fixing said conjugate coupled to an enzyme not immobilized in the absence of antigenic substance X in the reaction medium leaving the first selective phase, but not fixing said conjugate coupled to an enzyme which reacted in the presence of the antigenic substance X present in said reaction medium leaving said first selective phase, and
  • porous membranes 62 for revealing the labeling enzyme, this or these porous revealing membranes being observable in an opening 68 formed on the opposite side 69 to the cover sheet 67 and longitudinally offset by comparison with the wells 86a and 86b, the porous revelation membrane (s) 62 being in capillary relation with the other end 85b of the second porous membrane 81b and being supplied with liquid reaction medium by said second porous membrane 81b.
  • the multimembrane device 80 of FIG. 8, as well as that of FIG. 7, can consist of two sets 167 and 169 which are complementary and can be joined together, as indicated above in the description of the multimembrane device 60 of Figure 6.
  • a conduit is formed at the interface of the assemblies 167 and 169 for housing each of the porous membranes 61, 71, and 81b between a well 66 or 86b and an opening 68 or even between two wells 86a and 86b.
  • the housings intended for the substantially horizontal porous membranes 61, 81a and 81b can be inclined so as to allow passage by capillarity and gravity through said membranes.
  • the housing of the porous membrane 71 of Figure 7 can be inclined by rappo ⁇ to the ve ⁇ icale.
  • the material of the assemblies 167 and 169 must not give rise to parasitic immobilizations by covalence or adsorption. If necessary, it will be treated at the level of the wells, reading openings and housings of the porous membranes of the selective phases using an appropriate means such as milk powder.
  • the multimembrane device 80 of FIG. 8 is particularly effective for the determination of DDi which may be present in the plasma at a concentration greater than normal.
  • the plasma sample to be analyzed is deposited in well 86a; the sample migrates longitudinally through the membrane 81a containing in its mass an anti-monoclonal antico ⁇ s (DDi), here the anti-monoclonal 9C3, to retain a given quantity of DDi; the resulting reaction medium reaches well 86b where there is an anti-monoclonal anti (DDi) coupled to a labeling enzyme, here the anti-monoclonal 2F7 coupled to ⁇ -galactosidase; the resulting reaction medium migrates longitudinally through the membrane 81b containing in its mass the immobilized DDi antigen, this membrane 81b (i) retaining the conjugate 2F7- ( ⁇ -galactosidase) when all of the DDi present in the plasma sample has been fixed to the membrane 81a and (ii
  • the mixture of the liquid sample to be analyzed which may contain the immunological substance X with a conjugate coupled to a labeling enzyme is prepared outside the multimembrane system and then distributed on a thin membrane constituted by a nonwoven web of fibers of glass, this sheet being located above the underlying selective phase containing the immunological reagent immobilized in its mass, one or more porous revelation membranes being underlying this selective phase.
  • the best mode also includes the implementation of a multimembrane device according to FIG. 5 and better still FIG. 8 for determining of an immunological substance content likely to be higher than the normal content.
  • the liquid sample to be analyzed is distributed on a membrane made up of a non-woven sheet of glass fibers situated above the first selective phase.
  • a porous membrane of 20 cm x 20 cm, or of nitrocellulose (porosity 0.45 ⁇ m) is immersed in an aqueous buffer of 100 ml containing the immunological material to be immobilized by covalence on a hydrophilic polyfluorocarbon membrane (IMMOBILON R : porosity 0.45 ⁇ m), polyamide (IMMUNODYNE R : porosity 0.65 ⁇ m), or polysulfone (ULTRABIND R : porosity 0.45 ⁇ m), or by adsorption on a nitrocellulose membrane (porosity 0.45 ⁇ m) after treatment with an aqueous solution 0.1 M CH3COOH activation - 0.5M, leaving a height of liquid of about 2 mm above said porous membrane. Incubation takes place for 18 h at a temperature between 4 ° C and RT.
  • IMMOBILON R porosity 0.45 ⁇ m
  • polyamide IMMUNODYNE R : porosity 0.65
  • porous membrane ULTRABIND R
  • An IMMUNODYNE R membrane (porosity: 5 ⁇ m; reference "BIAO50HC5) or VERSAPOR R (porosity: 3 ⁇ m) is immersed for 0.25-0.50 h in a PBS buffer at pH 7 consisting of (i) 16 parts by volume of a mix of NaH 2 PO 4 at 13.8 g / 1 and NaCl at 9 g / 1 (solution A) and (ii) 84 parts by volume of a mixture of Na2HPO 4 at 14.19 g / 1 and NaCl at 9 g / 1 (solution B), said buffer also containing 5% w / v PVP (MW: 10,000) or REGILAIT R.
  • a PBS buffer at pH 7 consisting of (i) 16 parts by volume of a mix of NaH 2 PO 4 at 13.8 g / 1 and NaCl at 9 g / 1 (solution A) and (ii) 84 parts by volume of a mixture of Na2HPO 4 at 14.19
  • a porous nitrocellulose membrane with a porosity of 0.40-0.50 ⁇ m is immersed (for example a membrane sold by the company called SCHLEICHER & SCHUELL with a porosity of 0.45 ⁇ m, reference: 439196) for 0.25-0.50 h , in an aqueous activating solution containing 0.1 M CH3COOH and 0.5 M NaHSO Dried at 40 ° C without rinsing.
  • the immunological reagent referenced 5 ( Figures 1 and 5), 15 ( Figures 2 and 4) or 25 ( Figure 3) is fixed, immersing the nitrocellulose membrane (thus activated) for at least 1 h and at most 48 h and dried) in a buffer (i) carbonate at pH 8 (containing 0.012 M CO3 2 - and 0.15 M NaCl) or (ii) PBS at pH 7 (as in Preparation I above), said buffer containing 50 to 150 mg / ml of said immunological reagent.
  • the immobilization of the immunological reagent is thus obtained in the mass of the membrane according to a surface concentration of 100 ⁇ g / cm 2 .
  • the active sites of the membrane which are still free are then saturated, either as indicated in Preparation I with PVP or (preferably) REGILAIT, and fixed by means of distilled water containing 10% w / v of CH3COOH and 25% w / v isopropanol (if necessary). Rinse thoroughly with 0.05 M MES or PBS at pH 7 above. The remaining liquid is absorbed by placing the membrane between two sheets of filter paper and then tapping carefully. It is then dried in an oven at a temperature of 30-37 ° C, for at least 1 night.
  • the membrane thus obtained can be kept as it is or cut into strips of dimensions identical to those of the strips of the membrane suppo ⁇ ant the non-immobilized conjugate of Preparation I above, for several months at
  • a membrane comprising the D-glucose / glucose oxidase mixture
  • a Immersed for 0.25-0.50 h, in an aqueous solution of TWEEN R at 5% w / v, a cellulose membrane (designated " filter No 122 ") sold by the company known as MEDIAS FILTRANTS, reference 011220013, with a porosity of 0.5 ⁇ m). It is dried overnight in an oven at 40 ° C. The membrane is then immersed in an aqueous bath containing 10% w / v of D-glucose, eca ⁇ e the supernatant liquid and then dried in an oven at 40 ° C. for 1 night.
  • a membrane comprising D-glucose and a membrane comprising glucose oxidase is prepared as indicated in step (a) of Preparation III above.
  • a membrane comprising glucose oxidase is prepared by using the aforementioned cellulose membrane ("filter No. 122") which is saturated with an aqueous solution of TWEEN R at 5% w / v and on which we then deposit 1 ⁇ l of glucose oxidase as indicated in step (b) of preparation III. Then dried at 37 ° C in an oven.
  • IMMUNODYNE R membrane (porosity 0.45 ⁇ m; reference: BIA045HC5) at the level of pads materialized by a layer of preferably circular, an amount of 2.5 ⁇ l per pad of an alcoholic composition (ethanol) containing 5 g / 1 of TMB.
  • the membrane is kept as it is or cut into strips of dimensions identical to those of the strips of Preparation I above, protected from light.
  • a porous membrane is prepared in which the TMB is replaced by the mixture BCIP / NBT or respectively the methoxynaphthyl-galactoside.
  • the multimembrane device according to the invention does not comprise the membrane 2 which has become superfluous having regard to the choice of the labeling enzyme for the non-immobilized conjugate.
  • a multi-membrane device is prepared to prepare pre-cut strips, in accordance with FIG. 1 or in FIG. 6, comprising an assembly of:
  • a porous membrane 2 according to preparation III above comprising a D-glucose / glucose oxidase mixture
  • the porous membrane 2 can be replaced by a membrane comprising D-glucose and a membrane comprising glucose oxidase obtained according to preparation Illbis), and - a porous membrane 3 according to preparation IV above comprising the TMB.
  • test is negative for DDi concentrations in the sample less than or equal to 0.2 ⁇ g / ml
  • the test is doubtful for DDi concentrations in the sample between 0.2 ⁇ g / ml and 0.4 ⁇ g / ml
  • the test is positive for DDi concentrations in the sample greater than or equal to 0.4 ⁇ g / ml.
  • the device of FIG. 1 is reliable for any concentration of DDi greater than or equal to 0.4 ⁇ g / ml.
  • the results show that the sensitivity is 1 pg / ml (i.e. the minimum detectable concentration reliably in DDi in the sample of 1 picogram per milliliter).
  • a multimembrane device is prepared according to FIG. 7 using
  • a porous nitrocellulose membrane containing in its mass an anti-monoclonal antico PAs (PAI-1), namely 7D4, - as porous revelation membranes 62 a first membrane containing the D-glucose / glucose oxidase mixture (alternatively, a membrane containing D-glucose and a membrane containing glucose oxidase may be used) and a second membrane containing TMB.
  • PAs anti-monoclonal antico PAs
  • a multimembrane device is used according to FIG. 6 or 7 operating according to the principle of FIGS. 2, 2a and 2b, with
  • D-glucose / glucose oxidase (alternatively, a membrane containing D-glucose and a membrane containing glucose oxidase may be used) and a membrane containing TMB.
  • a mixture consisting of an aqueous sample containing 0 to 1 ⁇ g / ml of DDi and a monoclonal or polyclonal anti-idiotype antibody directed against 2F7 and coupled to peroxidase is introduced.
  • a multimembrane device is used according to FIG. 8 operating according to the principles of FIGS. 5, 5a and 5b, with: - as a first selective phase, an ULTRABIND R membrane (thickness 0.2 mm; porosity: 0.45 ⁇ m) containing in its mass a predetermined amount of the monoclonal antico ⁇ s 9C3 [ie anti monoclonal antico ⁇ s (DDi)] - this predetermined amount corresponds to the normal content of DDi in the plasma -,
  • porous revelation membranes either a membrane containing the D-glucose / glucose oxidase mixture (alternatively a membrane containing D-glucose and a membrane containing glucose oxidase can be used) and a membrane containing TMB, or a membrane containing the MPB.
  • a selective phase consisting of an IMMOBILON R membrane (thickness: 0.2 mm; porosity: 0.65 ⁇ m) containing in its mass, as immobilized immunological reagent, an anti-monoclonal antibody [F (ab ') 2] directed against the F (ab ') 2 fragment of an anti antico ⁇ s (HBsAg), and
  • a porous membrane containing the D-glucose / glucose oxidase mixture (alternatively a membrane containing D-glucose and a membrane containing glucose oxidase can be used) and a porous membrane containing TMB.
  • an aqueous mixture is introduced, consisting of a sample containing from 0 to 1 ⁇ g / ml of HBsAg and of a monoclonal antico ⁇ s directed against HBsAg and coupled to peroxidase.
  • a multimembrane device is used according to FIG. 6 or 7 operating according to the principle of FIGS. 4, 4a and 4b, with a selective phase identical to that of Example 7 above and containing in its mass a first monoclonal antico ⁇ s directed against the first epitope of HBsAg, and
  • Multi-membrane devices are prepared according to Example 3 for the determination of anti (HIVl), anti (HIV2) and anti (HIV3) antico l' becomess.
  • the sensitivity of the determination which is 0.5 pg / ml allows the identification of each of these antico cess in saliva.
  • a multimembrane device for the identification of Neisseria strains in the liquid of canned vegetables is prepared according to Example 8.
  • the sensitivity is 2 pg / ml.
  • the procedure is as indicated in Example 4 above, replacing the products DDi, 2F7-peroxidase (or 2F7-galactosidase) and 9C3 respectively by the products PAI-1, 7D4-colored latex and 7F5 respectively.
  • the colored latex in the form of submicron particles having an average diameter of 40-45 nm replacing the abovementioned labeling enzyme E *, in one section. and using as assembly 62 one or two membranes devoid of enzyme developer, on the other hand.
  • the membrane 81b of the selective phase is not located in the lumen of the window 68.
  • the sensitivity of the determination of the excess of PAI-1 compared to normal is 0.1 pg / ml.
  • the marking means E is constituted by colloidal gold, colloidal silver, colloidal gold doped with silver, or a colored latex which is in the form of microbeads with a diameter less than
  • a selective phase consisting of an IMMOBILON R membrane (thickness: 0.2 mm; porosity: 0.65 ⁇ m) containing in its mass, as immobilized immunological reagent, an anti-monoclonal antibody [F (ab ') 2] directed against the fragment F (ab ') 2 ⁇ an ant i cor P s anti (HBsAb), and
  • aqueous mixture consisting of a sample containing 0 to 1 ⁇ g / ml of HBsAb and a monoclonal antico ⁇ s directed against HBsAb and coupled to colloidal gold is introduced.
  • a multimembrane device is used according to FIG. 6 or 7 operating according to the principle of FIGS. 2, 2a and 2b, with

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La présente invention a trait à un procédé d'identification qui comprend la distribution (i) d'un mélange aqueux d'un échantillon liquide susceptible de contenir une substance immunologique à identifier [i.e. X] avec un conjugué [anti(X)] de ladite substance immunologique couplé à un marqueur [E*], ledit mélange étant tel que la réaction X+anti(X)-E* → X-anti(X)-E* ait pu se déclencher et aboutir à la production d'une quantité relativement importante de complexe X-anti(X)-E*, sur (ii) une phase sélective constituée par une membrane poreuse comprenant un réactif immunologique immobilisé qui est choisi parmi l'ensemble constitué par (a) les matériaux immunologiques qui réagissent spécifiquement avec le conjugué [anti(X)] et le conjugué couplé à un marqueur [anti(X)-E*], mais ne réagissant pas avec le produit de la réaction précité [X-anti(X)-E*], ou (b) les matériaux immunologiques qui réagissent spécifiquement avec ladite substance immunologique et le produit de la réaction précité [X-anti(X)-E*], mais ne réagissant pas avec ledit conjugué [anti(X)] et ledit conjugué couplé à un marqueur [anti(X)-E*].

Description

PROCEDE D'IDENTIFICATION D UNE SUBSTANCE IMMUNOLOGIQUE AU MOYEN D'UN SYSTEME MULTIMEMBRANAIRE
DOMAINE DE L'INVENTION La présente invention a trait à un nouveau procédé d'identification d'une substance immunologique choisie parmi l'ensemble constitué par les antigènes et les anticorps, ledit procédé mettant en oeuvre un système multimembranaire pour séparer et détecter visuellement le produit d'une réaction immunologique : antigène + anticorps — > antigène-anticorps Elle concerne également, en tant que produits industriels nouveaux ledit système multimembranaire, d'une part, et les trousses ou nécessaires de dosage renfermant ledit système multimembranaire, d'autre part. ART ANTERIEUR
On connaît des solutions techniques pour l'identification d'une substance immunologique choisie parmi l'ensemble constitué par les antigènes et les anticorps, qui mettent en oeuvre un système de couches lamellaires poreuses.
Le brevet délivré US-A-4 446 232 (Lance A. LIOTTA) préconise un dispositif multimembranaire pour l'identification d'un antigène, qui comprend : - une première zone poreuse qui contient un antigène et un anticorps couplé à un enzyme de marquage, lesdits antigènes et anticorps étant capables de réagir immunologiquement entre eux, ladite première zone comportant au moins deux couches : une couche supérieure contenant l'anticorps couplé à un enzyme, et une couche inférieure contenant l'antigène immobilisé spécifique dudit anticorps, et - une seconde zone poreuse contenant le substrat de l'enzyme de marquage et son révélateur. Selon US-A-4 446 232, l'anticorps couplé à un enzyme, qui est une substance immunologique comportant deux sites actifs, l'un de ces sites étant utilisé pour le couplage avec l'enzyme de marquage, l'autre pour la liaison avec l'antigène susceptible d'être présent dans l'échantillon liquide à analyser, étant tel qu'il (i) traverse la première zone quand il a réagi avec l'antigène à identifier si ce dernier est présent dans ledit échantillon, ou (ii) ne traverse pas ledite première zone en raison de sa fixation sur l'antigène immobilisé quand il n'a pas réagi avec l'antigène à identifier si ce dernier n'est pas présent dans ledit échantillon. Ce dispositif multimembranaire est également utile, selon US-A-4 446 232, pour l'identification d'un anticorps quand on remplace dans la première zone. d'une part l'anticorps couplé à un enzyme par un antigène couplé à l'enzyme de marquage, et d'autre part, l'antigène non immobilisé par un anticorps non immobilisé.
US-A-4 446 232 signale en outre que les deux zones poreuses peuvent être chacune constituées de papier, notamment un papier de nitrocellulose ou un papier dit diazobenzyloxylé (voir colonne 4 lignes 40-47 et exemple 1).
Le principal inconvénient du dispositif multimembranaire selon le brevet US-A-4 446 232 réside dans le fait que ce dispositif présente une sensibilité médiocre. En premier lieu, l'échantillon liquide contenant l'antigène à identifier passe trop rapidement à travers la première zone, en particulier à travers la membrane de nitrocellulose où est présent le matériau anticorps couplé à un enzyme: en conséquence la réaction dudit antigène à identifier avec ledit anticorps couplé à un enzyme soit est incomplète, soit n'a pas pu se réaliser. En deuxième lieu, eu égard aux modalités opératoires fournies à l'exemple 1 de US-A-4 446 232, une partie non négligeable de l'anticorps couplé à l'enzyme de marquage est immobilisée par adsorption sur la ou les membranes de la première zone.
Une autre solution technique est décrite dans la demande de brevet publiée FR-A-2 666 896 (Jacques TOLEDANO). Elle met en oeuvre un dispositif multimembranaire pour l'identification d'un antigène (ou inversement d'un anticorps) susceptible d'être contenu dans un échantillon liquide aqueux, ledit dispositif, dans lequel est prévu une pluralité de membranes, retardant le passage dudit échantillon. Plus précisément, selon les indications fournies dans la description de FR-
A-2 666 896 (voir page 3 lignes 13-50), ce dispositif multimembranaire comprend :
- un filtre (A), notamment en cellulose, polyamide ou polycarbonate, destiné à recevoir l'échantillon liquide à analyser et susceptible de contenir un antigène à identifier,
- une double membrane perméable (B) qui est sous-jacente au filtre (A) et est formée d'un premier feuillet (Bl) comprenant un réactif (RI) mobile ou immobilisé reconnaissant ledit antigène à identifier, d'une part, et d'un second feuillet (B2) qui est sous-jacent au premier feuillet (Bl) et comprend un réactif (R2) complémentaire de (RI), le contact dudit antigène à identifier avec le réactif (RI) transmettant un signal au réactif (R2) qui active à son tour les mécanismes des couches sous-jacentes, d'autre part,
- une pellicule (Ml) à lyse programmée, qui est sous-jacente au feuillet (B2), cette pellicule (Ml) étant au dépaπ imperméable vis-à-vis de l'échantillon liquide à analyser servant ici d'éluant, puis étant dégradée par ledit échantillon liquide de façon à permettre son passage vers la couche suivante,
- une couche ou zone (C), qui est sous-jacente à la pellicule (Ml) et contient une association de réactifs aptes à devenir actifs en présence du signal véhiculé par ledit échantillon liquide ayant traversé (Ml), - une pellicule (M2) à lyse programmée, qui est sous-jacente à la couche ou zone (C) et similaire à la pellicule (Ml) sus-visée, et
- une zone poreuse (D) comportant les moyens de révélation de la présence ou de l'absence de l'antigène dans l'échantillon liquide à analyser.
La solution technique de FR-A-2 666 896 permet de remédier, grâce aux pellicules Ml et M2, à l'inconvénient majeur précité de la solution technique de US-A-4 446 232 en ce qui concerne l'achèvement de la réaction de l'antigène à identifier avec un anticorps couplé à un enzyme non immobilisé, ou une évolution suffisante de ladite réaction. Cette solution technique qui met en oeuvre une membrane supportant un anticorps couplé à un enzyme de marquage et non immobilisé et un anticorps anti-enzyme immobilisé sur une autre membrane, présente l'inconvénient de donner lieu à des réactions parasitaires avec des enzymes contenus dans l'échantillon à analyser, soit au niveau de la réaction immunologique du type antigène-anticorps précitée, soit (surtout) au niveau de la révélation de l'enzyme de marquage. D'un autre côté, quand on n'utilise pas lesdites membranes Ml et M2, la solution technique du système multimembranaire de FR-A-2 666 896 est défectueuse eu égard à la faible épaisseur (inférieure à 0, 1 mm) de la membrane (Bl ou B2) qui comporte le réactif immunologique immobilisé (RI ou R2). Quand on n'emploie pas les membranes Ml et M2. le passage du liquide à travers une membrane poreuse d'épaisseur inférieure à 0,1 mm est tellement rapide que la réaction immunologique se fait mal et que ladite membrane poreuse est utilisée au mieux à 0,01 à 0,1 % de sa capacité. Par exemple 50 à 100 μg de DDi immobilisé ne retiennent que 3 à 5 ng de conjugué anticorps monoclonal anti (DDi) couplé à la peroxydase.
Il existe donc un besoin d'améliorer la sensibilité et la fiabilité de ces solutions techniques en évitant plus particulièrement les phénomènes non souhaités que constituent (i) l'immobilisation par adsorption de chaque matériau immunologique qui doit rester mobile, (ii) le relargage de chaque réactif immunologique qui doit rester immobilisé, et (iii) les réactions parasitaires. BUT DE L 'INVENTION Selon l'invention on se propose de fournir une nouvelle solution technique différente des solutions antérieurement connues qui soit plus sensible et plus fiable.
Selon un premier aspect de l'invention on se propose de fournir un procédé d'identification d'une substance immunologique appartenant à l'ensemble des antigènes et des anticorps et susceptible d'être contenue dans un échantillon liquide à analyser.
Selon un second aspect de l'invention on se propose de fournir un dispositif multimembranaire, en tant que produit industriel nouveau, pour la mise en oeuvre dudit procédé. Selon un autre aspect de l'invention on se propose de fournir un nécessaire, kit ou trousse de dosage contenant ledit dispositif multimembranaire avec le cas échéant (i) un ou plusieurs réactifs complémentaires, et/ou (ii) un milieu de dilution.
OBJET DE L 'INVENTION La nouvelle solution technique que l'on préconise selon l'invention comprend la distribution (i) d'un mélange aqueux d'un échantillon liquide susceptible de contenir une substance immunologique à identifier [i.e. X] avec un conjugué [anti(X)] de ladite substance immunologique couplé à un enzyme [E*], ledit mélange étant tel que la réaction X+anti(X)-E* — > X-anti(X)-E* ait pu se déclencher et aboutir à la production d'une quantité relativement importante de complexe X-anti(X)-E*, sur (ii) une phase sélective constituée par une membrane poreuse comprenant un réactif immunologique immobilisé qui est choisi parmi l'ensemble constitué par (a) les matériaux immunologiques qui réagissent spécifiquement avec le conjugué [anti(X)] et le conjugué couplé à un enzyme [anti(X)-E*] , mais ne réagissant pas avec le produit de la réaction précité [X-anti(X)-E*] , ou
(b) les matériaux immunologiques qui réagissent spécifiquement avec ladite substance immunologique et le produit de la réaction précité [X- anti(X)-E ], mais ne réagissant pas avec ledit conjugué [anti(X)] et ledit conjugué couplé à un enzyme [anti(X)-E*] . Le terme conjugué, tel qu'utilisé ici, est conforme à»la définition donnée ci- après au début du chapitre intitulé "Description détaillée de l'invention". Selon l'invention, on préconise donc un procédé d'identification d'une substance immunologique (X) appartenant à l'ensemble des antigènes et des anticorps et susceptible d'être présente dans un échantillon liquide à analyser, ledit procédé, qui met en oeuvre la réaction de ladite substance immunologique avec l'un de ses conjugués [anti(X)] et l'utilisation d'un système multimembranaire, étant caractérisé en ce qu'il comprend les étapes consistant à
(1 °) mettre en contact l'échantillon liquide susceptible de contenir ladite substance immunologique (X) à identifier avec l'un de ses conjugués couplé à un enzyme de formule anti(X)-E* où anti(X) représente un conjugué bifonctionnel et E un enzyme de marquage, de façon à obtenir le produit de réaction de formule
X-anti(X)-E* quand ladite substance immunologique est présente ; et, (2°) faire passer le milieu réactionnel ainsi obtenu sur un dispositif multimembranaire comprenant :
- une première zone comportant une membrane poreuse pourvue d'un réactif immunologique immobilisé qui est choisi parmi l'ensemble constitué par
(a) les matériaux immunologiques qui réagissent spécifiquement avec le conjugué (anti(X)) et le conjugué couplé à un enzyme (anti(X)-E*), mais ne réagissant pas avec le produit de la réaction précité (X-anti(X)-E*), ou
(b) les matériaux immunologiques qui réagissent spécifiquement avec ladite substance immunologique et le produit de la réaction précité (X-anti(X)-E*), mais ne réagissent pas avec ledit conjugué (anti(X)) et ledit conjugué couplé à un enzyme (anti(X)-E*), le rapport "quantité pondérale dudit réactif immunologique immobilisé/surface de la membrane poreuse pourvue dudit réactif immunologique" étant compris entre 10 et 150 μg/aτfi, et les sites actifs de ladite membrane non utilisés pour immobiliser ledit réactif immunologique étant bloqués; et,
- une deuxième zone comportant au moins une membrane poreuse, qui est sous- jacente à la membrane contenant ledit réactif immunologique immobilisé et qui contient un substrat spécifique de l'enzyme de marquage (E*) pour la révélation de la présence dudit enzyme.
On préconise également une variante de ce procédé selon laquelle on prépare à l'étape (1 °) un mélange de l'échantillon à analyser susceptible de contenir la substance immunologique X à identifier avec un conjugué dirigé contre anti(X) et couplé à l'enzyme de marquage, ce conjugué étant un complexe répondant à la formule anti[anti(X)]-E* et tel que
(a) en l'absence de X, il réagit avec anti(X), et
(b) en présence de X, il ne peut réagir avec anti(X) qu'après la fixation complète de X par anti(X), puis fait réagir à l'étape (2°) ledit mélange avec le composé anti(X) immobilisé au niveau d'une membrane poreuse, avant de procéder à la révélation du conjugué complexe anti[anti(X)]-E* non retenu par le réactif immobilisé anti(X) du fait de la présence de X (généralement en excès). En d'autres termes, selon cette variante on fournit un procédé qui comprend les étapes consistant à :
(1 °) mettre en contact l'échantillon liquide susceptible de contenir ladite substance immunologique (X) à identifier avec un conjugué complexe de formule anti[anti(X)]-E* où E* et anti(X) sont définis comme indiqué ci-dessus, ledit conjugué complexe réagissant avec le conjugué [anti(X)] dirigé contre ladite substance immunologique (X) en l'absence de ladite substance (X) mais ne réagissant pas avec ledit conjugué en présence de ladite substance (X) libre ; et,
(2°) faire passer ledit mélange de l'échantillon à analyser avec ledit anti(X) complexe sur un dispositif multimembranaire comprenant - une première zone comportant une membrane poreuse comportant le conjugué [anti(X)] en tant que réactif immunologique, le rapport quantité pondérale dudit réactif immunologique immobilisé/surface de la membrane poreuse pourvue dudit réactif immunologique étant compris entre 10 et 150 μg/cm*****, et les sites actifs de ladite membrane non utilisés pour immobiliser ledit réactif immunologique étant bloqués; et, - une deuxième zone comportant au moins une membrane poreuse, qui est sous-jacente à la membrane contenant ledit réactif immunologique immobilisé et qui contient un substrat spécifique de l'enzyme de marquage (E ) pour la révélation de la présence dudit enzyme. Selon l'invention l'on préconise en outre un système multimembranaire qui comprend les première et deuxième zones sus-visées.
Enfin selon l'invention, l'on préconise également un nécessaire, kit ou trousse de dosage pour l'identification d'une substance immunologique conformément au procédé sus- visé, ledit nécessaire, kit ou trousse de dosage étant caractérisé en ce qu'il comprend ledit système multimembranaire et, le cas échéant, des réactifs complémentaires et/ou un milieu de dilution. ABREVIATIONS
Par commodité, les abréviations suivantes ont été utilisées dans la présente invention. A AEECC désigne le 3-amino-9-éthylcarbazole ; bCG désigne la gonadotropine du chorion bovine ; BCIP désigne le phosphate de 5-bromo-4-chloro-3-indolyle ; BSA désigne l'albumine sérique bovine (de l'anglais : "bovine sérum albumin") ; C CMMVV désigne un cytomégalovirus ; D désigne un fragment monomère particulier appartenant à l'ensemble des FnDP ;
DDi désigne un fragment D dimère particulier appartenant à l'ensemble des FnDP ;
EIA désigne un essai enzymo- immunologique (de l'anglais : "enzymeimmunoassay") ;
F(ab) désigne un fragment d'un anticorps du type Ig comportant les branches a et b et obtenu par clivage dudit anticorps par la papaine ; F(ab')2 désigne un fragment d'un anticorps du type Ig comportant les branches a et b et obtenu par clivage dudit anticorps par la pepsine ; Fc désigne un fragment d'un anticorps du type Ig essentiellement constitué par la branche c et obtenu par clivage chimique ou enzymatique ; les fragments Fc sont homologues mais structurellement différents selon le mode de clivage [voir à cet effet les indications fournies dans la publication FR-A-2 645 647 en ce qui concerne les Fc séparés de F(ab) et F(ab ')-***] ;
FDP désigne les produits de dégradation du type FgDP ou FnDP ; FgDP désigne les produits de dégradation du fibrinogène ; FnDP désigne les produits de dégradation de la fibrine ; GMV désigne un virus de la rubéole (de l'anglais : "German measles virus") ;
HBcAb désigne un anticorps de noyau du virus de l'hépatite B (en anglais :
"hepatitis B core antibody") ;
HBcAg désigne un antigène de noyau du virus de l'hépatite B (en anglais : "hepatitis B core antigen") ;
HBsAb désigne un anticorps de surface du virus de l'hépatite B (en anglais: hepatitis B surface antibody") ;
HBsAg désigne un antigène de surface du virus de l'hépatite B (en anglais:
"hepatitis B surface antigen") ; hCG désigne la gonadotropine du chorion humaine, (en anglais : "human chorionic gonadotropin") ;
HCV désigne un virus de l'hépatite Ç ; HIV désigne un virus d' immunodeficience humaine (en anglais : "human immunodeficiency virus") ;
HSV désigne un virus de l'herpès (en anglais : "herpès simplex virus") ;
I désigne une immunoglobuline ;
IVA désigne un virus de la grippe de type A (en anglais : "influenza A virus") ;
IV B désigne un virus de la grippe de type B (en anglais : "influenza B virus") ;
MES désigne l'acide 2-(N-morpholino)éthanesulfonique ; MPB désigne le méthoxynaphtyl-galactoside ; NTB désigne le bleu de tétrazonium (en anglais : "nitro-blue tetrazonium") ;
OD désigne la densité optique ; PAI désigne un inhibiteur des activateurs du plasminogène ; PAI-1 désigne l'inhibiteur 1 des activateurs du plasminogène. substance formant des complexes (tPA-PAI-1) et (uPA-PAI-1) avec tPA et respectivement uPA ;
PBS désigne une solution physiologique de tampon phosphate (en anglais: "phosphate-buffered saline") ;
PVP désigne la polyvinylpyrrolidone ;
RF désigne le facteur rhumatoïde ;
RIA désigne un essai radio-immunologique (de l'anglais :
"radioimmunoassay") ; RSV désigne un virus de la syncinésie respiratoire (en anglais :
"respiratory sincitial virus") ;
RT désigne la température ambiante (15-25°C), de préférence RT sera compris entre 18 et 25° C ;
TMB désigne la 3 ,3 ' , ,5 ' -tétraméthylbenzidine ; tPA désigne tout activateur du plasminogène de type tissulaire (de l'anglais : "tissue plasminogen activator") et comprend les sctPA (activateur du plasminogène de type tissulaire de structure monocaténaire, en anglais : "single-chain tissue plasminogen activator") et tctPA (activateur du plasminogène de type tissulaire de structure bicaténaire, en anglais : "two-chain tissue plasminogen activator") ;
TV désigne un virus de la toxoplasmose ; uPA désigne tout activateur du plasminogène de type urokinase (de l'anglais : "urokinase plasminogen activator") et comprend les scuPA (activateur du plasminogène de type urokinase de structure monocaténaire, en anglais : "single-chain urokinase plasminogen activator", également appelé prourokinase) et tcuPA (activateur du plasminogène de type urokinase de structure bicaténaire, en anglais: : two-chain urokinase plasminogen activator", également dénommé urokinase) ;
9C3 anticorps monoclonal spécifique du DDi commercialisé par la société dite DIAGNOSTICA STAGO) ;
2F7 anticorps monoclonal spécifique du DDi commercialisé par la société dite DIAGNOSTICA STAGO) ; 7D4 anticorps monoclonal spécifique du PAI-1 (commercialisé par la société dite DIAGNOSTICA STAGO) ; 7F5 anticorps monoclonal spécifique du PAI-1 (commercialisé par la société dite DIAGNOSTICA STAGO). BREVE DESCRIPTION DES DESSINS
Dans les dessins annexés, nullement limitatifs, les figures 1-5 illustrent schématiquement des systèmes multimembranaires selon i' invention, dans lesquels le réactif immunologique est immobilisé essentiellement sur la surface supérieure et/ou dans la masse de la membrane poreuse le comportant ;
- les figures la-4a et respectivement lb-4b illustrent les mécanismes réactionnels qui interviennent dans les systèmes multimembranaires des figures 1-4 correspondants, quand ces derniers sont utilisés dans un essai "négatif" (absence de substance immunologique X dans l'échantillon à analyser) et respectivement dans un essai "positif" (présence de ladite substance immunologique dans l'échantillon à analyser) ;
- les figures 5a et 5b illustrent schématiquement les mécanismes qui interviennent dans le système multimembranaire de la figure 5, quand la concentration de la substance immunologique X, présente dans l'échantillon à analyser est inférieure (figure 5a : essai "négatif") ou supérieure (figure 5b : "essai positif") à une concentration prédéterminée ; et,
- les figures 6, 7 et 8 illustrent schématiquement en coupe des systèmes multimembranaires selon l'invention, dans lesquels le réactif immunologique immobilisé est disposé essentiellement dans la masse de la membrane poreuse le comportant.
DESCRIPTION DETAILLEE DE L'INVENTION
Par l'expression "substance immunologique" on entend ici tout élément d'un couple (antigène/anticorps) intervenant dans une réaction immunologique : antigène + anticorps > antigène-anticorps Les couples (antigène/anticorps) englobent ici non seulement les couples
(substance antigénique/anticorps) mais encore les couples immunologiques (agomste/antagoniste) ou (conjugué/anticonjugué) tels que les couples (biotine/avidine) et (activateur/inhibiteur) [notamment les couples (tPA/PAI)] .
Par "substances antigéniques" on entend ici les antigènes proprement dits, d'une part, et les substances à partir desquelles on peut générer des anticorps, d'autre part. Parmi ces dernières substances, on peut notamment citer les haptènes, les peptides, les médicaments comportant au moins un fragment peptidique. les alcaloïdes et d'une manière générale toute substance présentant une structure immunologique. Par "conjugué" d'une substance donnée (X ou respectivement anti-X) on entend un paπenaire [anti-X ou respectivement anti(anti-X)] spécifique de ladite substance dans une réaction immunologique. Suivant cette définition, le terme "conjugué n'implique pas nécessairement que ledit paπenaire soit couplé à un marqueur, de type enzyme par exemple. Les couples (antigène/anticorps) préférés selon l'invention sont les couples
(substance antigénique/anticorps) et (anticorps/anti(anticorps)).
La substance immunologique à identifier peut être une substance antigénique. telle que notamment DDi, FgDP, FnDP. Protéine C, Protéine S. α- antitrypsine, hCG, bCG, PAI (en paπiculier PAI-1), tPA (notamment sctPA et tctPA), uPA (notamment scuPA et tcuPA), un antigène d'origine bactérienne ou virale tel que HBcAg, HBsAg, antigène de IV^, antigène de IVg ou antigène de RSV, ou un anticorps présent dans ou dirigé contre une poπion d'enveloppe ou noyau de bactérie, moisissure ou virus tel que HBcAb, HBsAb, anticorps de CMV, GMV, HCV, HIV (notamment HIV-1, HIV-2 ou HIV-3), HSV, MCV, RCV ou TV.
De façon pratique, ladite substance immunologique est ici un matériau immunologique intervenant (i) dans les mécanismes de l'hémostase, (ii) dans le domaine bactériologique ou virologique, (iii) dans les mécanismes de la fécondation/ nidation, ou encore (iv) le domaine agro-alimentaire (recherche notamment de la présence d'un antigène ou anticorps spécifique des souches de
Neisseria).
Le conjugué de ladite substance immunologique est avantageusement ici un anticorps monoclonal dirigé contre (en anglais : "raised against") ladite substance immunologique. Ledit anticorps monoclonal tel qu'utilisé selon l'invention est un matériau hautement purifié et bifonctionnel. Le conjugué anticorps monoclonal couplé à un enzyme de formule anti(X)-E tel qu'utilisé ici doit être purifié. Il est en effet important que cet anticorps couplé à un enzyme soit essentiellement dépourvu d'enzyme libre pour éviter une coloration parasitaire du révélateur de l'enzyme de marquage. L'échantillon susceptible de contenir la substance immunologique à identifier est un liquide aqueux, en paπiculier un liquide corporel tel que notamment le sang (principalement le plasma, et le cas échéant le sérum), l'urine, la salive, la sueur, le lait, ou un milieu liquide aqueux, synthétique ou semi- synthétique contenant un produit, notamment alimentaire, d'origine végétale ou animale, sous forme liquide ou broyée.
Dans la phase sélective, le réactif immunologique immobilisé est disposé sur la surface supérieure de la membrane poreuse et/ou dans la masse de ladite membrane poreuse. Dans une première variante, le réactif immunologique immobilisé au niveau de la phase sélective est choisi parmi les matériaux immunologiques qui réagissent spécifiquement avec ledit conjugué anti(X) et ledit conjugué couplé à un enzyme anti(X)-E mais ne réagissent pas avec le produit de la réaction de l'étape (1 °) à savoir X-anti(X)-E*. Dans cette variante le réactif immunologique immobilisé est alors
- la substance immunologique (X) elle-même,
- un conjugué dudit conjugué, à savoir (i) un anticorps [anti(anti(X))] dirigé contre l'anticorps [anti(X)] de l'étape (1°), ou (ii) une protéine ou un peptide réagissant spécifiquement vis-à-vis dudit conjugué [anti(X)] . Le réactif anti[anti(X)], qui est immobilisé au niveau de la membrane poreuse de la première zone, sera avantageusement un anticorps monoclonal ou polyclonal dirigé contre un fragment ou un site actif de l'anticorps anti(X), à savoir notamment :
- un anticorps anti[F(ab')2] , - un anticorps anti-chaîne kappa, ou
- un anticorps anti-idiotype.
L'utilisation d'une protéine, d'un peptide ou d'un composé peptidominétrique de la poπion anti-idiotype, réagissant spécifiquement avec anti(X) et anti(X)-E mais ne réagissant pas avec X-anti(X)-E permet d'améliorer, comme les réactifs anti[anti(X)] paπiculiers précités, la sensibilité de la détermination de la substance immunologique X.
Selon cette première variante les résultats négatifs (absence de X) se traduisent par une absence de coloration, et les résultats positifs (présence de X dans l'échantillon à analyser) se traduisent par le développement d'une coloration. Dans une seconde variante le réactif immunologique immobilisé est choisi parmi les anticorps dirigés contre la substance immunologique à identifier, et avantageusement spécifiques d'un épitope différent de l'épitope contre lequel a été généré l'anticorps anti(X) intervenant dans la réaction de l'étape (1°). Selon cette seconde variante les résultats négatifs (absence de X) se traduisent par le développement d'une coloration, et les résultats positifs (présence de X dans l'échantillon à analyser) se traduisent par une absence de coloration.
Quand enfin le conjugué complexe X-[anti(anti(X))]-E intervient à l'étape (1 °) en mélange avec l'échantillon liquide à analyser, il sera avantageusement obtenu par couplage avec l'enzyme de marquage d'un anticorps paπiculier, à savoir :
- un anticorps monoclonal ou polyclonal anti[F(ab')2_,
- un anticorps monoclonal anti-chaîne kappa, ou
- un anticorps monoclonal ou polyclonal anti-idiotype, puis réaction avec la substance X provenant de l'échantillon à analyser.
D'une manière générale, le matériau anti(X), qui intervient selon l'invention, est une substance immunologique bifonctionnelle ou divalente, c'est-à- dire une substance comprenant deux sites actifs : un premier site actif pour réagir avec X ou anti[anti(X)] et un second site actif servant à la liaison avec l'enzyme de marquage ou à l'immobilisation au niveau de la membrane poreuse de la phase sélective.
La membrane de la phase sélective a selon l'invention une épaisseur supérieure ou égale à 0,1 mm et en général inférieure ou égale à 10 mm. Une épaisseur de 0, 1 mm constitue un seuil en-dessous duquel la membrane poreuse de la phase sélective perd graduellement ses capacités et est de ce fait inexploitable.
De préférence on utilisera pour la phase sélective une membrane poreuse ayant une épaisseur comprise entre 0,2 et 10 mm et mieux une épaisseur comprise entre 0,2 et 1 mm.
De plus la membrane poreuse de la phase sélective a une porosité (évaluée par rappoπ au diamètre de ses pores) comprise entre 0,2 et 10 μm et de préférence comprise entre 0,3 et 6 μm, et mieux une porosité inférieure à 1 μm (en paπiculier 0,3-0,8 μm).
Cette membrane est utilisée pour la fixation soit par covalence soit par adsorption du réactif immunologique devant être immobilisé sur sa face supérieure et/ou dans sa masse. Parmi les membranes utiles pour l'immobilisation par covalence, on peut notamment citer les membranes poreuses du type polymère ou copolymère telles que VERSAPORR (membranes acryliques commercialisées par la société dite GELMAN), LOPRODYNER (membranes polyamides commercialisées par la société dite PALL), TRUFFINR, SUPPORR et THERMAPORR (membranes de polysulfone commercialisées par la société dite GELMAN).
Les membranes spécialement adaptées pour le domaine de l'immunodiagnostic et qui sont avantageuses selon l'invention, comprennent notamment les membranes de nitrocellulose, pour immobilisation par adsoφtion (en paπiculier les membranes de mtrocellulose commercialisées par la société dite SCHLEICHER & SCHUELL), et pour immobilisation par covalence les membranes IMMUNODYNER (membranes poreuses en polyamide commercialisées par la société dite PALL), IMMOBILONR (membranes poreuses en polyfluorocarbure hydrophile commercialisées par la société dite MILLIPORE) et ULTRABINDR (membranes poreuses en polysulfone commercialisées par la société dite GELMAN). Ces membranes peuvent être suppoπées. Le suppoπ (constitué par un matériau polymère, par exemple en polyamide, rendant les membranes plus manipulables et moins fragiles), est notamment incorporé dans les membranes de nitrocellulose et les membranes IMMUNODYNER (ce qui permet l'utilisation sur les deux faces, une des faces étant toutefois plus réactive que l'autre), ou lié à une des faces comme cela est le cas dans les membranes ULTRABINDR (dans ce cas on ne peut utiliser pour l'immobilisation que l'autre face).
Le mélange réactionnel, qui est distribué au niveau de la membrane poreuse de la phase sélective traverse par (i) capillarité ou (ii) par capillarité et gravité, ladite membrane poreuse soit perpendiculairement (i.e. dans le sens de l'épaisseur, c'est-à-dire dans un sens perpendiculaire au plan de la membrane) soit, de façon plus avantageuse, longitudinalement (i.e. dans le sens de la longueur de la membrane). Comme indiqué ci-dessus, la quantité pondérale de réactif immunologique immobilisé au niveau de la phase sélective, rappoπée à l'unité de surface (i.e. "densité surfacique" ou "concentration surfacique"), est comprise entre 10 et 150 μg/cm2. La surface de la membrane de la phase sélective est ici celle de la face supérieure ou inférieure ; ce n'est pas celle de la tranche de ladite membrane. De façon avantageuse, cette densité surfacique sera comprise entre 20 et 100 μg/cm^. D'un point de vue pratique, la densité surfacique est fonction du mode d'immobilisation retenu. Quand on procède à l'immersion d'une membrane dans un milieu liquide contenant le matériau immunologique que l'on veut immobiliser de telle façon que la hauteur du liquide s'étende jusqu'à environ 2 mm au-dessus de la surface de la membrane à traiter, on constate dans de nombreux cas que par covalence la densité surfacique du produit immobilisé augmente jusqu'à une certaine valeur et qu'elle diminue ou est constante au-delà de cette valeur; il y a là un phénomène de relargage ou de saturation avant même que tous les sites actifs de la membrane soient totalement saturés. En bref, par covalence on ne peut pas utiliser un liquide d'imprégnation contenant plus de 150 μg/ml de réactif immunologique. Quand on procède dans les mêmes conditions à l'immobilisation du réactif immunologique par adsorption on constate que l'immobilisation n'est plus fiable quand le liquide d'imprégnation contient plus de 400 μg/ml de réactif immunologique. Voir à cet effet les essais d'immobilisation sur membrane fournis ci-après.
D'une manière générale, l'immobilisation par adsorption fournit une concentration surfacique en général plus grande que l'immobilisation par covalence, toutefois l'immobilisation par adsoφtion est plus sensible aux phénomènes de relargage que l'immobilisation par covalence. Ceci explique pourquoi il convient de limiter la concentration surfacique en réactif immunologique immobilisé par covalence ou adsoφtion.
Enfin, il est paπiculièrement impoπant que les sites actifs de la membrane de la phase sélective restant encore libres après l'immobilisation du réactif immunologique soient essentiellement tous bloqués. Ce blocage ou saturation est requis pour éviter toute immobilisation parasitaire lors de la mise en oeuvre du procédé de l'invention. Parmi les moyens qui conviennent pour bloquer lesdits sites actifs encore libres, on peut notamment mentionner ceux qui sont signalés dans US-A-4 175 112. Les moyens de blocage appropriés à cet effet sont, dans l'ordre de préférence croissant, le TWEENR 20, la polyvinylpyrrolidone, la caséine, l'albumine bovine sérique et la poudre de lait de régime. La poudre de lait de régime REGILAITR utilisée à la concentration de 1 à 5 % p/v s'est révélée être ici le moyen le plus efficace.
Selon une variante (variante A) de mise en oeuvre du procédé de l'invention on distribue une ou plusieurs gouttes du mélange (qui est constitué par l'échantillon liquide et le conjugué de la substance immunologique [X] couplé à un enzyme, de formule [anti(X)-E*] , qui contient le produit de la réaction immunologique [X-anti(X)-E*] quand la substance immunologique X est présente dans ledit échantillon, et qui a été préparé dans un réacteur approprié notamment un flacon, une cuvette ou un tube) au niveau de la membrane de la phase sélective comportant le réactif immunologique immobilisé.
Selon une autre variante (variante B) ledit mélange est élaboré en versant une ou plusieurs gouttes de l'échantillon liquide, susceptible de contenir la substance immunologique à identifier, sur une autre membrane poreuse située au- dessus de la membrane de la phase sélective. Dans ce cas, cette autre membrane a ses sites actifs essentiellement saturés et compoπe un dépôt sur sa face supérieure, soit en totalité soit par plot, du conjugué couplé à un enzyme de formule anti(X)- E qui n'est pas immobilisé. Pour ralentir le passage de l'échantillon liquide sur ledit conjugué couplé à un enzyme, l'on recommande le cas échéant de disposer au-dessus (de préférence) et/ou au-dessous (à la rigueur) de la membrane poreuse supportant ledit dépôt [i.e. anti(X)-E* non immobilisé] une ou plusieurs membranes poreuses dont tous les sites actifs sont substantiellement bloqués et qui sont dépourvues de tout matériau immunologique.
Dans la variante B, il est essentiel que le conjugué couplé à un enzyme [i.e. le produit anti(X)-E*] soit déposé sans être immobilisé sur son suppoπ, la membrane poreuse.
De plus on préconise de façon avantageuse de revêtir ledit conjugué couplé à un enzyme d'un polymère perméable à l'eau ou d'une membrane en fibres de verre, afin de le protéger (après réticulation du polymère quand celui-ci est utilisé) pendant le stockage et les manipulations de l'utilisateur. D'une manière générale, en l'absence d'une protection, il ne faut pas toucher avec le doigt ledit conjugué couplé à un enzyme non immobilisé pour éviter de fausser le dosage par enlèvement dudit conjugué.
On procède également selon les modalités de la variante B ci-dessus quand on remplace à l'étape (1°) le réactif immunologique non immobilisé de formule [anti(X)]-E* par le réactif non immobilisé de formule anti[anti(X)]-E* précité.
Par ailleurs, selon la variante B, l'on peut également prévoir au sommet du dispositif multimembranaire un anticoφs supplémentaire comme illustré ci-après dans la description des figures 5, 5a et 5b, d'une pan, et de la figure 8, d'autre pan. L'enzyme de marquage, notamment la peroxydase, une phosphatase alcaline, la β-galactosidase ou l'uréase. est révélé au moyen de son substrat spécifique. Par exemple, quand l'enzyme de marquage est la peroxydase, le complexe révélateur comprendra un substrat, à savoir notamment le mélange D- glucose/glucose oxydase qui fournit l'eau oxygénée, selon le mécanisme : glucose oxydase D-glucose + 2H2O - O2 > acide gluconique + H2O2 sur une membrane sous-jacente à celle de la phase sélective, et l'indicateur coloré, le TMB, sur une couche sous-jacente de celle contenant le substrat. En variante au lieu du système à deux membranes de révélation, on pourra utiliser un système comprenant trois membranes : une première membrane pour le D-glucose, une seconde membrane pour la glucose oxydase et une troisième membrane pour le TMB. Le TMB peut également être remplacé par l'AEC. Quand l'enzyme de marquage est une phosphatase alcaline, le révélateur pourra être un mélange BCIP/NBT.
Quand l'enzyme de marquage est la β-galactosidase le révélateur coloré pourra être le MPB.
Il est judicieux de protéger de la lumière la membrane poreuse comprenant l'indicateur coloré suπout lorsque celui-ci est le TMB. Dans ce but, le dispositif multimembranaire selon l'invention sera logé dans une enveloppe opaque, ou bien la fenêtre de lecture devant faire apparaître la variation de couleur sera obturée pendant le stockage par un ruban antiadhérent opaque devant être pelé avant usage.
Le choix de l'enzyme de marquage est en général fonction du milieu liquide coφorel susceptible de contenir la substance X à identifier. Ainsi, si ledit liquide coφorel peut contenir de la peroxydase et/ou de la catalase (comme cela peut être le cas dans le domaine de l'identification des substances intervenant dans les mécanismes de l'hémostase), il est important de ne pas utiliser comme enzyme de marquage la peroxydase. En effet la peroxydase ou la catalase présente dans l'échantillon réagirait alors avec le substrat de la peroxydase au niveau de la deuxième zone. De plus, comme la glucose oxydase utilisée pour la révélation de la peroxydase est également sensible à la catalase, il est important que ladite glucose oxydase soit substantiellement pure.
Par ailleurs, comme certains liquides coφorels, tels que le sang, peuvent également contemr une phosphatase alcaline, l'enzyme de marquage préféré selon l'invention sera une β-galactosidase, c'est-à-dire un enzyme qui ne se trouve pas dans le sang, le plasma ni le sérum.
Si l'échantillon liquide susceptible de contenir la substance X à déterminer renferme un enzyme identique ou pouvant interférer avec le marqueur E*, il est possible de traiter ledit échantillon avec l'un des inhibiteurs dudit enzyme avant de mettre en oeuvre le procédé de l'invention.
Par ailleurs l'enzyme de marquage peut être remplacé par un moyen de marquage équivalent. Ainsi E* peut représenter selon l'invention de l'or colloïdal, de l'argent colloïdal (notamment de l'or colloïdal dopé à l'argent) ou des paπicules de latex coloré de granulométrie inférieure à 0,1 μm (par exemple des paπicules de latex colorées ayant une granulométrie de 25-60 nm). dans ce cas la deuxième zone pourra soit être supprimée, soit être constituée d'une membrane poreuse dépourvue de substrat enzymatique et qui est de nature similaire ou analogue à la membrane de la phase sélective de la première zone. Les membranes poreuses utilisables pour suppoπer le réactif immunologique non immobilisé auront une épaisseur et une porosité analogues à celles de la membrane poreuse de la phase sélective. D'un point de vue pratique, l'on préfère que la porosité de ces membranes soit supérieure à 1 μm et avantageusement comprise entre 3 et 6 μm. Les membranes poreuses supplémentaires de ralentissement auront une porosité analogue à celles de la phase sélective immunologique.
Par commodité, dans les systèmes multimembranaires des figures 1-5, la- 5a et lb-5b, l'enzyme de marquage est la peroxydase. d'une pan, et la révélation de cet enzyme est réalisée au moyen d'un ensemble de deux membranes poreuses, l'une compoπant le générateur de H2O2 (substrat de la peroxydase), à savoir le mélange D-glucose/glucose oxydase, l'autre sous-jacente compoπant le révélateur, à savoir TMB, d'autre pan ; (on peut bien sûr utiliser ici un ensemble de trois membranes comme indiqué ci-dessus). Bien entendu, comme déjà indiqué ci- dessus, l'enzyme de marquage peut être différent de la peroxydase et la révélation peut être obtenue avec une ou plusieurs membranes pour l'ensemble substrat/révélateur coloré. Comme indiqué ci-dessus, quand l'enzyme de marquage est la phosphatase alcaline le révélateur coloré sera le mélange BCIP/NBT, et quand l'enzyme de marquage est la β-galactosidase le révélateur coloré sera le MPB, la β-galactosidase étant l'enzyme de marquage préféré selon l'invention pour les raisons données ci-dessus. Toujours par commodité, dans lesdites figures 1-5, la-5a et lb-5b, la substance immunologique à identifier est présentée comme étant une substance antigénique.
On se réfère aux figures 1, la et lb. Le dispositif multimembranaire 1 selon l'invention comprend une première membrane poreuse 10 dont la surface supérieure 11 et au moins une poπion de la masse comprennent lié par covalence (de préférence) ou par adsoφtion un antigène immobilisé 5 identique à la substance antigénique (X) à identifier et susceptible d'être contenue dans un échantillon 4a ou 4b de fluide coφorel à tester, d'une pan, et un ensemble de deux membranes poreuses 2 et 3, la membrane poreuse 2 comportant (dans sa masse) le substrat D-glucose/glucose oxydase, la membrane poreuse 3 comportant (dans sa masse) le révélateur coloré TMB, d'autre pan.
En variante, le dispositif multimembranaire 1 peut compoπer en outre une membrane poreuse 12 qui compoπe déposé sur sa surface supérieure 13 un conjugué 14. Le conjugué 14 est un anticoφs monoclonal 15 (dirigé contre la substance antigénique X, référencée 5, à identifier) couplé à l'enzyme de marquage 6, par exemple la peroxydase. Le conjugué 14, qui répond à la formule anti(X)-E*, est simplement déposé sur la surface supérieure 13 de la membrane 12 sans être immobilisé tant par covalence que par adsoφtion. De façon pratique, les sites actifs encore libres de la membrane poreuse 10 et tous les sites actifs libres de la membrane poreuse 12, quand celle-ci est présente, sont totalement et préalablement saturés ou bloqués par un moyen approprié, de préférence au moyen de la poudre de lait de régime REGILAIT . afin d'éviter substantiellement toute immobilisation parasitaire. Le dépôt du conjugué 14 de formule anti(X)-E* sur la surface 13 est effectué par zones (un ou plusieurs plots, en pratique un seul plot est suffisant) ou sur encore la totalité de ladite surface 13. Quand le dépôt en question est réalisé par plots, le ou les plots sont avantageusement repérés par un caπouche, notamment une circonférence, dessiné et matérialisé sur ladite surface 13. Quand on utilise une membrane poreuse 12 en tant que suppoπ du conjugué anti(X)-E*, il est le cas échéant recommandé de disposer au moins une membrane poreuse supplémentaire (non représentée) au-dessus ou au-dessous de ladite membrane 12. La présence d'une ou plusieurs membranes poreuses supplémentaires identiques ou analogues à la membrane poreuse 12 (notamment une membrane poreuse en fibres de verre), à sites actifs bloqués ou saturés, mais dépourvues du conjugué 14 seπ à ralentir le passage, à travers ladite membrane 12, de l'échantillon 4a ou 4b à analyser, et à assurer une production suffisante pour les étapes suivantes du complexe X-anti(X)-E* produit selon la réaction :
X + anti(X)-E* > X-anti(X)-E* La figure la illustre schématiquement les mécanismes reactionnels qui interviennent quand l'échantillon à analyser ne contient pas la substance antigénique X référencée 5 ; et, la figure lb illustre schématiquement les mécanismes reactionnels qui interviennent quand l'échantillon à analyser contient ladite substance antigénique X. On distribue selon la flèche 7 sur la surface supérieure 11 de la membrane poreuse 10 un mélange (en général 1 goutte) de (i) l'échantillon à analyser 4a ne contenant pas la substance antigénique X ou 4b contenant ladite substance antigénique X à identifier avec (ii) le conjugué 14 de formule anti(X)-E*, le milieu réactionnel contenant soit ledit conjugué 14 (absence de la substance antigénique (X)) selon la figure la, soit ledit conjugué 14, la substance antigénique X et le produit de réaction de formule X-anti(X)-E (présence de la substance antigénique (X) dans l'échantillon à analyser) selon la figure lb.
En variante, on peut distribuer, sur au moins une poπion (ou plot) de la surface supérieure 13 de la membrane poreuse 12 revêtue du conjugué 14 non- immobilisé, l'échantillon 4a ou 4b, le milieu réactionnel résultant traversant ladite membrane 12 et s 'écoulant ensuite selon la flèche 7.
Au niveau de la phase sélective que constitue la membrane 10 qui compoπe la substance antigénique X référencée 5 immobilisée, les mécanismes qui interviennent sont les suivants. Selon la figure la, le conjugué 14, qui n'a pas pu réagir avec la substance antigénique X absente et qui possède de ce fait une fonction réactive libre, se fixe sur la substance antigénique X, référencée 5, immobilisée et ne traverse pas la membrane 10. Ledit conjugué 14 ainsi capté ne peut pas être détecté par l'ensemble substrat/révélateur des membranes poreuses 2 et 3. Le dosage selon la figure la constitue un test négatif non coloré.
Selon la figure lb, le complexe X-anti(X)-E formé et contenu dans le milieu réactionnel est entraîné sans être retenu par la substance antigénique X, référencée 5, en excès et immobilisée, dès lors que les deux fonctions réactives de l'anticoφs anti(X), référencé 15 sont occupées dans ledit complexe X-anti(X)-E par l'enzyme de marquage et la substance X. La substance X immobilisée fixe le conjugué 14 qui n'a pas réagi avec X. Le complexe X-anti(X)-E* ne réagissant pas avec la substance X immobilisée traverse la membrane poreuse 10 et son activité enzymatique est mise en évidence par l'action de l'enzyme de marquage sur l'ensemble substrat révélateur des membranes poreuses 2 et 3. Le dosage selon la figure lb constitue un test positif coloré.
On se réfère aux figures 2, 2a et 2b. Le dispositif multimembranaire 20 selon l'invention compoπe. comme le dispositif 1 de la figure 1, des membranes poreuses 10, 2 et 3. La membrane poreuse 10 comporte un conjugué anticoφs monoclonal 15 de formule anti(X) dirigé contre la substance antigénique X référencée 5. Cet anticoφs monoclonal est immobilisé par covalence (de préférence) ou par adsoφtion sur la surface supérieure 11 et au moins une poπion de la masse de la membrane 10.
En variante, le dispositif multimembranaire 20 peut en outre compoπer une membrane poreuse 12 disposée au-dessus de la membrane 10. Sur la surface supérieure 13 de ladite membrane 12 ou sur une poπion de ladite surface 13, est déposé non-immobilisé un conjugué 24 du conjugué 15. Le conjugué 24, qui est du type anti[anti(X)]-E*, est constitué ici par un anticoφs monoclonal ou polyclonal anti[F(ab')2] référencé 25 dirigé contre le fragment F(ab')2 de l'anticoφs monoclonal anti(X) 15 et couplé à l'enzyme de marquage 6. Le cas échéant, une ou plusieurs membranes poreuses supplémentaires de ralentissement sont disposées au-dessus et/ou au-dessous de la membrane poreuse 12 ; chaque membrane supplémentaire de ralentissement est identique ou différente de la membrane 12 mais est dépourvue de l'anticoφs anti[F(ab')2].
Comme indiqué ci-dessus, le dépôt du conjugué 24 peut être effectué sur toute la surface supérieure 13 de la membrane 12 ou sur une poπion de ladite surface 13.
Les sites actifs encore libres de la membrane 10 après immobilisation de anti(X) et les sites actifs des autres membranes (i.e. la membrane 12 et les membranes poreuses supplémentaires de ralentissement) quand celles-ci sont présentes, sont saturés, de préférence au moyen de REGILAITR, préalablement au montage ou assemblage du dispositif multimembranaire.
Le conjugué 25, à savoir l'anticoφs de formule anti[F(ab')2] a ^ c*10***5* en fonction de son affinité vis-à-vis de anti(X) par rappoπ à celle de X. En l'absence de X dans l'échantillon, anti[F(ab')2l se fixe sur anti(X). En présence de X dans l'échantillon, anti[F(ab')2] ne peut se fixer sur anti(X) qu'après la fixation de la substance X disponible sur anti(X). En d'autres termes, anti[F(ab')2] a une affinité vis-à-vis de anti(X) inférieure à celle de X. Ainsi, selon le dispositif multimembranaire illustré par les figures 2, 2a et 2b, lorsque le milieu réactionnel contient le conjugué anti[F(ab')2]-E* sans contenir la substance antigénique X, l'anticoφs monoclonal anti(X) fixe ledit conjugué anti[F(ab')2]-E* présent, et lorsque le milieu réactionnel contient simultanément l'antigène X et le conjugué anti[F(ab')2]-E*, ledit anticoφs monoclonal anti(X) fixe préférentiellement l'antigène X. Il suffit alors d'avoir un excès de X pour ne pas fixer le conjugué anti[F(ab')2]-E* sur l'anticoφs immobilisé, référencé 15, anti(X). On distribue selon la flèche 7 sur la surface supérieure 11 de la membrane poreuse 10 un mélange (en général 1 goutte) de (i) l'échantillon à analyser référencé 4a ne contenant pas la substance antigénique X ou référencé 4b contenant ladite substance antigénique X à identifier avec (ii) le conjugué 24 de formule anti[F(ab')2]-E*, le milieu réactionnel résultant contenant soit ledit conjugué 24 (échantillon 4a dépourvu de X) soit le mélange dudit conjugué 24 et de ladite substance antigénique X (échantillon 4b contenant X).
En variante, on peut distribuer, sur au moins une poπion (ou plot) de la surface supérieure 13 de la membrane poreuse 12 revêtue du conjugué 24 non- immobilisé, l'échantillon 4a ou 4b, le milieu réactionnel résultant traversant ladite membrane 12 et s 'écoulant ensuite selon la flèche 7.
Au niveau de la phase sélective que constitue la membrane 10 qui compoπe sur sa surface supérieure et dans au moins une poπion de sa masse l'anticoφs immobilisé anti(X) référencé 15, les mécanismes qui interviennent sont les suivants. Selon la figure 2a, la poπion anti[F(ab')2] du conjugué anti[F(ab')2J-E* est reconnue par l'anticoφs anti(X) immobilisé et l'enzyme de marquage 6 du complexe résultant ne peut pas être révélé au niveau des membranes poreuses 2 et 3. Le dosage selon la figure 2a constitue un test négatif non coloré.
Selon la figure 2b, l'antigène X vient saturer l'anticoφs monoclonal immobilisé anti(X) en empêchant la fixation du conjugué anti[F(ab')2]-E*. Par suite, anti[F(ab')2]-E* traverse la membrane poreuse 10 et son activité enzymatique est mise en évidence par son action sur l'ensemble substrat/ révélateur des membranes poreuses 2 et 3. Le dosage selon la figure 2b constitue un test positif coloré. Le dispositif multimembranaire 30 illustré par les figures 3, 3a et 3b constitue une variante du dispositif 20 des figures 2, 2a et 2b, selon laquelle l'anticoφs monoclonal anti(X) et l'anticoφs monoclonal ou polyclonal anti[F(ab')2] ont été interveπis. Plus précisément, la phase sélective du dispositif 30 comprend un anticoφs anti[F(ab')2] immobilisé sur la surface supérieure et dans au moins une poπion de la masse de la membrane poreuse 10.
On distribue selon la flèche 7 sur la surface supérieure 11 de la membrane poreuse 10 un mélange (en général 1 goutte) de (i) l'échantillon à analyser 4a ne contenant pas la substance antigénique X ou l'échantillon 4b contenant ladite substance antigénique X à identifier avec (ii) le conjugué 34 de formule anti(X)- E , qui est un anticoφs monoclonal anti(X), référencé 15, dirigé contre la substance antigénique X, référencée 5, et couplé à l'enzyme de marquage 6. Le milieu réactionnel résultant contient notamment ledit conjugué 34 selon la figure 3a en l'absence de X, ou le complexe X-anti(X)-E* selon la figure 3b en présence de X.
En variante, comme indiqué ci-dessus pour le dispositif 20 de la figure 2, on peut distribuer, sur au moins une poπion (ou plot) de la surface supérieure 13 de la membrane poreuse 12 revêtue du conjugué 34 non-immobilisé. l'échantillon 4a ou 4b, le milieu réactionnel résultant traversant ladite membrane 12 et s 'écoulant ensuite selon la flèche 7.
Bien entendu, comme signalé plus haut, on peut prévoir une ou plusieurs membranes poreuses supplémentaires de ralentissement au-dessus et/ou au-dessous de la membrane poreuse 12 ; le dépôt du conjugué 34 peut être effectué sur toute la surface supérieure 13 de la membrane 12 ou sur une poπion de ladite surface 13 ; et les sites actifs encore libres de la membrane 10 après immobilisation de anti(X) et les sites actifs des autres membranes (i.e. la membrane 12 et les membranes poreuses supplémentaires de ralentissement) quand celles-ci sont présentes, sont saturés, de préférence au moyen de REGILAIT , préalablement au montage ou assemblage du dispositif multimembranaire. Au niveau de la phase sélective que constitue la membrane 10 qui compoπe sur sa surface supérieure et dans au moins une poπion de sa masse l'anticoφs monoclonal ou polyclonal immobilisé anti[F(ab')2], référencé 25, les mécanismes qui interviennent sont les suivants.
Selon la figure 3a, du fait de l'absence de substance antigénique X dans l'échantillon 4a, le conjugué 34, qui est un anticoφs monoclonal anti(X), référencé 15, couplé à l'enzyme de marquage 6, est retenu par l'anticoφs monoclonal ou polyclonal immobilisé anti [F(ab ')•->] référencé 25. Ledit conjugué 34 ainsi immobilisé ne peut pas être révélé par l'ensemble substrat/révélateur des membranes poreuses 2 et 3. Le dosage selon la figure 3 a constitue un test négatif non coloré.
Selon la figure 3b, du fait de la présence de la substance X dans l'échantillon 4b, le complexe X-anti(X)-E* n'est pas reconnu par l' anticoφs monoclonal ou polyclonal immobilisé anti[F(ab')2]. Ce complexe traverse donc la membrane poreuse 10 et son activité enzymatique est mise en évidence au niveau des membranes 2 et 3. Le dosage selon la figure 3b constitue un test positif coloré. Dans les dispositifs 20 et 30, l'anticoφs monoclonal ou polyclonal anti[F(ab ')-*-*] peut notamment être un anticoφs de lapin ou de chèvre dirigé contre le fragment F(ab')2 d'un anticoφs de souris.
Bien entendu, l'anticoφs anti[F(ab')2] peut être remplacé ici par un anticoφs anti[anti(X)] équivalent eu égard à l'affinité relative par rappoπ à X vis- à-vis de anti(X). Parmi les anticoφs anti[anti(X)] qui conviennent à cet effet on peut mentionner en paπiculier les anticoφs monoclonaux (notamment de rat) anti¬ chaîne kappa (notamment de souris), d'une pan, et les anticoφs monoclonaux ou polyclonaux anti-idiotype d'un anticoφs monoclonal (notamment de souris) produits chez un autre animal (notamment chèvre ou lapin), d'autre pan.
On se réfère aux figures 4, 4a et 4b. Le dispositif multimembranaire 40 est conçu pour mettre en oeuvre une méthode EIA sandwich au moyen de deux anticoφs monoclonaux réagissant sur des sites distincts de la substance antigénique X. Le dispositif 40 de la figure 4 comprend, comme celui de la figure 2, une phase sélective constituée d'une membrane poreuse 10 comportant sur sa surface supérieure 11 et dans au moins une poπion de sa masse un anticoφs monoclonal immobilisé 15 de formule anti(X)**-, d'une pan, et une zone de révélation constituée ici des membranes poreuses 2 et 3 pour l'ensemble substrat/ révélateur, d'autre pan. Ledit anticoφs monoclonal anti(X)***, référencé 15, est dirigé contre un premier site actif ou épitope de la substance antigénique X référencée 5.
Le mélange de l'échantillon à analyser (échantillon 4a dépourvu de substance X, ou échantillon 4b contenant ladite substance X) avec un conjugué 44, qui est un anticoφs monoclonal de formule anti(X)2, référencé 45, dirigé contre un second site actif ou épitope de la substance antigénique X et couplé à l'enzyme de marquage 6. est distribué selon la flèche 7 sur la surface supérieure 11 de la phase sélective. Ce mélange contient, quand la substance X à identifier est présente dans l'échantillon à analyser, le produit de la réaction immunologique : X + anti(X)2-E* — > X-anti(X)2-E* En variante, on peut distribuer, sur au moins une poπion (ou plot) de la surface supérieure 13 de la membrane poreuse 12 revêtue du conjugué 44 non- immobilisé, l'échantillon 4a ou 4b, le milieu réactionnel résultant traversant ladite membrane 12 et s 'écoulant ensuite selon la flèche 7.
Le cas échéant on peut disposer, comme indiqué ci-dessus, une ou plusieurs membranes poreuses supplémentaires de ralentissement au-dessus et/ou au-dessous de la membrane poreuse 12.
Comme indiqué ci-dessus, le dépôt du conjugué 44 peut être effectué sur toute la surface supérieure 13 de la membrane 12 ou sur une poπion de ladite surface 13. De plus, les sites actifs encore libres de la membrane 10 après immobilisation de anti(X)*** et les sites actifs des autres membranes (i.e. la membrane 12 et les membranes poreuses supplémentaires de ralentissement) quand celles-ci sont présentes, sont saturés, de préférence au moyen de REGILAIT , préalablement au montage ou assemblage du dispositif multimembranaire.
Au niveau de la phase sélective, les mécanismes qui interviennent sont les suivants.
Selon la figure 4a, le conjugué 44, qui n'a pas pu réagir avec la substance X, du fait de l'absence de X dans l'échantillon 4b, n'est pas reconnu par l'anticoφs monoclonal immobilisé 15 ; il traverse donc la membrane poreuse 10 de la phase sélective et son activité enzymatique est révélée par l'ensemble substrat révélateur des membranes poreuses 2 et 3. Le dosage selon la figure 4a constitue un test négatif coloré.
Selon la figure 4b, du fait de la présence de la substance X dans l'échantillon 4b, le complexe formé X-anti(X)2-E* est reconnu et fixé par l'anticoφs immobilisé anti(X)-*- selon le mécanisme El A sandwich : μanti(X)l + X-anti(X)2-E* - > |-anti(X)l-X-anti(X)2-E* où le symbole |- représente l'immobilisation par covalence ou adsoφtion au niveau de la membrane poreuse 10.
Du fait de la capture du complexe X-anti(X)2-E*, l'activité enzymatique de l'enzyme de marquage 6 de celui-ci ne peut pas être révélée par l'ensemble substrat révélateur des membranes poreuses 2 et 3. Le dosage selon la figure 4b constitue un test positif non coloré.
Les figures 5, 5a et 5b illustrent une technique paπiculière d' identification d'un substance antigénique X, référencée 5, qui met en oeuvre les modalités décrites ci-dessus en ce qui concerne le dispositif 1 de la figure 1.
En bref, les modalités opératoires envisagées avec le dispositif multimembranaire 50 de la figure 5 comprennent, pour la détermination d'une quantité supérieure à la normale d'une substance antigénique X naturellement présente dans un échantillon de fluide coφorel (ce cas se présente notamment dans le domaine de l'identification du DDi dans le plasma),
(a) la mise en contact de l'échantillon à analyser 54a (qui contient la substance X à une concentration naturellement normale) ou 54b (qui contient ladite substance X à une concentration supérieure à la normale) avec un conjugué 55 qui est anticoφs monoclonal de formule anti(X)1 dirigé contre la substance antigénique X référencée 5, pour former un complexe de formule X-anti(X)1 ;
(b) la mise en contact du milieu réactionnel résultant avec un second conjugué de formule anti(X)2-E* et référencé 14, qui est un anticoφs monoclonal 15 de formule anti(X)2-E* couplé à l'enzyme de marquage 6, l'anticoφs monoclonal 15 qui est identique ou différent de l'anticoφs monoclonal 55 fixant l'excès de X (par rappoπ à la concentration normale) ; et, comme indiqué dans la description des figures 1, la et lb ci-dessus,
(c) la distribution, selon la flèche 7, du milieu réactionnel résultant sur la phase sélective constituée par la membrane poreuse 10 dont la surface supérieure 11 et au moins une portion de la masse comportent la substance X immobilisée par covalence ou adsoφtion ; puis,
(d) la révélation de l'enzyme de marquage 6 du complexe X-anti(X)2-E*, non reconnu ni retenu par la membrane 10 de ladite phase sélective, au moyen de l'ensemble substrat/révélateur des membranes poreuses 2 et 3.
Les étapes (a) et (b) peuvent être réalisées dans un flacon, microcuvette ou tube. Elles peuvent aussi être réalisées directement dans le dispositif multimembranaire, dans ce cas, on prévoit au-dessus de la membrane 10 un ensemble de deux couches, à savoir (i) une seconde phase sélective constituée par une membrane poreuse 510 comportant l'anticoφs anti(X)2, référencé 55, immobilisé sur sa surface supérieure 511 et dans au moins une portion de sa masse, et (ii) une membrane poreuse 12 comportant le conjugué 14, qui est un anticoφs monoclonal anti(X)2, référencé 15, couplé à l'enzyme de marquage 6 et répondant à la formule anti(X)2-E*. ledit conjugué 14 étant déposé sur la surface supérieure 13 de ladite membrane 12 et non immobilisé sur ladite surface 13.
Les étapes (c) et (d), qui comprennent (i) le passage du milieu réactionnel ayant traversé la membrane 12 ou ayant été préparé dans un réacteur (flacon. microcuvette ou tube) extérieur au dispositif multimembranaire. à travers la phase sélective de la membrane 10, puis (ii) la révélation de l'enzyme de marquage 6, sont réalisées comme indiqué ci-dessus (voir description des figures 1, la et lb).
En bref, les mécanismes qui interviennent sont les suivants. Selon la figure 5a, l'antigène X existant dans l'échantillon 54a est capté par l'anticoφs monoclonal immobilisé 55 de formule anti(X)**-, et le conjugué 14 de formule anti(X)2-E* est retenu lors de son passage sur la phase sélective par l'antigène X immobilisé sur la surface supérieure 11 et dans au moins une poπion de la masse de la membrane poreuse 10. Par suite, il n'y a aucune révélation de l'activité enzymatique de l'enzyme de marquage 6 au niveau des membranes poreuses 2 et 3. Le dosage selon la figure 5a constitue un test négatif non coloré.
Selon la figure 5b, une paπie de la quantité totale de l'antigène X est retenue par l'anticoφs monoclonal immobilisé 55, le reste se combine au conjugué 14 qui diffuse à travers la membrane poreuse 10 sans être immobilisé. L'activité enzymatique est alors mise en évidence par son action sur l'ensemble substrat/ révélateur des membranes poreuses 2 et 3. Le dosage selon la figure 5b constitue un test positif coloré.
D'un point de vue pratique, pour l'identification des facteurs intervenant dans les mécanismes de l'hémostase, on peut utiliser l'un quelconque des dispositifs 1, 20, 30, 40 et 50 des figures 1, 2, 3, 4 et 5 ; pour l'identification des matériaux antigéniques (ou d'anticoφs) d'origine bactérienne ou virale, l'on recommande plutôt d'utiliser les dispositifs multimembranaires 20, 30 et 40 des figures 2, 3 et 4 pour éviter tout risque de contamination du personnel en contact avec lesdits dispositifs multimembranaires, par un antigène (ou anticoφs) X, qui serait immobilisé au niveau de la membrane 10.
Sans soπir du cadre de l'invention, les phases sélectives des dispositifs multimembranaires des figures 1, la et lb à 5, 5a et 5b peuvent compoπer le réactif immunologique immobilisé soit dans leurs masses, soit sur leurs faces supérieures. Les figures 6 à 8 ont trait à des dispositifs multimembranaires qui compoπent chacun une phase sélective traversée longitudinalement par le mélange constitué par l'échantillon à tester et le conjugué anti(X) ou anti[anti(X)] couplé à un enzyme non-immobilisé. On se réfère à présent à la figure 6 qui illustre un dispositif multimembranaire 60 selon l'invention. Ce dispositif 60 comprend :
- un puits 66 ménagé dans une feuille de recouvrement 67 et dans lequel on introduit une ou plusieurs gouttes (1 à 5 μl) de l'échantillon à analyser, susceptible de contenir la substance immunologique X à identifier et préalablement mélangé à un conjugué couplé à un enzyme, par exemple anti(X)-E* ou anti[anti(X)]-E*, en variante ledit conjugué couplé à un enzyme peut être déposé non immobilisé sur une membrane poreuse suppoπ logée dans ledit puits 66 ;
- une membrane poreuse (dite d'affinité) 61 intervenant en tant que phase sélective, qui contient dans sa masse un réactif immunologique immobilisé, qui est en relation capillaire par l'une de ses extrémités 63 avec le puits 66 et qui est alimentée en liquide (mélange échantillon à tester/conjugué couplé à un enzyme non immobilisé) par ledit puits 66 quand il a été chargé en dit liquide ;
- une ou plusieurs membranes poreuses 62 pour la révélation de l'enzyme de marquage, cette ou ces membranes poreuses de révélation étant observables par l'intermédiaire d'une ouverture 68 ménagée du côté opposé 69 de la feuille de recouvrement 67 et longitudinalement décalée par rappoπ au puits 66, la ou lesdites membranes poreuses 62 étant en relation capillaire par l'autre extrémité 65 de la membrane poreuse 61 de ladite phase sélective et étant alimentée en milieu réactionnel liquide par ladite membrane poreuse 61. Dans la réalisation de la figure 6, le dispositif multimembranaire 60 est avantageusement logé à l'intérieur d'une enceinte sensiblement monobloc après montage, constitué de deux ensembles 167 et 169 complémentaires l'un de l'autre et solidarisables l'un à l'autre, lors de l'assemblage notamment au moyen d'un système d'encliquetage, par exemple du type tenon/moπaise non représenté, et qui est pourvu d'un puits 66 et d'une ouverture ou fenêtre de lecture 68. La traversée de la membrane poreuse 61 qui constitue la phase sélective et qui est sensiblement horizontale, s'effectue ici longitudinalement.
Quand le conjugué couplé à un enzyme selon le dispositif multimembranaire 60 est le produit anti(X)-E*, il se forme, en présence de la substance antigénique X un complexe de formule X-anti(X)-E* qui n'est pas retenu par la membrane poreuse 61 de la phase sélective, qui est entraîné par le flux liquide et qui atteint par capillarité la ou les membranes poreuses de révélation 62 où l'enzyme de marquage est révélé. La membrane poreuse 61 contient ici dans sa masse le réactif immunologique immobilisé qui est dans ce cas soit X soit anti(X) comme indiqué ci-dessus.
Quand le conjugué couplé à un enzyme est le produit anti[anti(X)]-E*, la membrane poreuse 61 de la phase sélective, qui contient le réactif immunologique immobilisé de formule anti(X), fixe ledit produit anti[anti(X)]-E si la substance antigénique X n'est pas présente dans l'échantillon à tester, et ne fixe pas ledit produit anti[anti(X)]-E* si la substance antigénique X est présente dans ledit échantillon. Dans ce dernier cas le produit de la réaction X-anti[anti(X)]-E non retenu atteint par capillarité la ou les membranes poreuses de révélation 62 où l'enzyme de marquage est révélé.
On se réfère à la figure 7 qui illustre un dispositif multimembranaire 70 selon l'invention analogue à celui de la figure 6, avec la différence que la membrane poreuse 71 n'est plus sensiblement horizontale mais est plutôt sensiblement veπicale et est traversée par gravité et capillarité. Les autres références de la figure 7 sont celles décrites ci-dessus en ce qui concerne la figure 6. On se réfère à la figure 8 qui illustre un dispositif multimembranaire 80 selon l'invention comprenant deux puits 86a et 86b sur sa paπie supérieure. Ce dispositif comprend :
- un puits 86a ménagé dans une feuille de recouvrement 67 et dans lequel on introduit une à plusieurs gouttes (20 à 250 μl) de l'échantillon à analyser. - une première phase sélective en liaison capillaire par l'une de ses extrémités 83a avec le puits 86a et alimentée par celui-ci quand il a été chargé en liquide (ici l'échantillon aqueux à tester), ladite première phase sélective étant constituée par une première membrane poreuse 81a comportant dans sa masse un premier réactif immunologique immobilisé, par exemple anti(X)-*- , \a quantité dudit premier réactif immunologique immobilisé étant telle qu'elle correspond à la fixation d'une quantité prédéterminée de substance antigénique X,
- un second puits 86b ménagé dans la feuille de recouvrement, longitudinalement décalé par rappoπ au premier puits 86a, en liaison capillaire avec l'autre extrémité 83b de la membrane poreuse 81a de la première phase sélective, alimenté en flux liquide par ladite première phase sélective, et comportant dans son fond un conjugué couplé à un enzyme de marquage non-immobilisé, par exemple anti(X)2- E*. ledit conjugué couplé à un enzyme de marquage non-immobilisé pouvant se présenter notamment sous la forme d'une pastille microporeuse (i) dont la surface supérieure est protégée par une membrane de fibres de verre et (ii) qui est disposée dans le puits 86b avant le dosage,
- une seconde phase sélective en liaison capillaire par l'une de ses extrémités 85a avec le puits 86b, alimentée par celui-ci en flux liquide (milieu réactionnel ayant traversé la première phase sélective et ayant été mis en contact avec ledit conjugué couplé à un enzyme de marquage non-immobilisé présent dans ledit puits 86b) et constituée d'une seconde membrane poreuse 81b comportant dans sa masse un second réactif immunologique immobilisé, par exemple X, ladite seconde membrane poreuse 81b fixant ledit conjugué couplé à un enzyme non immobilisé en l'absence de substance antigénique X dans le milieu réactionnel sortant de la première phase sélective, mais ne fixant pas ledit conjugué couplé à un enzyme ayant réagi en présence de la substance antigénique X présente dans ledit milieu réactionnel sortant de ladite première phase sélective, et
- une ou plusieurs membranes poreuses 62 pour la révélation de l'enzyme de marquage, cette ou ces membranes poreuses de révélation étant observables dans une ouverture 68 ménagée du côté opposé 69 à la feuille de recouvrement 67 et longitudinalement décalée par rappoπ aux puits 86a et 86b, la ou les membranes poreuses de révélation 62 étant en relation capillaire avec l'autre extrémité 85b de la seconde membrane poreuse 81b et étant alimentées en milieu réactionnel liquide par ladite seconde membrane poreuse 81b.
Le dispositif multimembranaire 80 de la figure 8, ainsi que celui de la figure 7, peut être constitué de deux ensembles 167 et 169 complémentaires et solidarisables l'un à l'autre, comme indiqué ci-dessus dans la description du dispositif multimembranaire 60 de la figure 6.
D'une manière générale pour réaliser un dispositif multimembranaire monobloc (notamment en matière plastique), il suffit qu'un conduit soit ménagé à l'interface des ensembles 167 et 169 pour le logement de chacune des membranes poreuses 61, 71, et 81b entre un puits 66 ou 86b et une ouverture 68 ou encore entre deux puits 86a et 86b. De plus les logements destinés aux membranes poreuses sensiblement horizontales 61, 81a et 81b peuvent être inclinés de façon à permettre un passage par capillarité et gravité à travers lesdites membranes. De même le logement de la membrane poreuse 71 de la figure 7 peut être incliné par rappoπ à la veπicale.
Bien entendu le matériau des ensembles 167 et 169 ne doit pas donner lieu à des immobilisations parasitaires par covalence ou adsoφtion. Si nécessaire il sera traité au niveau des puits, ouvertures de lecture et logements des membranes poreuses des phases sélectives grâce à un moyen approprié tel que la poudre de lait
REGILAITR précitée.
Le dispositif multimembranaire 80 de la figure 8 est paπiculièrement efficace pour le dosage du DDi susceptible d'être présent dans le plasma à une concentration supérieure à la normale. L'échantillon de plasma à analyser est déposé dans le puits 86a ; l'échantillon migre longitudinalement à travers la membrane 81a contenant dans sa masse un anticoφs monoclonal anti(DDi), ici l'anticoφs monoclonal 9C3, pour retenir une quantité donnée de DDi ; le milieu réactionnel résultant atteint le puits 86b où se trouve un anticoφs monoclonal anti(DDi) couplé à un enzyme de marquage, ici l'anticoφs monoclonal 2F7 couplé à la β-galactosidase ; le milieu réactionnel résultant migre longitudinalement à travers la membrane 81b contenant dans sa masse l'antigène DDi immobilisé, cette membrane 81b (i) retenant le conjugué 2F7-(β-galactosidase) quand tout le DDi présent dans l'échantillon de plasma a été fixé sur la membrane 81a et (ii) ne retenant pas le produit DDi-2F7-(β-galactosidase) résultant de la réaction dudit conjugué 2F7-(β-galactosidase) avec le DDi libre ayant traversé ladite membrane 81a ; le mélange réactionnel résultant atteint ensuite la ou les membranes de révélation 62 contenant le MPB MEILLEUR MODE Le meilleur mode de mise en oeuvre de l'invention consiste à faire appel à un dispositif selon les figures 1-4 et 6-7. Le mélange de l'échantillon liquide à analyser susceptible de contenir la substance immunologique X avec un conjugué couplé à un enzyme de marquage est préparé à l'extérieur du système multimembranaire puis distribué sur une membrane mince constituée par une nappe non-tissée de fibres de verre, cette nappe étant située au-dessus de la phase sélective sous-jacente contenant le réactif immunologique immobilisé dans sa masse, une ou plusieurs membranes poreuses de révélation étant sous-jacentes à ladite phase sélective.
Le meilleur mode comprend également la mise en oeuvre d'un dispositif multimembranaire selon la figure 5 et mieux la figure 8 pour la détermination d'une teneur en substance immunologique susceptible d'être supérieure à la teneur normale. Dans ce cas, l'échantillon liquide à analyser est distribué sur une membrane constituée d'une nappe non-tissée de fibres de verre située au-dessus de la première phase sélective. D'autres avantages et caractéristiques de l'invention seront mieux compris à la lecture qui va suivre d'essais comparatifs et d'exemples de réalisation. Bien entendu l'ensemble de ces éléments n'est nullement limitatif mais est fourni à titre d'illustration. Dans lesdits exemples de réalisation les sites actifs encore libres des membranes utilisées ont été saturés notamment au moyen de la poudre de lait REGILAITR.
ESSAIS D'IMMOBILISATION SUR MEMBRANE POREUSE
On immerge une membrane poreuse de 20 cm x 20 cm, ou de nitrocellulose (porosité 0,45 μm) dans un tampon aqueux de 100 ml contenant le matériau immunologique à immobiliser par covalence sur membrane de polyfluorocarbone hydrophile (IMMOBILONR : porosité 0,45 μm), de polyamide (IMMUNODYNER : porosité 0,65 μm), ou de polysulfone (ULTRABINDR : porosité 0,45 μm), ou par adsoφtion sur membrane de nitrocellulose (porosité 0,45 μm) après traitement avec une solution aqueuse d'activation de CH3COOH 0,1 M -
Figure imgf000034_0001
0,5M, en laissant une hauteur de liquide de 2 mm environ au dessus de ladite membrane poreuse. L'incubation a lieu pendant 18 h à une température comprise entre 4°C et RT.
On utilise à cet effet des concentrations croissantes (5 à 500 μg/ml) de matériau immunologique dans le tampon et mesure, après séchage à 40 °C. le cas échéant sous pression réduite, la quantité de matériau fixé par chaque membrane. La même série d'essais a été réalisée en faisant varier le tampon.
L'ensemble des résultats obtenu figurent dans les tableaux I à IV ci-après, et met en évidence (i) le risque de relargage lors de la fixation par covalence quand la concentration du matériau immunologique passe de 100 à 200 μg/ml. d'une pan, et est supérieure à 200μg/ml, d'autre pan, et (ii) l'intérêt de KH2PO4 en tant que tampon. TABLEAU I
CAPACITE DE FIXATION SUR MEMBRANE matériau immunologique : DDi tampon : carbonate pH8
Quantités fixées (μm/cm2)
Concentration dans le bain IM OBILONR ULTRABINDR IMMUNO- NITROCEL¬
(μg/ml) DYNER LULOSE1
(1) (1) (1) (2)
5 1,32 2,5 2,5 2,5
10 1,8 4,89 5 5
20 3,2 9,75 10 10
100 29,32 33 32 50
200 21,5 14 33 96
Notes
(1) membrane poreuse pour immobilisation par covalence ;
(2) membrane poreuse pour immobilisation par adsoφtion.
TABLEAU II
CAPACITE DE FIXATION SUR MEMBRANE matériau immunologique : DDi tampon : carbonate pH8
Quantités fixées (μm/cm2)
Concentration dans le bain ULTRABINDR I MUNODYNER NITROCEL-
(μg/ml) LULOSER
(1) (1) (2)
5 2,5 2,5 2,5
10 3 3,8 12,5
20 10 2,9 25
100 12,5 7,5 50
200 22,5 13 100
Notes
( 1 ) membrane poreuse pour immobilisation par covalence :
(2) membrane poreuse pour immobilisation par adsoφtion.
TABLEAU III
CAPACITE DE FIXATION SUR MEMBRANE SELON LE TAMPON membrane poreuse : ULTRABINDR matériau immunologique : 2F7
Concentration Quantité fixée (μg/cm2-1 dans le bain tampon tampon tampon tampon tampon
(μg/ml) P04 3" P04 3" co3 2~ co3 2_ KH2P04 pH 6,5 pH 7,5 pH 8 pH9
50 10,25 8,5 11,1 9,2 12,2
100 15 14,5 18,5 16,75 26,75
500 13 27 40,5 32 54
TABLEAlr iv
CAPACITE D E FIXATI ON SUR MEMBRANE SELON LE TAMPON
:membrane poreuse : ULTRABINDR
:matériau immunologique : D.D
Concentration Quantité fixée (μg/cm2) dans le bain tampon tampon tampon tampon tampon
(μg/ml) P04 3" P04 3" co3 2~ co3 2_ KH2P04 pH 6,5 pH 7,5 pH 8 pH9
50 11,52 10,62 8,25 8,75 11, 6
100 18,37 20,45 11, 62 20,35 20
200 11,52 23,37 18,5 18,25 28,5
500 12 24 5
* 5 16,25
PREPARATION I
Obtention de la membrane SUDPOΠ
On immerge une membrane IMMUNODYNER (porosité : 5 μm ; référence "BIAO50HC5) ou VERSAPORR (porosité : 3 μm) pendant 0.25-0,50 h dans un tampon PBS à pH 7 constitué de (i) 16 paπies en volume d'un mélange de NaH2PO4 à 13.8 g/1 et de NaCl à 9 g/1 (solution A) et de (ii) 84 paπies en volume d'un mélange de Na2HPO4 à 14.19 g/1 et de NaCl à 9 g/1 (solution B), ledit tampon contenant en outre 5 % p/v de PVP (PM : 10 000) ou de REGILAITR. On rince abondamment avec de l'eau distillée froide (2-8 °C) puis enfin avec de l'eau distillée tiède (37°C). On sèche à l'étuve à 37-40°C. On obtient une membrane à sites actifs saturés destinée au suppoπ du conjugué non immobilisé couplé à l'enzyme de marquage, par exemple le conjugué 14 (figures 1 et 5) ou 34 (figure 3) de formule anti(X)-E*, le conjugué 24 (figure 2) de formule anti[anti(X)]-E*, ou le conjugué 44 (figure 4) de formule anti(X)1-E*. Dans le cas d'espèce, l'enzyme de marquage est la peroxydase.
On dépose sur ladite membrane séchée 1 à 5 μl (par plots matérialisés chacun par un caπouche de préférence circulaire) d'une solution de tampon PBS à pH 7 (tel que défini ci-dessus) contenant 1 μg/ml dudit conjugué.
On obtient ainsi la membrane 12 contenant sur sa surface supérieure 13 ledit conjugué non immobilisé. Cette membrane est découpée en bandes contenant chacune un plot de conjugué non immobilisé. PREPARATION II Obtention de la phase sélective
On immerge une membrane poreuse en nitrocellulose de porosité 0,40-0,50 μm (par exemple une membrane commercialisée par la société dite SCHLEICHER & SCHUELL de porosité 0,45 μm, référence : 439196) pendant 0,25-0,50 h, dans une solution aqueuse d'activation contenant 0,1 M de CH3COOH et 0,5 M de NaHSO On sèche à 40 °C sans rinçage.
On procède à la fixation du réactif immunologique référencé 5 (figures 1 et 5), 15 (figures 2 et 4) ou 25 (figure 3), en immergeant pendant au moins 1 h et au plus 48 h la membrane de nitrocellulose (ainsi activée et séchée) dans un tampon (i) carbonate à pH 8 (contenant 0,012 M de CO32- et 0,15 M de NaCl) ou (ii) PBS à pH 7 (comme dans la Préparation I ci-dessus), ledit tampon contenant 50 à 150 mg/ml dudit réactif immunologique. On obtient ainsi l'immobilisation du réactif immunologique dans la masse de la membrane selon une concentration surfacique de 100 μg/cm2.
On sature ensuite les sites actifs de la membrane encore libres, soit comme indiqué dans la Préparation I avec PVP ou (de préférence) REGILAIT , et on fixe au moyen d'eau distillée contenant 10 % p/v de CH3COOH et 25 % p/v d'isopropanol (à la rigueur). On rince abondamment avec le MES 0,05 M ou le PBS à pH 7 précité. On absorbe le liquide restant en plaçant la membrane entre deux feuilles de papier filtre puis en tapotant avec précaution. On sèche ensuite à l'éruve à une température de 30-37°C, pendant au moins 1 nuit.
La membrane ainsi obtenue peut être conservée telle quelle ou découpée en bandes de dimensions identiques à celles des bandes de la membrane suppoπant le conjugué non immobilisé de la Préparation I ci-dessus, pendant plusieurs mois à
2-8°C.
PREPARATION III
Obtention d'une membrane compoπant le mélange D-glucose/glucose oxydase (a) On immerge pendant 0,25-0,50 h, dans une solution aqueuse de TWEENR à 5 % p/v, une membrane de cellulose (désignée "filtre No 122") commercialisée par la société dite MEDIAS FILTRANTS, référence 011220013, de porosité 0,5 μm). On sèche pendant une nuit à l'éruve à 40 °C. On immerge ensuite la membrane dans un bain aqueux contenant 10 % p/v de D-glucose, écaπe le liquide surnageant puis sèche à l'éruve à 40°C pendant 1 nuit.
(b) On place 1 μl de glucose oxydase purifiée (titre : 500 Ul/ml) sur la membrane puis sèche à 37 °C à l'étuve.
Si nécessaire, les sites actifs de la membrane qui sont encore libres sont saturés comme indiqué dans la Préparation I. Cette membrane est découpée en bandes de dimensions identiques à celles des bandes de la Préparation I ci-dessus.
PREPARATION Illbis
Obtention d'une membrane compoπant le D-glucose et d'une membrane compoπant la glucose oxydase. On prépare une membrane comportant le D-glucose comme indiqué à l'étape (a) de la préparation III ci-dessus.
On prépare une membrane comportant la glucose oxydase en faisant appel à la membrane de cellulose ("filtre N° 122") précitée que l'on sature avec une solution aqueuse de TWEENR à 5 % p/v et sur laquelle on dépose ensuite 1 μl de glucose oxydase comme indiqué à l'étape (b) de la préparation III. On sèche ensuite à 37°C à l'étuve.
PREPARATION IV
Obtention d'une membrane compoπant le TMB
On dépose sur une membrane IMMUNODYNER (porosité 0,45 μm ; référence : BIA045HC5) au niveau de plots matérialisés par un caπouche de préférence circulaire, une quantité de 2,5 μl par plot d'une composition alcoolique (éthanol) contenant 5 g/1 de TMB. On conserve la membrane telle quelle ou découpée en bandes de dimensions identiques à celles des bandes de la Préparation I ci-dessus, à l'abri de la lumière. PREPARATION V
(a) Selon un procédé similaire à celui de la préparation I on prépare une membrane poreuse suppoπ du conjugué non immobilisé où la peroxydase est remplacée par une phosphatase alcaline ou respectivement la β-galactosidase.
(b) Selon un procédé similaire à celui de la Préparation IV, on prépare une membrane poreuse où le TMB est remplacé par le mélange BCIP/NBT ou respectivement le methoxynaphtyl-galactoside. Dans ce cas, le dispositif multimembranaire selon l'invention ne compoπe pas la membrane 2 devenue superflue eu égard au choix de l'enzyme de marquage du conjugué non immobilisé. EXEMPLE 1
Identification du DDi
On prépare à paπir de bandes prédécoupées, conformément à la figure 1 ou à la figure 6, un dispositif multimembranaire comprenant un assemblage de :
- une phase sélective selon la préparation II ci-dessus compoπant en tant que réactif immunologique immobilisé une substance antigénique X,
- une membrane poreuse 2 selon la préparation III ci-dessus compoπant un mélange D-glucose/glucose oxydase (en variante, la membrane poreuse 2 peut être remplacée par une membrane comportant le D-glucose et une membrane comportant la glucose oxydase obtenues selon la préparation Illbis), et - une membrane poreuse 3 selon la préparation IV ci-dessus compoπant le TMB.
On fait réagir dans un flacon un échantillon contenant 0 à 10 μg/ml de DDi avec l'anticoφs monoclonal couplé à la peroxydase (9C3 -peroxydase). Le mélange réactionnel résultant est distribué sur une nappe de fibre de verre disposée au- dessus de la membrane poreuse de la phase sélective. Avec le dispositif de la figure 1, selon lequel la phase sélective est traversée peφendiculairement, on observe que
(i) l'essai est négatif pour les concentrations en DDi dans l'échantillon inférieures ou égales à 0,2 μg/ml, (ii) l'essai est douteux pour les concentrations en DDi dans l'échantillon compris entre 0,2 μg/ml et 0,4 μg/ml, et (iii) l'essai est positif pour les concentrations en DDi dans l'échantillon supérieures ou égales à 0,4 μg/ml.
En bref le dispositif de la figure 1 est fiable pour toute concentration en DDi supérieure ou égale à 0,4 μg/ml. Avec le dispositif de la figure 6, selon lequel la phase sélective est traversée longitudinalement, les résultats montrent que la sensibilité est de 1 pg/ml (i.e. concentration minimale détectable de façon fiable en DDi dans l'échantillon de 1 picogramme par millilitre). EXEMPLE 2 Identification du PAI-1
On prépare un dispositif multimembranaire selon la figure 7 en utilisant
- comme phase sélective une membrane poreuse en nitrocellulose (épaisseur : 0.35 mm ; porosité : 0,45 μg) contenant dans sa masse un anticoφs monoclonal anti(PAI-l), à savoir 7D4, - comme membranes poreuses de révélation 62 une première membrane contenant le mélange D-glucose/glucose oxydase (en variante on peut utiliser une membrane contenant le D-glucose et une membrane contenant la glucose oxydase) et une seconde membrane contenant le TMB.
On introduit dans le puits 66 le mélange d'un échantillon aqueux contenant 0 à 10 μg/ml de PAI-1 et l'anticoφs monoclonal anti(PAI-l) couplé à la peroxydase, i.e.
7F5-peroxydase.
Les résultats obtenus montrent que ledit dispositif présente pour le dosage de PAI-1 une sensibilité de 1 pg/ml.
EXEMPLE 3 Identification du DDi
On utilise un dispositif multimembranaire selon la figure 6 ou 7 fonctionnant selon le principe des figures 2, 2a et 2b, avec
- comme phase sélective une membrane de nitrocellulose identique à celle de l'exemple 2 et contenant dans sa masse l'anticoφs monoclonal 2F7, - comme membranes poreuses de révélation une membrane contenant le mélange
D-glucose/glucose oxydase (en variante on peut utiliser une membrane contenant le D-glucose et une membrane contenant la glucose oxydase) et une membrane contenant le TMB. Par le puits 66 on introduit un mélange constitué d'un échantillon aqueux contenant 0 à 1 μg/ml de DDi et un anticoφs monoclonal ou polyclonal anti- idiotype dirigé contre 2F7 et couplé à la peroxydase.
Selon les résultats obtenus, on constate que le seuil de sensibilité pour la détermination du DDi est de 0, 1 μg/ml. EXEMPLE 4
Identification du DDi
On utilise un dispositif multimembranaire selon la figure 8 fonctionnant selon les principes des figures 5, 5a et 5b, avec : - comme première phase sélective, une membrane ULTRABINDR (épaisseur 0,2 mm ; porosité : 0,45 μm) contenant dans sa masse une quantité prédéterminée de l'anticoφs monoclonal 9C3 [i.e. anticoφs monoclonal anti(DDi)] - cette quantité prédéterminée correspond à la teneur normale en DDi dans le plasma -,
- comme charge disposée dans le puits 86b, l'anticoφs monoclonal 2F7 couplé à la peroxydase ou à la β-galactosidase,
- comme seconde phase sélective, la membrane ULTRABINDR précitée contenant dans sa masse le DDi immobilisé, et
- comme membranes poreuses de révélation, soit une membrane contenant le mélange D-glucose/glucose oxydase (en variante on peut utiliser une membrane contenant le D-glucose et une membrane contenant la glucose oxydase) et une membrane contenant le TMB, soit une membrane contenant le MPB.
L'échantillon de plasma contenant le DDi (d'une concentration inférieure à la normale à une concentration supérieure à la normale) est introduit dans le puits 86a. Les résultats obtenus, mettent en évidence que la sensibilité de la détermination de l'excès de DDi par rappoπ à la normale est de 0,1 pg/ml. EXEMPLE 5
Identification du PAI-I
On procède comme indiqué à l'exemple 4 ci-dessus en remplaçant les produits DDi, 2F7-peroxydase (ou 2F7-galactosidase) et respectivement 9C3 par les produits PAI-1, 7D4-peroxydase (ou 7D4-galactosidase) et respectivement 7F5. Le seuil de sensibilité est également de 0,1 pg/ml. EXEMPLE 6
Identification de l' j-antitrypsine On sait que l'inflammation du pis de la vache se traduit par la présence d'inhibiteurs trypsiques dans le lait, parmi lesquels l'o^-antitrypsine est prépondérante et caractéristique. La détermination de l'absence de l'αj- antitrypsine dans le lait est donc paπiculièrement intéressante pour la santé du cheptel et l'hygiène du consommateur.
Dans ce but on utilise un dispositif selon la figure 1 ou la figure 6 avec
- une phase sélective contenant dans sa masse l'α^-antitrypsine en tant que substance immunologique immobilisée, et
- une membrane poreuse de révélation contenant le MPB. On distribue sur la nappe non-tissée de fibre de verre, située au-dessus de la face 11 de la membrane 10 ou au fond du puits 66, un mélange constitué par un échantillon de lait et un anticoφs anti(αj-antitrypsine) couplé à la β-galactosidase. La sensibilité de la détermination est de 0,5 μg/ml avec le dispositif de la figure 1 et de 2 μg/ml avec celui de la figure 6. EXEMPLE 7
Identification de HBsAg
On fait appel à un dispositif selon la figure 6 ou 7 fonctionnant selon le principe des figure 3, 3a et 3b, avec
- une phase sélective constituée d'une membrane IMMOBILONR (épaisseur : 0,2 mm ; porosité : 0,65 μm) contenant dans sa masse, en tant que réactif immunologique immobilisé, un anticoφs monoclonal anti[F(ab')2] dirigé contre le fragment F(ab')2 d'un anticoφs anti(HBsAg), et
- une membrane poreuse contenant le mélange D-glucose/glucose oxydase (en variante on peut utiliser une membrane contenant le D-glucose et une membrane contenant la glucose oxydase) et une membrane poreuse contenant le TMB.
Par le puits 66 on introduit un mélange aqueux constitué d'un échantillon contenant de 0 à 1 μg/ml de HBsAg et d'un anticoφs monoclonal dirigé contre HBsAg et couplé à la peroxydase.
La sensibilité de la détermination de HBsAg est de 1 pg/ml. EXEMPLE 8
Identification de HBsAg
On utilise un dispositif multimembranaire selon la figure 6 ou 7 fonctionnant selon le principe des figure 4, 4a et 4b, avec - une phase sélective identique à celle de l'exemple 7 ci-dessus et contenant dans sa masse un premier anticoφs monoclonal dirigé contre premier épitope de HBsAg, et
- les membranes poreuses de révélation de l'exemple 7 ci-dessus. On introduit dans le puits 66 un mélange aqueux comprenant un échantillon contenant 0 à 1 μg/ml de HBsAg et un second anticoφs monoclonal dirigé contre un second épitope de HBsAg et couplé à la peroxydase.
La sensibilité de la détermination de HBsAg est de 2 pg/ml. EXEMPLE 9 Identification d'anticorps anti(HIV)
On prépare selon l'exemple 3 des dispositifs multimembranaires pour la détermination des anticoφs anti(HIVl), anti(HIV2) et anti(HIV3). La sensibilité de la détermination qui est de 0,5 pg/ml permet l'identification de chacun de ces anticoφs dans la salive. EXEMPLE 10
Identification de Neisseria
On prépare selon l'exemple 8 un dispositif multimembranaire pour l'identification de souches de Neisseria dans le liquide de conserves de légumes. La sensibilité est de 2 pg/ml. EXEMPLE 11
Identification du PAI-1
On procède comme indiqué à l'exemple 4 ci-dessus en remplaçant les produits DDi, 2F7-peroxydase (ou 2F7-galactosidase) et respectivement 9C3 par les produits PAI-1 , 7D4-latex coloré et respectivement 7F5. le latex coloré sous forme de paπicules submicroniques ayant un diamètre moyen de 40-45 nm remplaçant l'enzyme de marquage E* précité, d'une pan. et en utilisant en tant qu'ensemble 62 une ou deux membranes dépourvues de révélateur d'enzyme, d'autre pan. Dans ce cas la membrane 81b de la phase sélective n'est pas située dans la lumière de la fenêtre 68. La sensibilité de la détermination de l'excès de PAI-1 par rappoπ à la normale est de 0,1 pg/ml.
D'une manière générale, quand le moyen de marquage E est constitué par de l'or colloïdal, de l'argent colloïdal, de l'or colloïdal dopé à l'argent, ou un latex coloré qui se présente sous la forme de microbilles d'un diamètre inférieur à
0,1 μm, il est important que la phase sélective 61 (selon la figure 6) ou 81b (selon la figure 8) n'occupe pas toute la lumière de la fenêtre 68 (figure 6 ou 8), de façon que l'observation de l'éventuelle coloration de l'ensemble 62 ne soit pas perturbée par la coloration de ladite phase sélective. Une configuration selon la figure 7 convient en ce sens qu'une poπion seulement (ici la tranche) de la membrane 61 de la phase sélective est présente sous l'ensemble 62. EXEMPLE 12
Identification de HBsAb
On fait appel à un dispositif selon la figure 7 fonctionnant selon le principe des figures 3, 3 a et 3b avec
- une phase sélective constituée d'une membrane IMMOBILONR (épaisseur : 0,2 mm ; porosité : 0,65 μm) contenant dans sa masse, en tant que réactif immunologique immobilisé, un anticoφs monoclonal anti[F(ab')2] dirigé contre le fragment F(ab')2 ^ un anticorPs anti(HBsAb), et
- une ou deux membranes poreuses selon la préparation IV ci-dessus mais dépourvues de TMB. Par le puits 66 on introduit un mélange aqueux constitué d'un échantillon contenant de 0 à 1 μg/ml de HBsAb et d'un anticoφs monoclonal dirigé contre HBsAb et couplé à de l'or colloïdal.
La sensibilité de la détermination de HBsAb est de 2 pg/ml. EXEMPLE 13 Identification du DDi
On utilise un dispositif multimembranaire selon la figure 6 ou 7 fonctionnant selon le principe des figures 2, 2a et 2b, avec
- comme phase sélective une membrane de nitrocellulose identique à celle de l'exemple 2 et contenant dans sa masse l'anticoφs monoclonal 2F7. - comme membranes poreuses de révélation une membrane contenant le mélange
BCIP/NTB.
Par le puits 66 on introduit un mélange constitué d'un échantillon aqueux contenant 0 à 1 μg/ml de DDi et un anticoφs monoclonal anti-chaîne kappa dirigé contre 2F7 et couplé à la phosphatase alcaline. Selon les résultats obtenus, on constate que le seuil de sensibilité pour la détermination du DDi est de 0,1 μg/ml.

Claims

REVENDICATIONS
1. Procédé d'identification d'une substance immunologique (X) appaπenant à l'ensemble des antigènes et des anticoφs et susceptible d'être présente dans un échantillon liquide à analyser, ledit procédé, qui met en oeuvre la réaction de ladite substance immunologique avec l'un de ses conjugués [anti(X)] et l'utilisation d'un système multimembranaire, étant caractérisé en ce qu'il comprend les étapes consistant à
(1°) mettre en contact l'échantillon liquide susceptible de contenir ladite substance immunologique (X) à identifier avec l'un de ses conjugués couplé à un enzyme de formule anti(X)-E* où anti(X) représente un conjugué bifonctionnel et E* un enzyme de marquage, de façon à obtenir le produit de réaction de formule
X-anti(X)-E* quand ladite substance immunologique est présente ; et, (2°) faire passer le milieu réactionnel ainsi obtenu sur un dispositif multimembranaire comprenant - une première zone comportant une membrane poreuse pourvue d'un réactif immunologique immobilisé qui est choisi parmi l'ensemble constitué par
(a) les matériaux immunologiques qui réagissent spécifiquement avec le conjugué (anti(X)) et le conjugué couplé à un enzyme (anti(X)-E*), mais ne réagissant pas avec le produit de la réaction précité (X-anti(X)-E*), ou
(b) les matériaux immunologiques qui réagissent spécifiquement avec ladite substance immunologique et le produit de la réaction précité (X-anti(X)-E ), mais ne réagissent pas avec ledit conjugué (anti(X)) et ledit conjugué couplé à un enzyme (anti(X)-E ), le rappoπ quantité pondérale dudit réactif immunologique immobilisé/surface de la membrane poreuse pourvue dudit réactif immunologique étant compris entre 10 et 150 μg/cm2, et les sites actifs de ladite membrane non utilisés pour immobiliser ledit réactif immunologique étant bloqués; et, - une deuxième zone compoπant au moins une membrane poreuse, qui est sous- jacente à la membrane contenant ledit réactif immunologique immobilisé et qui contient un substrat spécifique de l'enzyme de marquage (E*) pour la révélation de la présence dudit enzyme.
2. Procédé suivant la revendication 1. caractérisé en ce que l'on prépare à l'étape (1°) un mélange de l'échantillon à analyser susceptible de contenir la substance immunologique X à identifier avec un conjugué dirigé contre anti(X) et couplé à l'enzyme de marquage, ce conjugué étant un complexe répondant à la formule anti[anti(X)]-E* et tel que (a) en l'absence de X, il réagit avec anti(X), et
(b) en présence de X, il ne peut réagir avec anti(X) qu'après la fixation complète de X par anti(X), puis fait réagir à l'étape (2°) ledit mélange avec le composé anti(X) immobilisé au niveau d'une membrane poreuse, avant de procéder à la révélation du conjugué complexe anti[anti(X)]-E* non retenu par le réactif immobilisé anti(X) du fait de la présence de X.
3. Procédé suivant la revendication 2, caractérisé en ce qu'il comprend les étapes consistant à :
(1°) mettre en contact l'échantillon liquide susceptible de contenir ladite substance immunologique (X) à identifier avec un conjugué complexe de formule anti[anti(X)]-E* où E* et anti(X) sont définis comme indiqué ci-dessus, ledit conjugué complexe réagissant avec le conjugué [anti(X)] dirigé contre ladite substance immunologique (X) en l'absence de ladite substance (X) mais ne réagissant pas avec ledit conjugué en présence de ladite substance (X) libre ; et, (2°) faire passer ledit mélange de l'échantillon à analyser avec ledit anti(X) complexe sur un dispositif multimembranaire comprenant - une première zone comportant une membrane poreuse comportant le conjugué [anti(X)] en tant que réactif immunologique, le rappoπ quantité pondérale dudit réactif immunologique immobilisé/surface de la membrane poreuse pourvue dudit réactif immunologique étant compris entre 10 et 150 μg/cm2, et les sites actifs de ladite membrane non utilisés pour immobiliser ledit réactif immunologique étant bloqués : et,
- une deuxième zone comportant au moins une membrane poreuse, qui est sous-jacente à la membrane contenant ledit réactif immunologique immobilisé et qui contient un substrat spécifique de l'enzyme de marquage
(E*) pour là révélation de la présence dudit enzyme.
4. Procédé suivant la revendication 1 ou 3, caractérisé en ce que l'étape (1°) est effectuée à l'extérieur du système multimembranaire.
5. Procédé selon la revendication 1 ou 3, caractérisé en ce que l'étape (1 °) est effectuée dans le système multimembranaire, l'échantillon susceptible de contenir ladite substance immunologique étant distribué sur un dépôt de conjugué couplé à un enzyme disposé non-immobilisé sur une membrane poreuse suppoπ située au- dessus de la membrane comportant sur sa face supérieure ledit réactif immunologique immobilisé.
6. Procédé selon la revendication 5, caractérisé en ce que la membrane poreuse supportant le conjugué couplé à un enzyme est surmontée d'une ou plusieurs membranes dépourvues de tout matériau immunologique.
7. Procédé selon la revendication 1 ou 3, caractérisé en ce que les sites actifs libres de la membrane de ladite deuxième zone au niveau de laquelle est immobilisé le réactif immunologique sont substantiellement bloqués.
8. Procédé selon l'une quelconque des revendications 1 et 3 à 7, caractérisé en ce que les sites actifs libres de chacune des membranes sont bloqués.
9. Procédé selon la revendication 1 ou 3, caractérisé en ce que ledit réactif immunologique immobilisé au niveau de sa membrane a une concentration rappoπée à la surface de ladite membrane, comprise entre 20 et 100 μg/cm2.
10. Procédé selon la revendication 1 ou 3, caractérisé en ce que la membrane poreuse comportant le réactif immunologique immobilisé a une épaisseur supérieure ou égale à 0,1 mm, notamment comprise entre 0, 1 et 10 mm et de préférence comprise entre 0,2 et 1 mm.
11. Procédé suivant la revendication 1, caractérisé en ce que la membrane poreuse comportant le réactif immunologique immobilisé est traversée par le flux liquide peφendiculairement à son plan.
12. Procédé suivant la revendication 3, caractérisé en ce que la membrane poreuse comportant le réactif immunologique immobilisé est traversée par le flux liquide longitudinalement.
13. Procédé suivant la revendication 1 ou 3, caractérisé en ce qu'il comprend à l'étape (1 °) l'utilisation de deux membranes poreuses compoπant chacune un réactif immunologique immobilisé dans sa masse et l'utilisation d'un conjugué non immobilisé de formule anti(X)-E* ou anti[anti(X)]-E* disposé sur un suppoπ poreux entre les deux dites membranes poreuses.
14. Procédé suivant la revendication 1 ou 3, caractérisé en ce que le réactif immunologique immobilisé est choisi parmi l'ensemble constitué par :
- la substance immunologique (X) elle-même, et - un conjugué dudit conjugué.
15. Procédé suivant la revendication 14, caractérisé en ce que le conjugué du conjugué est choisi parmi l'ensemble constitué par :
(i) un anticoφs [anti(anti(X))] dirigé contre l'anticoφs [anti(X)], et (ii) une protéine ou un peptide réagissant spécifiquement vis-à-vis dudit conjugué [anti(X)].
16. Procédé suivant la revendication 15, caractérise en ce que le produit anti[anti(X)] est choisi parmi l'ensemble constitué par les anticoφs anti[F(ab')2], les anticoφs anti-chaîne kappa et les anticoφs anti-idiotype.
17. Procédé suivant l'une quelconque des revendications 1-6 et 13, caractérisé en ce que l'enzyme de marquage E* est remplacé par un marqueur choisi parmi l'or colloïdal, l'argent colloïdal, l'or colloïdal dopé à l'argent et un latex coloré.
18. Procédé suivant la revendication 17, caractérisé en ce que le latex coloré se présente sous la forme de paπicules ayant une granulométrie inférieure à 0.1 μm et de préférence comprise entre 25 et 60 nm.
19. Système multimembranaire pour l'identification d'une substance immunologique (X) susceptible d'être contenue dans un échantillon liquide à analyser, ledit système étant caractérisé en ce qu'il comprend
- une première zone comportant une membrane poreuse compoπant un réactif immunologique immobilisé qui est choisi parmi l'ensemble constitué par
(a) les matériaux immunologiques qui réagissent spécifiquement avec le conjugué (anti(X)) et le conjugué couplé à un enzyme (anti(X)-E ), mais ne réagissent pas avec le produit de la réaction précité (X-anti(X)-E ), ou
(b) les matériaux immunologiques qui réagissent spécifiquement avec ladite substance immunologique et le produit de la réaction précité (X-anti(X)-E*), mais ne réagissant pas avec ledit conjugué (anti(X)) et ledit conjugué couplé à un enzyme (anti(X)-E*), la concentration surfacique dudit réactif immunologique immobilisé étant comprise entre 10 et 150 μg/cm2, et les sites actifs de ladite membrane non utilisés pour immobiliser ledit réactif immunologique étant bloqués; et,
- une deuxième zone comportant au moins une membrane poreuse, qui est sous-jacente à la membrane contenant ledit réactif immunologique immobilisé et qui contient un substrat spécifique pour la révélation de l'enzyme de marquage.
20. Système multimembranaire suivant la revendication 19, caractérisé en ce que l'enzyme de marquage E* est remplacé par un marqueur choisi parmi l'or colloïdal, l'argent colloïdal, l'or colloïdal dopé à l'argent et un latex coloré et en ce que ladite deuxième zone est dépourvue de substrat d'enzyme.
21. Nécessaire de dosage d'une substance immunologique (X), caractérisé en ce qu'il comprend (a) un système multimembranaire suivant la revendication 19 ou 20 et (b) au moins un conjugué complexe anti(X)-E* ou anti [anti(X)]-E* ou E* est un enzyme de marquage de l'or colloïdal, de l'argent colloïdal, de l'or colloïdal dopé à l'argent ou un latex coloré.
PCT/FR1994/001023 1993-08-25 1994-08-24 Procede d'identification d'une substance immunologique au moyen d'un systeme multimembranaire WO1995006252A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7507390A JPH09502799A (ja) 1993-08-25 1994-08-24 マルチメンブランシステムを用いる免疫物質の固定方法
EP94925527A EP0715718A1 (fr) 1993-08-25 1994-08-24 Procede d'identification d'une substance immunologique au moyen d'un systeme multimembranaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/10237 1993-08-25
FR9310237A FR2709349B1 (fr) 1993-08-25 1993-08-25 Procédé d'identification d'une substance immunologique au moyen d'un système multimembranaire.

Publications (1)

Publication Number Publication Date
WO1995006252A1 true WO1995006252A1 (fr) 1995-03-02

Family

ID=9450379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/001023 WO1995006252A1 (fr) 1993-08-25 1994-08-24 Procede d'identification d'une substance immunologique au moyen d'un systeme multimembranaire

Country Status (4)

Country Link
EP (1) EP0715718A1 (fr)
JP (1) JPH09502799A (fr)
FR (1) FR2709349B1 (fr)
WO (1) WO1995006252A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033204A1 (fr) * 1994-05-27 1995-12-07 Bayer Aktiengesellschaft Dosage immunologique d'antigenes a haut poids moleculaire
US6048735A (en) * 1996-12-05 2000-04-11 Idego Aps Sensor laminates and multi-sectioned fluid delivery devices for detecting by immunoassay target molecules in biological fluids
US12188933B2 (en) 2018-10-30 2025-01-07 University Of The West Of England, Bristol Tools for detecting cocoa swollen shoot virus coat protein antigen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622532B2 (ja) * 1998-10-13 2005-02-23 松下電器産業株式会社 酵素免疫分析用試薬及びそれを用いた分析方法
JP5100541B2 (ja) * 2008-07-04 2012-12-19 古河電気工業株式会社 標識粒子として、蛍光粒子と着色粒子とを含有するイムノクロマト法用コンジュゲートパッド、それを用いたイムノクロマト法用テストストリップおよび検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2514511A1 (fr) * 1981-10-13 1983-04-15 Liotta Lance Dispositif et procede pour determiner la presence d'antigenes
EP0280211A2 (fr) * 1987-02-23 1988-08-31 Roche Diagnostics GmbH Procédé pour déterminer des anticorps
FR2666898A1 (fr) 1990-09-18 1992-03-20 Toledano Jacques Dispositif et procede de dosage rapide de recepteurs membranaires ou de leurs ligands.
FR2667943A1 (fr) * 1990-10-11 1992-04-17 Toledano Jacques Dispositif et procede pour la determination qualitative et quantitative rapide d'un ligand dans un fluide.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2514511A1 (fr) * 1981-10-13 1983-04-15 Liotta Lance Dispositif et procede pour determiner la presence d'antigenes
US4446232A (en) 1981-10-13 1984-05-01 Liotta Lance A Enzyme immunoassay with two-zoned device having bound antigens
EP0280211A2 (fr) * 1987-02-23 1988-08-31 Roche Diagnostics GmbH Procédé pour déterminer des anticorps
FR2666898A1 (fr) 1990-09-18 1992-03-20 Toledano Jacques Dispositif et procede de dosage rapide de recepteurs membranaires ou de leurs ligands.
FR2667943A1 (fr) * 1990-10-11 1992-04-17 Toledano Jacques Dispositif et procede pour la determination qualitative et quantitative rapide d'un ligand dans un fluide.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.J.GRIBNAU ET AL.: "Particle-labelled immunoassays: a review", JOURNAL OF CHROMATOGRAPHY, BIOMEDICAL APPLICATIONS, vol. 376, 1986, AMSTERDAM NL, pages 175 - 189 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033204A1 (fr) * 1994-05-27 1995-12-07 Bayer Aktiengesellschaft Dosage immunologique d'antigenes a haut poids moleculaire
US6048735A (en) * 1996-12-05 2000-04-11 Idego Aps Sensor laminates and multi-sectioned fluid delivery devices for detecting by immunoassay target molecules in biological fluids
US12188933B2 (en) 2018-10-30 2025-01-07 University Of The West Of England, Bristol Tools for detecting cocoa swollen shoot virus coat protein antigen

Also Published As

Publication number Publication date
JPH09502799A (ja) 1997-03-18
FR2709349A1 (fr) 1995-03-03
FR2709349B1 (fr) 1995-10-27
EP0715718A1 (fr) 1996-06-12

Similar Documents

Publication Publication Date Title
EP0410998B1 (fr) Dispositif et procede pour la determination qualitative et quantitative rapide de la presence d'un ligand reactif dans un fluide
EP1023603B1 (fr) Dispositif d'essai et procede pour la determination d'analytes dans un produit laitier liquide
AU703343B2 (en) Rapid immunoassay for detection of antibodies or antigens incorporating simultaneous sample extraction and immunogenic reaction
CA2285048C (fr) Dispositif analytique pour tests a base de membranes
EP2859344B1 (fr) Dispositif de diagnostic in vitro et utilisations
WO1980002460A1 (fr) Procede et dispositif pour le dosage des lipoproteines seriques
JPH06510602A (ja) 可逆的流動クロマトグラフィー結合アッセイ
LU84402A1 (fr) Procede et dispositif pour determiner la presence d'antigenes dans des fluides biologiques
EP1917529A2 (fr) Dosage d'un analyte par immunochromatographie avec migration laterale
JPH11510601A (ja) 診断装置
EP0263978A1 (fr) Méthode et dispositif pour tester le sang intégral
WO1995006252A1 (fr) Procede d'identification d'une substance immunologique au moyen d'un systeme multimembranaire
FR2853077A1 (fr) Procedes immunochromatographiques en phase solide
JP2001059845A (ja) 乾式分析方法及び乾式分析要素
EP3555587B1 (fr) Procede de dépot d'un echantillon sanguin sur un papier buvard et ensuite d'extraction méchanique de l'echantillon sanguin
EP0008245A1 (fr) Système physico-biochimique pour la détection, le dosage et l'isolement de substances à activité antigénique
BE1011487A3 (fr) Dispositif d'essai pour la determination d'analytes dans un produit laitier liquide.
FR2685956A1 (fr) Procede et dispositif de test par agglutination de particules.
EP1101116B1 (fr) Dispositif et procede electrostatiques de detection immunologique
FR2684186A1 (fr) Trousse pour le denombrement rapide des granulocytes, et procede utilisant ladite trousse.
WO2021066139A1 (fr) Dispositif immunochromatographique pour l'extraction et la mesure d'antigènes d'hydrate de carbone
EP1096258A1 (fr) Dosage de protéines telles que les immunoglobulines de type E (IgE) dans des sécrétions nasales
FR2892515A1 (fr) Procede et dispositif de detection immuno-chromatographique.
FR3111431A1 (fr) Système pour l’analyse rapide d’un échantillon biologique, destiné à la détection de la présence d’au moins un analyte dans ledit échantillon biologique
FR2703788A1 (fr) Dispositif et procédé anti-idiotype de détection immunologique.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994925527

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 601045

Date of ref document: 19960528

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994925527

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1994925527

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994925527

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载