+

WO1994011913A1 - Empilage de piles a combustible haute temperature et son procede de fabrication - Google Patents

Empilage de piles a combustible haute temperature et son procede de fabrication Download PDF

Info

Publication number
WO1994011913A1
WO1994011913A1 PCT/DE1993/001017 DE9301017W WO9411913A1 WO 1994011913 A1 WO1994011913 A1 WO 1994011913A1 DE 9301017 W DE9301017 W DE 9301017W WO 9411913 A1 WO9411913 A1 WO 9411913A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
temperature fuel
functional layer
anode
Prior art date
Application number
PCT/DE1993/001017
Other languages
German (de)
English (en)
Inventor
Belinda BRÜCKNER
Wolfgang Gajewski
Horst Greiner
Manfred SCHNÖLLER
Ellen Ivers-Tiffee
Wolfram Wersing
Harald Landes
Markus Schiessl
Thomas Jansing
Thomas Martens
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP93923441A priority Critical patent/EP0667042A1/fr
Priority to JP6506642A priority patent/JPH08502851A/ja
Publication of WO1994011913A1 publication Critical patent/WO1994011913A1/fr
Priority to NO951780A priority patent/NO951780L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a high-temperature fuel cell stack and to a method for producing such a stack.
  • a high-temperature fuel cell (HTBZ) - also called solid oxide fuel cell (SOFC) - is suitable due to the relatively high operating temperatures, which are in the range from 800 to 1100 ° C, besides hydrogen gas and carbon monoxide also hydrocarbons, e.g. Natural gas or liquid storable propane gas, to be electrochemically converted with oxygen or atmospheric oxygen. By adding water vapor to the fuel, any soot formation can be avoided at high temperatures.
  • HTBZ solid oxide fuel cell
  • SOFC solid oxide fuel cell
  • High-temperature fuel cells are known, for example, from the "Fuel Cell Handbook", Appelby and Foulkes, New York 1989. Such high-temperature fuel cells are usually constructed in a planar manner.
  • the electrodes, i.e. the anode and the cathode lie on opposite sides of the electrolyte or are sintered onto it.
  • the anode usually consists of a porous nickel-zirconium oxide cermet which is gas-permeable to the above reactants.
  • the cathode usually consists of a perovskite of the lanthanum strontium manganates, which, like the anode, is porous and permeable to the oxidants.
  • the electrolyte is designed so that it is gas-impermeable and oxygen-ion-conductive even at high operating temperatures.
  • bipolar plates or end plates rest on the outside of the two electrodes. They consist of a highly electrically conductive material and have supply channels, so-called groove fields, for the supply of an oxygen-containing gas to the cathode and a fuel to the anode and for the removal of an oxidation product, such as e.g. Water or carbon dioxide. These bipolar plates or end plates contact the electrodes and support the electrodes of the solid electrolyte plates with the edges of the grooves. They are often provided with openings for gas supply and discharge at their edges.
  • a stack of high-temperature fuel cells is usually made up of alternately stacked solid electrolyte platelets with electrodes, window foils and bipolar plates applied to them.
  • the window films consist of the same Material such as the bipolar plates and have approximately the thickness of the electrodes sintered onto the solid electrolyte plate. They are inserted between the bipolar plates and the solid electrolyte plates. They serve to connect the electrolyte plates together with the electrodes and a frame surrounding them in a gas-tight manner via the respective edge regions.
  • the window films seal the anode and cathode side gas spaces against one another and against the openings in the frame via the edge of the electrolyte platelets and over the frame surrounding the electrolyte platelets.
  • the frame surrounding the electrolyte platelets, the bipolar plates and the window foils are soldered to one another in a gas-tight manner in a high-temperature fuel cell stack with the interposition of a solder melting above the operating temperature.
  • the temperature can briefly reach 1300 ° C.
  • the diffusion of elements from the bipolar plate into the electrodes or from the electrodes into the bipolar plates can also form poorly conductive interdiffusion layers.
  • the interdiffusion can impair the electrochemical properties of the fuel cells.
  • the invention is therefore based on the object of specifying a high-temperature fuel cell stack and a method for its production which make it possible to make extensive contact with the electrode and the bipolar plate and thereby to make the contact resistance and the resulting internal resistance of the fuel cell stack as small as possible hold.
  • the object is achieved according to the invention in that at least one functional layer is provided, which is arranged between an electrode and an adjacent bipolar plate and is electronically conductive and easily deformable in the region of the operating temperature of the stack.
  • the object is achieved according to the invention in that a functional layer is introduced between the electrode and the bipolar plate before the stack is sealed.
  • the functional layer now compensates for the surface unevenness of the bipolar plate and the electrode in such a way that the layer material is introduced into the contact gaps which increase the contact resistance due to the easy deformability of the layer.
  • the functional layer introduced between the electrode and the bipolar plate considerably reduces the contact resistance of the contact between the bipolar plate and the electrode.
  • the functional layer is plastically deformable up to the temperature at which the stack is joined (sealed).
  • the anode and / or the cathode functional layer i.e. the functional layer arranged between the anode or cathode and the bipolar plate comprise felt-like or fabric-like mats constructed from fibers. This ensures the easy deformability of the functional layers.
  • the mats can be constructed from fibers of a suitable anode or cathode contact material.
  • the mats can be constructed from a suitable fiber material which is coated with a suitable anode or cathode contact material.
  • Suitable anode and cathode contact material and suitable fiber material are understood to mean materials which have good electronic conductivity in the temperature range between 700 and 1100 ° C. and a thermal expansion coefficient adapted to the electrodes and the metallic bipolar plate.
  • these materials are said to be sinter-active with respect to electrodes and metallic bipolar plates, but without adverse interference, particularly with regard to the thermal expansion of the electrode and the bipolar plate and the electrical conductivity of the electrode and the bipolar plate.
  • the electrochemical activity of the electrode and the catalytic property of the anode with regard to methane oxidation or reforming and shifting reaction should remain unaffected. Furthermore, these materials are intended to form a diffusion barrier for chromium from the bipolar plate.
  • Conductive perovskites of the lanthanum manganates and / or cobaltates and / or chromates are advantageously suitable as the cathode contact material.
  • a lanthanum strontium perovskite with a chemical composition is particularly suitable for this
  • the materials mentioned ensure that a functional layer is introduced between the cathode and the bipolar plate which fulfills the above-mentioned requirements and thus contributes to a considerable reduction in the contact resistance between the cathode and the bipolar plate.
  • the anode contact material can advantageously comprise one or more of the components ruthenium (Ru), nickel (Ni), nickel oxide (NiO) and cermets made of nickel and yttrium-stabilized zirconium oxide (Y2 ⁇ 3 / Zi ⁇ 2). This also creates a contact material for the contact between the anode and the bipolar plate, which has the properties already mentioned with respect to the cathode contact material and which contributes significantly to reducing the contact resistance between the anode and the bipolar plate.
  • ruthenium ruthenium
  • Ni nickel
  • NiO nickel oxide
  • cermets made of nickel and yttrium-stabilized zirconium oxide (Y2 ⁇ 3 / Zi ⁇ 2).
  • Fiber material which is suitable for coating with the anode and / or cathode contact material.
  • these are one of the two stainless steels with the associated material numbers DIN 1.4767 and 1.4541, which should have a chromium content between 15 and 30% by weight.
  • the functional layer can be applied to the surface of the electrode and / or to the surface of the bipolar plate. It is hereby achieved that the application of the functional layer to one of the two or both surfaces, between which the functional layer is arranged, achieves a mechanically well-adhering contact between the surface and the functional layer.
  • the layer thickness of the functional layer can be between 5 and 100 ⁇ m, preferably between 5 and 50 ⁇ m, in the unsintered state. Here, however, the layer thickness is still so thin that the gas spaces arranged between the electrodes and bipolar plates cannot be blocked.
  • a screen printing or cold spraying method can be used as a simple method for applying the anode and / or cathode contact material.
  • the contact material is supplemented with one or more of the commercially available additives, organic binders, inorganic binders, lubricants, dispersants, thickeners, film-forming agents and solvents.
  • other known surface coating methods can also be used, e.g. plasma or flame spraying, sputtering, rolling, electrophoresis, electrostatic powder coating, film-drawing technology, DVD / PVD coating or the casting process.
  • the temperature is preferably between 500 and 1100 ° C.
  • the functional layer can also be used as a green sheet, i.e. as a film with unsintered contact material.
  • the functional layer can also be introduced into the stack as ceramic tile. Green foil and ceramic fleece are sintered when the stack is joined.
  • FIG. 1 shows a section of a high-temperature fuel cell stack with functional layers applied to the bipolar plate before the joining
  • FIG. 2 shows a detail from the fuel cell stack of FIG. 1 after the stack has been joined
  • FIGS. 1 and 2 shows another section of the high-temperature fuel cell stack of FIGS. 1 and 2 with functional layers applied to the electrodes before the stack is joined;
  • Figure 4 shows the detail of Figure 3 after joining the stack.
  • FIG. 1 shows a section of a high-temperature fuel cell stack 2, hereinafter referred to as the stack.
  • the stack In the section shown, one can see two high-temperature fuel cells 4, 6 of the same structure, each comprising a solid electrolyte plate 8 and on opposite sides of the solid electrolyte plate 8 each having an anode 10 and cathode 12 sintered onto the solid electrolyte plate 8.
  • the solid electrolyte plate 8 consists of yttrium oxide-stabilized zirconium oxide.
  • the anode 10 consists of a nickel-zirconium oxide (YSZ) cermet.
  • the cathode 12 consists of a lantane-strontium-perovskite of the chemical composition Lao, 5 S ⁇ Q ⁇ Mn ⁇ 3-.
  • joining material 14 is obtained when the stack 2 is joined evaporated, adhered.
  • the bipolar plate 16, 18 consists, for example, of the commercially available metal alloy under the name Haynes-Alloy 230 (HA 230). However, they can also consist of austenitic steels and high-temperature corrosion-resistant stainless steels, in particular of the metal alloys with the material numbers DIN 1.4767 and 1.4541, which have a chromium content between 15 and 30% by weight.
  • a cathode functional layer 20 is applied to the surface of the plate 16 facing the cathode 12.
  • the cathode functional layer 20 is a screen-printed functional layer made of a lanthanum strontium-manganate perovskite with the chemical composition LaQ ; 8 S ⁇ Q ⁇ Mn ⁇ 3-
  • An anode functional layer 22 is arranged on the surface of the bipolar plate 18 facing the anode 10.
  • the anode functional layer 22 is a likewise screen-printed functional layer, which consists of Ni / YSZ cermet.
  • the material of the two functional layers 20, 22 is in the form of a felt-like mat. It would also be conceivable to use fabric-like mats made from these materials.
  • both functional layers 20, 22 can also be applied to the surface of the bipolar plates 16, 18 by the cold spray process. It is also conceivable to apply the functional layers 20, 22 using other currently known surface coating methods.
  • the functional layers 20, 22 are adapted with regard to their electrical conductivity, their thermal expansion and their corrosion resistance to the materials surrounding them.
  • the functional layers 20, 22 have good electronic conductivity and are plastically deformable at least up to the temperature at which the stack 2 is joined.
  • the layer thickness of the unsintered functional layers is set between 5 and 100 ⁇ m
  • FIG. 2 shows the same detail from the stack 2 after the stack 2 has been joined.
  • the stack 2 was joined at a temperature of approximately 1200 ° C.
  • the joining material 14 is plastically deformable and now seals gas-tight between the solid electrolyte plate 8 and the edges of the bipolar plates 16, 18 at this temperature, the joining material 14 is combined with the electrolyte plate 8 as well as with the bipolar plates 16, 18 to form a firm bond.
  • the surface of the cathode 12 and the anode 10 now partially lies directly on the surface of the bipolar plates 16 and 18, respectively. At these points there is good electrical contact between the electrode and the bipolar plate 16, 18 when the stack 2 is joined.
  • the cathode 12 containing an oxygen-containing gas mixture via the cathode gas spaces 24 and the anode 10 containing a fuel-containing gas mixture via the anode gas spaces 26 is fed.
  • the contact resistance i.e. the surface resistance of the contact electrode 10, 12 - bi-polar plate 16, 18 is less than 10 m ⁇ / cm ⁇ in the exemplary embodiment shown in FIG. 2 after an operating time of a few hours. During the continuous operation of the stack 2, this value approaches an even slightly lower value asymptotically. However, the surface resistance is therefore a power of ten smaller than in high-temperature fuel cell stacks without functional layers arranged between the electrode and the bipolar plate.
  • FIG. 3 shows another detail from the same stack 2 with two other fuel cells 28, 30, which are identical in construction to FIG. 1, before the stack 2 is joined.
  • the functional layers 20, 22 shown in FIG. 1 to the bipolar plate 16, 18, the functional layers 20, 22 have been applied here directly to the cathode 12 of the fuel cell 28 or to the anode 10 of the fuel cell 30.
  • the functional layers 20, 22 have been cold sprayed onto the electrodes 10, 12 here and have the same nature and chemical composition as has already been described for FIGS. 1 and 2.
  • the solid electrolyte plate 8 together with the electrodes 10, 12 functional layers 20, 22 applied thereon were subjected to a heat treatment in which the anode 10 and the cathode 12 were applied simultaneously the solid electrolyte plate 8 was solidified.
  • the temperature was between 500 and 1100 ° C.
  • FIG. 4 shows the detail from the stack 2 according to FIG. 3 after the stack 2 has been joined.
  • a gas-tight bond of bipolar plates 16, 18 and the edges of the solid electrolyte plate 8 is also established here by means of the joining material 14.
  • the cathode 12 of the fuel cell 28 and the anode 10 of the fuel cell 30 are only partially in contact with the bipolar plates 16 and 18, respectively.
  • the residual ripple of anode 10 and cathode 12 is compensated for by the functional layer 22 and 20, so that on the one hand a large-area contact of the bipolar plate 16, 18 and the electrical element which is set with a small contact resistance associated with it and on the other hand, sufficiently large cathode and anode gas spaces 24, 26 remain in the grooves of the bipolar plates 16, 18 for gas supply and removal.
  • there is a contact resistance of less than 10 ra ⁇ / cm ⁇ which asymptotically approaches an only slightly lower end value during the continuous operation of the stack 2.
  • the anode and cathode contact material can also be applied to a suitable fiber material and then introduced together with this between the electrode 10, 12 and the bipolar plate 16, 18 of the stack 2.
  • the fiber material which serves practically as a kind of carrier material for the contact material, can be made from high-temperature, corrosion-resistant materials and in particular, for example, from one of the two stainless steels with the associated material numbers DIN 1.4767 and 1.4541 and with a chromium content between 15 and 30 % By weight.
  • the functional layer can also comprise a suitable metallic mesh which is coated with the contact material.
  • the functional layer can also comprise metallic networks of different wire thickness and mesh size, which are coated with contact material.
  • the metallic nets can first be coated and then inserted between the electrode and the bipolar plate of the stack 2. Alternatively, however, they can also be rolled (calendered) onto the electrode or the bipolar plate and then coated with contact material.
  • the functional layers can also be constructed from several partial layers on * -g & e.
  • the contact resistance at the electrode-bipolar plate interface is considerably reduced compared to the versions without these functional layers. This reduces the resulting internal resistance of the entire stack and thus also the electrical power losses when operating a high-temperature fuel cell stack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

Lors du jointage d'un empilage de piles à combustible-haute température, on se heurte principalement au problème de la mise en contact sur une grande surface des interfaces électrode-plaque bipolaire. L'ondulation résiduelle de l'électrolyte et des électrodes appliquées dessus et la formation qui en résulte de couches d'interdiffusion ayant une mauvaise conduction électrique au niveau des intervalles de contact, font que le rendement global diminue en raison de l'augmentation de la résistance intérieure de l'empilage, qui en résulte. Afin de pallier cet inconvénient, l'invention suggère de prévoir au moins une couche de fonction (20, 22) dans un empilage de piles à combustible-haute température, située entre l'électrode (10, 12) et la plaque bipolaire (16, 18), et qui soit électroniquement conductrice et aisément déformable à la température de fonctionnement de l'empilage (2). L'invention peut être utilisée pour tous les empilages de piles à combustible-haute température.
PCT/DE1993/001017 1992-11-06 1993-10-26 Empilage de piles a combustible haute temperature et son procede de fabrication WO1994011913A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP93923441A EP0667042A1 (fr) 1992-11-06 1993-10-26 Empilage de piles a combustible haute temperature et son procede de fabrication
JP6506642A JPH08502851A (ja) 1992-11-06 1993-10-26 高温燃料電池スタック及びその製造方法
NO951780A NO951780L (no) 1992-11-06 1995-05-05 Höytemperaturbrenselcellestabel og fremgangsmåte til dens fremstilling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4237602.5 1992-11-06
DE4237602A DE4237602A1 (de) 1992-11-06 1992-11-06 Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO1994011913A1 true WO1994011913A1 (fr) 1994-05-26

Family

ID=6472323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/001017 WO1994011913A1 (fr) 1992-11-06 1993-10-26 Empilage de piles a combustible haute temperature et son procede de fabrication

Country Status (4)

Country Link
EP (1) EP0667042A1 (fr)
JP (1) JPH08502851A (fr)
DE (1) DE4237602A1 (fr)
WO (1) WO1994011913A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609133C1 (de) * 1996-03-08 1997-09-04 Siemens Ag Bipolare Platte für einen Hochtemperatur-Brennstoffzellenstapel und deren Verwendung
DE19627504C1 (de) * 1996-07-08 1997-10-23 Siemens Ag Verbundleiterplatte und Verwendung einer Verbundleiterplatte für einen Hochtemperatur-Brennstoffzellenstapel
DE19640805C1 (de) * 1996-10-02 1998-06-18 Siemens Ag Verfahren zum Herstellen eines Hochtemperatur-Brennstoffzellenstapels
WO2005027246A2 (fr) 2003-09-08 2005-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Element de mise en contact electrique pour piles a combustible haute temperature, et procede de realisation d'un tel element de mise en contact
DE10342160A1 (de) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Hochtemperaturbrennstoffzellen mit einer elektrisch leitenden Verbindung zwischen einem Interkonnektor und einer Kathode
EP3306719A4 (fr) * 2015-05-25 2018-04-11 Nissan Motor Co., Ltd. Pile à combustible à oxyde solide

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422624B4 (de) * 1994-06-28 2009-07-09 Siemens Ag Verfahren zum Aufbringen einer Schutzschicht auf einen metallischen chromhaltigen Körper
DE4436456C3 (de) * 1994-10-12 2000-04-06 Siemens Ag Verfahren zum Aufbringen einer elektronisch leitenden und leicht verformbaren Funktionsschicht
US5942348A (en) * 1994-12-01 1999-08-24 Siemens Aktiengesellschaft Fuel cell with ceramic-coated bipolar plates and a process for producing the fuel cell
DE4443688C1 (de) * 1994-12-08 1996-03-28 Mtu Friedrichshafen Gmbh Bipolarplatte für Brennstoffzellen
DE19649456C2 (de) * 1996-11-28 1999-01-21 Siemens Ag Hochtemperatur-Brennstoffzelle
DE19649457C1 (de) * 1996-11-28 1998-06-10 Siemens Ag Hochtemperatur-Brennstoffzelle und Verfahren zum Herstellen einer Hochtemperatur-Brennstoffzelle
DE19718849A1 (de) * 1997-05-03 1998-11-12 Forschungszentrum Juelich Gmbh Agglomeratfreie Suspension ohne zusätzliches Dispergiermittel
AU4390500A (en) 1999-03-26 2000-10-16 Siemens Aktiengesellschaft High-temperature fuel cell
AU6260600A (en) * 1999-07-09 2001-01-30 Siemens Aktiengesellschaft Electrical bonding protected against oxidation on the gas combustion side of a high temperature fuel cell
NL1014722C2 (nl) * 2000-03-22 2001-09-28 Stichting Energie Plaat, plaatsamenstel alsmede elektrochemische celstapeling.
DE10048423A1 (de) * 2000-09-29 2002-04-18 Siemens Ag Betriebsverfahren für eine Brennstoffzelle, damit arbeitende Polymer-Elektrolyt-Membran-Brennstoffzelle und Verfahren zu deren Herstellung
DE10161538B4 (de) * 2001-12-10 2004-09-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Träger für eine elektrochemische Funktionseinheit einer Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzelle
EP1456900A4 (fr) * 2001-12-18 2008-05-07 Univ California Collecte metallique de courant protegee par un film d'oxyde
DE10232093A1 (de) * 2002-07-15 2004-02-05 Bayerische Motoren Werke Ag Verfahren zum Zusammenfügen von Einzel-Brennstoffzellen zu einem Block oder -Stack sowie derartiger Brennstoffzellen-Block
AT6260U1 (de) 2002-08-01 2003-07-25 Plansee Ag Verfahren zur herstellung eines formteiles
DE10254495A1 (de) * 2002-11-22 2004-06-03 Bayerische Motoren Werke Ag Brennstoffzelle und Herstellverfahren hierfür
JP4640906B2 (ja) * 2002-12-26 2011-03-02 日本特殊陶業株式会社 積層体及び固体電解質型燃料電池
DE10317388B4 (de) * 2003-04-15 2009-06-10 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE10317361A1 (de) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE10342691A1 (de) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stapelbare Hochtemperaturbrennstoffzelle
CN1985397B (zh) * 2004-06-10 2012-07-04 丹麦科技大学 固体氧化物燃料电池
JP2006049226A (ja) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd 燃料電池
DE502004010377D1 (de) * 2004-08-30 2009-12-24 Fraunhofer Ges Forschung STAPELBARE HOCHTEMPERATURiBRENNSTOFFZELLE
US7190568B2 (en) * 2004-11-16 2007-03-13 Versa Power Systems Ltd. Electrically conductive fuel cell contact materials
CN100568598C (zh) 2004-12-28 2009-12-09 丹麦科技大学 制造金属与玻璃、金属与金属或金属与陶瓷的连接的方法
US8039175B2 (en) 2005-01-12 2011-10-18 Technical University Of Denmark Method for shrinkage and porosity control during sintering of multilayer structures
KR100940160B1 (ko) 2005-01-31 2010-02-03 테크니칼 유니버시티 오브 덴마크 산화환원 안정 양극
ES2342489T3 (es) 2005-02-02 2010-07-07 Univ Denmark Tech Dtu Procedimiento para producir una pila de combustible de oxido solido reversible.
US20060188649A1 (en) * 2005-02-22 2006-08-24 General Electric Company Methods of sealing solid oxide fuel cells
US8021795B2 (en) * 2005-04-07 2011-09-20 General Electric Company Method for manufacturing solid oxide electrochemical devices
EP1760817B1 (fr) 2005-08-31 2013-08-21 Technical University of Denmark Pile à combustible réversible et méthode de fabrication
EP2378599B1 (fr) 2006-11-23 2012-10-31 Technical University of Denmark Procédé de fabrication de cellules d'oxyde solide réversibles
EP1990856B1 (fr) 2007-05-09 2013-01-23 Hexis AG Procédé destiné à la fabrication de contacts entre des disques électrochimiques actifs et des interconnecteurs dans des cellules de combustibles à haute température
JP5756591B2 (ja) * 2009-04-20 2015-07-29 日本特殊陶業株式会社 燃料電池
JP5281950B2 (ja) * 2009-04-24 2013-09-04 京セラ株式会社 横縞型燃料電池セルスタックおよびその製法ならびに燃料電池
EP2641291A4 (fr) 2010-11-16 2016-04-27 Saint Gobain Ceramics Cellules uniques sensiblement plates pour empilements de piles à combustible à oxyde solide
JP6598042B2 (ja) * 2016-03-11 2019-10-30 日産自動車株式会社 固体酸化物型燃料電池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188868A1 (fr) * 1985-01-22 1986-07-30 Westinghouse Electric Corporation Composé céramique et matériaux d'électrodes à air pour cellules électrochimiques fonctionnant à haute température
EP0338823A1 (fr) * 1988-04-21 1989-10-25 Toa Nenryo Kogyo Kabushiki Kaisha Piles à combustible du type à électrolyte solide
EP0378812A1 (fr) * 1989-01-18 1990-07-25 Asea Brown Boveri Ag Agencement de cellules à combustible à base d'un électrolyte solide constitué d'oxyde de zircon stabilisé fonctionnant à haute température pour obtenir une puissance maximale
JPH02236959A (ja) * 1989-03-09 1990-09-19 Mitsubishi Heavy Ind Ltd 電極材料
JPH02288159A (ja) * 1989-04-28 1990-11-28 Ngk Insulators Ltd セラミックス電極及びこれを有する燃料電池
DE4016157A1 (de) 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
DE3922673A1 (de) * 1989-07-10 1991-01-24 Siemens Ag Hochtemperaturbrennstoffzelle
EP0410159A1 (fr) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Collecteur de courant pour pile à combustible fonctionnant à haute température
JPH0462757A (ja) * 1990-06-29 1992-02-27 Nkk Corp 固体電解質型燃料電池
WO1992016029A1 (fr) * 1991-03-05 1992-09-17 Bossel Ulf Dr Dispositif pour la transformation d'energie chimique d'un combustible en energie electrique au moyen d'un ensemble de cellules combustibles a haute temperature
DE9304984U1 (de) * 1993-04-01 1993-06-03 Siemens AG, 8000 München Hochtemperatur-Brennstoffzellen-Stapel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188868A1 (fr) * 1985-01-22 1986-07-30 Westinghouse Electric Corporation Composé céramique et matériaux d'électrodes à air pour cellules électrochimiques fonctionnant à haute température
EP0338823A1 (fr) * 1988-04-21 1989-10-25 Toa Nenryo Kogyo Kabushiki Kaisha Piles à combustible du type à électrolyte solide
EP0378812A1 (fr) * 1989-01-18 1990-07-25 Asea Brown Boveri Ag Agencement de cellules à combustible à base d'un électrolyte solide constitué d'oxyde de zircon stabilisé fonctionnant à haute température pour obtenir une puissance maximale
JPH02236959A (ja) * 1989-03-09 1990-09-19 Mitsubishi Heavy Ind Ltd 電極材料
JPH02288159A (ja) * 1989-04-28 1990-11-28 Ngk Insulators Ltd セラミックス電極及びこれを有する燃料電池
DE4016157A1 (de) 1989-06-08 1990-12-13 Asea Brown Boveri Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
DE3922673A1 (de) * 1989-07-10 1991-01-24 Siemens Ag Hochtemperaturbrennstoffzelle
EP0410159A1 (fr) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Collecteur de courant pour pile à combustible fonctionnant à haute température
JPH0462757A (ja) * 1990-06-29 1992-02-27 Nkk Corp 固体電解質型燃料電池
WO1992016029A1 (fr) * 1991-03-05 1992-09-17 Bossel Ulf Dr Dispositif pour la transformation d'energie chimique d'un combustible en energie electrique au moyen d'un ensemble de cellules combustibles a haute temperature
DE9304984U1 (de) * 1993-04-01 1993-06-03 Siemens AG, 8000 München Hochtemperatur-Brennstoffzellen-Stapel

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 114, no. 22, 3 June 1991, Columbus, Ohio, US; abstract no. 210620a, MATSUHIRO ET AL: "Ceramic air cathodes and fuel cells using these cathodes" *
M. SHIESSL ET AL: "CERAMIC CATHODE MATERIALS (La1-uSruMn1-xCoxO3-delta) FOR SOLID OXIDE FUEL CELL (SOFC) APPLICATIONS", MATER. SCI. MONOGR. 66D(CERAM. TODAY - TOMORROW'S CERAM., PT. D), 1991, pages 2607 - 14 *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 550 (E - 1009) 6 December 1990 (1990-12-06) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 267 (E - 1217) 16 June 1992 (1992-06-16) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609133C1 (de) * 1996-03-08 1997-09-04 Siemens Ag Bipolare Platte für einen Hochtemperatur-Brennstoffzellenstapel und deren Verwendung
DE19627504C1 (de) * 1996-07-08 1997-10-23 Siemens Ag Verbundleiterplatte und Verwendung einer Verbundleiterplatte für einen Hochtemperatur-Brennstoffzellenstapel
DE19640805C1 (de) * 1996-10-02 1998-06-18 Siemens Ag Verfahren zum Herstellen eines Hochtemperatur-Brennstoffzellenstapels
WO2005027246A2 (fr) 2003-09-08 2005-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Element de mise en contact electrique pour piles a combustible haute temperature, et procede de realisation d'un tel element de mise en contact
DE10342160A1 (de) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Hochtemperaturbrennstoffzellen mit einer elektrisch leitenden Verbindung zwischen einem Interkonnektor und einer Kathode
DE10342161A1 (de) * 2003-09-08 2005-04-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrische Kontaktierung für Hochtemperaturbrennstoffzellen sowie Verfahren zur Herstellung einer solchen Kontaktierung
DE10342160B4 (de) * 2003-09-08 2007-11-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Hochtemperaturbrennstoffzellen mit einer elektrisch leitenden Verbindung zwischen einem Interkonnektor und einer Kathode
EP3306719A4 (fr) * 2015-05-25 2018-04-11 Nissan Motor Co., Ltd. Pile à combustible à oxyde solide

Also Published As

Publication number Publication date
JPH08502851A (ja) 1996-03-26
EP0667042A1 (fr) 1995-08-16
DE4237602A1 (de) 1994-05-11

Similar Documents

Publication Publication Date Title
WO1994011913A1 (fr) Empilage de piles a combustible haute temperature et son procede de fabrication
DE19681750B4 (de) Elektrische Verbindungsvorrichtung für eine planare Brennstoffzelle und deren Verwendung
EP0696386B1 (fr) Pile a combustible haute temperature a surface de contact electrolyte solide/electrodes amelioree et procede de realisation de la surface de contact
DE19817510B4 (de) Oxidkeramischer Brennstoffzellenstapel, Verfahren zum Herstellen desselben und Verfahren zum Herstellen einer Elektrode eines oxidkeramischen Brennstoffzellenstapels
DE19710345C1 (de) Werkstoff für elektrische Kontaktschichten zwischen einer Elektrode einer Hochtemperatur-Brennstoffzelle und einem Verbindungselement
DE19949431A1 (de) Festoxidbrennstoffzelle mit einem Mischungsgradienten zwischen Elektrode und Elektrolyt
EP1314217B1 (fr) Pile a combustible haute temperature
DE102008036847A1 (de) Brennstoffzelleneinheit und Verfahren zum Herstellen einer elektrisch leitfähigen Verbindung zwischen einer Elektrode und einer Bipolarplatte
EP0840947B1 (fr) Pile a combustible pour hautes temperatures et empilement de piles pour hautes temperatures pourvu de plaquettes conductrices d'interconnexion portant une couche de contact en spinelle au chrome
DE4242570C2 (de) Verbindermaterial für Festoxid-Brennstoffzellen
EP1662596A1 (fr) Ensemble d'étanchéité pour une empilement de piles à combustilble à haute temperature et procédé d'assemblage de cette empilement
DE19841919C2 (de) Verfahren zur Herstellung eines Brennstoffzellenmoduls
WO2010037755A1 (fr) Procédé de fabrication d'un interconnecteur pour piles à combustible à haute température, pile à combustible à haute température correspondante et système de piles à combustible constitué de piles à combustible de ce type
EP1738428B1 (fr) Liaison ceramique-acier electroconductrice et procede de production associe
DE102007024227A1 (de) Hochtemperatur-Brennstoffzellenmodul und Verfahren zur Herstellung eines Hochtemperatur-Brennstoffzellenmoduls
DE102007024225A1 (de) Trägervorrichtung für eine elektrochemische Funktionseinrichtung, Brennstoffzellenmodul und Verfahren zur Herstellung einer Trägervorrichtung
EP1070362B1 (fr) Plaque bipolaire a paroi poreuse d'un empilement de cellules electrochimiques
DE4436456C3 (de) Verfahren zum Aufbringen einer elektronisch leitenden und leicht verformbaren Funktionsschicht
DE10342691A1 (de) Stapelbare Hochtemperaturbrennstoffzelle
DE102020204386A1 (de) Verfahren zur Herstellung einer Gas- und/oder Elektronenleitungsstruktur und Brennstoff-/Elektrolysezelle
DE4030944A1 (de) Karbonatschmelzen-brennstoffzelle
DE9304984U1 (de) Hochtemperatur-Brennstoffzellen-Stapel
WO2010037681A1 (fr) Pile à combustible plane à haute température
DE69902405T2 (de) Elektrochemische zelle
DE10350478B4 (de) Brennstoffzelleneinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993923441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993923441

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993923441

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载