WO1995005471A2 - Method for stable transformation of plants - Google Patents
Method for stable transformation of plants Download PDFInfo
- Publication number
- WO1995005471A2 WO1995005471A2 PCT/EP1994/002566 EP9402566W WO9505471A2 WO 1995005471 A2 WO1995005471 A2 WO 1995005471A2 EP 9402566 W EP9402566 W EP 9402566W WO 9505471 A2 WO9505471 A2 WO 9505471A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dna
- vird2
- protein
- sequence
- seq
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 91
- 230000009466 transformation Effects 0.000 title claims description 30
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 204
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 claims abstract description 15
- 108020004414 DNA Proteins 0.000 claims description 170
- 241000196324 Embryophyta Species 0.000 claims description 106
- 210000004027 cell Anatomy 0.000 claims description 54
- 238000003776 cleavage reaction Methods 0.000 claims description 54
- 239000013612 plasmid Substances 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 44
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 claims description 40
- 230000007017 scission Effects 0.000 claims description 39
- 230000014509 gene expression Effects 0.000 claims description 37
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 claims description 33
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 claims description 28
- 102000053602 DNA Human genes 0.000 claims description 25
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 claims description 20
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 claims description 20
- 229940045145 uridine Drugs 0.000 claims description 20
- 239000002773 nucleotide Substances 0.000 claims description 19
- 125000003729 nucleotide group Chemical group 0.000 claims description 19
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 claims description 18
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 claims description 17
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 claims description 17
- 238000005119 centrifugation Methods 0.000 claims description 17
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 claims description 17
- 238000000338 in vitro Methods 0.000 claims description 17
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 claims description 16
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 claims description 16
- 229940029575 guanosine Drugs 0.000 claims description 16
- 239000002126 C01EB10 - Adenosine Substances 0.000 claims description 14
- 229960005305 adenosine Drugs 0.000 claims description 14
- 108020004682 Single-Stranded DNA Proteins 0.000 claims description 13
- 108020004511 Recombinant DNA Proteins 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 240000008042 Zea mays Species 0.000 claims description 11
- 239000006228 supernatant Substances 0.000 claims description 10
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 claims description 9
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 9
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 9
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 claims description 9
- 235000009973 maize Nutrition 0.000 claims description 9
- -1 sulfonylureas Chemical class 0.000 claims description 9
- 229940104230 thymidine Drugs 0.000 claims description 9
- 238000000502 dialysis Methods 0.000 claims description 8
- 108091026890 Coding region Proteins 0.000 claims description 7
- 238000004520 electroporation Methods 0.000 claims description 7
- 244000052769 pathogen Species 0.000 claims description 7
- 210000001938 protoplast Anatomy 0.000 claims description 7
- 238000012546 transfer Methods 0.000 claims description 7
- 230000001131 transforming effect Effects 0.000 claims description 7
- 108020004705 Codon Proteins 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 6
- 241000233866 Fungi Species 0.000 claims description 5
- 238000001042 affinity chromatography Methods 0.000 claims description 5
- 239000007857 degradation product Substances 0.000 claims description 5
- 238000002523 gelfiltration Methods 0.000 claims description 5
- 238000000703 high-speed centrifugation Methods 0.000 claims description 5
- 230000001965 increasing effect Effects 0.000 claims description 5
- 238000004255 ion exchange chromatography Methods 0.000 claims description 5
- 241000209140 Triticum Species 0.000 claims description 4
- 235000021307 Triticum Nutrition 0.000 claims description 4
- 241000700605 Viruses Species 0.000 claims description 4
- 230000002411 adverse Effects 0.000 claims description 4
- 238000000520 microinjection Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000001542 size-exclusion chromatography Methods 0.000 claims description 4
- 238000005063 solubilization Methods 0.000 claims description 4
- 230000007928 solubilization Effects 0.000 claims description 4
- 240000005979 Hordeum vulgare Species 0.000 claims description 3
- 101710163270 Nuclease Proteins 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 230000003032 phytopathogenic effect Effects 0.000 claims description 3
- 238000002741 site-directed mutagenesis Methods 0.000 claims description 3
- 230000003612 virological effect Effects 0.000 claims description 3
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical class O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 claims description 2
- 241000894006 Bacteria Species 0.000 claims description 2
- 102000052510 DNA-Binding Proteins Human genes 0.000 claims description 2
- 101710096438 DNA-binding protein Proteins 0.000 claims description 2
- 239000005562 Glyphosate Substances 0.000 claims description 2
- 229940100389 Sulfonylurea Drugs 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 claims description 2
- GINJFDRNADDBIN-FXQIFTODSA-N bilanafos Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCP(C)(O)=O GINJFDRNADDBIN-FXQIFTODSA-N 0.000 claims description 2
- 239000003139 biocide Substances 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 claims description 2
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 claims description 2
- 229940097068 glyphosate Drugs 0.000 claims description 2
- 239000004009 herbicide Substances 0.000 claims description 2
- 239000002917 insecticide Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 239000002689 soil Substances 0.000 claims description 2
- 150000003918 triazines Chemical class 0.000 claims description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 claims 2
- 101150079413 virD2 gene Proteins 0.000 claims 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 82
- 235000018102 proteins Nutrition 0.000 description 78
- 239000000872 buffer Substances 0.000 description 49
- 102000039446 nucleic acids Human genes 0.000 description 41
- 108020004707 nucleic acids Proteins 0.000 description 41
- 150000007523 nucleic acids Chemical class 0.000 description 41
- 239000011780 sodium chloride Substances 0.000 description 41
- 239000012634 fragment Substances 0.000 description 36
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 30
- 108091028043 Nucleic acid sequence Proteins 0.000 description 28
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 28
- 108091034117 Oligonucleotide Proteins 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 21
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 16
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 14
- 239000004202 carbamide Substances 0.000 description 14
- 239000000499 gel Substances 0.000 description 14
- 239000013598 vector Substances 0.000 description 14
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 13
- 230000009261 transgenic effect Effects 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 241000588724 Escherichia coli Species 0.000 description 11
- 239000008188 pellet Substances 0.000 description 11
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 10
- 239000007795 chemical reaction product Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 235000010335 lysozyme Nutrition 0.000 description 10
- 102000016943 Muramidase Human genes 0.000 description 9
- 108010014251 Muramidase Proteins 0.000 description 9
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 9
- 229960000274 lysozyme Drugs 0.000 description 9
- 239000004325 lysozyme Substances 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 230000001105 regulatory effect Effects 0.000 description 9
- 238000010367 cloning Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 8
- 108090000765 processed proteins & peptides Proteins 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 238000013518 transcription Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 238000001962 electrophoresis Methods 0.000 description 7
- 238000010369 molecular cloning Methods 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 238000012163 sequencing technique Methods 0.000 description 7
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 108010022172 Chitinases Proteins 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 244000068988 Glycine max Species 0.000 description 6
- 235000010469 Glycine max Nutrition 0.000 description 6
- 241000238631 Hexapoda Species 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 6
- 239000012460 protein solution Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 102000012286 Chitinases Human genes 0.000 description 5
- 244000061176 Nicotiana tabacum Species 0.000 description 5
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 230000029087 digestion Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000011002 quantification Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010042407 Endonucleases Proteins 0.000 description 4
- 101000714491 Escherichia phage T7 Major capsid protein Proteins 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 229920002684 Sepharose Polymers 0.000 description 4
- 108700005078 Synthetic Genes Proteins 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 230000002101 lytic effect Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000011535 reaction buffer Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 3
- 244000291564 Allium cepa Species 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 102000014914 Carrier Proteins Human genes 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 108091008324 binding proteins Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 235000011089 carbon dioxide Nutrition 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000000287 crude extract Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 101150054900 gus gene Proteins 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 210000003000 inclusion body Anatomy 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 239000002198 insoluble material Substances 0.000 description 3
- 239000012139 lysis buffer Substances 0.000 description 3
- 230000037230 mobility Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 241000193388 Bacillus thuringiensis Species 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 2
- 108010002069 Defensins Proteins 0.000 description 2
- 102000000541 Defensins Human genes 0.000 description 2
- 102100031780 Endonuclease Human genes 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 108010067770 Endopeptidase K Proteins 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 101710096342 Pathogenesis-related protein Proteins 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 2
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940097012 bacillus thuringiensis Drugs 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 229930002868 chlorophyll a Natural products 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 229930002869 chlorophyll b Natural products 0.000 description 2
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101150113864 pat gene Proteins 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- SSOLNOMRVKKSON-UHFFFAOYSA-N proguanil Chemical compound CC(C)\N=C(/N)N=C(N)NC1=CC=C(Cl)C=C1 SSOLNOMRVKKSON-UHFFFAOYSA-N 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229940063673 spermidine Drugs 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- OAKPWEUQDVLTCN-NKWVEPMBSA-N 2',3'-Dideoxyadenosine-5-triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO[P@@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)O1 OAKPWEUQDVLTCN-NKWVEPMBSA-N 0.000 description 1
- NKDFYOWSKOHCCO-YPVLXUMRSA-N 20-hydroxyecdysone Chemical compound C1[C@@H](O)[C@@H](O)C[C@]2(C)[C@@H](CC[C@@]3([C@@H]([C@@](C)(O)[C@H](O)CCC(C)(O)C)CC[C@]33O)C)C3=CC(=O)[C@@H]21 NKDFYOWSKOHCCO-YPVLXUMRSA-N 0.000 description 1
- 108020005029 5' Flanking Region Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 235000005255 Allium cepa Nutrition 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 101710120016 Basic peroxidase Proteins 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 101000981883 Brevibacillus parabrevis ATP-dependent tryptophan/phenylalanine/tyrosine adenylase Proteins 0.000 description 1
- 101000981889 Brevibacillus parabrevis Linear gramicidin-PCP reductase Proteins 0.000 description 1
- 241000209200 Bromus Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108050004290 Cecropin Proteins 0.000 description 1
- 241001157813 Cercospora Species 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 101000906861 Chondromyces crocatus ATP-dependent tyrosine adenylase Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 101000760085 Daucus carota 21 kDa protein Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 241000701533 Escherichia virus T4 Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 241000209219 Hordeum Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 101150062179 II gene Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 1
- 101710184243 Intestinal-type alkaline phosphatase Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 108091036060 Linker DNA Proteins 0.000 description 1
- 241000209082 Lolium Species 0.000 description 1
- 101150047731 MTDH gene Proteins 0.000 description 1
- 108060003100 Magainin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 101001068537 Nicotiana tabacum Pathogenesis-related protein 1A Proteins 0.000 description 1
- 101001068518 Nicotiana tabacum Pathogenesis-related protein 1C Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- UOZODPSAJZTQNH-UHFFFAOYSA-N Paromomycin II Natural products NC1C(O)C(O)C(CN)OC1OC1C(O)C(OC2C(C(N)CC(N)C2O)OC2C(C(O)C(O)C(CO)O2)N)OC1CO UOZODPSAJZTQNH-UHFFFAOYSA-N 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 102000003867 Phospholipid Transfer Proteins Human genes 0.000 description 1
- 108090000216 Phospholipid Transfer Proteins Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- 108010053763 Pyruvate Carboxylase Proteins 0.000 description 1
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102100040756 Rhodopsin Human genes 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000209051 Saccharum Species 0.000 description 1
- 241000209056 Secale Species 0.000 description 1
- 241000228160 Secale cereale x Triticum aestivum Species 0.000 description 1
- 235000005775 Setaria Nutrition 0.000 description 1
- 241000232088 Setaria <nematode> Species 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000254105 Tenebrio Species 0.000 description 1
- 108010076830 Thionins Proteins 0.000 description 1
- 108050006955 Tissue-type plasminogen activator Proteins 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 241000221561 Ustilaginales Species 0.000 description 1
- 235000010726 Vigna sinensis Nutrition 0.000 description 1
- 244000042314 Vigna unguiculata Species 0.000 description 1
- 241000209149 Zea Species 0.000 description 1
- 108010055615 Zein Proteins 0.000 description 1
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001775 anti-pathogenic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009699 differential effect Effects 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000002635 electroconvulsive therapy Methods 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002211 flavins Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 108010002685 hygromycin-B kinase Proteins 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 108700003621 insect attacin antibacterial Proteins 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- LCCNCVORNKJIRZ-UHFFFAOYSA-N parathion Chemical compound CCOP(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 LCCNCVORNKJIRZ-UHFFFAOYSA-N 0.000 description 1
- 229960001914 paromomycin Drugs 0.000 description 1
- UOZODPSAJZTQNH-LSWIJEOBSA-N paromomycin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO UOZODPSAJZTQNH-LSWIJEOBSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 244000000003 plant pathogen Species 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108060006613 prolamin Proteins 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- FHHPUSMSKHSNKW-SMOYURAASA-M sodium deoxycholate Chemical compound [Na+].C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 FHHPUSMSKHSNKW-SMOYURAASA-M 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000011537 solubilization buffer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- JLEXUIVKURIPFI-UHFFFAOYSA-N tris phosphate Chemical compound OP(O)(O)=O.OCC(N)(CO)CO JLEXUIVKURIPFI-UHFFFAOYSA-N 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 239000003744 tubulin modulator Substances 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8206—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
Definitions
- the said substrate involves not the whole but only part of the T-DNA border sequence, it is to be ensured that the said partial sequence still comprises those parts of the T-DNA border sequence that encompasses the recognition and cleavage site of the VirD2 protein.
- the chimeric recombinant DNA construct as described above is preferably a single stranded DNA construct. Also comprised within the scope of the invention is a double-standed molecule with a single-stranded overhang which is a substrate for VirD2 or a chimeric recombinant DNA construct negatively supercoiled (form I) containing border sequences as the preferred substrate for NirDl/VirD2 catalyzed cleavage.
- the said VirD2 protein Upon in vitro cleavage of the T-D ⁇ A border sequence or of functional parts thereof, using the VirD2 protein, the said VirD2 protein remains covalently attached to the cleaved D ⁇ A forming the D ⁇ A/protein complex according to the invention.
- the present invention thus further relates to a method of preparing a D ⁇ A/protein complex as described before, comprising:
- step (b) in vitro cleaving of the D ⁇ A substrate prepared according to step (a) by means of VirD2 protein, which may be accompanied by further Nir proteins such as, for example VirDl and/or VirE2 and/or any other D ⁇ A binding protein, which is able to protect the D ⁇ A from nuclease attack.
- VirD2 protein which may be accompanied by further Nir proteins such as, for example VirDl and/or VirE2 and/or any other D ⁇ A binding protein, which is able to protect the D ⁇ A from nuclease attack.
- the substrate to be used in the VirD2 cleavage reaction may contain one or more T-D ⁇ A border sequences or one or more functional parts of T-D ⁇ A border sequences, which may be of the same or of different specificities. This means, that the substrate may involve one or more D ⁇ A sequences with left border specificity or one or more D ⁇ A sequences with right border specificity or combinations of D ⁇ A sequences with left and right border specificities.
- the substrate may involve further D ⁇ A sequences such as, for example, overdrive sequences. - 1
- the present invention is in the field of plant genetic engineering.
- it relates to a method for producing stably transformed plant material using a specifically designed DNA/protein complex.
- the invention further relates to the said DNA protein complex itself and to the plant material transformed therewith.
- the Agrobacteriwn plant transformation system is widely used for the stable transformation of higher plants.
- genes to be transferred are carried by the T-DNA, a well-defined region of the Agrobacteriwn Ti plasmid.
- the Ti plasmid also contains a virulence (vir) region, which encodes proteins involved in the transformation via Agrobacteriwn of plant cells. At least one of these proteins, NirD2 is involved in targeting to the plant nucleus and integration into the plant genome [Tinland et al, Proc ⁇ atl Acad Sci USA 89: 7442-7446, 1992; Mayerhofer et al, EMBO J 10: 697-704 (1991)].
- the main object of the invention to provide a method for producing stably transformed plant material, including phenotypically normal looking and preferably fertile plants, which method does not involve Agrobacteriwn transformation.
- a specifically adapted D ⁇ A/protein complex comprising a chimeric recombinant D ⁇ A, which may comprise, for example, an expressible D ⁇ A operably linked to suitable plant expression signals involving promoter and termination sequences and covalently associated therewith a VirD2 protein.
- This D ⁇ A/protein complex may be obained by first providing a recombinant D ⁇ A construct that comprises in operable linkage to the elements already mentioned above at least one T-D ⁇ A border sequence or functional parts thereof as a substrate in the VirD2
- DNA substrates comprising either a left or a right border element or functional parts thereof or a combination of left and right border elements or of functional parts thereof, that in addition may be accompanied by one or more overdrive sequences.
- substrates comprising at least two T-DNA border elements of the same specificity, that is right or left border elements that in addition may be accompanied by one or more overdrive sequences.
- the DNA substrates according to the invention preferably involve at least those parts obtainable from T-DNA border sequences that comprise in addition to the cleavage site at least the following core sequence according to SEQ ID NO 1:
- K being either guanosine or thymidine/uridine; but more preferably the core sequence according to SEQ ID NO 2:
- the D ⁇ A substrate involves a D ⁇ A sequence that comprises between 6 and approximately 50 nucleotides, preferably between 10 and approximately 40 nucleotides and which can be described by the following general formula according to SEQ ID NO 3:
- N may be any of the nucleotides selected from the group consisting of adenosine, guanosine, cytidine and tymidine or uridine
- K is either guanosine or thymidine/uridine
- n is an integer between 0 and 42, preferably between 0 and 25, more preferably between 0 and 14
- m is an integer between 2 and 10, preferably between 3 and 10, more preferably between 4 and 8 and wherein the wedge indicates the position of the cleavage site.
- the DNA substrate involves a DNA sequence that comprises between 10 and approximately 50 nucleotides, but preferably between 14 and 29 nucleotides and which can be described by the following general formula according to SEQ ID NO 5:
- N may be any of the nucleotides selected from the group consisting of adenosine, guanosine, cytidine or thymidine/uridine; B is guanosine or cytidine or tymidine/uridine; H is adenosine or cytidine or tymidine/uridine; M is adenosine or cytidine; R is guanosine or adenosine; Y is tymidine/uridine or cytidine; K is either guanosine or thymidine/uridine; and n is an integer between 0 and 40, but preferably between 2 and 17; and m is an integer between 2 and 10, preferably between 3 and 10, more preferably between 4 and 8 and wherein the wedge indicates the position of the cleavage site.
- DNA substrate involving a DNA sequence that comprises between 17 and 25 nucleotides and which can be described by the following general formula according to SEQ ID NO 6:
- N may be any of the nucleotides selected from the group consisting of adenosine, guanosine, cytidine and thymidine/uridine; B is guanosine or cytidine or tymidine/uridine; H is adenosine or cytidine or tymidine/uridine; M is adenosine or cytidine; R is guanosine or adenosine; Y is tymidine/uridine or cytidine; and n is an integer between 0 and 12, preferably between 0 and 8; including any DNA sequences that are structurally and/or functionally homologue thereto.
- substantially sequence homology means close structural relationship between sequences of nucleotides.
- substantially homologous DNA sequences may be 60 % homologous, preferably 80 % and most preferably 90 % or 95 % homologous, or more.
- Homology also includes a relationship wherein one or several subsequences of nucleotides or amino acids are missing, or subsequences with additional nucleotides or amino acids are interdispersed.
- the transformation frequency and also the quality of the integrated DNA can be improved considerably. This is especially true with regard to stable transformation events, which occur more frequently as compared to conventional, non-protein associated DNA constructs.
- the present invention thus further comprises a method of transforming plant material comprising
- step (b) in vitro cleaving of the DNA substrate prepared according to step (a) by means of VirD2 protein, which may be accompanied by further Vir proteins such as, for example VirDl and/or VirE2 and/or any other DNA binding protein, which is able to protect the DNA from nuclease attack;
- the DNA/VirD2 protein complex according to the invention may be accompanied by further Vir proteins, [which, for example, are capable of catalyzing physical changes in the complex] such as, for example, VirE2, which is known to bind to ssDNA, and/or VirDl.
- VirE2 can be purified by methods known in the art such as those described in Christie et al [J Bacteriol 170(6): 2659-2667 (1988)].
- the purificatiion of the VirDl protein can be achieved according to the method provided in the following examples.
- VirD2 protein and optionally further Vir proteins that may be involved in the cleavage reaction, in amounts and in a purity that is suitable for carrying out the method according to the invention. This can be achieved by overproducing the Vir proteins in a suitable host organism and purifying them in a multiple-step procedure.
- the main object of the present invention is a DNA/protein complex comprising operably linked to an expressible DNA at least one T-DNA border sequence or functional parts thereof and covalently associated therewith a VirD2 protein, which complex can be suitably used in a process for transforming DNA into plant material.
- the DNA/VirD2 protein complex may contain non-covalently associated further Vir proteins such as, for example, VirDl and/or VirE2.
- the DNA to be used in the process according to the invention for transforming plant material may be either of homologous or heterologous origin with respect to the plant material involved or it may be of synthetic origin or both.
- the coding DNA sequence can be constructed exclusively from genomic DNA, from cDNA or from synthetic DNA. Another possibility is the construction of a hybrid DNA sequence consisting of both cDNA and genomic DNA and/or synthetic DNA.
- the cDNA may originate from the same gene as the genomic DNA, or alternatively both the cDNA and the genomic DNA may originate from different genes. In any case, however, both the genomic DNA and/or the cDNA may each be prepared individually from the same or from different genes.
- Synthetic DNA is to be understood as comprising DNA sequences that have been been prepared entirely or at least partially by chemical means. Synthetic DNA sequences may be suitably used, for example, for modifying native DNA sequences in terms of codon usage, expression efficiency, etc. Examples of synthetic genes include the PAT gene and the endotoxin genes of Bacillus thuringiensis.
- DNA sequence to be transformed into the recipient plant material contains portions of more than one gene, these genes may originate from one and the same organism, from several organisms that belong to more than one strain, one variety or one species of the same genus, or from organisms that belong to more than one genus of the same or of another taxonomic unit (kingdom).
- these genes may originate from one and the same organism, from several organisms that belong to more than one strain, one variety or one species of the same genus, or from organisms that belong to more than one genus of the same or of another taxonomic unit (kingdom).
- Chimaeric recombinant DNA molecules that comprise an expressible DNA, but especially a structural gene, preferably a heterologous structural gene operably linked with expression signals active in plant cells, such as promoter and termination sequences, as well as, optionally, with further coding and/or non-coding sequences of the 5' and/or 3' region may also be preferably used within the transformation process as part of the DNA/protein complex according to the present invention.
- Especially suitable for use in the process according to the invention are all those structural genes which upon expression lead to a protective effect in the transformed plant cells, also in the tissues developing therefrom and especially in the regenerated plants, for example increased resistance to pathogens (for example to phytopathogenic fungi, bacteria, viruses, etc.); resistance to chemicals [for example to herbicides (e.g. triazines, sulfonylureas, imidazolinones, triazole pyrimidines, bialaphos, glyphosate, etc.), insecticides or other biocides]; resistance to adverse environmental factors (for example to heat, cold, wind, adverse soil conditions, moisture, dryness, etc.).
- pathogens for example to phytopathogenic fungi, bacteria, viruses, etc.
- chemicals for example to herbicides (e.g. triazines, sulfonylureas, imidazolinones, triazole pyrimidines, bialaphos, glyphosate,
- Resistance to insects can be conferred, for example, by a gene coding for a polypeptide that is toxic to insects and/or their larvae, for example the crystalline protein of Bacillus thuringiensis [B.t.].
- B.t. Bacillus thuringiensis
- synthetic B.t. genes such as those disclosed in, for example, Koziel M.G. et al, Bio Technology U: 194-200 (1993).
- a second class of proteins mediating resistance to insects comprises the protease inhibitors.
- Protease inhibitors are a normal constituent of plant storage structures and are therefore normally located in vacuoles or protein bodies. It has been demonstrated that a Bowman-Birk protease inhibitor isolated from soybeans and purified inhibits the intestinal protease of Tenebrio larvae. The gene that codes for the trypsin inhibitor from the cowpea is described in Hilder et al (1987).
- insects for example, have a cuticular skeleton in which chitin micelles in lamellar layers are embedded in a base substance.
- a great many phytopathogenic fungi also contain chitin as an integral part of their hypha and spore structures, for example Basidiomycetes (smut and rust fungi), Ascomycetes and Fungi imperfecti (including Alter na ⁇ a and Bipolar is, Exerophilum turcicum, Colletotricum, Gleocercospora and Cercospora).
- Chitinase is capable of inhibiting the mycelial growth of certain pathogens both in vitro and in vivo.
- a plant organ or tissue that is capable of expressing chitinase constitutively or in response to the penetration of a pathogen can therefore protect itself from attack by a large number of different fungi.
- a further gene, which encodes an enzyme which presumably plays a central role in the plant's defence mechanism against pathogens is the ⁇ -l,3-glucanase gene, that may thus also be used for protecting plants against a fungal attack, alone or in combination with a chitinase gene.
- a further class of genes that may be used within the scope ot this invention are those coding for the so-called lyric peptides. These are natural or synthetic peptides having anti-pathogenic activity which are capable of penetrating, lysing or otherwise damaging the cell membrane of pathogens.
- lytic peptides that may be used within the scope of the present invention are known both from animal sources [including insects] and from plant and microbial sources and include, for example, the defensins, cecropins, thionins and mellitins of mammals, and the defensins, magainins, attacins, dipterins, sapecins, caerulins and xenopsins of insects, and hybrids thereof.
- the amino acid sequences of various lytic peptides are shown in the following publications: WO 89/11291; WO 86/04356; WO 88/05826; US 4,810,777; WO 89/04371.
- Lytic peptides in the broadest sense of the term are also to be understood as being compounds whose ability to penetrate, lyse or damage cell membranes is based on enzymatic activity, for example lysozymes and phospholipases.
- lytic peptides especially being suitable for the latter purpose, in conjunction with the auxiliaries and/or additives customarily used for this purpose.
- genes that may be used in the scope of the present invention are those coding for phospholipid transfer proteins disclosed, for example, in WO 92/20801.
- a further class of genes that may be used within the scope of the present invention comprises genes which encode pathogenesis-related proteins [PRPs] such as PR-1A, PR-IB, PR-1C, PR-R major, PR-R minor, PR-P, PR-Q, PR-2, PR-2 ⁇ PR-2", PR-N, PR-O, PR-O', PR-4, SAR8.2a-e, cucumber chitinase/lysozyme, cucumber basic peroxidase, tobacco basic glucanase and tobacco basic chitinase/lysozyme, tobacco acidic chitinase/lysozyme.
- PRPs pathogenesis-related proteins
- the DNA sequence according to the invention can also be used for the production of desirable and useful compounds in the plant cell as such or as part of a unit of higher organisation, for example a tissue, callus, organ, embryo or a whole plant.
- Genes that may also be used within the scope of the present invention include, for example, those which lead to increased or decreased formation of reserve or stored substances in leaves, seeds, tubers, roots, stems, etc. or in the protein bodies of seeds.
- the desirable substances that can be produced by transgenic plants include, for example, proteins, carbohydrates, amino acids, vitamins, alkaloids, flavins, perfumes, colourings, fats, etc..
- DNA sequence according to the invention may also be associated with the DNA sequence according to the invention structural genes that code for pharmaceutically acceptable active substances, for example hormones, immunomodulators and other physiologically active substances.
- genes that can come into consideration within the scope of this invention therefore include, but are not limited to, for example, plant-specific genes, such as the zein gene from maize, the avenin gene from oats, the glutelin gene from rice, etc., mammal-specific genes, such as the insulin gene, the somatostatin gene, the interleukin genes, the t-PA gene, etc., or genes of microbial origin, such as the NPT II gene, etc. and synthetic genes, such as the insulin gene, etc..
- plant-specific genes such as the zein gene from maize, the avenin gene from oats, the glutelin gene from rice, etc.
- mammal-specific genes such as the insulin gene, the somatostatin gene, the interleukin genes, the t-PA gene, etc.
- genes of microbial origin such as the NPT II gene, etc.
- synthetic genes such as the insulin gene, etc.
- genes that code for a useful and desirable property within the scope of this invention it is also possible to use genes that have been modified previously in a specific manner using chemical or genetic engineering methods.
- the broad concept of the present invention also includes genes that are produced entirely or patially by chemical synthesis. Genes or DNA sequences that may be used within the scope of the present invention are therefore both homologous and heterologous gene(s) or DNA and also synthetic gene(s) or DNA according to the definition given within the scope of the present invention.
- the insulin gene may be mentioned at this point as an example of a synthetic gene.
- the coding gene sequences first to be linked in operable manner to expression sequences capable of functioning in plant cells.
- hybrid gene constructions within the scope of the present invention therefore comprise, in addition to the DNA sequence according to the invention, one or more struc ⁇ tural gene(s) and, in operable linkage therewith, expression signals which include both promoter and terminator sequences and other regulatory sequences of the 3' and 5' untranslated regions.
- Any promoter and any terminator capable of bringing about an induction of the expression of a coding DNA sequence may be used as a constituent of the hybrid gene sequence.
- the said expression signals may promote continuous and stable expression of the gene.
- expression signals originating from genes of plants or plant viruses are those of the Cauli ⁇ flower Mosaic Virus genes (CaMV) or homologous DNA sequences that still have the characteristic properties of the mentioned expression signals.
- bacterial expression signals especially the expression signals of the nopaline synthase genes (nos) or the opine synthase genes (ocs) from the Ti-plasmids of Agrobacteriwn tumefaciens.
- ubiquitine promoters actin promoters, historie promoters and tubulin promoters.
- 35S and 19S expression signals of the CaMV genome or their homologues which can be isolated from the said genome using molecular biological methods, as described, for example, in Maniatis et al (1982), and linked to the coding DNA sequence.
- homologues of the 35S and 19S expression signals are * to be understood as being sequences that, despite slight sequence differences, are substantially- homologous to the starting sequences and still fulfill the same function as those starting sequences.
- the expression signals may also comprise tissue-preferential or tissue specific promoters.
- tissue-preferential promoter is used to indicate that a given expression signal will promote a higher level of transcription of an associated expressible DNA, or of expression of the product the said DNA as indicated by any conventional RNA or protein assay, or that a given DNA sequence will demonstrate some differential effect; i.e., that the transcription of the associated DNA sequences or the expression of a gene product is greater in some tissue than in all other tissues of the plant.
- the tissue- preferential promoter may direct higher expression of an associated gene product in leaves, stems, roots and/or pollen than in seed.
- a tissue-preferential promoter which may be suitably used within the scope of the present invention, is a pith-preferred promoter isolated from a maize TrpA gene.
- tissue-specific promoter is used to indicate that a given regulatory DNA sequences will promote transcription of an associated expressible DNA sequence entirely in one or more tissues of a plant, or in one type of tissue, e.g. green tissue, while essentially no transcription of that associated coding DNA seuquence will occur in all other tissues or types of tissues of the plant.
- Numerous promoters whose expression are known to vary in a tissue specific manner are known in the art.
- One such example is the maize phosphenol pyruvate carboxylase [PEPC], which is green tissue-specific [Hudspeth RL and Grula JW, 1989].
- Other green tissue-specific promoters include chlorophyll a/b binding protein promoters and RUBISCO small subunit promoters.
- pollen-specific promoters such as those obtainable from a plant calcium-dependent phosphate kinase [CDPK]) gene.
- a developmentally regulated promoter can also be used.
- any promoter which is functional in the desired host plant can be used to direct the expression of an associated gene.
- leader sequence between the promoter sequence and the adjacent coding DNA sequence, the length of the leader sequence being so selected that the distance between the promoter and the DNA sequence according to the invention is the optimum distance for expression of the associated structural gene.
- chimaeric genes include, for example, sequences that are capable of regulating the transcription of an associated DNA sequence in plant tissues in the sense of induction or repression.
- Another class of genes that are inducible in plants comprises the light-regulated genes, especially the nuclear-coded gene of the small subunit of ribulose-l,5-biphosphate carboxylase (RUBISCO).
- RUBISCO ribulose-l,5-biphosphate carboxylase
- Morelli et al, Nature 315: 200-204 (1985) have shown that the 5 '-flanking sequence of a RUBISCO gene from the pea is capable of transferring light-inducibility to a reporter gene, provided the latter is linked in chimaeric form to that sequence. It has also been possible to extend this observation to other light-induced genes, for example the chlorophyll-a/b-binding protein.
- a further group of regulatable DNA sequences comprises chemically regulatable sequences that are present, for example, in the PR (pathogenesis-related) protein genes of tobacco and are inducible by means of chemical regulators such as those described in EP-A 332,104.
- the regulatable DNA sequences mentioned by way of example above may be of both natural and synthetic origin, or they may comprise a mixture of natural and synthetic DNA sequences.
- a chimeric recombinant DNA construct comprising an expressible DNA as described above involving, for example, one or more protein encoding DNA sequences, promoter and termination sequences and optionally further regulatory sequences of the 3' and 5' untranslated regions, is covalently associated with a VirD2 protein.
- the DNA/protein complex according to the invention can be introduced into the plant cell in a number of ways that are well known to those of skill in the art.
- methods of transforming plant cells include microinjection [Crossway et al, BioTechniques 4: 320-334 (1986); Neuhaus et al, Theor Appl Genet 75, 30-36 (1987)], electroporation [Riggs et al, Proc Nat Acad Sci USA 83. 5602-5606 (1986)], direct gene transfer [Paszkowski et al, EMBO J.
- Possible methods for the direct transfer of the DNA/protein complex according to the invention into a plant cell comprise, for example, the treatment of protoplasts using procedures that modify the plasma membrane, for example, polyethylene glycol treatment, heat shock treatment or electroporation, or a combination of those procedures [Shillito et al, Bio Technology, 3: 1099-1103 (1985)].
- plant protoplasts together with the DNA protein complex according to the invention are subjected to electrical pulses of high field strength. This results in a reversible increase in the permeability of biomembranes and thus allows the insertion of the DNA/protein complex according to the invention.
- Electroporated plant protoplasts renew their cell wall, divide and form callus tissue. Selection of the transformed plant cells can take place with the aid of the above-described phenotypic markers.
- Co-transformation is a method that is based on the simultaneous taking up and integration of various DNA molecules (non-selectable and selectable genes) into the plant genome and that therefore allows the detection of cells that have been transformed with non-selectable genes.
- Further means for inserting the DNA/protein complex according to the invention directly into a plant cell comprise using purely physical procedures, for example by microinjection using finely drawn micropipettes [Neuhaus et al (1987)] or by bombarding the cells with microprojectiles that are coated with the transforming DNA ["Microprojectile Bombardment”; Wang Y-C et al, Plant Mol. Biol. ⁇ : 433-439 (1988)] or are accelerated through a DNA containing solution in the direction of the cells to be transformed by a pressure impact thereby being finely atomized into a fog with the solution as a result of the pressure impact [EP-A-434,616].
- Microprojectile bombardment has been advanced as an effective transformation technique for cells, including cells of plants.
- Sanford et al (1987) it was reported that microprojectile bombardment was effective to deliver nucleic acid into the cytoplasm of plant cells of Allium cepa (onion).
- Christou et al (1988) reported the stable transformation of soybean callus with a kanamycin resistance gene via microprojectile bombardment.
- Christou et al reported penetration at approximately 0.1 % to 5 % of cells.
- Christou further reported observable levels of NPTII enzyme activity and resistance in the transformed calli of up to 400 mg/1 of kanamycin.
- McCabe et al (1988) report the stable transformation of Glycine max (soybean) using microprojectile bombardment. McCabe et al further report the recovery of a transformed Rj plant from an R Q chimaeric plant.
- the present invention therefore also comprises transgenic plant material, selected from the group consisting of protoplasts, cells, calli, tissues, organs, seeds, embryos, ovules, zygotes, etc. and especially, whole and preferably phenotypically normal plants, that has been transformed by means of the processes described above and comprises the recombinant DNA according to the invention in expressible form, and processes for the production of the said transgenic plant material.
- transgenic plant material selected from the group consisting of protoplasts, cells, calli, tissues, organs, seeds, embryos, ovules, zygotes, etc. and especially, whole and preferably phenotypically normal plants, that has been transformed by means of the processes described above and comprises the recombinant DNA according to the invention in expressible form, and processes for the production of the said transgenic plant material.
- Transformation of the plant cells includes separating transformed cells from those that have not been transformed.
- One convenient method for such separation or selection is to incorporate into the material to be inserted into the transformed cell a gene for a selection marker.
- the translation product of the marker gene will then confer a phenotypic trait that will make selection possible.
- the phenotypic trait is the ability to survive in the presence of some chemical agent, such as an antibiotic, e.g., kanamycin, G418, paromomycin, etc., which is placed in a selection media.
- genes that confer antibiotic resistance include those coding for neomycin phosphotransferase kanamycin resistance, [Nelten et al, EMBO J. 3: 2723-2730 (1984)]; hygromycin phosphotransferase (hygromycin resistance, [van den Elzen et al, Plant Molecular Biology 5: 299-392 (1985)], the kanamycin resistance ( ⁇ PT II) gene derived from Tn5 Bevan et al, Nature 304: 184-187 (1983); [McBride et al, Plant Molecular Biology 14: 266-276 (1990)], the PAT gene described in Thompson et al, EMBO J 6: 2519-2523 (1987), and chloramphenicol acetyltransferase.
- GUS beta-glucuronidase
- surviving cells are selected for further study and manipulation. Selection methods and materials are well known to those of skill in the art, allowing one to choose surviving cells with a high degree of predictability that the chosen cells will have been successfully transformed with exogenous DNA.
- Positive clones are regenerated following procedures well-known in the art. Subsequently transformed plants are evaluated for the presence of the desired properties and/or the extent to which the desired properties are expressed.
- a first evaluation may include, for example, the level of bacterial/fungal resistance of the transformed plants, stable heritability of the desired properties, field trials and the like.
- transgenic plants in particular transgenic fertile plants transformed by means of the aforedescribed process of the invention and their asexual and/or sexual progeny, which still display the new and desirable property or properties due to the transformation of the mother plant.
- the transgenic plant according to the invention may be a dicotyledonous or a monocotyledonous plant.
- Preferred are monocotyledonous plants of the Graminaceae family involving Lolium, Zea, Triticum, Triticale, Sorghum, Saccharum, Bromus, Oryzae, A vena, Hordeum, Secale and Setaria plants.
- transgenic maize, wheat and barley plants are especially preferred.
- rape seed and sunflower are especially preferred herein.
- progeny' is understood to embrace both, “asexually” and “sexually” generated progeny of transgenic plants. This definition is also meant to include all mutants and variants obtainable by means of known processes, such as for example cell fusion or mutant selection and which still exhibit the characteristic properties of the initial transformed plant, together with all crossing and fusion products of the transformed plant material.
- Another object of the invention concerns the proliferation material of transgenic plants.
- transgenic plants are defined relative to the invention as any plant material that may be propagated sexually or asexually in vivo or in vitro. Particularly preferred within the scope of the present invention are protoplasts, cells, calli, tissues, organs, seeds, embryos, pollen, egg cells, zygotes, together with any other propagating material obtained from transgenic plants.
- Parts of plants such as for example flowers, stems, fruits, leaves, roots originating in transgenic plants or their progeny previously transformed by means of the process of the invention and therefore consisting at least in part of transgenic cells, are also an object of the present invention.
- the VirD2 is purified by a 4-step procedure to near homogeneity. Initially, the protein is found in the insoluble pellet obtained by highspeed centrifugation of lysed cells. Possibly, upon overproduction of VirD2 in E. coli, the protein is deposited in inclusion bodies. Following extensive washing of the insoluble protein under high salt conditions, VirD2 is solubilized in 6 M urea. Stepwise dialysis against buffers of decreasing urea concentration resulted in a VirD2 fraction soluble under physiological conditions. The following purification steps involved affinity chromatography on heparin-Sepharose and ion-exchange chromatography on DEAE- Sephacel.
- a final gel filtration on Superose 12 using FPLC removed VirD2 degradation products that co-purify on the first two columns, resulting in a 93 % pure VirD2 fraction.
- N-terminal microsequencing of the overproduced and purified VirD2 protein revealed an amino acid sequence that is in agreement with the proposed start of the pTiC58 VirDl gene.
- a solid phase immuno assay using Vir2-specific antiserum revealed identical sizes for VirDl gene products encoded by a gene under its original translational control and those obtained from cells containing pPS 11, the overexpression plasmid.
- the method according to the invention can be advantageously used to increase the transformation efficiency of non-Agrobacterium mediated transformation processes, in that, for example, less transforming DNA is needed as compared to the conventional techniques.
- the qualitiy of the integrated DNA can be improved by the precision of the integration process, and possible rearrangements which are likely to happen to naked DNA can be avoided.
- a reaction batch typically contains about 50 to 500 ⁇ g/ml of DNA in the buffer solution recommended by the manufacturer, New England Biolabs, Beverly, MA. 2 to 5 Units of endonucleases are added for each ⁇ g of DNA and the reaction batch is incubated for from one to three hours at the temperature recommended by the manufacturer. The reaction is terminated by heating at 65 °C for 10 minutes or by extraction with phenol, followed by precipitation of the DNA with ethanol. This technique is also described on pages 104 to 106 of the Maniatis et al (1982) reference.
- DNA polymerase I 50 to 500 ⁇ g/ml of DNA fragments are added to a reaction batch in the buffer recom ⁇ mended by the manufacturer, New England Biolabs.
- the reaction batch contains all four deoxynucleotide triphosphates in concentrations of 0.2 mM.
- the reaction takes place over a period of 30 minutes at 15°C and is then terminated by heating at 65°C for 10 minutes.
- restriction endonucleases such as EcoRI and BamHI
- the large fragment, or Klenow fragment, of DNA polymerase I is used.
- T4 DNA polymerase For fragments obtained by means of endonucleases that produce 3 '-projecting ends, such as PstI and Sad, the T4 DNA polymerase is used. The use of these two enzymes is described on pages 113 to 121 of the Maniatis et al (1982) reference.
- Agarose gel electrophoresis is carried out in a horizontal apparatus, as described on pages 150 to 163 of the Maniatis et al reference.
- the buffer used is the tris-borate buffer described therein.
- the DNA fragments are stained using 0.5 ⁇ g/ml of ethidium bromide which is either present in the gel of tank buffer during electrophoresis or is added after electrophoresis.
- the DNA is made visible by illumination with long- wave ultraviolet light. If the fragments are to be separated from the gel, an agarose is used that gels at low temperature and is obtainable from Sigma Chemical, St. Louis, Missouri.
- the desired fragment is cut out, placed in a plastics test tube, heated at 65 °C for about 15 minutes, extracted three times with phenol and precipitated twice with ethanol. This procedure is slightly different from that described by Maniatis et al (1982) on page 170.
- the DNA can be isolated from the agarose with the aid of the Geneclean kit (Bio 101 Inc., La Jolla, CA, USA).
- the molecule is optionally first treated with DNA-polymerase in order to produce blunt ends, as described in the section above.
- DNA-polymerase in order to produce blunt ends, as described in the section above.
- About 0.1 to 1.0 ⁇ g of this fragment is added to about 10 ng of phosphorylated linker DNA, obtained from New England Biolabs, in a volume of 20 to 30 ⁇ l with 2 ⁇ l of T4 DNA ligase from New England Biolabs, and 1 mM ATP in the buffer recommended by the manufacturer. After incubation overnight at 15C, the reaction is terminated by heating at 65C for 10 minutes.
- the reaction batch is diluted to about 100 ⁇ l in a buffer appropriate for the restriction endonuclease that cleaves the synthetic linker sequence. About 50 to 200 units of this endonuclease are added. The mixture is incubated for 2 to 6 hours at the appropriate temperature, then the fragment is subjected to agarose gel electrophoresis and purified as described above. The resulting fragment will then have ends with endings that were produced by cleaving with the restriction endonuclease. These are usually cohesive, so that the resulting fragment can then readily be linked to other fragments having the same cohesive ends.
- fragments having complementary cohesive ends are to be linked to one another, about 100 ng of each fragment are incubated in a reaction mixture of 20 to 40 ⁇ l containing about 0.2 unit of T4 DNA ligase from New England Biolabs in the buffer recommended by the manufacturer. Incubation is caixied out for 1 to 20 hours at 15 C. If DNA fragments having blunt ends are to be linked, they are incubated as above except that the amount of T4 DNA ligase is increased to 2 to 4 units.
- Escherichia coli strain SCSI obtained from Stratagene, LaJolla, CA
- a high trans ⁇ formation variant of DH1 [Hanahan D, J Mol Biol 166: 557-580 (1983)] is used predominantly as host for plasmids.
- DNA is introduced into E. coli using the calcium chloride method, as described by Maniatis et al (1982), pages 250 and 251 or via electroporation.
- the double-stranded replicative form of the phage M13 derivatives is used for routine processes, such as cleaving with restriction endonuclease, linking etc..
- enzymes can be obtained from Boehringer, New England Biolabs or BRL. They are used in accordance with the manufacturer's instructions unless otherwise indicated.
- Oligo-deoxyribonucleotides are labeled either at their 3'-ends using [ ⁇ - 32 P]ddATP (110 TBq/mmol) and terminal transferase (Amersham) or at their 5'-ends using [ ⁇ - 32 P]ATP (110 TBq/mmol) and phage T4 polynucleotide kinase (31). Standard molecular cloning techniques are performed as described in Sambrook et al [Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab, Cold Spring Harbor, NY (1989).
- the extracted DNA is first treated with restriction enzymes, then subjected to electro ⁇ phoresis in a 0.8 % to 1 % agarose gel, transferred to a nitrocellulose membrane [Southern E.M. (1975)] and hybridized with the DNA to be detected which has previously been subjected to nick-translation (DNA-specific activities of 5 x 10° to 10 x 10° cpm/ ⁇ g).
- the filters are washed three times for 1 hour each time with an aqueous solution of 0.03M sodium citrate and 0.3M sodium chloride at 65C.
- the hybridized DNA is made visible by blackening an X-ray film over a period of 24 to 48 hours.
- VirD2 In order to express to high levels the VirD2 gene [from pTiA6] in E.coli, the reading frame of VirD2 is placed under the control of the strong translation and expression signals of phage T7 gene 10 in plasmid pET3a [Studier et al, in: Methods of Enzymology Vol 185: 60-89 (1990)].
- the VirD2 coding sequence is amplified by Polymerase Chain Reaction [PCR] with primers pl [5'GGGCTCGAGCATATGCCCGATCGCGCTC3 ⁇ SEQ ID NO: 14] and p2 [5'CCCGAGCTCGGATCCCTAGGTCCCCCCGCGCCC3', SEQ ID NO: 15] using plasmid pVD43 [Rossi et al, Mol Gen Genet, (1993)] as template.
- the 1.3 kb reaction product is isolated by gel electrophoresis and inserted in plasmid pTZ19U [commercially available from BioRad] at the Smal site resulting in plasmid pTZ19VirD2.
- the sequence of the 5' end of the gene is confirmed by dideoxy chain termination sequencing, which can be done, for example, by using Sequenase from USB [United States Biochemical] according to the instrucitons provided by the supplier.
- a Ndel-Sall restriction fragment from pTZ19VirD2 is ligated together with a Sall-EcoRI restriction fragment from plasmid pVD43 into plasmid pET3a digested with Ndel and EcoRI giving plasmid pET3aVirD2.
- Recombinant clones are selected on the basis of the presence of the 1.3 kb insert by digestion with Ndel and EcoRI.
- Plasmid pET3aVirD2 is introduced by electroporation into E. coli strain BL21(DE3) [Studier et al, in: Methods of Enzymology Vol 185: 60-89 (1990)]. Cultures are grown in LB medium containing 100 ⁇ g/ml ampicilline at 37°C with shaking. At an optical density of A 600 - ⁇ 0.5-1, expression of VirD2 is induced by the addition of IPTG [Isopropyl ⁇ -D thiogalactopyranoside] to a final concentration of lmM. Shaking is continued for 5 hours. The cells are then pelleted by centrifugation at 4,000xg at 4°C for 30 min. The cell pellet is stored at -80°C until further use.
- VirD2 protein in amounts suitable for biochemical analysis the original translational initiation signal preceding the VirDl structural gene of plasmid pTiC58 is replaced by that of phage T7 gene 10.
- the gene is placed under control of the / c/-regulated tac promoter of expression vector pMS119HE resulting in the VirD2 overproducing plasmid pPSl l.
- IPTG IPTG
- SDS-soluble E. coli cell extracts consisted of VirD2.
- the 1,410 bp SacI-BamHI fragment of pVIR97.89 [Alt-Moerbe et al, (1986) EMBO J. 5, 1129-1135] carrying the VirD2 reading frame except for the first five codons is inserted between the Ndel and BamHI sites of the poly linker sequence of the T7 promoter ⁇ lO / gene 10 SD expression plasmid pT7-7 [described in Sano & Cantor, (1990) Proc. Natl. Acad. Sci. USA 87, 142-146].
- Synthetic oligodeoxyribonucleotides are applied to restore the original 5'-end of the gene and to link the Sad cohesive end of the VirD2 fragment to the Ndel-end of the vector molecule (OL1 : 5'-TATGCCCGATCGAGCT-3'(SEQ ID NO: 36); OL2: 5'-CGATCGGGCA-3' (SEQ ID NO: 37) complementary to part of OLl).
- the manipulated gene is inserted as an Xbal-Hin ⁇ TII fragment in the multi-cloning site of pMS 119HE [Balzer et al, (1992) Nucleic Acids Res. 20, 1851-1858] resulting in pPSll.
- the reading frame of VirD2 is placed under the control of the strong expression signals of phage T7 gene 10 in plasmid pET3a (Studier et al, 1990).
- the VirD2 coding sequence is amplified by Polymerase Chain Reaction with primers
- prl J (5'GGGCTCGAGCATATGCCCGATCGCGCTC3 ', SEQ ID NO: 14) and pr2J
- plasmid pVD43 Rossi et al, 1993
- the 1.3 kb amplified fragment is cloned into the Ndel-EcoRI sites of pET3a resulting in plasmid pFSvirD2.
- Plasmid pFSvirD2 is introduced by electroporation into E. coli strain BL21(DE3) [Studier et al, 1990]. Cultures are grown in LB medium containing 100 ⁇ g ml ampicilline at 37°C with shaking. At A 60 o " 0.5-1, expression is induced by the addition of IPTG [Isopropyl ⁇ -D thiogalactopyranoside] to a final concentration of 1 mM. Shaking is continued for 5 hours. The cells are then pelleted by centrifugation at 4,000xg at 4°C for 30 min.
- Fraction I crude extract: Frozen cells (24.4 g in 120 ml are thawed and lysed by addition of 10 % (w/v) sucrose / 100 mM Tris-HCl, pH 7.6 / 5 M NaCl / 10 %
- the total volume of the lysis mixture is 600 ml. After 1 h at
- Fraction II is applied at a flow rate of 60 ml/h to a DEAE-Sephacel® column (2.6 x 10 cm) equilibrated with buffer B +
- the cells (1 litre culture) are resuspended in 50 ml ice cold lysis buffer [50 mM Tris-HCl pH 8.5, 150 mM NaCl, 5 mM EDTA, 0.1 mM PMSF [phenylmethansulfonylfluorid], 10 mM ⁇ -mercapto ethanol ( ⁇ -ME), 0,5 mg ml lysozyme, 0.1% Brij-35 (polyethylen glycol- dodecylether]. After 1 hour incubation on ice, the lysis mixture is centrifuged at 12,000xg for 30 min at 4°C.
- 50 ml ice cold lysis buffer 50 mM Tris-HCl pH 8.5, 150 mM NaCl, 5 mM EDTA, 0.1 mM PMSF [phenylmethansulfonylfluorid], 10 mM ⁇ -mercapto ethanol ( ⁇ -ME), 0,5 mg ml lys
- the pellet is resuspended in the same volume of lysis buffer without lysozyme, incubated 30 min on ice and centrifuged at 12,000xg for 30 min.
- VirD2 is solubilized by resuspending the pellet in solubilization buffer [50 mM Tris-HCl pH 8.5, ImM EDTA, 0.5 M NaCl, 0.1% Brij-35, 6M urea, 10 mM ⁇ ME].
- the column is washed with 20 ml buffer A and bound proteins are eluted with a linear gradient from 0 to 1 M NaCl in buffer A at a flow rate of 1 ml/min.
- VirD2 elutes at about 400 mM NaCl.
- Fractions [2 ml] containing VirD2 are individually concentrated to 200 ⁇ l by ultrafiltration using, for example, a Centrion 30 device available from Amicon. Glycerol is added to 50% final conentration and fractions are stored at -20°C.
- the cells (1 litre culture) are resuspended in 50 ml ice cold lysis buffer (buffer A) [50 mM Tris-HCl pH 8.5, 150 mM NaCl, 5 mM EDTA, 0.1 mM PMSF (Phenyl-methan- sulfonyl-fluoride), 10 mM ⁇ -mercapto ethanol ( ⁇ -ME), 0.5 mg ml lysozyme, 0.1% Tween-20]. After 1 hour incubation on ice, the lysis mixture is centrifuged at 12,000xg for 30 min at 4°C.
- buffer A buffer
- buffer A 50 mM Tris-HCl pH 8.5, 150 mM NaCl, 5 mM EDTA, 0.1 mM PMSF (Phenyl-methan- sulfonyl-fluoride), 10 mM ⁇ -mercapto ethanol ( ⁇ -ME), 0.5 mg ml lysozyme, 0.
- the pellet is resuspended in the same volume of buffer A without lysozyme, incubated 30 min on ice and centrifuged at 12,000xg for 30 min.
- VirD2 is solubilized by resuspending the pellet in 50 ml buffer B (25 mM NaOAc pH 5, 8M urea, 10 mM ⁇ -ME, 0.1 mM PMSF). After lhour incubation, insoluble material is removed by centrifugation (12,000xg, 45 min) and the supernatant is loaded at a flow rate of 1 ml/min onto an ion exchange column (EconoPac S, BioRad) equilibrated with buffer B.
- ion exchange column EconoPac S, BioRad
- the proteins are eluted with a NaCl gradient (from 0 to 1 M) in buffer B.
- VirD2 peak fractions are pooled and dialysed overnight against 1 liter of buffer C (50 mM Tris-HCl pH 8.5, 0.15 M NaCl, 10 mM ⁇ -ME, 0.05% Tween-20, O.lmM PMSF, 5mM MgCl 2 ).
- Precipitated material is removed by centrifugation [12-000xg, 30 min] and the supernatant diluted two fold and applied to a heparin column [BioRad] equilibrated with buffer C.
- the protein solution is applied at a flow rate of 2 ml/min.
- the column is washed with 20 ml buffer C and bound proteins are eluted with a linear gradient from 0.15 to 1 M NaCl in buffer C at a flow rate of 1 ml/min.
- VirD2 peak fraction eluting at about 400 mM NaCl, is dialysed overnight against buffer C. Insoluble material is removed by centrifugation [12,000xg, 30 min]. Aliquots are supplemented with 10% glycerol, frozen on dry ice and stored at -80°C.
- the heparin-purified protein is further purified on reverse-phase HPLC column as follows:
- VirD2 samples (lOO ⁇ g, 200 ⁇ l) are injected onto a C18 reverse phase column (Vydac) equilibrated with 0.1% trifluoroacetic acid [TFA].
- TFA trifluoroacetic acid
- the bound protein is eluted (flow rate 0.5ml/min) with a linear acetonitrile gradient (from 0 to 70% in 1 hour) in 0.1% TFA.
- the VirD2 peak fraction, eluting at 48% acetonitrile is lyophilised in a SpeedVac apparatus.
- VirD2 is resuspended in buffer D [20mM Tris-HCl, pH 8.5, 5mM MgCl 2 , 50mM NaCl, 0.05% Tween-20, 10% (v/v) glycerol], frozen on dry ice and stored at -80°C.
- Vir D2 containing fractions are checked for activity using the oligonucleotide cleavage assay descirbed in Pansegrau et al [Proc Nat Acad Sci USA, (1993b)].
- a 17-mer oligonucleotide homologous to the pTiA6 right border sequence [5'GGTATATATCC- TGCCAG3', SEQ ID NO: 17] is used as a substrate.
- the 13-mer reaction product is analyzed by electrophoresis on 19% acrylamide gels containing 8 M urea.
- Reaction products are quantified by autoradiography of gels with the storage phosphor technology [Johnston et al, Electrophoresis 1_1: 355-360 (1990)] Where appropriate, the cleavage reaction is followed by trypsin digestion in presence of 0.01 % SDS.
- the following oligonucleotides are used as substrates: pTiC58 RB (right border), d(p*CCAATATATCCTG V TCAA) (SEQ ID NO: 18); pTiA6 RB, d(p*GGTATATATCCTG V CCAG) (SEQ ID NO: 19); RP4 oriT, d(p*TTCACCTATCCTG V CCCG) (SEQ ID NO: 20). Positions of the cleavage sites are indicated by wedges. The radioactive label is symbolized by an asterisk.
- Occurrence of a 13-mer indicates that VirD2 mediates cleavage at the same site within the pTiC58 border sequences that is found by analysis of T-DNA produced in vivo [D ⁇ rrenberger et al, Proc. Natl. Acad. Sci. USA 86, 9154-9158 (1989)]. Cleavage at an equivalent site is also found using a VirD2 protein obtained from pTiA6.
- Example 3 VirD2 covalently attaches to the 5' -end of cleaved oligonucleotides.
- VirD2 has been found to be covalently associated with the 5 '-ends of the T-DNA single strands that are produced in agrobacteria induced by plant phenolic compounds like acetosyringone.
- 3 '-labeled oligonucleotide is incubated in presence of Mg 2+ ions with VirD2 and the products are separated on a sequencing gel.
- Oligonucleotide cleavage under these conditions resulted in a labeled species that did not enter the sequencing gel, indicating that the 3 '-terminal oligonucleotide moiety is tightly associated with high molecular weight material
- Treatment of the material with a variety of proteases resulted in labeled species with distinct electrophoretic mobilities reflecting the covalent association of the 5 '-end of cleaved oligonucleotides with different peptide species generated by proteases of different specificity
- Example 4 VirD2 transfers a covalently attached oligonucleotide moiety to a preformed border sequence 3'-end
- a preformed border 3 '-terminus is synthesized as an 13-mer oligonucleotide and incubated in various amounts together with VirD2 protein and a 3 '-end labeled 30-mer oligonucleotide carrying the pTiC58 right border cleavage site.
- Specific transfer of the 3 '-terminal moiety of the 30-mer to the 13-mer by VirD2 resulted in a 22-mer detectable on polyacrylamide gels by the 3 '-label.
- Example 5 Site specific Cleavage of large Oligonucleotides bv VirD2 Ml 3 phages are constructed that contain the pTi plasmid border sequence and single-stranded substrates longer than the oligonucleotides reported in Example 2. The procedure is the following:
- PCR fragment containing as well the border sequence is amplified using a pair of primers (UP-40: 5'GTTTTCCCAGTCACGAC3' (SEQ ID NO: 22) and UP-112: 5'CACTC- ATTAGGCACCCCAGGC3' (SEQ ID NO: 23)).
- the PCR product is 249 bp long.
- the DNA is gel purified, phenol extracted and precipitated. Two to 4 % of this dsDNA are used in a second amplification step using only the UP-40 primer.
- the next amplification step (40 cycles) is linear and produces single-stranded molecules corresponding to only one of the strands of the input dsDNA.
- This single-stranded DNA is expected to be processed by VirD2.
- the ssDNA product is gel purified, phenol extracted and precipitated. Hundred ng are labeled with ⁇ 32 P-ATP and polynucleotide kinase using the supplier's conditions. After the labeling reaction, the DNA is phenol extracted, precipitated and resuspended in 100 ⁇ l of water.
- the in vitro cleavage is performed in the conditions previously described, using 1 ng ssDNA per assay.
- a kinetic analysis revealed that a few minutes incubation of the VirD2 preparation with the substrate produces a well defined band, shorter than the input DNA (as expected).
- VirD2 substrates are single stranded DNA molecules containing the pTiA6 Right Border sequence.
- Two complementary oligonucleotides top strand : 5'AATTCTGGCAGG- ATATATACCGTTGTAATTTGTAC3' (SEQ ID NO: 24) and bottom strand : 5'AA- ATTACAACGGTATATATCCTGCCAG3' (SEQ ID NO: 25)) are annealed and ligated into pTZ19U digested with EcoRI and Kpnl to produce pZ19URB.
- a EcoRI fragment from pGUS23 [Puchta et al, Mol Cell Biol 12: 3372-3379 (1992)] containing the GUS gene is introduced into pZ19URB to produce pZ19URBGUS.
- a EcoRI/Hindlll fragment from pZ19URBGUS is subcloned into M13mpl8 and M13mpl9 to obtain pM18RBGUS and pM19RBGUS respectively.
- Control Ml 3 vectors are constructed by insertion of the EcoRI fragment of plasmid pGUS23 into M13mpl8 cleaved at the EcoRI site giving pM18GUS(+) (GUS coding strand is present in the viral (+) strand) and pM18GUS(-) (GUS coding strand is present in the viral (-) strand). These two vectors lack the pTiA6 border sequence. Single stranded DNA is prepared as described in [Sambrook et al, (1989)] and are further purified using a Qiagen DNA [QIAGEN Inc., CA, USA] purification column according to the manufacturer instructions.
- the VirD2 protein is allowed to react with single stranded DNA vector containing the pTiA6 right border sequence, using the vectors without the border sequence as controls. Reaction conditions are similar to those described in Pansegrau et al (1993b). Reaction buffer is 20 mM Tris-HCl, pH 8.5, 5 mM MgCl 2 , 1 mM EDTA, 50 mM NaCl. Ten pmole VirD2 are reacted with 1 pmole single-stranded DNA substrate. Cleavage is allowed to proceed for one hour at 37°C Upon cleavage, the protein becomes linked to the 5' end of the DNA that is thereby linearized.
- Quantification of the ssDNA cleavage is checked by 3' end labelling aliquots of the reaction mixture with Terminal Transferase (Boehringer) using a- ⁇ P-ddATP as label. Incorporation of the * ⁇ 2 P label in ethanol-precipitable is a measure of the extent of ssDNA cleavage by VirD2.
- Free VirD2 is removed from the reaction mixture by repeated dilution with reaction buffer and ultrafiltration with an Centricon 100 device.
- VirD2 substrates are single stranded DNA molecules containing the pTiA6 Right Border and overdrive sequence (Peralta et al, 1986).
- a 108 bp EcoRI-Sall fragment from pTD20 (5 'aattccagcTGGCAGGATATATACCGTTGTAATTTgagctcgtgtg aaTAAGTCGCTGT- GTATGTTTGTTTGattgcggccgcaagctttctagaggatccctgcagg 3', SEQ ED NO: 26) (Right border and Overdrive sequence are in upper case letters) is cloned into the EcoRI-Sall sites of M13mpl9 resulting in pM13RB.
- a further plasmid (pM13PstGUS) is constructed, which is almost identical to pM13RBGUS, except that the GUS gene, oriented in the opposite direction, is flanked by two PstI sites.
- This vector can be used to quantify the extent of VirD2 processing using a primer extension technique (see below). It can also be used to produce linear single-stranded DNA by digestion with the PstI restriction endonuclease.
- the transformation is carried out with a spray-type particle gun a described in EP-A 434,616.
- the target tissue used are tobacco SRI leave pieces of 0.5 to 2.0 cm.
- the plant material is preferably submitted to plasmolysis [20% maltose treatment] before shooting.
- Single-stranded DNA is prepared as described in (Sambrook et al, 1989) and further purified by CsCl gradient centrifugation.
- the VirD2 fractions are checked for activity using the oligonucleotide cleavage assay described in Pansegrau et al (1993b). For example, a 17-mer oligonucleotide homologous to the pTiA6 right border sequence (5'GGTATATATCCTGCCAG3 ⁇ SEQ ID NO: 27) is used as substrate. The 13-mer cleavage products are analysed by electrophoresis on 20% acrylamide gels containing 8 M urea.
- the VirD2 protein is allowed to react with single-stranded DNA containing the pTLA6 right border sequence, using vectors lacking the border sequence as controls.
- reaction 5 micrograms of purified VirD2 are allowed to react with 1 microgram of single-stranded DNA. Reaction (20 ⁇ l) is performed in the standard reaction buffer (20mM Tris-HCl, pH 8.5, 5mM MgCl 2 , 50mM NaCl) at 37°C for 15 minutes. The reaction mixture is used as such either immediately or is frozen on dry ice and thawed immediately before use.
- Quantification of the ss DNA cleavage is done by performing a primer extension reaction, using a linear ss DNA (obtained by digestion of pM13PstGUS with PstI). After the reaction of VirD2 with its linear ssDNA substrate is completed, the reaction mixture is digested wid Proteinase K, in order to remove the protein covalently linked to the 5' end of the cutting site. After phenol extraction, the DNA is precipitated with ethanol and used in a primer extension reaction using the Sequenase kit (USB) according to the instructions concerning the sequencing of single-stranded templates. The primer used is located about 100 nucleotides 3' from the VirD2 cutting site.
- the labelling reaction ( ⁇ - 35 S)-labelled dATP and unlabelled dCTP, dGTP and dTTP.
- the labelling reaction (the extension) is allowed to proceed at 37°C for 10 minutes.
- the extension reaction is terminated either at the cut introduced by VirD2 or at the extremity of the linear molecule in case VirD2 did not process it. Therefore the ratio between prematurely terminated extension products and full length products is a measure of the extent of cutting by VirD2.
- An normal sequencing reaction is performed in parallel on non-processed DNA with the same primer. One can then identify the cut site by comparison with the sequencing ladder.
- Free VirD2 can be removed from the reaction mixture by repeated dilution with reaction buffer and ultrafiltration with an Centricon 100 device.
- VirDl To allow effective translational initiation in E. coli the original SD sequence preceding the VirDl gene is replaced by that of phage T7 gene 10. Two CGG triplets of a cluster of rare Arg codons are altered by site directed mutagenesis. This prevents termination of translation at this position and thus production of truncated VirDl molecules.
- the modified VirDl gene is placed under control of the Lacl-regulated tac promotor in the expression vector pMS119HE resulting in the VirDl overproducing plasmid pPS20. Following chemical induction of gene expression by IPTG addition to the culture medium approx. 8 % of SDS-soluble cell protein consists of VirDl.
- the rare CGG Arg codons are changed by site directed mutagenesis following the procedure of Sayers et al. (1988).
- the sequence CGG CGG CGG (nucleotides 1048-1056 of Atuvird, accession number M33673) is mutated to CGC CGG CGT.
- the manipulated VirDl gene with the changed codons and the T7 gene 10 Shine-Dalgano sequence is inserted as an Xbal-SacI fragment in the multi-cloning site of pMS119HE [Balzer et al., 1992] resulting in pPS20.
- Cells are harvested by centrifugation (16,000 x g, 10 min), resuspended in 0.1 M spermidine tris(hydrochloride) / 0.2 M NaCl / 2 mM EDTA / pH 7.6 to a final concentration of 150 Asoo/ml and frozen in liquid nitrogen. All subsequent procedures are performed at 0-4° C, contact of the protein solution to metal surfaces is strictly avoided.
- Fraction I crude extract. Frozen cells (29 g in 90 ml) are thawed and lysed in 4.5 % (wt/vol) sucrose / 70 mM Tris-HCl (pH 7.6) / 1 M NaCl / 0.25 % (wt/vol) Brij-58 / 0.75 mg/ml lysozyme. The total volume of the lysis mixture is 460 ml. After 1 hr incubation at 0° C the inclusion bodies, containing the VirDl protein, are pelleted by centrifugation (100,000 x g, 1 hr).
- pellets are washed thoroughly with 3 M urea / 1 M NaCl / 1 mM EDTA / 0.5 mg/ml sodium deoxycholate. This washing step is repeated.
- pellets are eluted with 150 ml buffer A [20 mM Tris-HCl (pH 8.7) / 500 mM NaCl / 1 mM EDTA / 0.05 % (wt/vol) Brij-58 / 10 % (wt vol) glycerol] / 8 M urea / 10 mM DTT overnight and centrifuged (100,000 x g, 1 hr).
- the protein solution is dialyzed for 6 hr each against six changes of buffer A (2 liter) containing 5, 4, 3, 2, 1, 0.5 M urea then against four changes of buffer B [20 mM Tris-HCl (pH7.6) / 1 mM EDTA / 1 mM DTT / 0.01 % (wt/vol) Brij-58 / 10 % (wt vol) glycerol] (2 liter) containing 250, 125, 65, 0 mM NaCl.
- the dialyzed solution is centrifuged (100,000 x g) and the pellet discarded (fraction I, 240 ⁇ ). Fraction II, DEAE-Sephacel.
- Fraction I is loaded on a DEAE-Sephacel column (2.6 x 20 cm) equilibrated with buffer B at a flow rate of 54 ml/hr. The column is washed with 200 ml buffer B and the VirDl containing fractions of the flowthrough are pooled (fraction II, 360 ml).
- Fraction HI phosphocellulose-Pl l.
- Fraction II is applied at a flow rate of 55 ml/hr to a phosphocellulose Pl l column (2.6 x 24 cm) equilibrated with buffer C [30 mM Tris-phosphate (pH 7.0) / 1 mM EDTA / 1 mM DTT / 10 % (wt/vol) glycerol].
- the column is washed with 150 ml of buffer C and 50 ml of buffer C / 50 mM NaCl.
- proteins are eluted with a 1.4-1 gradient from 50 to 750 mM NaCl in buffer C.
- VirDl elutes at about 375 mM NaCl.
- Example 8 Specific : cleavage reaction of forml DNA by VirDl and VirD2 in vitro.
- Substrates pPSlOO form I DNA pBR329 ⁇ [BamHI-Sall, right T border of pTiC58, 43 bp], 3918 bp
- pPS 101 form I DNA pPSlOO ⁇ [Pstl-Aatll, left T border of pTiC58, 43 bp], 3284 bp
- pPSl 10 form I DNA pPSlOO ⁇ [Nhel-BamHI, overdrive of pTiA6, 40 bp], 3812 bp
- pPSl 11 form I DNA pPSlOl ⁇ [Nhel-BamHI, overdrive of pTiA6, 40 bp], 3178 bp
- pS 124.1 form I DNA containing two right borders and one overdrive element of pTiA6 [Alt-Moerbe etal, (1990)]
- Form I substrate DNA (0.7 ⁇ g) is incubated with VirDl (750 ng, 47 pmol) and VirD2 (550 ng, 11 pmol) in a total volume of 20 ⁇ l TNM (20 mM Tris-HCl (pH 8.8) / 50 mM NaCl / 5 mM MgCl 2 ), for 40 min at 37 C. Cleavage products are analyzed on vertical 0.7 % agarose gels after proteinase K digestion in the presence of 1 % SDS. The cleavage reaction requires form I DNA, is T border specific, VirDl-, VirD2- and Mg 2+ -dependent.
- Reaction products are quantified by scanning with a Fluorlmager 575 (Molecular Dynamics).
- the yield of specifically cleaved DNA is 35-95 % of the input form I DNA, depending on the substrate.
- Substrates pPSlOO and pPSHO containing one border element are cleaved to 35 %, pPSlOl and pPSl l l to 70 %, pS 124.1 to 95 %.
- the higher yield of cleaved plasmid DNA from substrates carrying two border sequences is due to a higher probability for cleavage to occur at one of the nick-sites.
- Specificity and nick-site were determined by electrophoresis of linearized reaction products on alkaline agarose gels and runoff sequencing.
- cleavage site is identical to that found in vivo [Diirrenberger et al, (1989)] or with single-stranded DNA substrates and VirD2 in vitro [Pansegrau et al., (1993)]. Likewise, cleavage results in covalent attachment of VirD2 protein to the 5-terminus of the broken DNA strand.
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- SEQUENCE DESCRIPTION SEQ ID NO: 5: NNNNNNNNNNNNNNNN NNNNNNNNNNNN NNNNNNNNNN RBHYATCCKG YMNNNNNNNN 60 NN 62
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic) ⁇
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
- MOLECULE TYPE DNA (genomic)
- HYPOTHETICAL NO
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU75345/94A AU7534594A (en) | 1993-08-13 | 1994-08-03 | Method for stable transformation of plants |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93113028.0 | 1993-08-13 | ||
EP93113028 | 1993-08-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1995005471A2 true WO1995005471A2 (en) | 1995-02-23 |
WO1995005471A3 WO1995005471A3 (en) | 1995-06-01 |
Family
ID=8213176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1994/002566 WO1995005471A2 (en) | 1993-08-13 | 1994-08-03 | Method for stable transformation of plants |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU7534594A (en) |
WO (1) | WO1995005471A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012046A1 (en) * | 1995-09-25 | 1997-04-03 | Novartis Ag | Improved integration of exogenous dna delivered to eukaryotic cells |
WO2000005392A1 (en) * | 1998-07-24 | 2000-02-03 | Novartis Ag | Method for transformation of animal cells |
WO1999061619A3 (en) * | 1998-05-22 | 2000-03-23 | Pioneer Hi Bred Int | Cell cycle genes, proteins and uses thereof |
US6051409A (en) * | 1995-09-25 | 2000-04-18 | Novartis Finance Corporation | Method for achieving integration of exogenous DNA delivered by non-biological means to plant cells |
WO2004020641A1 (en) * | 2002-09-02 | 2004-03-11 | Dalian Keyuan Agricultural Bioengineering Co., Ltd. | Plant gene engineering manipulation method with biological safety |
WO2005026371A1 (en) * | 2003-09-09 | 2005-03-24 | Osaka University | Method of transferring biological substance and transformation method using the method of transferring biological substance |
RU2376317C1 (en) * | 2008-06-20 | 2009-12-20 | Дмитрий Викторович Гришин | CHIMERIC PROTEIN FOR NON-VIRAL TRANSGENOSIS, INCLUDING DNA-BINDING DOMAIN SSBTne AND SIGNAL OF NUCLEAR LOCALISATION OF VirD2 |
US7928291B2 (en) | 2006-07-19 | 2011-04-19 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009776A1 (en) * | 1988-04-14 | 1989-10-19 | Regents Of The University Of Minnesota | VirE OPERON-ENCODED POLYPEPTIDES THAT BIND SINGLE-STRANDED DNA |
-
1994
- 1994-08-03 AU AU75345/94A patent/AU7534594A/en not_active Abandoned
- 1994-08-03 WO PCT/EP1994/002566 patent/WO1995005471A2/en active Application Filing
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100477413B1 (en) * | 1995-09-25 | 2006-01-27 | 신젠타 파티서페이션즈 아게 | Improved integration of exogenous DNA delivered to eukaryotic cells |
AU707948B2 (en) * | 1995-09-25 | 1999-07-22 | Syngenta Participations Ag | Improved integration of exogenous DNA delivered to eukaryotic cells |
US6051409A (en) * | 1995-09-25 | 2000-04-18 | Novartis Finance Corporation | Method for achieving integration of exogenous DNA delivered by non-biological means to plant cells |
US6410329B1 (en) | 1995-09-25 | 2002-06-25 | Novartis Finance Corporation | Method for achieving site specific integration of exogenous DNA delivered by non-biological means to plant cells |
WO1997012046A1 (en) * | 1995-09-25 | 1997-04-03 | Novartis Ag | Improved integration of exogenous dna delivered to eukaryotic cells |
WO1999061619A3 (en) * | 1998-05-22 | 2000-03-23 | Pioneer Hi Bred Int | Cell cycle genes, proteins and uses thereof |
WO2000005392A1 (en) * | 1998-07-24 | 2000-02-03 | Novartis Ag | Method for transformation of animal cells |
US6498011B2 (en) | 1998-07-24 | 2002-12-24 | Novartis Ag | Method for transformation of animal cells |
WO2004020641A1 (en) * | 2002-09-02 | 2004-03-11 | Dalian Keyuan Agricultural Bioengineering Co., Ltd. | Plant gene engineering manipulation method with biological safety |
WO2005026371A1 (en) * | 2003-09-09 | 2005-03-24 | Osaka University | Method of transferring biological substance and transformation method using the method of transferring biological substance |
US7928291B2 (en) | 2006-07-19 | 2011-04-19 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
US8404931B2 (en) | 2006-07-19 | 2013-03-26 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
US8759616B2 (en) | 2006-07-19 | 2014-06-24 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
US9464295B2 (en) | 2006-07-19 | 2016-10-11 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
US10066235B2 (en) | 2006-07-19 | 2018-09-04 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
US10865418B2 (en) | 2006-07-19 | 2020-12-15 | Monsanto Technology Llc | Use of multiple transformation enhancer sequences to improve plant transformation efficiency |
RU2376317C1 (en) * | 2008-06-20 | 2009-12-20 | Дмитрий Викторович Гришин | CHIMERIC PROTEIN FOR NON-VIRAL TRANSGENOSIS, INCLUDING DNA-BINDING DOMAIN SSBTne AND SIGNAL OF NUCLEAR LOCALISATION OF VirD2 |
Also Published As
Publication number | Publication date |
---|---|
AU7534594A (en) | 1995-03-14 |
WO1995005471A3 (en) | 1995-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2236166C (en) | Enhancer-increased gene expression in plants | |
EP0429478B1 (en) | Expression cassette for plants | |
CN112143753A (en) | Adenine base editor and related biological material and application thereof | |
JPH07500970A (en) | Method for producing plants with reduced susceptibility to plant parasitic nematodes | |
WO1993001283A1 (en) | Selection-gene-free transgenic plants | |
Yamchi et al. | Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ 1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress | |
JP2004516003A (en) | Synthetic genes for vegetable rubber and other hydroxyproline-rich glycoproteins | |
CN105037521A (en) | Plant stress resistance related protein TaWrky48 and coding gene and application thereof | |
WO2018175900A9 (en) | Synthetic desalination genetic circuit in plants | |
NZ235265A (en) | Regulatory gene from 5' untranslated region of a plant chitinase gene, recombinant dna, vectors, hosts, transgenic plants (including some expressing chitinase), and method of repelling chitin-containing pathogens | |
CN102482683B (en) | The expression of the transcription regulaton factor of heat tolerance can be provided | |
WO1995005471A2 (en) | Method for stable transformation of plants | |
BG61275B1 (en) | Production of plants resistant to attacks of sclerotiniasp.by introducing a gene coding for an oxalate oxidase | |
CA2270872C (en) | Nematode-inducible regulatory dna sequences | |
US7557264B2 (en) | Gossypium hirsutum tissue-specific promoters and their use | |
CN114349833B (en) | Application of calmodulin binding protein COLD12 in regulation and control of plant COLD tolerance | |
US5639663A (en) | Bifunctional genetic markers | |
CN112538107B (en) | Triterpene related protein, encoding gene thereof and application of triterpene related protein in improving content of triterpene compounds in plants | |
US6018103A (en) | Chimeric plant genes possessing independent regulatory sequences | |
CN110294795B (en) | Application of soybean protein GmDISS2 and its encoding gene in regulating plant stress tolerance | |
US20040191912A1 (en) | New constitutive plant promoter | |
CN112080513A (en) | Rice artificial genome editing system with expanded editing range and application thereof | |
US20040117874A1 (en) | Methods for accumulating translocated proteins | |
Urwin et al. | The biotechnological application and limitation of IRES to deliver multiple defence genes to plant pathogens | |
AU769546B2 (en) | Method for obtaining transgenic plants expressing a protein with activity producing hydrogen peroxide by transformation by Agrobacterium rhizogenes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AM AU BB BG BR BY CA CN CZ FI GE HU JP KG KP KR KZ LK LT LV MD MG MN NO NZ PL RO RU SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): KE MW SD AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
ENP | Entry into the national phase |
Ref country code: US Ref document number: 1995 416808 Date of ref document: 19950413 Kind code of ref document: A Format of ref document f/p: F |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |
Free format text: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AM AU BB BG BR BY CA CN CZ FI GE HU JP KG KP KR KZ LK LT LV MD MG MN NO NZ PL RO RU SI SK TJ TT UA US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): KE MW SD AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |