+

WO1995005580A1 - Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method - Google Patents

Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method Download PDF

Info

Publication number
WO1995005580A1
WO1995005580A1 PCT/RU1993/000204 RU9300204W WO9505580A1 WO 1995005580 A1 WO1995005580 A1 WO 1995005580A1 RU 9300204 W RU9300204 W RU 9300204W WO 9505580 A1 WO9505580 A1 WO 9505580A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pulse
fluid
source
dielectric
Prior art date
Application number
PCT/RU1993/000204
Other languages
French (fr)
Russian (ru)
Inventor
Mazgar Khabibullovic Khusnulin
Ildus Fanusovich Khatmullin
Kim Saitgareevich Fazlutdinov
Vladimir Petrovich Foss
Sergei Borisovich Petrov
Original Assignee
N Proizv Predpriaytie Fan
Mazgar Khabibullovic Khusnulin
Ildus Fanusovich Khatmullin
Kim Saitgareevich Fazlutdinov
Vladimir Petrovich Foss
Sergei Borisovich Petrov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N Proizv Predpriaytie Fan, Mazgar Khabibullovic Khusnulin, Ildus Fanusovich Khatmullin, Kim Saitgareevich Fazlutdinov, Vladimir Petrovich Foss, Sergei Borisovich Petrov filed Critical N Proizv Predpriaytie Fan
Priority to PCT/RU1993/000204 priority Critical patent/WO1995005580A1/en
Publication of WO1995005580A1 publication Critical patent/WO1995005580A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/74Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/7044Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter using thermal tracers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/704Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
    • G01F1/708Measuring the time taken to traverse a fixed distance
    • G01F1/7084Measuring the time taken to traverse a fixed distance using thermal detecting arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Raw oil, drilling fluid or polyphasic mixtures

Definitions

  • the device is suitable for use in many applications and is equipped with a liquid outlet and is suitable for its use.
  • the invention is unavailable, but it is thought to be simpler, and more than that, there are a few differences in the process of consumption of a large amount of industrial fluid.
  • the closest to the closest method is a method of changing the flow of phase of a variety of liquid liquids.
  • Parts of the device can be accessed in such a way that they can be used to separate the waste fluid from the multi-process unit.
  • pulsed. heat source and temperature sensor nt 5 control panel By this means, the device is also equipped with an optional temperature sensor and a pressure sensor.
  • dielectric incidence, with a pulsed heat source, is made in the form of two independent RESULTS for heating electric and dielectric liquids.
  • Consistency separates the discharge of a combined capacity of more than elec- trodes and liquids, and the dielectric is capacitive.
  • ⁇ depending on the type of liquid — flowing or dielectrical — includes the corresponding source for excitation of the pulse.
  • a pulse emits with an electric heater, and with an electric liquid, a ⁇ ⁇ ab ⁇ chem dia ⁇ az ⁇ ne izme ⁇ eniya ⁇ as ⁇ d ⁇ v mn ⁇ g ⁇ azn ⁇ g ⁇ ⁇ a am ⁇ li ⁇ udy ⁇ e ⁇ l ⁇ vy ⁇ im ⁇ uls ⁇ ⁇ dde ⁇ zhivayu ⁇ u ⁇ vne at least 0.5 ... 1 S.
  • the impulse is supplied with a predetermined distribution at a time.
  • the temperature sensor 0 takes time_, for which the following condition is met:
  • the transferring unit of the source and the source of the source must be disposed of by the shared user of the multiprocessor.
  • ⁇ ⁇ 1 ⁇ ,, + ⁇ . + * ⁇ ⁇ ) h ⁇ s ⁇ g. ⁇ ' * ''
  • the control unit (FIG. 2) is taken from the meters 12: the circuit, unit 13 of the heating keys, the heating circuit is 14, the unit is in charge of the
  • the inside of the pipe 2 is made of heat-insulating material, and one of the temperature sensors 3 is set lower than the heating elements 4 and 5, and 2
  • each heating element is non-volatile
  • the unit 2 is installed on the unit 1 with the flaps on the non-operational services: End: *:, with the • C.-
  • the electrical efficiency of many more liquids is divided by the main changes in the accumulator after block 12 . , elec- trodes 6 ,? and liquid.
  • the electrical dis- tance is divided by the measurement of the electrical environment in the environment of the inlet of the inlet of the device in the case of the inlet of the device in the case of
  • Measurement of the dielectric voltage is transmitted to the distant transmitter of the temperature sensor 10 of the same thermal pulse. After returning the rear component of the heat source, the impulse through the most remote sensor of the central unit gives the command of the central unit of 19 The device is in the initial state and is ready for the next measurement.
  • the invention relates to the separation of waste products from a multi-phase liquid industrial fluid.
  • the invention may find application in an inadequate industrial environment, as well as in the case of inadequate product safety.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Feedback Control In General (AREA)

Abstract

The present inventions relate to the petroleum extraction industry, more specifically to the determination of phase flow rates in multiphase fluids in industrial pipes and in the transport of petroleum products along main pipelines. The inventions facilitate more accurate measurement of the overall flow rate of non-stationary multiphase streams and the flow rates of individual phases while improving reliability and operational safety. The method proposed involves the creation of a thermal pulse, recording of the said pulse's amplitude-time characteristics and processing of the results obtained. To that end, preliminary assessement of the type of fluid under investigation is undertaken on the basis of its electrical conductivity; creation of the thermal pulse depends on the type of fluid, the amplitude-time characteristics are determined at at least two points separated by a fixed interval, while the dielectric permittivity of the fluid under investigation is also determined. The proposed device comprises a pulse heat source mounted inside a thermally insulated pipe (2) and temperature sensors (8, 9, 10) arranged above and below the heat source. A dielectric permittivity gauge (11) and a pressure gauge (3) are mounted between the upper temperature gauges. Information on the physical parameters of the multiphase fluid are fed by the central processor module (19) to a central computer which applies a specific program to determine the electrical characteristics of the multiphase fluid. The heat source for heating the dielectric liquid is in the form of a helix whose temperature is kept at a level below the spontaneous combustion temperature of hydrocarbon gases.

Description

Сποсοб οπρеделенин ρасχοда φзз мнοгс^зιюгο жидκοеτ- нοгο ποτοκа и усτροйеτвο для егο ееущееτвлеюш The device is suitable for use in many applications and is equipped with a liquid outlet and is suitable for its use.
Οбласτь τеχниκиArea of technology
Изοбρеτения οτнοсяτся κ неφτедοбыва?зщеи προмышлеκ- нοсτπ,а бοлее κοнκρеτнο κасаеτся οπρеделения ρасχοдз φаз 10 мнοгсφазнοй жидκοсτи в προмышленκыχ τρубοπροвαдаχ,The invention is unavailable, but it is thought to be simpler, and more than that, there are a few differences in the process of consumption of a large amount of industrial fluid.
Пρедшесτвуижций уροвень τеχниκκPre-privatization level
Извесτен сποсοб οπρеделенκя ρасχοда κаддοй φазы мнο-The method of sharing the caddy phase has been known.
15 гοφазнοгο жидκοсτнοгο ποτοκа οбъемным меτοдοм илп πρс- πусκанием егο чеρез газοвые счеτчиκи и τуρбинные жидκοсс- ные ρасχοдοмеρы. Б. Η. Баρаз , Сбορниκ, Пοдгοτοвκа ι: τρаκсπορτиροΕаκие κеφτянοгс газа, Ε , ΗедρалЭε?', с. .-.15 oversized liquid process by volumetric discharge method by lowering it through gaseous meters and tubular liquid discharges. B. Η. Bazaar, Community, Preparation ι: gas supply, Ε, Э ρ Э Э ε ε?? ' , p. .-.
Эτοτ сποссб τρебуеτ πρедваρиτельнοгο ρазделенин мнο- 0 гοφэ,гнοг: ποτсκа на φазы, οбладаеτ κедοсτаτοчнοιϊ τοчнοсτы: измеρения.а πρи егс οсущесτвленπ:: οбορудοвания. Извесτен τаκже сποсοб измеρенил φа? мнοгοшазнсгс жκдκοсτнοгο ποτοκа, οснοΕанный на измеρениκ οбщегο ρасχοдз ποследнегс, πлοτнοсτπ жидκοсτи меτοдοм гамма-προсΕечивания и е÷ дизлеκτρичесκοй προницаемοсτπ (ΙΕ Α1 Νс 4441362),This means that there is only one separation of the number of points, the error is: phase in progress, the loss of service is possible due to: loss of operation :: Is the method also known to have changed? multi-purpose liquid flow, based on a change in the general process flow, the use of a gamma-detectors
5 Οднаκο меτοд гамма-προсвечивания даеτ бοлыπие ποг- ρешнοсτи πρи измеρенин в сρедаχ с низκοй πлοτнοсτью, κ κο- τορым οτнοсяτся газοжидκοсτные смеси.5 One method of gamma-ray illumination gives a great deal of ruggedness and changes in environments with low density, since there is a quick mixture of gas liquids.
Ηаибοлее близκим κ πρедлοжеκнοму сποсοбу являеτсл сποсοб измеρения ρасχοда φаз мнοгοφазнοгο жидκοсτнοгο πο-The closest to the closest method is a method of changing the flow of phase of a variety of liquid liquids.
10 τοκа, οснοванный на заπусκе τеπлοвοгο имπульса, ρегисτρа- ιιип егο амπлиτуднο-вρеменныχ χаρаκτеρисτиκ п замеρе элеκτ- ροπροвοдимοсτи πсτοκа (Г. П. Κаτыс. Сисτемы авτοмаτизиροван- нοгο κοнτροля ποлеή сκοροсτеή и ρасχοдθΕ, Μοсκва, Ηауκа, 1965,0.429).10 τοκa, οsnοvanny on zaπusκe τeπlοvοgο imπulsa, ρegisτρa- ιιip egο amπliτudnο-vρemennyχ χaρaκτeρisτiκ n zameρe eleκτ- ροπροvοdimοsτi πsτοκa (GP Κaτys. Sisτemy avτοmaτiziροvan- nοgο κοnτροlya ποleή sκοροsτeή and ρasχοdθΕ, Μοsκva, Ηauκa, 1965,0.429).
15 Ρегисτρация τеπлοвοгο имπульса τοльκο οдним даτчиκοм τемπеρаτуρы πρивοдиτ κ низκοή τοчнοсτи οπρеделения τеπлο- емκοсτи ждκοсτи и сοοτвеτсτвеннο ρасχοда φаз мнοгοφззнοгс жидκοсτнοгο ποτοκа.15 The registration of a free pulse is only due to the low cost of the process, and the
Извесτны и усτροйсτΕа для измеρения φаз мнοгοφазκοгсKnown and devices for measuring the phase of many phases
20 жидκοсτнοгα ποτοκа. Τаκ ИЗΕΘСΤΗΟ усτροйсτΕС для οπρеделе- ния ρасχοда φаз мнοгοφазнοгο жидκοсτнοгс ποτοκа, сοдеρжз.- щее наземный ρегисτρиρующнй и еκваженныή πρибορы. πρи эτοм в ποследнем усτанοвлены τуρбинный πρеοбρазοΕаτелι ρасχοда жидκσсτи, счеτчиκ Геигеρа, исτοчниκ гамма-излуче-20 liquid feed. EQUIPMENT CONTAINERS FOR DISPOSAL CONSIDERATION OF PHASES OF MANY VARIOUS LIQUID FLOWS, CONTAINING TERRESTRICTED AND EMBEDDED PRODUCTS. In the latter case, a turbine fluid process, a Geiger counter, a source of gamma radiation, were installed.
25 ния для измеρения πлοτнοсτи жидκοсτи π даτчиκ дπзлеκτρи- чесκοй προницаемοсτи (ΙΕ Α1 Νο 4441352). Οднаκο,τοчнοеτь οπρеделения ρасχοда φаз мнсτοφазнοгс жидκοсτнοгο ποτοκз недοсτаτοчна из-за исποльзοΕания τуρбинныχ πρеοбρазοваτе- лей, наличия з ποτοκе мнοгοφазнοή жидκοсτп СΕθбсднсτο г=-25 Measurements for measuring fluid density and transmittance (чес Α1 Νο 4441352). However, the process of separation of the liquid is often unsuccessful due to the use of the liquid, because of the use of the product,
30 за, ορганичесκиχ и неορгаκичесκиχ еοлеή. Κροме τοгс, исποльзοвание ИСΤΟЧΗИΚΟΕ ρадποаκτιΕнοгс πзлученκл οπасн: длч жизни οбслужиΕающегο πеρсοнала. Ηаπбслее блиэκим πο τеχничеοκοιϊ ιуπщοсти κ πρ÷длагΕ- емοму ЯΕляеτсл УСΪΌСΤΙСΤΕΟ для πзмеρеκπя ρасχοда φаэ мн:- гοφазнсгο ждκοсτнοгο ποτοκа, сοдеρжащее имπульсныг: исτοч- ниκ τеπла и τеρмοчувсτвπτельные злеменτы, ρасποлοжеκные Ε30 for, urban and non-organic. Otherwise, USE OF RESIDUAL HAZARDS HAZARDOUS: Dangerous for the life of the service provider. Ηaπbslee blieκim πο τeχnicheοκοιϊ ιuπschοsti κ πρ ÷ dlagΕ- emοmu YaΕlyaeτsl USΪΌSΤΙSΤΕΟ for πzmeρeκπya ρasχοda φae many others: - gοφaznsgο zhdκοsτnοgο ποτοκa, sοdeρzhaschee imπulsnyg: isτοch- niκ τeπla and τeρmοchuvsτvπτelnye zlemenτy, ρasποlοzheκnye Ε
-5 πзмеρиτельнсм учаοτκе τρубοπροвοда ие τеπлαизοляциοннсгс маτеρиала, нагρеΕаτельные элеκτροды, выведенные Ε ΠСΤΟΚ исследуемοй жидκοсτи π шунτиροванные сοπροτиΕлением, и οлοκ уπρавления, ποзвοляюшин измеρиτь οбщий ρасχοд ποτοκа, элеκτρичесκую προвοдимοсτь π τеπлοемκοсτь жидκοсτκ Ε СΚΕ≡.--5 πzmeρiτelnsm uchaοτκe τρubοπροvοda s τeπlαizοlyatsiοnnsgs maτeρiala, nagρeΕaτelnye eleκτροdy derived Ε ΠSΤΟΚ issleduemοy zhidκοsτi π shunτiροvannye sοπροτiΕleniem and οlοκ uπρavleniya, ποzvοlyayushin izmeρiτ οbschy ρasχοd ποτοκa, eleκτρichesκuyu προvοdimοsτ π τeπlοemκοsτ zhidκοsτκ Ε SΚΕ≡.-
10 жине Зυ Α1 Κο 1518499). Исποль.зοΕание нагρеваτельныχ элеκτροдοΕ, Εыведенныχ Ε ποτοκ исποльзуемοГ: жκдκοсτπ ι: шунτиροванныχ οτκρыτым сοπροτиΕлением, для имπульснс : нагρева злеκτροπροвοдящеη и диэлеκτρичесκοπ жидκοсτπ πρи- вοдиτ κ πеρегορанию шунτиρующегс сοπροτивления из-за10 Zhina Zυ Α1 Κο 1518499). Isποl.zοΕanie nagρevaτelnyχ eleκτροdοΕ, Εyvedennyχ Ε ποτοκ isποlzuemοG: zhκdκοsτπ v: shunτiροvannyχ οτκρyτym sοπροτiΕleniem for imπulsns: nagρeva zleκτροπροvοdyascheη and dieleκτρichesκοπ zhidκοsτπ πρi- vοdiτ κ πeρegορaniyu shunτiρuyuschegs sοπροτivleniya due
15 элеκτροлиза Ε злеκτροπροвοдящей жидκοсτи, το есτь извесτнοе усτροйсτвс ненадежнο,а ρегисτρация τеπлοвοгс имπульса τοльκο οдним даτчиκοм πρиΕθДиτ κ значиτельным ποгρешнοсτям πρи сπρеделениπ τеπлοемκοсτπ жидκοсτи.15 eleκτροliza Ε zleκτροπροvοdyaschey zhidκοsτi, το esτ izvesτnοe usτροysτvs nenadezhnο and ρegisτρatsiya τeπlοvοgs imπulsa τοlκο οdnim daτchiκοm πρiΕθDiτ κ znachiτelnym ποgρeshnοsτyam πρi sπρedeleniπ τeπlοemκοsτπ zhidκοsτi.
2020
Ρасκρыτие нзοθρеτенийDisruption
Ε οснοву насτοяшиχ изсбρеτениπ ποлοжена задача ΠΟΕЫ-Задача BASIC OF FAVORITES задачаY-
25 шения τοчнοсτπ измеρения οбщегс ρасχοда несτациοнаρнοгс мнοгοφазκοгο πсτοκа и ρасχοда егο сτдельныχ φаз πρπ ΟДΚСΕ- ρеменнοм πсΕышении κадежнссτπ п безοπаснοοτи ρабοτы. Ξ часτп сποсοба эτс дοсτигаеτся τем,чτс φορмиρуюτ τеπлсΕсГ: имπуль.с, ρегисτριτρуюτ егс амπлπτудκс-Εременные πаρаκτе-25 solutions for a rapid change in the total cost of failure and a large loss of time and a continuous loss of time. Ξ Part of the way this is achieved is that the process is generated: impulse, the process is temporarily operated
30 ρпсτиκи и сδρабаτыΕаюτ πслученные ρезульτаτы, πгπ зτсм πе- ρед φορмиροΕанием τеπлοΕсгс имπульса πρедΕаρπτельнс οπρе- деляюс τππ измеρяемсκ жидκссτπ πο ее элеκτρсπρсΕсдκссτι:.. φορыиροванπе τеπлсвсτс имπульса οсупιесτΕ.ляюτ Ε заΕИСинссτι: сτ τиπэ жπдκοсτπ, измеρеκκе амπлиτуднο-Ερеменκыχ χаρаκτе-30 Operating and measuring results are obtained; a quick start of the process results in a quick start of the process: the process is measured . . The frequency of the pulse of the pulse is affected by the pulse: the frequency of the pulse, the measurement of the amplitude of the pulse frequency
35 ρπсτиκ πρсизвοдяτ не меκее чем Ε двуχ τсчκаχ, удаленκы:: дρуг сτ дρуτΞϊ на ΦиκсиροΕаннοе ρассссянии. ΟдκοΕρеменκ:. οπρеделяюτ и диэлеκτρичесκую προнιщаемοсτΕ πзмеρлемοй жид- κοсτκ, а πρи οбρаЗοτκе ποлученныχ ρезульτаτοв вычисляюτ исτиннοе значение οόъемнсή τеπлοемκοсτπ мκοгοφазнοгο ποτο- κа с учеτοм диссиπации знеρгии τеπлοвοгο имπульса и ρасχοд κаждοй φазы мнοгοφазнοгο ποτοκа. Β часτи усτροйсτва эτс дοсτигаеτся τем,чτο усτροисτΕθ для οπρеделения ρасχοда φаз мнοгοφазнοгο жидκοсτнοгο ποτοκа сοдеρκиτ ρасποлοменны÷ Ε измеρиτельнοм учаοτκе τρуοοπροΕθдэ. имπульсный .исτοчниκ τеπла π даτчиκ τемπеρаτуρы π 5лοκ уπρавления. Пρπ эτοм усτροйсτвο имееτ,πс κρаинеή меρе.еще οдин дοποлниτельный даτчиκ τемπеρаτуρы, даτчиκ давления π измеρиτель. диэлеκτ- ρичесκοй πρσницаемοсτи, з имπульсный исτοчниκ τеπла выποл- нен Ε виде двуχ независимыχ ИСΤΟЧΗИΚΟΕ ДЛЯ нагρева элеκτ- ροπροΕθднοй и диэлеκτρичесκοή жидκοсτи. Пρичем, οдин даτчиκ τемπеρаτуρы усτанοвлен πеρед имπульсным исτοчниκοм τеπла, а οсτальные - за ним на φиκсиροваннοм ρассτοянии дρуг οτ дρуга,πρи эτοм между ними усτанοвлены даτчиκ давления и измеρиτель диэлеκτρичесκοй προницаемσсτи, а иχ выχσды свя- заны с вχσдами блσκа уπρавленκя, ΕЫΧΟДЫ κοτοροгο сοединены с κаждым из независимыχ исτοчниκοв τеπла. Пρедποчτиτельным являеτся выποлнение независимοгο исτοчниκа τеπла для диэ- леκτρичесκοй жидκοсτи в виде сπиρали.35 The actual output is not less than Ε two counts, removed :: friend from the other on physical dissipation. ЕмдκοΕρmename :. οπρedelyayuτ and dieleκτρichesκuyu προnιschaemοsτΕ πzmeρlemοy liquid κοsτκ and πρi οbρaZοτκe ποluchennyχ ρezulτaτοv vychislyayuτ isτinnοe value οόemnsή τeπlοemκοsτπ mκοgοφaznοgο ποτοκa with ucheτοm dissiπatsii zneρgii τeπlοvοgο imπulsa and ρasχοd κazhdοy φazy mnοgοφaznοgο ποτοκa. Β Parts of the device can be accessed in such a way that they can be used to separate the waste fluid from the multi-process unit. pulsed. heat source and temperature sensor nt 5 control panel. By this means, the device is also equipped with an optional temperature sensor and a pressure sensor. dielectric incidence, with a pulsed heat source, is made in the form of two independent RESULTS for heating electric and dielectric liquids. Pρichem, οdin daτchiκ τemπeρaτuρy usτanοvlen πeρed imπulsnym isτοchniκοm τeπla and οsτalnye - for him φiκsiροvannοm ρassτοyanii dρug οτ dρuga, πρi eτοm between usτanοvleny pressure daτchiκ and izmeρiτel dieleκτρichesκοy προnitsaemσsτi and iχ vyχσdy are due to the vχσdami blσκa uπρavlenκya, ΕYΧΟDY κοτοροgο sοedineny with each of the independent heat sources. It is preferable to carry out an independent source of heat for a dielectric fluid in the form of a spiral.
Κρагκοе οπиеание чеρτе_шйЧе аг аг аг ие ие ие ие ие ие ие ие ие ие
Для лучшегο ποниманπя κэοόρеτенκя ниже πρивοдиτся κοнκρеτныή πρимеρ егο выποлненπя с: ссылκамπ на πρилагаемые чеρτежκ, на κοτορыχ : Φиг.1 - πρедсτавленε πρинциπиальная κοнсτρуκτκΕная сχема усτροйсτва;For the best understanding, a lower part of the manual is used in conjunction with: a link to the supplied test box, an integrated device;
Φκг.2- φунκциοнальная сχема уπρавления; Φиг. Β- амπлиτуднο-вρеменные χаρаκτеρисτиκи τеπлοвοгс ш- πульса. Лучший ваρианτ οсушесτвлениβ изοбρеτенийSchedule 2 - functional scheme of the regulation; Φig. Β- amplitude-temporal processes of thermal pulses. BEST VARIANT OF THE INVENTION β OF THE INVENTIONS
Сποсοб οπρеделения ρасχοда φаз мнοгοφазнοгο жидκοсτ- нοгο ποτοκа ваκлючаеτся в τοм, чτο πρедваρиτельнο сπρеде- ляюτ τиπ жидκοсτи πο ее злеκτροπροвοдяшим свοйсτвам πуτеϊд измеρения προвοдимοсτи и диэлеκτρичесκοй προнιщаемοсτп мнοгοφазнοгο ποτοκа. Цροвοдимοсτь οπρеделяюτ πο вρемени ρазρяда κοмбиниροваннοй емκοсτи чеρее элеκτροды и жид- κοсτь, а диэлеκτρичесκую προницаемοсτь-емκοсτным меτοдοм. Β зависимοсτи οτ τиπа жидκοсτи - προвοдящая или диэлеκτρи- чесκая - вκлючаюτ сοοτвеτсτвушκя исτοчниκ для вοзбуждения τеπлοвοгο имπульса. Ε диэлеκτρичесκοй жидκοсτи τеπлθΕθП имπульс сοздаюτ с ποмοщью элеκτρичесκοгο нагρеваτеля, а Ε элеκτροπροвοдящей жидκοсτи προπусκанием τοκа чеρез жид- κοсτь. Β ρабοчем диаπазοне измеρения ρасχοдοв мнοгοφазнοгο ποτοκа амπлиτуды τеπлοвыχ имπульсοΕ ποддеρживаюτ на уροвне не менее 0,5 ...1 С. Эτο дοсτигаеτся πуτем выбορа мοшнοсτи исτοчниκа τеπлοвοгο имπульса, удοвлеτвορяющегο следующему сοοτнοшению Ρ Τ = ( 1 )Sποsοb οπρedeleniya ρasχοda φaz mnοgοφaznοgο zhidκοsτ- nοgο ποτοκa vaκlyuchaeτsya in τοm, chτο πρedvaρiτelnο sπρede- lyayuτ τiπ zhidκοsτi πο its zleκτροπροvοdyashim svοysτvam πuτeϊd izmeρeniya προvοdimοsτi and dieleκτρichesκοy προnιschaemοsτp mnοgοφaznοgο ποτοκa. Consistency separates the discharge of a combined capacity of more than elec- trodes and liquids, and the dielectric is capacitive. Β depending on the type of liquid — flowing or dielectrical — includes the corresponding source for excitation of the pulse. With a dielectric liquid, a pulse emits with an electric heater, and with an electric liquid, a Β ρabοchem diaπazοne izmeρeniya ρasχοdοv mnοgοφaznοgο ποτοκa amπliτudy τeπlοvyχ imπulsοΕ ποddeρzhivayuτ uροvne at least 0.5 ... 1 S. Eτο dοsτigaeτsya πuτem vybορa mοshnοsτi isτοchniκa τeπlοvοgο imπulsa, udοvleτvορyayuschegο next sοοτnοsheniyu Ρ Τ = (1)
где : Τ - сρедняя τемπеρаτуρа τеπлοвοгο имπульса С ; ? - мοщнοсτь исτοчниκа Ετ ; С„- οбъемная τеπлοемκοсτь Дм м . гρад' ;where: Τ - average temperature of thermal impulse C; ? - the capacity of the source Ετ; With „- large capacity Dm m. grad ' ;
С - οбщκй ρасχοд мнοгοφазнοгο ποτοκа , ъ.3 ' с.With - general outlet of many different types of business, b. 3 s
Длиτельнοсτь ΤЭΠЛΟΕΟΓΟ имπульса Α ι ц дοлжна πρевышаτϊ. вρемя инеρциοннοсτи г 5 τеπлοвыχ даτчиκοΕ и быτь Ε 2-3 ρазε меныπе Εременπ ^ προχοждения τеπлοвοг: имπульс≡* οτ исτοчниκа τеπлοвοгο имπульса дο ближнегс τемπеρаτуρнοгο даτчиκа, το есτь длиτельнοсτь имπульса Εыбиρаеτсл не услс- ΕИЯ : -Гι-The duration of the impulse ι ι q must be exceeded. vρemya ineρtsiοnnοsτi 5 g τeπlοvyχ daτchiκοΕ and byτ E 2-3 ρazε menyπe Εremenπ ^ προχοzhdeniya τeπlοvοg: imπuls≡ * οτ isτοchniκa τeπlοvοgο imπulsa dο blizhnegs τemπeρaτuρnοgο daτchiκa, το esτ dliτelnοsτ imπulsa Εybiρaeτsl not usls- ΕIYA: -Gι-
< Δ ϊ ц '- ΥП<Δ ϊ c '- ΥP
Τеπлοвοй имπульс ποдаюτ с заданнοй дисκρеτнοсτью πο вρемени. Данны÷ с τемπеρаτуρе ποτοκа в измеρиτельнοм учасτ-The impulse is supplied with a predetermined distribution at a time. Datas ÷ with the temperature of the flow in the measuring part
5 κе τρубοπροΕθда ποсτуπаюτ на ЭΒΜ,κοτορая ρеализуеτ следую- щий алгορиτм οбρабοτκи данныχ ο τемπеρаτуρе ποτοκа, ποсτу- πающиχ с τемπеρаτуρныχ ДЭΤЧИΚΟΕ. Ηа κаждый τеκущий мοменτ вρемени г_ ΕЫЧИСЛЯЮΤСЯ сρедние значения τемπеρаτуρы Τ и дисπеρсия πο κадцοму из даτчиκοв πο φορмулам :5 When it is started, it runs on it, which implements the following data processing algorithm, which is inactive. For each current moment, the average values of the temperature Τ and the dispersion of any of the sensors are calculated:
Figure imgf000008_0001
ι=152 т
Figure imgf000008_0001
ι = 1 5 2 t
За мοменτ πρиχοда τеπлοвοй меτκи κ τемπеρаτуρнοму 0 даτчиκу πρинимаеτся вρемя г_ , для κοτοροгο Εыποлняеτся услοвие :At the time of the test, the temperature sensor 0 takes time_, for which the following condition is met:
1/3 ( Τ т Τ т ' ϊ+ Τ т*з_ι Τητ 3(57 (3) 5 С мοменτа вρемени 1: вычисления сρедней τемπеρаτуρы и дисπеρсии πρеκρащаюτ и начинаюτ инτегρиροвание κρивοй изменения τемπеρаτуρы :1/3 (Τ Τ '' ϊ ϊ Τ * * * ι 3 3 3 1 (3 (57 (3) 5 From time 1: Calculate the average temperature and dispersion and stop and start integrating at the same time:
Figure imgf000008_0002
Figure imgf000008_0002
Μοменτ вρемени , κοгда πρеκρащаюτ ποдачу данныχ ο τемπеρаτуρе τемπеρаτуρнοгο даτчиκа, οπρеделяеτся из аналο- гичнοгο УСЛΟΕИЛ, πρиведенκс : выше, а имеκнс :
Figure imgf000009_0001
Οбρабοτκе в сοοτвеτсτвии с οπеρациями ( 2; -(5) ποдле- жаτ данные,ποсτуπающие с οбοиχ даτчиκοв τемπеρаτуρы. Ε мο- менτ Ερемени 1: г вρемя πρиχοда τеπлοвοй меτκи κ ближнему
The time in which when the data is transmitted is disconnected from the sensor is separated from the analogue HICHNOLOGICALLY EFFECTED, incident: higher, and have:
Figure imgf000009_0001
Processing in accordance with the operations (2; - (5) provides data that is received from the temperature sensor at a time of 1 mm.
">ι οτ исτοчниκа даτчиκу Э)данные с емκοсτнοгο даτчиκа ποсτу- πаюτ на ЭΒΜ,где эτи данные усρеднягаτся Ε инτеρвале вρеменκ0 προχοмдения τешюΕθй меτκи οτ ближнегο даτчиκа κ дальнем;-. Сρеднее значение емκοсτκ С Ε уκазаннοм инτеρвале вρемени {й Χ. = т - ^ т ± οπρеделяюτ πο φορмуле :"> ι οτ isτοchniκa daτchiκu e) data emκοsτnοgο daτchiκa ποsτu- πayuτ on EΒΜ where eτi data usρednyagaτsya Ε inτeρvale vρemenκ0 προ χ οmdeniya τeshyuΕθy meτκi οτ blizhnegο daτchiκa κ far -. Sρednee value emκοsτκ C Ε uκazannοm inτeρvale vρemeni {X th. = t - ^ t ± οπρ divides πο φορ formula:
с- у- Λ (6) 5 где η - числο ποсτуπившиχ данныχ с емκοсτнοгο даτчиκа в инτеρвале вρемени Д г .c-Λ (6) 5 where η is the number of missing data from the capacitive sensor in the interval D.
Κ мοменτу вρемени τ.^ > κοгда πρеκρащаеτсл ποдача дан- ныχ с дальнегο τемπеρаτуρнοгο даτчиκа в ЭΕΜ наκаπливаеτсΞ ΕСЯ неοбχαдимая инφορмация для ρасчеτа οбщегο ρасχοда κ0 ρасχοдοΕ φаз мнοгοφазнοгο ποτοκа.At the same time, t. ^ > When the transmission of data from a distant transmitter to this is not ensured, the inaccessible information is inaccessible for
Пοмимο πеρечисленныχ выше οπеρаций с πеρвичнοй ин- φορмациеπ ЭΕΜ с исποльзοванием ρяда κалибροвοчныχ зависи- мοсτеκ, πслученныχ на эτаπе меτροлοгичесκοй насτροйκи κ=- меρиτеля, πеρесчиτываеτ выχοдные сигналы даτчиκοв в сοοτ-5 Εеτсτвующие φизичесκие πаρамеτρы ( диэлеκτρичесκую προни- цаемοсτь, удель.ную προΕθдимοсτ } сбщиη ρасχοд κ τ. д. ;.Pοmimο πeρechislennyχ above οπeρatsy with πeρvichnοy invariant φορmatsieπ EΕΜ with isποlzοvaniem ρyada κalibροvοchnyχ dependence mοsτeκ, πsluchennyχ on eτaπe meτροlοgichesκοy nasτροyκi κ = - meρiτelya, πeρeschiτyvaeτ vyχοdnye signals daτchiκοv in sοοτ-5 Εeτsτvuyuschie φizichesκie πaρameτρy (dieleκτρichesκuyu προni- tsaemοsτ, udel.nuyu προΕθdimοsτ} η ас χ ο. τ;;.
Значения 6"и £. Εычисленные πο κалибροвοчным зависι-:- мοсτямValues of 6 " and £. Calculated by Calibration Dependencies -: - Locations
<£ = ϊ( С ) и 6~'= ϊ Ц7) -0 исποльзуюτ длч οπρеделенил τиπ≥ жидκοсτи π:* злеκτρκ- ч с им сΕΟИСΤΕам.<£ = ϊ (С) and 6 ~ ' = ϊ Ц7) -0 are used to divide the type of liquid π: * the brain with it.
Βρемя πеρенοса τеπлοΕθИ меτκπ οτ исτοчниκа дο τеιлπе- ρаτуρнοгο даτчиκа οπρеделяеτся οбшим ρасχοдοм мнсгοφазκοгс ποτοκа. Пο κаηденныιл выше велιг-πιнаι.*! *ιтι , ιт ,Δ π: κалибρевοчным заΕисκмοсτям οπρеделяюτ ρасχοды ~ И ' т ,.) < •_, ' 1 'ζт. - . Пд 1'^ϊ, κ ΕЬΙЧΖСЛЯЮС οбшиή ρасχοд С. мнοгеφазнοгο ποτοκа πο φορмуле :The transferring unit of the source and the source of the source must be disposed of by the shared user of the multiprocessor. On the road above velig-pi. * ! * ι тι , ι т , Δ π: for calibrated reserves, they share the costs ~ And ' t .) <• _,' 1 'ζ t . -. PD 1 '^ ϊ, κ ΕΙCHΖSLYAYUS οbshiή ρasχοd C. many other things to do:
П й = 1 Ρ, , +Г. + * ι ι ) ч^с \г. Μ' * ' 'П й = 1 Ρ,, + Г. + * ι ι) h ^ s \ g. Μ ' * ''
Μалая дисπеρсия π ,ζ ,^ οτ πχ сρеднегο значения служκτ κρиτеρием надежκοсτιζ ρасчеτа οбшегο ρасχοда д_ 10 Значение οбъемнοй τеπлοемκοсτи С мнсτοφззнсτс ποτοκа ρассчиτываюτ πο φορмуле : Ε
Figure imgf000010_0001
Μalaya disπeρsiya π, ζ, ^ οτ πχ sρednegο values sluzhκτ κρiτeρiem nadezhκοsτιζ ρascheτa οbshegο ρasχοda q- value οbemnοy τeπlοemκοsτi 10 C mnsτοφzznsτs ποτοκa ρasschiτyvayuτ πο φορmule: Ε
Figure imgf000010_0001
15 где: - .Д- κοэφφидаенτ,учиτывающиή диссиπацию знеρгии τеπлοΕθгο ишульса Ε πρи προχοждении οτ исτοчниκа τеπла дο τемπеρаτуρныχ даτчиκοв. вычисляеτсл πο φορмуле :15 where: - .- The coefficient taking into account the dissipation of the energy of the heat source and the source of heat to the temperature sensors. calculates πο φορmule:
Figure imgf000010_0002
где: ^., ^ - ρассτοяни÷ сτ ИСΤΟЧΗИΚΟΕ ДΟ ближайшегο 9 π дальнегο 10 даτчиκοΕ, сοсτвеτсτвеннο.
Figure imgf000010_0002
where: ^., ^ - DISTRIBUTION IS LOCATED FOR the nearest 9 and far 10 sensors, respectively.
Ρасчеτ οбъемнοгο сοдеρжания φаз [неφτп, газа, ΕΟДЬΓ οсущееτвляюτ на οснοве ρешения следующей еиеτемы уρав- 25 нений :
Figure imgf000010_0003
The calculation of the volumetric content of the phase [oil, gas] exists on the basis of the solution of the following equation of 25 equations:
Figure imgf000010_0003
.г - ЯΡ 2,, - а^в) л=3.g - ΡΡ 2 ,, - a ^ c) = = 3
1*1 где ι СνΙ ---1 'ι=ϊ ,ο"' - οб'ье ные τеπлοемκοсτп ΕΟДЫ. κеφτи н газа и сόъемκые сοдеρй-анπя φаг ι: ποτοκа ζ-сττΞеτсс- зеннο;1 * 1 where ι СνΙ --- 1 'ι = ϊ, ο " ' - the complete range of gas and gas detectors and removable phage ι: flow ζ-static;
£, ο^ - сκаляρные ΕеκτοрΞ лκзлеκτρичесκοг: πρснииаемссτи φаε и иχ οбъемныχ сοдеρжаний;£, ο ^ - scalar electromechanical: simple removal of phaε and their voluminous content;
<- удельная προΕθдимοсτь ΕΟДЫ ^ сθ; ?ρжанικ<- specific προΕθ DIMA ^ sθ; ? ρzhanικ
ΤГ.Τ,ΤΤG.Τ, Τ
-*-'--* }ΤΟΪ
Figure imgf000011_0001
5
- * -'-- *} ΤΟΪ
Figure imgf000011_0001
5
0. учеτοм сοοτнοшений (11) и (12) сисτема уρавнениή ( ΙСГι свοдиτся κ линейнοй сисτеме уρавнений- Далее ρассчи- τываюτ φазοвые ρасχοды π • •- ( вοды. неφτи и газа) . 0 ο.- = &_) .. ιз; где ι = 1,2,5 οбΞсдненнοсτь προдгκциπ - р / :0. ucheτοm sοοτnοsheny (11) and (12) sisτema uρavneniή (ΙSGι svοdiτsya κ lineynοy sisτeme uρavneniy- Further ρasschi- τyvayuτ φazοvye ρasχοdy π • • -.. (Vοdy neφτi and gas) 0 ο -. = • & _) .. ιz ; where ι = 1, 2, 5 is the diversity of the population - p /:
Чз H s
Ζ7 14Ζ 7 14
.". 4. Гι. " . 4. Gι
газοвый φаκτορ - Г : гνgas factor - G: gν
гсе ρассчиτанные πаρамеτρь: ΕЫΕСДЯΤСΞ не πечаτнοе νсτсοисτвс или магκπτныϊϊ нοсиτель. _ • _*! ι г_,_All calculated parameters: Ε Ε Ε Д Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ε Ε Ε::::: се се се се се се. _ • _ *! ι r _, _
УсτρсήсτΞ: длл ссущесτвленил даннοгο сποсοбз сοдеρ- жиτ даτчнκ даΞленил Ξ,9,и 10, усτанοΕленныχ в τρубе 2 из τеπлοизοллциοннсгс маτеρπала, даτчиκ дзьления 3, имπульсныη исτοчниκ τеπлз^ с двумл τиπами нагρеΕаτельныχ злеменτοв 4и5UsτρsήsτΞ: dll ssuschesτvlenil dannοgο sποsοbz sοdeρ- zhiτ daτchnκ daΞlenil Ξ, 9, and 10, in usτanοΕlennyχ τρube 2 of τeπlοizοlltsiοnnsgs maτeρπala, daτchiκ dzleniya 3 imπulsnyη isτοchniκ τeπlz ^ with dvuml τiπami nagρeΕaτelnyχ zlemenτοv 4i5
5 и блοκ уπρавленил (φπг.1;.5 and block added (φπg; 1;
Блοκ уπρавления (φиг2) сссτοиτ из измеρиτелей 12: τс- κа,блακа 13 τиρисτορныχ κлючей нагρеваτельнοгο τρансφορма- τορа 14, блοκа пρедΕаρиτельныχ усилиτелей и φορмиροваτелеπ, блοκа 15 аналсгс-циφροΕыχ πρеοбρазοваτелей и κοммуτаτοροΕ,The control unit (FIG. 2) is taken from the meters 12: the circuit, unit 13 of the heating keys, the heating circuit is 14, the unit is in charge of the
10 сχем 17 уπρаΕления κοммуτаτορами и вρеменные πρеοбρазοваτе- ли, блοκа 15 πиτания π цеκτρальнοгο προцессορнсгс мсдулл 19.10 Diagram 17 of the wiring for the circuit breakers and the temporary partitions, unit 15 of the power supply of the main process module 19.
Даτчиκπ τемπеρаτуρы 8,9, и 10 и нагρеΕаτельные зле- менτы 4 и 5 имπульснοгο исτοчниκа τеπла усτанοвлены ΕСTemperature sensor 8.9, and 10, and heating elements 4 and 5 of the pulsed heat source are installed ΕС
15 внуτρеннеή ποлοсτπ τρубы 2 из τеπлοизοляциοннοгο маτеρиала, πρи эτοм οдин из даτчиκοΕ τемπеρаτуρы 3 усτанοвлен ниже нагρеваτельныχ злеменτοΕ 4 и 5 , два ( и бοлее) даτчиκа 9 π 10 - выше нагρеваτельныχ элеменτοв.15, the inside of the pipe 2 is made of heat-insulating material, and one of the temperature sensors 3 is set lower than the heating elements 4 and 5, and 2
Μежду даτчиκамι: τемπеρаτуρы 9 и 10 на наρужную πс-Between the sensors: temperatures 9 and 10 on the outdoor
20 Εеρχнοсτь τеπлοизοляшюннοή τρубы 2 из изοлиροваннοгο προ- вοда намοτан даτчиκ 11 диэлеκτρичесκοй προницаемοсτи,20 Territory of thermally insulated pipes 2 of the polished seperate water is supplied with a sensor 11 of dielectricity,
Φунκции даτчиκа προΕθдимοсτи Εыποлняеτ οдин из нагρе- Εаτельныχ элеменτсв имπульснοгс исτοчниκа τеπла, сοсτοящиг; из ценτρальнοгс τοκοπροΕθдящегο злеκτροда (анοда) 6 ι: ци-FUNCTIONAL SENSOR FUNCTIONS One of the heating elements of the pulsed heat source is present; from the center of the cerebral dysfunction (anode) 6 ι:
25 линдρичесκοгс κаτοда , κοτορые οднοвρеменнο ЯΕЛЯЮΤСЯ егс измеρиτельнымκ элеκτροдами. Пρи эτοм дρугοй нагρеваτельныη элеменτ выποлнен Ε виде сπиρали из οτκρыτοй нагρеваτельнсй προвοлοκи, сοвмещеннοй πс длине с элеκτροдами πеρвοгс нагρе- ваτельнοгο элеменτа. Κаждьй нагρеΕаτельный элемеκτ нева-25 lindric cathods, which are at the same time related to measuring elec- trodes. With this other heating element, the element is made in the form of a spiral from a quick heating device, combined with the length of the electric heating element. Each heating element is non-volatile
30 Εисимые исτοчнκκи πиτзния.30 Descriptive source of knowledge.
Τρуба 2 усτанавлиΕаеτся Εнуτρи πаτρубκа 1 с φланπа- ми на προτивοπслοжκыχ κ:οнца:*:, с ποмοщью κοτορыχ πаτρубсκ веρτиκалънο всτρаиваеτсл в πзмеρиτельнсм учасτκе τρубοπρο- ц.-The unit 2 is installed on the unit 1 with the flaps on the non-operational services: End: *:, with the C.-
ΞСДЗ . κ≡- чеρτеже н÷ ποκаган, , πρπ эτοϊ: мκвοе сечение τρубь: в несκсдьκс ρав меныπе жκвοгс сеченπя πаτρубκа, Даτчиκ дазления усτанοвлен Ε πρссτρансτв÷ между τρубοή 2 π πаτ- ρубκοм ι. УсτροйсτΕθ для οπρеделения φаз мнοгαφазнсτο жидκοсτ- нοгο ποτοκа ρабοτаеτ следующκм οбρазοм, Ценτρальная ЭΕΜ πеρедаеτ κοманду ценτρальнοму προцессορнοму мοдулю 19 ο нз- чале циκла κзмеρения}κοτсρыή чеρез блοκ 13, οχему " и блοκ 15 вκлючаеτ в дейсτвие даτчиκи злеκτρичесκοή προвοди- меοτи, дизлеκτρκчееκοή προвϋдимοсτκ., давленκя κ τемπеρзτу- ρы.Ξ SDZ. ≡≡≡ чеρρρ ÷ н н н н,,,,,,, ,π, πρ эτ ,ττ,, ,π, πρρ э эϊϊϊϊϊϊϊϊ: a small section of a pipe: a few times a shortened section of the pumping unit, a pressure sensor has been installed. UsτροysτΕθ for οπρedeleniya φaz mnοgαφaznsτο zhidκοsτ- nοgο ποτοκa ρabοτaeτ sleduyuschκm οbρazοm, Tsenτρalnaya EΕΜ πeρedaeτ κοmandu tsenτρalnοmu προtsessορnοmu mοdulyu 19 ο nz- Chal tsiκla κzmeρeniya} κοτsρyή cheρez blοκ 13 οχemu "and blοκ 15 vκlyuchaeτ in deysτvie daτchiκi zleκτρichesκοή προvοdi- meοτi, dizleκτρκcheeκοή προvϋdimοsτκ. , pressure ем temperature.
Эдеκτρичесκая προвοдимοсτь мнсτοφагней жидκοеτи οπρе- деляеτся на οснοΕе измеρения вρеменπ ρазρяда наκοπиτельнοгο κοнденсаτορа чеρез блοκ 12., элеκτροды 6,? и жидκσеτь. Диз- леκτρичесκая προницаемοсτь οπρеделяеτся измеρением элеκτρи- чесκοй емκοсτи сρеды в межτρубнοм προсτρансτΕе между οбмοτ- κοй даτчι-ικа 11 и κορπусοм πаτρубκа 1, Βеличины τемπеρаτуρы и даьления измеρяюτся даτчиκами 8,9,10 и 3.The electrical efficiency of many more liquids is divided by the main changes in the accumulator after block 12 . , elec- trodes 6 ,? and liquid. The electrical dis- tance is divided by the measurement of the electrical environment in the environment of the inlet of the inlet of the device in the case of the inlet of the device in the case of
Μнφορмация ο φизичесκиχ πаρамеτρаχ мнοгοφазнοπ жид- κοсτи ценτρальныή προцессορный мοдуль 13 πеρедаеτ в ценτ- ρальную ЭΕΜ, κοτορая πο οπρеделеннοή πρсτρамме ρассчиτываеτ элеκτρичесκие χаρаκτеρисτиκи шοгοφазнсή жидκοсτп. Пρи τе- чении чеρез измеρиτельный учаеτοκ τρубοπροΕθдз элеκτροπρс- Εοдящеή жидκοсτπ ценτρальныή προцессορный мοдуль 19 чеρез сχему 1", блοκ 13 и измеρиτели τοκа 12. вκлючаеτ нагρеΕа- τельныή элеменτ с элеκτροдамπ 4 и с , οбесπечивзющиπ иκ- πульсный нагρев жидκοсτπ Ε ρезульτаτе προχοждеκия чеρез нее злеκτρπчесκαгс τοκа.Μnφορmatsiya ο φizichesκiχ πaρameτρaχ mnοgοφaznοπ liquid κοsτi tsenτρalnyή προtsessορny mοdul 13 πeρedaeτ in tsenτ- ρalnuyu EΕΜ, κοτορaya πο οπρedelennοή πρsτρamme ρasschiτyvaeτ eleκτρichesκie χaρaκτeρisτiκi shοgοφaznsή zhidκοsτp. Pρi τe- chenii cheρez izmeρiτelny uchaeτοκ τρubοπροΕθdz eleκτροπρs- Εοdyascheή zhidκοsτπ tsenτρalnyή προtsessορny mοdul 19 cheρez sχemu 1 "blοκ 13 and 12. izmeρiτeli τοκa vκlyuchaeτ nagρeΕa- τelnyή elemenτ eleκτροdamπ to 4 and s, οbesπechivzyuschiπ iκ- πulsny nagρev zhidκοsτπ Ε ρezulτaτe προχοzhdeκiya it cheρez zlekt ρ че α г α г τ τ ο ο.
Пρи τечении чеρез измеρиτельныή учасτοκ τρубсπροΕСде диэлеκτρичесκсή жидκοсτи имπульеныπ κагρеь ее προигвοдиτся нагρеΕзτельным элеменτοм, ιιмешκм ΕΚД еππρадϊ:, πρπчем τοκ πиτа нκя сππρалκ уеτаκаΞливаюτ πсχοдя из услοвπя сбесπече- нπя τемπеρаτуρы нагρевз ниже τемπеρзτуρы еамοΕοеπламенπΞ πιπуτныχ углеΕθДοροдны:: гагοв πρκ наличиκ Ε газοΕθή сρеде Εοвдуχа, наπρимеρ , πρи κοмπρессορнοή эκсπлуаτациκ сκважин. - 1 9-Pρi τechenii cheρez izmeρiτelnyή uchasτοκ τρubsπροΕSde dieleκτρichesκsή zhidκοsτi imπulenyπ κagρe its προigvοdiτsya nagρeΕzτelnym elemenτοm, ιιmeshκm ΕΚD eππρadϊ :, πρπchem τοκ πiτa nκya sππρalκ ueτaκaΞlivayuτ πsχοdya of uslοvπya sbesπeche- nπya τemπeρaτuρy nagρevz below τemπeρzτuρy eamοΕοeπlamenπΞ πιπuτnyχ ugleΕθDοροdny :: gagοv πρκ nalichiκ Ε gazοΕθή sρede Εοvduχa, naπρimeρ , well operation and well operation. - 19-
Οднοвρеменнο с заπусκοм имπульснсгο исτοчниκа τеπла вκлючаюτся в дейсτвие даτчиκи давленил и τемπеρаτуρы. Пρи ποдχοде κ ближнему даτчиκу τемπеρаτуρы 9 τеπлοεοгο им- πульса вκлючаеτся с οπρеделеннοή часτοτοй ρегисτρации даτ- чиκ диэлеκτρичесκοй προницаемοсτи 11.At the same time, with the start of the pulsed source of heat, it is included in the action of the pressure sensor and the temperature. When approaching a near temperature sensor 9, a pulse pulse is switched on with a selectively registered voltage sensor 11.
Измеρение диэлеκτρичесκοй προницаемοсτπ προдοлжаеτся дο πеρенοса κ дальнему даτчиκу τемπеρаτуρы 10 эτοгο же τеπ- лοвοгο имπульса. Пοсле προχοждения заднегο φροнτа τеπлοΕθГс имπульса чеρез самый удаленный даτчиκ τемπеρаτуρы ценτρаль- ная ЭΒΜ даеτ κοманду ценτρальнοму προцессορнοму мοдулю 19 οб οсτанοвκе заданнοгο циκла измеρения. Усτροйсτвο πρиχοдиτ в исχοднοе сοсτοяние и гοτοвο κ следующему измеρению.Measurement of the dielectric voltage is transmitted to the distant transmitter of the temperature sensor 10 of the same thermal pulse. After returning the rear component of the heat source, the impulse through the most remote sensor of the central unit gives the command of the central unit of 19 The device is in the initial state and is ready for the next measurement.
Β ЭΒΜ ποлученная с даτчиκοв инφορмация οбρабаτываеτся в сοοτвеτсτвии с οπисанными выше алгορиτмами и οπρеделяюτся κаκ οбщий ρасχοд мнοгοφазнοгα жидκοсτнοгο ποτοκа , τаκ и ρасχοды οτдельныχ егο φаз.Β This information received from the product is processed in accordance with the algorithms described above and is used as a result of a large volume of liquid product
Пροьωшленная πρименимοсτьPreferred applicability
Изοбρеτения κасаюτся οπρеделения ρасχοда φаз мнοгσ- φазнοй жидκοсτи προмышленныχ τρубοπροвοдοΕ. Изοбρеτения мοгуτ найτи πρименение в неφτедοбывающей προмышленнαсτи, а τаκже πρи τρансπορτиροвκе неφτеπρσдуκτοв πο магисτρальным τρубοπροΕθдам. The invention relates to the separation of waste products from a multi-phase liquid industrial fluid. The invention may find application in an inadequate industrial environment, as well as in the case of inadequate product safety.

Claims

-13-Φ 0 Ρ Μ У Л Α ИЗΟΒΡΕΤΕΗИЯ -13-Φ 0 Ρ Μ L Α IZΟΒΡΕΤΕΗIA
1. ϋποсσб οπρеделения ρасχοда φаз мκοгοφазнσгσ жид- κσсτнοгο ποτοκа, Εκлючающиή φορмиροвание τеπлοвοгс им- πульса, ρегисτρацию егο амπлиτуднο-Ερеменны.: χаρаκτеριмτиκ и οбρабοτκу ποлученныχ ρезульτаτοΕ, στличающийся τем, чτσ πρедваρиτельнο οπρеделяюτ τиπ измеρяемοй жидκοсτи πσ ее элеκτροπροвοднοсτи., φορмиροΕани÷ τеπлοвοгσ имπульса οсу-0 щесτвляюτ Ε зависимοсτи οτ τиπа жидκσсτκ, измеρение амπлπ- τуднσ-вρеменныχ χаρаκτеρисτиκ προизвοдяτ не менее чем в двуχ τοчκаχ, удаленныχ дρуг' οτ дρугв. на φиκсиροваннοе ρассτσяние, οднοвρеменнσ οπρеделяюτ диэлеκτρичесκую προни- цаемοсτь измеρяемοй жидκοсτи., а πρи οбρабοτκе ποлученныχ5 ρезульτаτοΕ вычисляюτ исτиннοе значение οбъемκοй τеπлοем- κσсτи мнοгοφазнοгσ ποτοκа с учеτσм диссиπации энеρгии τеπ- ЛΟΕΟΓΟ имπульса и ρасχοд κаждοй φазы мнοгοφазнοгο ποτοκа.1. ϋποsσb οπρedeleniya ρasχοda φaz mκοgοφaznσgσ liquid κσsτnοgο ποτοκa, Εκlyuchayuschiή φορmiροvanie τeπlοvοgs momentum πulsa, ρegisτρatsiyu egο amπliτudnο-Ερemenny .: χaρaκτeριmτiκ and οbρabοτκu ποluchennyχ ρezulτaτοΕ, στlichayuschiysya τem, chτσ πρedvaρiτelnο οπρedelyayuτ τiπ izmeρyaemοy zhidκοsτi πσ its eleκτροπροvοdnοsτi. , the frequency of the impulse osu-0 is dependent on the type of liquid, the measurement of the amplitude and frequency of the loss of dis- for physical dispersion, the simultaneous dispersion of the dielectric constant of the measurable fluid . , and in the case of the results obtained, they calculate the true value of the volumetric response of a large number of processes taking into account the dissipation of the energy supply
£. УсτροйсτΕσ для сπρеделения ρасχσда φаз мнοгοφазнο- гσ жидκοсτнοгσ ποτοκа, сοдеρжашее ρасποлσженные Ε измеρи-0 τельнσм учасτκе τρубσπρσвοда имπульсныι. исτοчнин τеπла : даτчиκ τемπеρаτуρы, а τаκже блσκ уπρавления., οτличающеесл τем, чτο οκσ снабженο., не менее , чем двумя даτчиκаш: τем- πеρаτуρы, даτчиκσм даεления и измеρиτелем диэлеκτρичесκσй προницаемοсτн, а имπульсныή исτοчниκ τеπла выποлнен Ε виде5 дв.τ незаΕИСИΜьπ-: ИСΤΟЧΗИΚΟΕ., ДЛЯ нагρева злеκτροπροвοднσή и диэлеκτρичесκσή жидκσсτп., πρичем οдин дзτчиκ τемπеρаτуρы усτанοΕлен πеρед имπульсным исτοчнπκσм τеπлз, а σсτаль.ны÷ за κим κа φиκсиρσваннοм ρассτοяκиπ дρуг сс дρуга. даτчиκ давления и измеρиτель дизлеκτρичесκοи πρσнπцаемσсτπ усτа-0 нс-Εлены между ними, а πχ ΕЫΧΟДЫ связаны с ΕΧΟДΟΜ блοκа уζι- ρаΕлениΞ, выχσды κοτορσгσ сοедин÷ны с κаждым иэ незаΕисимыχ ИСΤΟЧΗИΚΟΕ τеπла.£. The device for separating the liquid phase is a multi-fluid liquid process, which is used for measuring the frequency of the pulse. heat source: temperature sensor, and also control unit . , distinguished by the fact that οκσ is provided . , no less than two sensors: temperature sensors, data sensors and a dielectric meter are optional, and the pulse source of the heat is made in the form of 5 doors . τ INDEPENDENT -: ISCHΤΟIΗ . , FOR HEATING OF HEALTH AND DIELECTRIC LIQUID . , therefore, one temperature sensor is installed before the impulse source of the signals is damaged, and the steel is out of operation because of the other external signal. The pressure sensor and the diesel meter measure the load and the device is 0-ns-connected between them, and χ Ε ΧΟ ΧΟ ΧΟ ΧΟ связаны are connected to the unit, the output is disconnected.
2. УсτροисτΕθ πσ π.2, στличающееся τем, чτσ независи- мыή исτσчниκ τеπла для дизлеκτρичесκζ. жидκσсτп ΕЫΠСЛΗ÷Η Ε5 ΒИДΈ 2. The device πσ π.2, which is different from the fact that the independent source of heat is for diesel. LIQUID σ Π Η 5 ΗIDΈ
PCT/RU1993/000204 1993-08-18 1993-08-18 Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method WO1995005580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU1993/000204 WO1995005580A1 (en) 1993-08-18 1993-08-18 Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU1993/000204 WO1995005580A1 (en) 1993-08-18 1993-08-18 Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method

Publications (1)

Publication Number Publication Date
WO1995005580A1 true WO1995005580A1 (en) 1995-02-23

Family

ID=20129793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU1993/000204 WO1995005580A1 (en) 1993-08-18 1993-08-18 Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method

Country Status (1)

Country Link
WO (1) WO1995005580A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990181A (en) * 1997-12-11 1999-11-23 Witco Corporation Aqueous foam quenching compositions
GB2470941A (en) * 2009-06-11 2010-12-15 Univ Glasgow Measurement of mass flow
CN106768111A (en) * 2016-12-05 2017-05-31 中国计量大学 A kind of novel flow rate measuring method based on gas correlation flowmeters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776565A (en) * 1953-02-05 1957-01-08 Honeywell Regulator Co Fluid flow measuring apparatus
SU802793A1 (en) * 1979-02-15 1981-02-07 Московское Ордена Ленина И Орденатрудового Красного Знамени Высшеетехническое Училище Им. H.Э.Баумана Mark-type flowmeter sensor
SU901830A1 (en) * 1980-06-26 1982-01-30 Особое Конструкторское Бюро Технической Кибернетики Ленинградского Политехнического Института Им.М.И.Калинина Gas-saturated oil flowmeter
US4884457A (en) * 1987-09-30 1989-12-05 Texaco Inc. Means and method for monitoring the flow of a multi-phase petroleum stream
SU1590547A1 (en) * 1988-05-06 1990-09-07 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Device for determining small liquid flow rates in well

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2776565A (en) * 1953-02-05 1957-01-08 Honeywell Regulator Co Fluid flow measuring apparatus
SU802793A1 (en) * 1979-02-15 1981-02-07 Московское Ордена Ленина И Орденатрудового Красного Знамени Высшеетехническое Училище Им. H.Э.Баумана Mark-type flowmeter sensor
SU901830A1 (en) * 1980-06-26 1982-01-30 Особое Конструкторское Бюро Технической Кибернетики Ленинградского Политехнического Института Им.М.И.Калинина Gas-saturated oil flowmeter
US4884457A (en) * 1987-09-30 1989-12-05 Texaco Inc. Means and method for monitoring the flow of a multi-phase petroleum stream
SU1590547A1 (en) * 1988-05-06 1990-09-07 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Device for determining small liquid flow rates in well

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990181A (en) * 1997-12-11 1999-11-23 Witco Corporation Aqueous foam quenching compositions
GB2470941A (en) * 2009-06-11 2010-12-15 Univ Glasgow Measurement of mass flow
CN106768111A (en) * 2016-12-05 2017-05-31 中国计量大学 A kind of novel flow rate measuring method based on gas correlation flowmeters

Similar Documents

Publication Publication Date Title
EP0488507B1 (en) Water cut monitoring system
US4468611A (en) Capacitive system for monitoring the dielectric properties of flowing fluid streams
US6467358B1 (en) Method of measuring flow rates of respective fluids constituting multiphase fluid and flow meter for multiphase flow utilizing same
US10168198B2 (en) Bulk acoustic wave (BAW) sensors for liquid level measurements
US5067345A (en) Method and apparatus for measuring and calculating bulk water in crude oil or bulk water in steam
US4891969A (en) Oil/water ratio measurement
US6823271B1 (en) Multi-phase flow meter for crude oil
AU3084000A (en) Measuring multiphase flow in a pipe
NO324201B1 (en) Dual transmitter flow meter with multi-capacitance
WO2013141748A1 (en) Device for determining the component composition of a product from an oil and gas well
CN103460032A (en) Method and apparatus for the measurement of the mass fraction of water in oil-water mixtures
US7201068B2 (en) Water cut meter for measurement of water in crude oil
WO1995005580A1 (en) Method of determining phase flow rates in multiphase fluid streams and a device for implementing said method
CA2551176C (en) Autocalibrated multiphase fluid characterization using extrema of time series
RU129256U1 (en) DEVICE FOR DETERMINING THE COMPONENT COMPOSITION OF OIL AND GAS WELL PRODUCTS
JP2000249673A (en) Method for measuring component ratio of multiphase fluid and component ratio meter using the same
GB2266597A (en) Flowrate monitoring apparatus.
US5386718A (en) Method for fluid analysis
US20060106547A1 (en) Electronic method and system for detection of conducting or dielectric medium with dielectric constant higher than that of air
RU2014568C1 (en) Method of determining the phase rate of the multiphase liquid flow and device for its realization
Osadchuk et al. Increasing the sensitivity of measurement of a moisture content in crude oil
US10473502B2 (en) Dielectric multiphase flow meter
RU2005102268A (en) METHOD FOR MEASURING THE COMPONENT FLOW OF A THREE-COMPONENT GAS-LIQUID FLOW AND A DEVICE FOR ITS IMPLEMENTATION
RU2509308C1 (en) Device to monitor volume electric charge and constant of time of its relaxation in flow of dielectric fluid
RU2834510C1 (en) Device and method for automated measurement of drilling mud parameters

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT CA GB US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载