WO1994011913A1 - Empilage de piles a combustible haute temperature et son procede de fabrication - Google Patents
Empilage de piles a combustible haute temperature et son procede de fabrication Download PDFInfo
- Publication number
- WO1994011913A1 WO1994011913A1 PCT/DE1993/001017 DE9301017W WO9411913A1 WO 1994011913 A1 WO1994011913 A1 WO 1994011913A1 DE 9301017 W DE9301017 W DE 9301017W WO 9411913 A1 WO9411913 A1 WO 9411913A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- cell stack
- temperature fuel
- functional layer
- anode
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 19
- 239000002346 layers by function Substances 0.000 claims abstract description 63
- 239000010410 layer Substances 0.000 claims abstract description 12
- 238000005304 joining Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 48
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 8
- 239000002657 fibrous material Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical class [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 2
- 238000010288 cold spraying Methods 0.000 claims description 2
- HBAGRTDVSXKKDO-UHFFFAOYSA-N dioxido(dioxo)manganese lanthanum(3+) Chemical class [La+3].[La+3].[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O HBAGRTDVSXKKDO-UHFFFAOYSA-N 0.000 claims description 2
- 239000000314 lubricant Substances 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 239000002562 thickening agent Substances 0.000 claims description 2
- -1 dispersing aids Substances 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 12
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000007784 solid electrolyte Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 239000011195 cermet Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- IOKPLNQRQWZPGF-UHFFFAOYSA-N nickel(2+);oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[O-2].[Ni+2].[Zr+4] IOKPLNQRQWZPGF-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- IGPAMRAHTMKVDN-UHFFFAOYSA-N strontium dioxido(dioxo)manganese lanthanum(3+) Chemical class [Sr+2].[La+3].[O-][Mn]([O-])(=O)=O IGPAMRAHTMKVDN-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ARWMTMANOCYRLU-UHFFFAOYSA-N [Ca].[La] Chemical compound [Ca].[La] ARWMTMANOCYRLU-UHFFFAOYSA-N 0.000 description 1
- PACGUUNWTMTWCF-UHFFFAOYSA-N [Sr].[La] Chemical compound [Sr].[La] PACGUUNWTMTWCF-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2404—Processes or apparatus for grouping fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
- H01M2300/0074—Ion conductive at high temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a high-temperature fuel cell stack and to a method for producing such a stack.
- a high-temperature fuel cell (HTBZ) - also called solid oxide fuel cell (SOFC) - is suitable due to the relatively high operating temperatures, which are in the range from 800 to 1100 ° C, besides hydrogen gas and carbon monoxide also hydrocarbons, e.g. Natural gas or liquid storable propane gas, to be electrochemically converted with oxygen or atmospheric oxygen. By adding water vapor to the fuel, any soot formation can be avoided at high temperatures.
- HTBZ solid oxide fuel cell
- SOFC solid oxide fuel cell
- High-temperature fuel cells are known, for example, from the "Fuel Cell Handbook", Appelby and Foulkes, New York 1989. Such high-temperature fuel cells are usually constructed in a planar manner.
- the electrodes, i.e. the anode and the cathode lie on opposite sides of the electrolyte or are sintered onto it.
- the anode usually consists of a porous nickel-zirconium oxide cermet which is gas-permeable to the above reactants.
- the cathode usually consists of a perovskite of the lanthanum strontium manganates, which, like the anode, is porous and permeable to the oxidants.
- the electrolyte is designed so that it is gas-impermeable and oxygen-ion-conductive even at high operating temperatures.
- bipolar plates or end plates rest on the outside of the two electrodes. They consist of a highly electrically conductive material and have supply channels, so-called groove fields, for the supply of an oxygen-containing gas to the cathode and a fuel to the anode and for the removal of an oxidation product, such as e.g. Water or carbon dioxide. These bipolar plates or end plates contact the electrodes and support the electrodes of the solid electrolyte plates with the edges of the grooves. They are often provided with openings for gas supply and discharge at their edges.
- a stack of high-temperature fuel cells is usually made up of alternately stacked solid electrolyte platelets with electrodes, window foils and bipolar plates applied to them.
- the window films consist of the same Material such as the bipolar plates and have approximately the thickness of the electrodes sintered onto the solid electrolyte plate. They are inserted between the bipolar plates and the solid electrolyte plates. They serve to connect the electrolyte plates together with the electrodes and a frame surrounding them in a gas-tight manner via the respective edge regions.
- the window films seal the anode and cathode side gas spaces against one another and against the openings in the frame via the edge of the electrolyte platelets and over the frame surrounding the electrolyte platelets.
- the frame surrounding the electrolyte platelets, the bipolar plates and the window foils are soldered to one another in a gas-tight manner in a high-temperature fuel cell stack with the interposition of a solder melting above the operating temperature.
- the temperature can briefly reach 1300 ° C.
- the diffusion of elements from the bipolar plate into the electrodes or from the electrodes into the bipolar plates can also form poorly conductive interdiffusion layers.
- the interdiffusion can impair the electrochemical properties of the fuel cells.
- the invention is therefore based on the object of specifying a high-temperature fuel cell stack and a method for its production which make it possible to make extensive contact with the electrode and the bipolar plate and thereby to make the contact resistance and the resulting internal resistance of the fuel cell stack as small as possible hold.
- the object is achieved according to the invention in that at least one functional layer is provided, which is arranged between an electrode and an adjacent bipolar plate and is electronically conductive and easily deformable in the region of the operating temperature of the stack.
- the object is achieved according to the invention in that a functional layer is introduced between the electrode and the bipolar plate before the stack is sealed.
- the functional layer now compensates for the surface unevenness of the bipolar plate and the electrode in such a way that the layer material is introduced into the contact gaps which increase the contact resistance due to the easy deformability of the layer.
- the functional layer introduced between the electrode and the bipolar plate considerably reduces the contact resistance of the contact between the bipolar plate and the electrode.
- the functional layer is plastically deformable up to the temperature at which the stack is joined (sealed).
- the anode and / or the cathode functional layer i.e. the functional layer arranged between the anode or cathode and the bipolar plate comprise felt-like or fabric-like mats constructed from fibers. This ensures the easy deformability of the functional layers.
- the mats can be constructed from fibers of a suitable anode or cathode contact material.
- the mats can be constructed from a suitable fiber material which is coated with a suitable anode or cathode contact material.
- Suitable anode and cathode contact material and suitable fiber material are understood to mean materials which have good electronic conductivity in the temperature range between 700 and 1100 ° C. and a thermal expansion coefficient adapted to the electrodes and the metallic bipolar plate.
- these materials are said to be sinter-active with respect to electrodes and metallic bipolar plates, but without adverse interference, particularly with regard to the thermal expansion of the electrode and the bipolar plate and the electrical conductivity of the electrode and the bipolar plate.
- the electrochemical activity of the electrode and the catalytic property of the anode with regard to methane oxidation or reforming and shifting reaction should remain unaffected. Furthermore, these materials are intended to form a diffusion barrier for chromium from the bipolar plate.
- Conductive perovskites of the lanthanum manganates and / or cobaltates and / or chromates are advantageously suitable as the cathode contact material.
- a lanthanum strontium perovskite with a chemical composition is particularly suitable for this
- the materials mentioned ensure that a functional layer is introduced between the cathode and the bipolar plate which fulfills the above-mentioned requirements and thus contributes to a considerable reduction in the contact resistance between the cathode and the bipolar plate.
- the anode contact material can advantageously comprise one or more of the components ruthenium (Ru), nickel (Ni), nickel oxide (NiO) and cermets made of nickel and yttrium-stabilized zirconium oxide (Y2 ⁇ 3 / Zi ⁇ 2). This also creates a contact material for the contact between the anode and the bipolar plate, which has the properties already mentioned with respect to the cathode contact material and which contributes significantly to reducing the contact resistance between the anode and the bipolar plate.
- ruthenium ruthenium
- Ni nickel
- NiO nickel oxide
- cermets made of nickel and yttrium-stabilized zirconium oxide (Y2 ⁇ 3 / Zi ⁇ 2).
- Fiber material which is suitable for coating with the anode and / or cathode contact material.
- these are one of the two stainless steels with the associated material numbers DIN 1.4767 and 1.4541, which should have a chromium content between 15 and 30% by weight.
- the functional layer can be applied to the surface of the electrode and / or to the surface of the bipolar plate. It is hereby achieved that the application of the functional layer to one of the two or both surfaces, between which the functional layer is arranged, achieves a mechanically well-adhering contact between the surface and the functional layer.
- the layer thickness of the functional layer can be between 5 and 100 ⁇ m, preferably between 5 and 50 ⁇ m, in the unsintered state. Here, however, the layer thickness is still so thin that the gas spaces arranged between the electrodes and bipolar plates cannot be blocked.
- a screen printing or cold spraying method can be used as a simple method for applying the anode and / or cathode contact material.
- the contact material is supplemented with one or more of the commercially available additives, organic binders, inorganic binders, lubricants, dispersants, thickeners, film-forming agents and solvents.
- other known surface coating methods can also be used, e.g. plasma or flame spraying, sputtering, rolling, electrophoresis, electrostatic powder coating, film-drawing technology, DVD / PVD coating or the casting process.
- the temperature is preferably between 500 and 1100 ° C.
- the functional layer can also be used as a green sheet, i.e. as a film with unsintered contact material.
- the functional layer can also be introduced into the stack as ceramic tile. Green foil and ceramic fleece are sintered when the stack is joined.
- FIG. 1 shows a section of a high-temperature fuel cell stack with functional layers applied to the bipolar plate before the joining
- FIG. 2 shows a detail from the fuel cell stack of FIG. 1 after the stack has been joined
- FIGS. 1 and 2 shows another section of the high-temperature fuel cell stack of FIGS. 1 and 2 with functional layers applied to the electrodes before the stack is joined;
- Figure 4 shows the detail of Figure 3 after joining the stack.
- FIG. 1 shows a section of a high-temperature fuel cell stack 2, hereinafter referred to as the stack.
- the stack In the section shown, one can see two high-temperature fuel cells 4, 6 of the same structure, each comprising a solid electrolyte plate 8 and on opposite sides of the solid electrolyte plate 8 each having an anode 10 and cathode 12 sintered onto the solid electrolyte plate 8.
- the solid electrolyte plate 8 consists of yttrium oxide-stabilized zirconium oxide.
- the anode 10 consists of a nickel-zirconium oxide (YSZ) cermet.
- the cathode 12 consists of a lantane-strontium-perovskite of the chemical composition Lao, 5 S ⁇ Q ⁇ Mn ⁇ 3-.
- joining material 14 is obtained when the stack 2 is joined evaporated, adhered.
- the bipolar plate 16, 18 consists, for example, of the commercially available metal alloy under the name Haynes-Alloy 230 (HA 230). However, they can also consist of austenitic steels and high-temperature corrosion-resistant stainless steels, in particular of the metal alloys with the material numbers DIN 1.4767 and 1.4541, which have a chromium content between 15 and 30% by weight.
- a cathode functional layer 20 is applied to the surface of the plate 16 facing the cathode 12.
- the cathode functional layer 20 is a screen-printed functional layer made of a lanthanum strontium-manganate perovskite with the chemical composition LaQ ; 8 S ⁇ Q ⁇ Mn ⁇ 3-
- An anode functional layer 22 is arranged on the surface of the bipolar plate 18 facing the anode 10.
- the anode functional layer 22 is a likewise screen-printed functional layer, which consists of Ni / YSZ cermet.
- the material of the two functional layers 20, 22 is in the form of a felt-like mat. It would also be conceivable to use fabric-like mats made from these materials.
- both functional layers 20, 22 can also be applied to the surface of the bipolar plates 16, 18 by the cold spray process. It is also conceivable to apply the functional layers 20, 22 using other currently known surface coating methods.
- the functional layers 20, 22 are adapted with regard to their electrical conductivity, their thermal expansion and their corrosion resistance to the materials surrounding them.
- the functional layers 20, 22 have good electronic conductivity and are plastically deformable at least up to the temperature at which the stack 2 is joined.
- the layer thickness of the unsintered functional layers is set between 5 and 100 ⁇ m
- FIG. 2 shows the same detail from the stack 2 after the stack 2 has been joined.
- the stack 2 was joined at a temperature of approximately 1200 ° C.
- the joining material 14 is plastically deformable and now seals gas-tight between the solid electrolyte plate 8 and the edges of the bipolar plates 16, 18 at this temperature, the joining material 14 is combined with the electrolyte plate 8 as well as with the bipolar plates 16, 18 to form a firm bond.
- the surface of the cathode 12 and the anode 10 now partially lies directly on the surface of the bipolar plates 16 and 18, respectively. At these points there is good electrical contact between the electrode and the bipolar plate 16, 18 when the stack 2 is joined.
- the cathode 12 containing an oxygen-containing gas mixture via the cathode gas spaces 24 and the anode 10 containing a fuel-containing gas mixture via the anode gas spaces 26 is fed.
- the contact resistance i.e. the surface resistance of the contact electrode 10, 12 - bi-polar plate 16, 18 is less than 10 m ⁇ / cm ⁇ in the exemplary embodiment shown in FIG. 2 after an operating time of a few hours. During the continuous operation of the stack 2, this value approaches an even slightly lower value asymptotically. However, the surface resistance is therefore a power of ten smaller than in high-temperature fuel cell stacks without functional layers arranged between the electrode and the bipolar plate.
- FIG. 3 shows another detail from the same stack 2 with two other fuel cells 28, 30, which are identical in construction to FIG. 1, before the stack 2 is joined.
- the functional layers 20, 22 shown in FIG. 1 to the bipolar plate 16, 18, the functional layers 20, 22 have been applied here directly to the cathode 12 of the fuel cell 28 or to the anode 10 of the fuel cell 30.
- the functional layers 20, 22 have been cold sprayed onto the electrodes 10, 12 here and have the same nature and chemical composition as has already been described for FIGS. 1 and 2.
- the solid electrolyte plate 8 together with the electrodes 10, 12 functional layers 20, 22 applied thereon were subjected to a heat treatment in which the anode 10 and the cathode 12 were applied simultaneously the solid electrolyte plate 8 was solidified.
- the temperature was between 500 and 1100 ° C.
- FIG. 4 shows the detail from the stack 2 according to FIG. 3 after the stack 2 has been joined.
- a gas-tight bond of bipolar plates 16, 18 and the edges of the solid electrolyte plate 8 is also established here by means of the joining material 14.
- the cathode 12 of the fuel cell 28 and the anode 10 of the fuel cell 30 are only partially in contact with the bipolar plates 16 and 18, respectively.
- the residual ripple of anode 10 and cathode 12 is compensated for by the functional layer 22 and 20, so that on the one hand a large-area contact of the bipolar plate 16, 18 and the electrical element which is set with a small contact resistance associated with it and on the other hand, sufficiently large cathode and anode gas spaces 24, 26 remain in the grooves of the bipolar plates 16, 18 for gas supply and removal.
- there is a contact resistance of less than 10 ra ⁇ / cm ⁇ which asymptotically approaches an only slightly lower end value during the continuous operation of the stack 2.
- the anode and cathode contact material can also be applied to a suitable fiber material and then introduced together with this between the electrode 10, 12 and the bipolar plate 16, 18 of the stack 2.
- the fiber material which serves practically as a kind of carrier material for the contact material, can be made from high-temperature, corrosion-resistant materials and in particular, for example, from one of the two stainless steels with the associated material numbers DIN 1.4767 and 1.4541 and with a chromium content between 15 and 30 % By weight.
- the functional layer can also comprise a suitable metallic mesh which is coated with the contact material.
- the functional layer can also comprise metallic networks of different wire thickness and mesh size, which are coated with contact material.
- the metallic nets can first be coated and then inserted between the electrode and the bipolar plate of the stack 2. Alternatively, however, they can also be rolled (calendered) onto the electrode or the bipolar plate and then coated with contact material.
- the functional layers can also be constructed from several partial layers on * -g & e.
- the contact resistance at the electrode-bipolar plate interface is considerably reduced compared to the versions without these functional layers. This reduces the resulting internal resistance of the entire stack and thus also the electrical power losses when operating a high-temperature fuel cell stack.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93923441A EP0667042A1 (fr) | 1992-11-06 | 1993-10-26 | Empilage de piles a combustible haute temperature et son procede de fabrication |
JP6506642A JPH08502851A (ja) | 1992-11-06 | 1993-10-26 | 高温燃料電池スタック及びその製造方法 |
NO951780A NO951780L (no) | 1992-11-06 | 1995-05-05 | Höytemperaturbrenselcellestabel og fremgangsmåte til dens fremstilling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4237602.5 | 1992-11-06 | ||
DE4237602A DE4237602A1 (de) | 1992-11-06 | 1992-11-06 | Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994011913A1 true WO1994011913A1 (fr) | 1994-05-26 |
Family
ID=6472323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1993/001017 WO1994011913A1 (fr) | 1992-11-06 | 1993-10-26 | Empilage de piles a combustible haute temperature et son procede de fabrication |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0667042A1 (fr) |
JP (1) | JPH08502851A (fr) |
DE (1) | DE4237602A1 (fr) |
WO (1) | WO1994011913A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19609133C1 (de) * | 1996-03-08 | 1997-09-04 | Siemens Ag | Bipolare Platte für einen Hochtemperatur-Brennstoffzellenstapel und deren Verwendung |
DE19627504C1 (de) * | 1996-07-08 | 1997-10-23 | Siemens Ag | Verbundleiterplatte und Verwendung einer Verbundleiterplatte für einen Hochtemperatur-Brennstoffzellenstapel |
DE19640805C1 (de) * | 1996-10-02 | 1998-06-18 | Siemens Ag | Verfahren zum Herstellen eines Hochtemperatur-Brennstoffzellenstapels |
WO2005027246A2 (fr) | 2003-09-08 | 2005-03-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Element de mise en contact electrique pour piles a combustible haute temperature, et procede de realisation d'un tel element de mise en contact |
DE10342160A1 (de) * | 2003-09-08 | 2005-04-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Hochtemperaturbrennstoffzellen mit einer elektrisch leitenden Verbindung zwischen einem Interkonnektor und einer Kathode |
EP3306719A4 (fr) * | 2015-05-25 | 2018-04-11 | Nissan Motor Co., Ltd. | Pile à combustible à oxyde solide |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4422624B4 (de) * | 1994-06-28 | 2009-07-09 | Siemens Ag | Verfahren zum Aufbringen einer Schutzschicht auf einen metallischen chromhaltigen Körper |
DE4436456C3 (de) * | 1994-10-12 | 2000-04-06 | Siemens Ag | Verfahren zum Aufbringen einer elektronisch leitenden und leicht verformbaren Funktionsschicht |
US5942348A (en) * | 1994-12-01 | 1999-08-24 | Siemens Aktiengesellschaft | Fuel cell with ceramic-coated bipolar plates and a process for producing the fuel cell |
DE4443688C1 (de) * | 1994-12-08 | 1996-03-28 | Mtu Friedrichshafen Gmbh | Bipolarplatte für Brennstoffzellen |
DE19649456C2 (de) * | 1996-11-28 | 1999-01-21 | Siemens Ag | Hochtemperatur-Brennstoffzelle |
DE19649457C1 (de) * | 1996-11-28 | 1998-06-10 | Siemens Ag | Hochtemperatur-Brennstoffzelle und Verfahren zum Herstellen einer Hochtemperatur-Brennstoffzelle |
DE19718849A1 (de) * | 1997-05-03 | 1998-11-12 | Forschungszentrum Juelich Gmbh | Agglomeratfreie Suspension ohne zusätzliches Dispergiermittel |
AU4390500A (en) | 1999-03-26 | 2000-10-16 | Siemens Aktiengesellschaft | High-temperature fuel cell |
AU6260600A (en) * | 1999-07-09 | 2001-01-30 | Siemens Aktiengesellschaft | Electrical bonding protected against oxidation on the gas combustion side of a high temperature fuel cell |
NL1014722C2 (nl) * | 2000-03-22 | 2001-09-28 | Stichting Energie | Plaat, plaatsamenstel alsmede elektrochemische celstapeling. |
DE10048423A1 (de) * | 2000-09-29 | 2002-04-18 | Siemens Ag | Betriebsverfahren für eine Brennstoffzelle, damit arbeitende Polymer-Elektrolyt-Membran-Brennstoffzelle und Verfahren zu deren Herstellung |
DE10161538B4 (de) * | 2001-12-10 | 2004-09-09 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Träger für eine elektrochemische Funktionseinheit einer Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzelle |
EP1456900A4 (fr) * | 2001-12-18 | 2008-05-07 | Univ California | Collecte metallique de courant protegee par un film d'oxyde |
DE10232093A1 (de) * | 2002-07-15 | 2004-02-05 | Bayerische Motoren Werke Ag | Verfahren zum Zusammenfügen von Einzel-Brennstoffzellen zu einem Block oder -Stack sowie derartiger Brennstoffzellen-Block |
AT6260U1 (de) | 2002-08-01 | 2003-07-25 | Plansee Ag | Verfahren zur herstellung eines formteiles |
DE10254495A1 (de) * | 2002-11-22 | 2004-06-03 | Bayerische Motoren Werke Ag | Brennstoffzelle und Herstellverfahren hierfür |
JP4640906B2 (ja) * | 2002-12-26 | 2011-03-02 | 日本特殊陶業株式会社 | 積層体及び固体電解質型燃料電池 |
DE10317388B4 (de) * | 2003-04-15 | 2009-06-10 | Bayerische Motoren Werke Aktiengesellschaft | Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung |
DE10317361A1 (de) * | 2003-04-15 | 2004-11-04 | Bayerische Motoren Werke Ag | Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung |
DE10342691A1 (de) * | 2003-09-08 | 2005-04-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Stapelbare Hochtemperaturbrennstoffzelle |
CN1985397B (zh) * | 2004-06-10 | 2012-07-04 | 丹麦科技大学 | 固体氧化物燃料电池 |
JP2006049226A (ja) * | 2004-08-09 | 2006-02-16 | Nissan Motor Co Ltd | 燃料電池 |
DE502004010377D1 (de) * | 2004-08-30 | 2009-12-24 | Fraunhofer Ges Forschung | STAPELBARE HOCHTEMPERATURiBRENNSTOFFZELLE |
US7190568B2 (en) * | 2004-11-16 | 2007-03-13 | Versa Power Systems Ltd. | Electrically conductive fuel cell contact materials |
CN100568598C (zh) | 2004-12-28 | 2009-12-09 | 丹麦科技大学 | 制造金属与玻璃、金属与金属或金属与陶瓷的连接的方法 |
US8039175B2 (en) | 2005-01-12 | 2011-10-18 | Technical University Of Denmark | Method for shrinkage and porosity control during sintering of multilayer structures |
KR100940160B1 (ko) | 2005-01-31 | 2010-02-03 | 테크니칼 유니버시티 오브 덴마크 | 산화환원 안정 양극 |
ES2342489T3 (es) | 2005-02-02 | 2010-07-07 | Univ Denmark Tech Dtu | Procedimiento para producir una pila de combustible de oxido solido reversible. |
US20060188649A1 (en) * | 2005-02-22 | 2006-08-24 | General Electric Company | Methods of sealing solid oxide fuel cells |
US8021795B2 (en) * | 2005-04-07 | 2011-09-20 | General Electric Company | Method for manufacturing solid oxide electrochemical devices |
EP1760817B1 (fr) | 2005-08-31 | 2013-08-21 | Technical University of Denmark | Pile à combustible réversible et méthode de fabrication |
EP2378599B1 (fr) | 2006-11-23 | 2012-10-31 | Technical University of Denmark | Procédé de fabrication de cellules d'oxyde solide réversibles |
EP1990856B1 (fr) | 2007-05-09 | 2013-01-23 | Hexis AG | Procédé destiné à la fabrication de contacts entre des disques électrochimiques actifs et des interconnecteurs dans des cellules de combustibles à haute température |
JP5756591B2 (ja) * | 2009-04-20 | 2015-07-29 | 日本特殊陶業株式会社 | 燃料電池 |
JP5281950B2 (ja) * | 2009-04-24 | 2013-09-04 | 京セラ株式会社 | 横縞型燃料電池セルスタックおよびその製法ならびに燃料電池 |
EP2641291A4 (fr) | 2010-11-16 | 2016-04-27 | Saint Gobain Ceramics | Cellules uniques sensiblement plates pour empilements de piles à combustible à oxyde solide |
JP6598042B2 (ja) * | 2016-03-11 | 2019-10-30 | 日産自動車株式会社 | 固体酸化物型燃料電池 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0188868A1 (fr) * | 1985-01-22 | 1986-07-30 | Westinghouse Electric Corporation | Composé céramique et matériaux d'électrodes à air pour cellules électrochimiques fonctionnant à haute température |
EP0338823A1 (fr) * | 1988-04-21 | 1989-10-25 | Toa Nenryo Kogyo Kabushiki Kaisha | Piles à combustible du type à électrolyte solide |
EP0378812A1 (fr) * | 1989-01-18 | 1990-07-25 | Asea Brown Boveri Ag | Agencement de cellules à combustible à base d'un électrolyte solide constitué d'oxyde de zircon stabilisé fonctionnant à haute température pour obtenir une puissance maximale |
JPH02236959A (ja) * | 1989-03-09 | 1990-09-19 | Mitsubishi Heavy Ind Ltd | 電極材料 |
JPH02288159A (ja) * | 1989-04-28 | 1990-11-28 | Ngk Insulators Ltd | セラミックス電極及びこれを有する燃料電池 |
DE4016157A1 (de) | 1989-06-08 | 1990-12-13 | Asea Brown Boveri | Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen |
DE3922673A1 (de) * | 1989-07-10 | 1991-01-24 | Siemens Ag | Hochtemperaturbrennstoffzelle |
EP0410159A1 (fr) * | 1989-07-24 | 1991-01-30 | Asea Brown Boveri Ag | Collecteur de courant pour pile à combustible fonctionnant à haute température |
JPH0462757A (ja) * | 1990-06-29 | 1992-02-27 | Nkk Corp | 固体電解質型燃料電池 |
WO1992016029A1 (fr) * | 1991-03-05 | 1992-09-17 | Bossel Ulf Dr | Dispositif pour la transformation d'energie chimique d'un combustible en energie electrique au moyen d'un ensemble de cellules combustibles a haute temperature |
DE9304984U1 (de) * | 1993-04-01 | 1993-06-03 | Siemens AG, 8000 München | Hochtemperatur-Brennstoffzellen-Stapel |
-
1992
- 1992-11-06 DE DE4237602A patent/DE4237602A1/de not_active Withdrawn
-
1993
- 1993-10-26 WO PCT/DE1993/001017 patent/WO1994011913A1/fr not_active Application Discontinuation
- 1993-10-26 EP EP93923441A patent/EP0667042A1/fr not_active Withdrawn
- 1993-10-26 JP JP6506642A patent/JPH08502851A/ja active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0188868A1 (fr) * | 1985-01-22 | 1986-07-30 | Westinghouse Electric Corporation | Composé céramique et matériaux d'électrodes à air pour cellules électrochimiques fonctionnant à haute température |
EP0338823A1 (fr) * | 1988-04-21 | 1989-10-25 | Toa Nenryo Kogyo Kabushiki Kaisha | Piles à combustible du type à électrolyte solide |
EP0378812A1 (fr) * | 1989-01-18 | 1990-07-25 | Asea Brown Boveri Ag | Agencement de cellules à combustible à base d'un électrolyte solide constitué d'oxyde de zircon stabilisé fonctionnant à haute température pour obtenir une puissance maximale |
JPH02236959A (ja) * | 1989-03-09 | 1990-09-19 | Mitsubishi Heavy Ind Ltd | 電極材料 |
JPH02288159A (ja) * | 1989-04-28 | 1990-11-28 | Ngk Insulators Ltd | セラミックス電極及びこれを有する燃料電池 |
DE4016157A1 (de) | 1989-06-08 | 1990-12-13 | Asea Brown Boveri | Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen |
DE3922673A1 (de) * | 1989-07-10 | 1991-01-24 | Siemens Ag | Hochtemperaturbrennstoffzelle |
EP0410159A1 (fr) * | 1989-07-24 | 1991-01-30 | Asea Brown Boveri Ag | Collecteur de courant pour pile à combustible fonctionnant à haute température |
JPH0462757A (ja) * | 1990-06-29 | 1992-02-27 | Nkk Corp | 固体電解質型燃料電池 |
WO1992016029A1 (fr) * | 1991-03-05 | 1992-09-17 | Bossel Ulf Dr | Dispositif pour la transformation d'energie chimique d'un combustible en energie electrique au moyen d'un ensemble de cellules combustibles a haute temperature |
DE9304984U1 (de) * | 1993-04-01 | 1993-06-03 | Siemens AG, 8000 München | Hochtemperatur-Brennstoffzellen-Stapel |
Non-Patent Citations (4)
Title |
---|
CHEMICAL ABSTRACTS, vol. 114, no. 22, 3 June 1991, Columbus, Ohio, US; abstract no. 210620a, MATSUHIRO ET AL: "Ceramic air cathodes and fuel cells using these cathodes" * |
M. SHIESSL ET AL: "CERAMIC CATHODE MATERIALS (La1-uSruMn1-xCoxO3-delta) FOR SOLID OXIDE FUEL CELL (SOFC) APPLICATIONS", MATER. SCI. MONOGR. 66D(CERAM. TODAY - TOMORROW'S CERAM., PT. D), 1991, pages 2607 - 14 * |
PATENT ABSTRACTS OF JAPAN vol. 14, no. 550 (E - 1009) 6 December 1990 (1990-12-06) * |
PATENT ABSTRACTS OF JAPAN vol. 16, no. 267 (E - 1217) 16 June 1992 (1992-06-16) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19609133C1 (de) * | 1996-03-08 | 1997-09-04 | Siemens Ag | Bipolare Platte für einen Hochtemperatur-Brennstoffzellenstapel und deren Verwendung |
DE19627504C1 (de) * | 1996-07-08 | 1997-10-23 | Siemens Ag | Verbundleiterplatte und Verwendung einer Verbundleiterplatte für einen Hochtemperatur-Brennstoffzellenstapel |
DE19640805C1 (de) * | 1996-10-02 | 1998-06-18 | Siemens Ag | Verfahren zum Herstellen eines Hochtemperatur-Brennstoffzellenstapels |
WO2005027246A2 (fr) | 2003-09-08 | 2005-03-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Element de mise en contact electrique pour piles a combustible haute temperature, et procede de realisation d'un tel element de mise en contact |
DE10342160A1 (de) * | 2003-09-08 | 2005-04-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Hochtemperaturbrennstoffzellen mit einer elektrisch leitenden Verbindung zwischen einem Interkonnektor und einer Kathode |
DE10342161A1 (de) * | 2003-09-08 | 2005-04-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Elektrische Kontaktierung für Hochtemperaturbrennstoffzellen sowie Verfahren zur Herstellung einer solchen Kontaktierung |
DE10342160B4 (de) * | 2003-09-08 | 2007-11-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur Herstellung von Hochtemperaturbrennstoffzellen mit einer elektrisch leitenden Verbindung zwischen einem Interkonnektor und einer Kathode |
EP3306719A4 (fr) * | 2015-05-25 | 2018-04-11 | Nissan Motor Co., Ltd. | Pile à combustible à oxyde solide |
Also Published As
Publication number | Publication date |
---|---|
JPH08502851A (ja) | 1996-03-26 |
EP0667042A1 (fr) | 1995-08-16 |
DE4237602A1 (de) | 1994-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1994011913A1 (fr) | Empilage de piles a combustible haute temperature et son procede de fabrication | |
DE19681750B4 (de) | Elektrische Verbindungsvorrichtung für eine planare Brennstoffzelle und deren Verwendung | |
EP0696386B1 (fr) | Pile a combustible haute temperature a surface de contact electrolyte solide/electrodes amelioree et procede de realisation de la surface de contact | |
DE19817510B4 (de) | Oxidkeramischer Brennstoffzellenstapel, Verfahren zum Herstellen desselben und Verfahren zum Herstellen einer Elektrode eines oxidkeramischen Brennstoffzellenstapels | |
DE19710345C1 (de) | Werkstoff für elektrische Kontaktschichten zwischen einer Elektrode einer Hochtemperatur-Brennstoffzelle und einem Verbindungselement | |
DE19949431A1 (de) | Festoxidbrennstoffzelle mit einem Mischungsgradienten zwischen Elektrode und Elektrolyt | |
EP1314217B1 (fr) | Pile a combustible haute temperature | |
DE102008036847A1 (de) | Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte | |
EP0840947B1 (fr) | Pile a combustible pour hautes temperatures et empilement de piles pour hautes temperatures pourvu de plaquettes conductrices d'interconnexion portant une couche de contact en spinelle au chrome | |
DE4242570C2 (de) | Verbindermaterial für Festoxid-Brennstoffzellen | |
EP1662596A1 (fr) | Ensemble d'étanchéité pour une empilement de piles à combustilble à haute temperature et procédé d'assemblage de cette empilement | |
DE19841919C2 (de) | Verfahren zur Herstellung eines Brennstoffzellenmoduls | |
WO2010037755A1 (fr) | Procédé de fabrication d'un interconnecteur pour piles à combustible à haute température, pile à combustible à haute température correspondante et système de piles à combustible constitué de piles à combustible de ce type | |
EP1738428B1 (fr) | Liaison ceramique-acier electroconductrice et procede de production associe | |
DE102007024227A1 (de) | Hochtemperatur-Brennstoffzellenmodul und Verfahren zur Herstellung eines Hochtemperatur-Brennstoffzellenmoduls | |
DE102007024225A1 (de) | Trägervorrichtung für eine elektrochemische Funktionseinrichtung, Brennstoffzellenmodul und Verfahren zur Herstellung einer Trägervorrichtung | |
EP1070362B1 (fr) | Plaque bipolaire a paroi poreuse d'un empilement de cellules electrochimiques | |
DE4436456C3 (de) | Verfahren zum Aufbringen einer elektronisch leitenden und leicht verformbaren Funktionsschicht | |
DE10342691A1 (de) | Stapelbare Hochtemperaturbrennstoffzelle | |
DE102020204386A1 (de) | Verfahren zur Herstellung einer Gas- und/oder Elektronenleitungsstruktur und Brennstoff-/Elektrolysezelle | |
DE4030944A1 (de) | Karbonatschmelzen-brennstoffzelle | |
DE9304984U1 (de) | Hochtemperatur-Brennstoffzellen-Stapel | |
WO2010037681A1 (fr) | Pile à combustible plane à haute température | |
DE69902405T2 (de) | Elektrochemische zelle | |
DE10350478B4 (de) | Brennstoffzelleneinheit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): FI JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1993923441 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1993923441 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993923441 Country of ref document: EP |