WO1994027250A1 - Lecteur portatif bidimensionnel - Google Patents
Lecteur portatif bidimensionnel Download PDFInfo
- Publication number
- WO1994027250A1 WO1994027250A1 PCT/US1994/005380 US9405380W WO9427250A1 WO 1994027250 A1 WO1994027250 A1 WO 1994027250A1 US 9405380 W US9405380 W US 9405380W WO 9427250 A1 WO9427250 A1 WO 9427250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- array
- dimensional
- reader
- optical
- image
- Prior art date
Links
- 238000003491 array Methods 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 19
- 238000012545 processing Methods 0.000 claims description 15
- 230000035945 sensitivity Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1408—Methods for optical code recognition the method being specifically adapted for the type of code
- G06K7/1417—2D bar codes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K17/00—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
- G06K17/0022—Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisions for transferring data to distant stations, e.g. from a sensing device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10712—Fixed beam scanning
- G06K7/10722—Photodetector array or CCD scanning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10712—Fixed beam scanning
- G06K7/10722—Photodetector array or CCD scanning
- G06K7/10752—Exposure time control
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/10544—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
- G06K7/10792—Special measures in relation to the object to be scanned
- G06K7/10801—Multidistance reading
- G06K7/10811—Focalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K2007/10524—Hand-held scanners
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K2207/00—Other aspects
- G06K2207/1011—Aiming
Definitions
- This invention relates to optical bar code readers, and more particularly to an improved portable device utilizing a photosensitive array for reading two dimensional bar codes.
- Existing two-dimensional portable bar code readers employ a mechanically scanned laser beam.
- the beam is mechanically scanned horizontally as in conventional, one dimensional bar code scanners, while it is also manually scanned vertically with a downward motion of the hand or wrist.
- the laser beam is mechanically scanned in both the horizontal and vertical directions utilizing a raster.
- the present invention utilizes either: (1) a pair of two-dimensional photosensitive arrays (such as charge coupled device arrays), a pair of pointing beams for producing a pair of elongated bright spots on a target, an optical string, control electronics, and a focus indicator; or (2) a single two-dimensional photosensitive array (such as a charge coupled device array), a pair of pointing beams for producing a pair of elongated bright spots on a target, an optical string, control electronics, and a focus indicator.
- Both disclosed embodiments utilize the arrays to pick up label images, convert the image to electrical signals, and process the signals with a microprocessor.
- each sensor has its own lens system, which provides the proper amount of overlap between the two images produced by the separate optical strings.
- a distance indicator may be provided to facilitate a user in placing labels to be read at the correct distance from the reader.
- FIG. 1 depicts a conventional pair of sensors, each with its own lens, and shows the image overlap provided with the lenses at various positions;
- FIG. 2 depicts the sensor and lens system of the invention and its corresponding image overlaps;
- FIG. 3 is an enlarged view of the positioning of the left lens of FIG. 2;
- FIG. 4 is a block diagram of the present invention;
- FIG. 5 is a positioning device of the present invention;
- FIG. 6 is an alternative first embodiment of an aiming device;
- FIG. 7 is a diagrammatic illustration of the components of a second embodiment wherein a single two-dimensional photosensitive array is utilized.
- FIG. 8 is a graphical representation of beam signal outputs from a reader according to the second embodiment described herein. Best Mode for Carrying Out the Invention
- Such an optical system can be based, for example, on a single lens and 50% reflective mirror image splitting optics. This approach, however, suffers from significant losses of optical energy, and also require complicated optomechanical designs for providing the necessary accuracy and stability.
- FIG. 1 depicts such a system based on two lenses, one for each sensor.
- This system produces the desirable amount of overlap between the left and right images only when the target label is positioned at a fixed distance from the sensors.
- a label positioned in the vicinity designated by b would be in the correct position so that the half images would overlap properly, but the position a would produce a missing central area, while the position c provides too great an area of overlapping, thereby defeating the purpose of using two sensors.
- FIG. 2 also depicts the configuration of an exemplary first embodiment of the present invention.
- two sensors are used, each with its own lens. These sensors are fixed in a common plane.
- Automatic focusing is provided by placing the lenses on a carriage that moves toward and away from the sensors. These lenses are mounted on the carriage in such a way that, as the carriage moves away from the sensors, the distance between lenses decreases. As the carriage moves toward the sensors, the distance between the lenses increases.
- the lines k-k' and m-m' represent the trajectories of the left and right lenses corresponding to the carnage position moving from cto a.
- the zones A, B, and C correspondingly show the amount of image overlap between the left and right halves of the total field of view of the system. As may be seen, this overlap is the same for each zone. Therefore, the high total resolution achieved by using two sensors is preserved throughout the entire focusing range of the system.
- FIG. 3 illustrates, in greater detail, the position of the left lens during focusing.
- the individual lens viewing angle must be larger than would be required for ordinary imaging of the same field since the axis of the sensor's sight (originating in the center of the sensor) skews away from the optical axis of the lens when the carriage is in other than the midpoint position.
- FIG. 4 depicts the major components of the two- dimensional CCD reader.
- a two-dimensional CCD device may be utilized as an image sensor for reading two-dimensional optical information sets two problems must be overcome, first, the difficulty inherent in processing the data produced by a two-dimensional array, and second, the difficulty inherent in minimizing memory space requirements when working with the array's data output.
- Both vertical and horizontal CCD shift registers are, in essence, analog storage devices used as an intermediate Read Once Memory (ROM), situated between the array of the photo receptors (photodiodes) and the image processing hardware.
- the system architecture, represented in FIG. 4 allows the microcontroller 8 (referred to as a DSP) to have direct control over the sensor 1 scanning processes via HVC pulse control circuit 7.
- This HVC circuit generates the clock pulses necessary for moving electrical charges from the photodiodes to the vertical shift registers, for moving charges in the vertical registers, for shifting them inside the horizontal shift register and for controlling the correlated double sampling device 2.
- the vertical driver 4 serves as a power stage for the vertical clock pulses.
- the microprocessor 8 originates the control signals to the HVC chip 7. These signals cause the CCD to perform an image charge transfer, a line by line vertical shift and a pixel by pixel horizontal shift.
- the analog signal appearing on the output of the CDS chip 2 is available to the inputs of the A/D converter 3 and the comparator 5.
- the other input of the comparator is connected with the output of the D/A device 6.
- the D/A is equipped with an internal input latch. This architecture provides:
- An exemplary solution is to take a service image or service frame, measure certain parameters of the image such as image quality (contrast, brightness, sharpness, and the like) adjust the sensor control parameters and take a second improved image frame.
- the luminosity distribution along the image area may not be uniform, it may be necessary to study the whole image frame area, but with the limited sampling frequency. Since the non-uniformity of the distribution of the signal bright and dark levels is a smooth function of x and y sensor coordinates, samplings of this function may be taken infrequently, for example as a matrix of 10 samples evenly spread along horizontal lines by 10 samples vertically, i.e., 100 samples. Based on these samples, the corrections for the next frame may be accomplished.
- the threshold function is a 3-D surface that is stretched in the coordinate of x and y sensor pixels and having vertical coordinate as the image brightness or illuminance. If properly calculated, this surface must intersect the image 3-D function on the middle level between the dark and bright levels of a bar code two dimensional image. Having only about 100 points, representing the threshold surface, small memory storage is required.
- the DSP outputs the threshold points to the D/A converter at the appropriate moments during the frame scanning. These points are locked in the D/A's latch until they are updated with the following values by the DSP.
- the comparator 5 compares each pixel value with the threshold surface and produces a high contrast black/white image. This compressed image data is read by the DSP either through polling or the interrupt, which occurs at each transition from black to white and from white to black.
- FIG. 5 depicts a reader positioning apparatus.
- S1 and S2 each produce illuminating beams, which converge at a position from the reader where a two- dimensional bar code is focused.
- the illuminating spot is rectangular, and outlines the viewing area.
- FIG. 6 An alternative first embodiment of a reader aiming device is depicted in FIG. 6.
- S1 and S2 produce narrow beams of light which converge to indicate the center of the viewing area and the optimum focus distance.
- FIGS. 7 and 8 depict a second exemplary embodiment for a two-dimensional portable optically readable information reader.
- two pointing beams are provided (S1 and S2) for producing elongated bright spots (a and b) on a target surface Q.
- S1 and S2 two pointing beams are provided (S1 and S2) for producing elongated bright spots (a and b) on a target surface Q.
- both spots (a and b) merge.
- the spots (a and b) are separated by a distance m, which is a function of the displacement of the target surface and the best focus position.
- the beams may have a wavelength selected from the visible portion of the electromagnetic spectrum (such as those produce from read or green LED's), or infrared sources may be utilized, in either case the elongated profile of the beams facilitates capturing of the spots by the array during the taking of a service frame (FIG. 8), which is processed much faster than an ordinary data frame. This reduction in processing time is accomplished by simply skipping most of the horizontal lines in the frame and studying only about three percent (3%) of the regularly spaced lines. Elongated or fan shaped spots (a and b) are preferred since round or narrow spots may be missed if the spot's image fell between the active horizontal lines of a service frame.
- the distance m is then measured by the reader's computer and is displayed on the indicator (e.g., as a line of variable length, or as a variable sound pitch) such that an operator may quickly adjust the distance between the reader and the target even where the label to be read and the spots (S1 and S2) are not visible.
- the computer may turn the beams (S1 and S2) on and off or otherwise control the amount of energy in each separately in sequential service frames.
- the "service frame” provides all necessary information for adjustments, so an image of acceptable quality can be made, such that the "info frame” may be processed successfully and quickly.
- This may be accomplished according to the following: (1) the selected sensor for this application has a matrix of 752 x 582 useful pixels; (2) there are two fields: odd and even; (3) each field consists of 291 interlaced horizontal lines; (4) each line has 752 pixels; (5) any one field contains sufficient data for a "service frame", therefore after processing one "service field” a decision may be made regarding adjustments before another "service field” or an "info frame” is taken.
- each line is divided in 16 sections of 47 pixels each; (2) one half of each section (24 pixels) is taken for processing, while another half (23 pixels) is skipped; (3) out of the 24 pixel values two extreme values, brightest and darkest, are found and their differences are stored in a "modulation array".
- the modulation array is organized as a OfH x ObH (16 x 12 decimal) matrix. A mean value for each of the
- the modulation array reflects areas of data activity in the image frame.
- the rectangular area with the xy coordinates (column * raw) of: 62, 65, a2, a5 has elevated modulation values and indicates the image of the label (in this particular example a UPS-code label was used.).
- the next procedure pinpoints the middle of the area of interest.
- a low pass spatial filter is applied to the array of modulations as a running window of 3 units wide, independently of horizontal and vertical coordinates.
- the result of this processing is the two linear arrays (14 and 10 values long correspondingly). Maximum values (and the label middle) is indicated in bold typeface.
- the next object is to identify the boundaries of the label area.
- a tolerance value is calculated as a function of an average modulation in the middle of the label (Mm) and average modulation for a large vicinity, surrounding the label (Mv).
- a tolerance value Tm (k * Mm + Mv)/2k.
- the modulation values are being compared with the tolerance value, starting from the determined label center, and moving outward until lesser than Tm values are found.
- One more row or column is then added to this area for safety.
- the x and y coordinates, outlining the zone of the label are stored. These coordinates are used for optimum processing of the info-frame. All lines preceding (and following) the outlined zone in the frame may be disregarded.
- Threshold surface values may be found by simply averaging 9 threshold values for a 3 x 3 matrix surrounding the determined label center and applying this averaged threshold for the whole zone. This method is acceptable for relatively small size labels (like UPS-code labels), for which variations of illumination intensity do not vary significantly within the label area. For large size labels, (like some PDF 0417 code labels) adaptation of the threshold surface within the label boundaries is required.
- each number situated externally to the label and immediately next to a threshold value on the border of the label is substituted with the value of the nearest blob value for the purpose of calculations.
- the low pass 3 x 3 filter is applied to the area inside the blob boundaries.
- the resultant array of smoothened threshold values then may be used as the thresholding surface for the fast preprocessing of the info- frame. As discussed earlier, these values are loaded by the DSP in to the comparator during the info-frame acquisitions.
- Exposure Control In order to properly function in a variety of lighting conditions the present invention is preferably provided with exposure control means. Ambient light conditions may commonly range from 3 to 100,000 lux.
- An office illuminated by fluorescent lamps typically ranges from 300 to 500 lux. Fluorescent lights normally flicker at a frequency of twice the alternating power source frequency. Therefore, a preferred embodiment of the present invention should work in flickering lighting conditions and be adjustable from 30,000 to 1. The ratio between the maximum and minimum instant values of illumination intensities are normally on the order of 3 to 1 (where 90° phase shift lighting is not utilized). It is also necessary, in a preferred exemplary embodiment that sensor sensitivity adjustments take place in a matter of millisecond such that the amount of time remaining for image acquisition and decoding is optimized.
- the present invention describes a method and apparatus for reading two-dimensional optical information sets, which delivers image information sequentially in "frames" which are divided in two fields where a interlaced type television sensor is utilized. Where a non-interlaced sensor is utilized each "frame” constitutes a single field. According to the present invention these fields may be classified into two groups, i.e., "service-field” and "information field.”
- Service fields are processed much more rapidly than are information fields. Service fields are processed only for camera house-keeping purposes, i.e., sensitivity adjustments and the like. In an exemplary preferred embodiment sensitivity adjustments may be made according to the following method:
- a first field is taken with a default exposure of 417 ⁇ s where a non ⁇ interlaced sensor is utilized. Where an interlaced sensor is utilized the first field is exposed for 417 ⁇ s and the second field is exposed for 50 ⁇ s. (b) The first field is analyzed to determine the ambient light level
- the signal level is determined to be reliable for calculating an optimal exposure time (in such a case the exposure time is modified accordingly and an information-field is acquired).
- the maximum exposure time is 4.17 ms (based upon empirical studies of image smear caused by hand motion and the like), and the tolerable exposure time is between 4 to 5 ms (by selecting 4.17 ms certain advantages are obtained). If the required optimum exposure is between 4.17 ms and 12 ms (dim level), the information-field is taken with 4.17 ms exposure and the ADC reference levels are adjusted to preserve contrast ("image normalization").
- auxiliary lighting is utilized (xenon strobe light or the like) during acquisition of the information-field.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
La présente invention comprend l'utilisation de réseaux photosensibles bidimensionnels (SR, SL) pour décoder des ensembles de données bidimensionnels se prêtant à une lecture optique, ces réseaux produisent une meilleure focalisation. Une lentille est prévue pour chacun des réseaux photosensibles, et peut se déplacer sur une trajectoire (k,k', m-m') de façon que, lorsque la lentille s'éloigne du réseau photosensible, la distance entre les lentilles décroît. La distance variable entre les lentilles produit des zones d'images (A, B, C) présentant le même chevauchement d'image dans chaque zone.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002162673A CA2162673A1 (fr) | 1993-12-17 | 1994-11-16 | Lecteurs portables de fichiers de donnees |
PCT/US1994/013323 WO1995016973A1 (fr) | 1993-12-17 | 1994-11-16 | Lecteurs portables de fichiers de donnees |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6040493A | 1993-05-11 | 1993-05-11 | |
US08/060,404 | 1993-05-11 | ||
US6738493A | 1993-05-25 | 1993-05-25 | |
US08/067,384 | 1993-05-25 | ||
US17137493A | 1993-12-17 | 1993-12-17 | |
US08/171,374 | 1993-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994027250A1 true WO1994027250A1 (fr) | 1994-11-24 |
Family
ID=27369833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/005380 WO1994027250A1 (fr) | 1993-05-11 | 1994-05-11 | Lecteur portatif bidimensionnel |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1994027250A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500516A (en) * | 1994-08-30 | 1996-03-19 | Norand Corporation | Portable oblique optical reader system and method |
EP0718787A1 (fr) * | 1994-12-22 | 1996-06-26 | Alcatel Postal Automation Systems | Dispositif de lecture d'un code à barres pour une installation de tri postal |
US6601768B2 (en) | 2001-03-08 | 2003-08-05 | Welch Allyn Data Collection, Inc. | Imaging module for optical reader comprising refractive diffuser |
US6832725B2 (en) | 1999-10-04 | 2004-12-21 | Hand Held Products, Inc. | Optical reader comprising multiple color illumination |
US7270274B2 (en) | 1999-10-04 | 2007-09-18 | Hand Held Products, Inc. | Imaging module comprising support post for optical reader |
US7296751B2 (en) | 1999-10-04 | 2007-11-20 | Hand Held Products, Inc. | Imaging module for optical reader |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4323925A (en) * | 1980-07-07 | 1982-04-06 | Avco Everett Research Laboratory, Inc. | Method and apparatus for arraying image sensor modules |
US4335302A (en) * | 1980-08-20 | 1982-06-15 | R.L.S. Industries, Inc. | Bar code scanner using non-coherent light source |
US4389103A (en) * | 1981-07-24 | 1983-06-21 | Source Technology Corporation | Slide projector having two image-projection systems which operate with a single slide tray |
US4660096A (en) * | 1984-12-11 | 1987-04-21 | Rca Corporation | Dividing high-resolution-camera video signal response into sub-image blocks individually raster scanned |
JPS6367692A (ja) * | 1986-09-09 | 1988-03-26 | Nippon Denso Co Ltd | 光学的情報読取装置 |
US5159455A (en) * | 1990-03-05 | 1992-10-27 | General Imaging Corporation | Multisensor high-resolution camera |
-
1994
- 1994-05-11 WO PCT/US1994/005380 patent/WO1994027250A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4323925A (en) * | 1980-07-07 | 1982-04-06 | Avco Everett Research Laboratory, Inc. | Method and apparatus for arraying image sensor modules |
US4335302A (en) * | 1980-08-20 | 1982-06-15 | R.L.S. Industries, Inc. | Bar code scanner using non-coherent light source |
US4389103A (en) * | 1981-07-24 | 1983-06-21 | Source Technology Corporation | Slide projector having two image-projection systems which operate with a single slide tray |
US4660096A (en) * | 1984-12-11 | 1987-04-21 | Rca Corporation | Dividing high-resolution-camera video signal response into sub-image blocks individually raster scanned |
JPS6367692A (ja) * | 1986-09-09 | 1988-03-26 | Nippon Denso Co Ltd | 光学的情報読取装置 |
US5159455A (en) * | 1990-03-05 | 1992-10-27 | General Imaging Corporation | Multisensor high-resolution camera |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5500516A (en) * | 1994-08-30 | 1996-03-19 | Norand Corporation | Portable oblique optical reader system and method |
EP0718787A1 (fr) * | 1994-12-22 | 1996-06-26 | Alcatel Postal Automation Systems | Dispositif de lecture d'un code à barres pour une installation de tri postal |
FR2728707A1 (fr) * | 1994-12-22 | 1996-06-28 | Alcatel Postal Automation Syst | Dispositif de lecture d'un code a barres pour une installation de tri postal |
US6832725B2 (en) | 1999-10-04 | 2004-12-21 | Hand Held Products, Inc. | Optical reader comprising multiple color illumination |
US7270274B2 (en) | 1999-10-04 | 2007-09-18 | Hand Held Products, Inc. | Imaging module comprising support post for optical reader |
US7296751B2 (en) | 1999-10-04 | 2007-11-20 | Hand Held Products, Inc. | Imaging module for optical reader |
US7500614B2 (en) | 1999-10-04 | 2009-03-10 | Hand Held Products, Inc. | Imaging module for optical reader |
US7533824B2 (en) | 1999-10-04 | 2009-05-19 | Hand Held Products, Inc. | Image sensor based optical reader |
US9076054B2 (en) | 1999-10-04 | 2015-07-07 | Hand Held Products, Inc. | Image sensor based optical reader |
US6601768B2 (en) | 2001-03-08 | 2003-08-05 | Welch Allyn Data Collection, Inc. | Imaging module for optical reader comprising refractive diffuser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5591955A (en) | Portable data file readers | |
US5818528A (en) | Automatic electronic camera for label image capture | |
US6039255A (en) | Data symbol reading apparatus | |
CA2253820C (fr) | Camera intelligente a dispositif a couplage de charge et a balayage progressif | |
US7123755B2 (en) | Image input apparatus, subject identification system, subject verification system and image input method | |
US20070164115A1 (en) | Automatic exposure system for imaging-based bar code reader | |
RU2447609C2 (ru) | Цифровая камера с системой триангуляционной автоматической фокусировки и связанный с ней способ | |
US7268924B2 (en) | Optical reader having reduced parameter determination delay | |
CN111107263B (zh) | 摄像设备和监视系统 | |
US6860428B1 (en) | Optical symbologies imager | |
US20090020611A1 (en) | Bi-optic imaging scanner with preprocessor for processing image data from multiple sources | |
WO1997042756A9 (fr) | Camera intelligente a dispositif a couplage de charge et a balayage progressif | |
CA2343312C (fr) | Methode d'utilisation d'un dispositif a couplage de charge en mode accelere et en liaison avec un imageur optique de symboles | |
WO1994027250A1 (fr) | Lecteur portatif bidimensionnel | |
US20060118629A1 (en) | Device for reading optical data code | |
US7487916B2 (en) | Imaging-based bar code reader with enhanced decoding capability | |
CN110505407B (zh) | 红外成像设备的镜头调焦方法、装置及设备 | |
WO1995016973A1 (fr) | Lecteurs portables de fichiers de donnees | |
CA2162673A1 (fr) | Lecteurs portables de fichiers de donnees | |
EP0680641B2 (fr) | Tete de balayage optique | |
RU2786356C1 (ru) | Двухспектральная система видеонаблюдения | |
JP3187220B2 (ja) | 照明装置 | |
EP1178665A2 (fr) | Scanner optique et lecteur d'images avec symbologies d'une et de deux dimensions à profondeur de champ variable | |
JP3128901B2 (ja) | 画像読取・処理装置及び画像読取・処理方法 | |
JPH0793461A (ja) | 照明装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA DE DK ES GB |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |
|
NENP | Non-entry into the national phase |
Ref country code: CA |