WO1993025671A1 - Xylanase recombinante - Google Patents
Xylanase recombinante Download PDFInfo
- Publication number
- WO1993025671A1 WO1993025671A1 PCT/AU1993/000294 AU9300294W WO9325671A1 WO 1993025671 A1 WO1993025671 A1 WO 1993025671A1 AU 9300294 W AU9300294 W AU 9300294W WO 9325671 A1 WO9325671 A1 WO 9325671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- xylanase
- expression
- polypeptide
- cdna
- clones
- Prior art date
Links
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 title claims abstract description 174
- 239000002299 complementary DNA Substances 0.000 claims abstract description 59
- 230000000694 effects Effects 0.000 claims abstract description 53
- 230000014509 gene expression Effects 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 36
- 229920001221 xylan Polymers 0.000 claims abstract description 33
- 150000004823 xylans Chemical class 0.000 claims abstract description 33
- 241000233866 Fungi Species 0.000 claims abstract description 26
- 239000013604 expression vector Substances 0.000 claims abstract description 18
- 239000013598 vector Substances 0.000 claims abstract description 18
- 210000004767 rumen Anatomy 0.000 claims abstract description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims abstract description 16
- 241000233894 Neocallimastix patriciarum Species 0.000 claims abstract description 16
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 16
- 241001515965 unidentified phage Species 0.000 claims abstract description 16
- 230000007062 hydrolysis Effects 0.000 claims abstract description 15
- 238000012216 screening Methods 0.000 claims abstract description 12
- 229920002678 cellulose Polymers 0.000 claims abstract description 10
- 239000001913 cellulose Substances 0.000 claims abstract description 10
- 238000010367 cloning Methods 0.000 claims abstract description 10
- 108020004999 messenger RNA Proteins 0.000 claims abstract description 10
- 239000001963 growth medium Substances 0.000 claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 34
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 26
- 229920001184 polypeptide Polymers 0.000 claims description 25
- 230000002538 fungal effect Effects 0.000 claims description 22
- 102000004190 Enzymes Human genes 0.000 claims description 21
- 108090000790 Enzymes Proteins 0.000 claims description 21
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 20
- 108020004414 DNA Proteins 0.000 claims description 19
- 239000013612 plasmid Substances 0.000 claims description 18
- 230000000813 microbial effect Effects 0.000 claims description 17
- 230000002018 overexpression Effects 0.000 claims description 14
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 241000233892 Neocallimastix Species 0.000 claims description 2
- 101000781324 Neocallimastix patriciarum Endo-1,4-beta-xylanase Proteins 0.000 claims description 2
- IQFVPQOLBLOTPF-HKXUKFGYSA-L congo red Chemical compound [Na+].[Na+].C1=CC=CC2=C(N)C(/N=N/C3=CC=C(C=C3)C3=CC=C(C=C3)/N=N/C3=C(C4=CC=CC=C4C(=C3)S([O-])(=O)=O)N)=CC(S([O-])(=O)=O)=C21 IQFVPQOLBLOTPF-HKXUKFGYSA-L 0.000 claims description 2
- 102000053602 DNA Human genes 0.000 claims 5
- 241000588724 Escherichia coli Species 0.000 description 30
- 229940088598 enzyme Drugs 0.000 description 20
- 108090000623 proteins and genes Proteins 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 13
- 238000002955 isolation Methods 0.000 description 13
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108020004635 Complementary DNA Proteins 0.000 description 8
- 235000010980 cellulose Nutrition 0.000 description 8
- 239000013615 primer Substances 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 239000002655 kraft paper Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 235000000346 sugar Nutrition 0.000 description 7
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 6
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 6
- 229920001282 polysaccharide Polymers 0.000 description 6
- 239000005017 polysaccharide Substances 0.000 description 6
- 108090000604 Hydrolases Proteins 0.000 description 5
- 102000004157 Hydrolases Human genes 0.000 description 5
- 241000235379 Piromyces Species 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 229920001817 Agar Polymers 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108010059892 Cellulase Proteins 0.000 description 4
- 108020004460 Fungal RNA Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 102100034343 Integrase Human genes 0.000 description 4
- 241000233893 Neocallimastix frontalis Species 0.000 description 4
- 239000008272 agar Substances 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 230000004544 DNA amplification Effects 0.000 description 3
- 241000282320 Panthera leo Species 0.000 description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229940106157 cellulase Drugs 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001952 enzyme assay Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000235385 Caecomyces Species 0.000 description 2
- 101100148606 Caenorhabditis elegans pst-1 gene Proteins 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000220284 Crassulaceae Species 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101710112457 Exoglucanase Proteins 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 241000422444 Piromyces equi Species 0.000 description 2
- 241000282849 Ruminantia Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 2
- 101150066555 lacZ gene Proteins 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 230000002646 lignocellulolytic effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001124 posttranscriptional effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 238000005199 ultracentrifugation Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NGYHUCPPLJOZIX-XLPZGREQSA-N 5-methyl-dCTP Chemical compound O=C1N=C(N)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NGYHUCPPLJOZIX-XLPZGREQSA-N 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 241000808804 Anaeromyces mucronatus Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000235387 Caecomyces communis Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 101100364969 Dictyostelium discoideum scai gene Proteins 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 101100364971 Mus musculus Scai gene Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 241001443590 Naganishia albida Species 0.000 description 1
- 241001460746 Neocallimastix hurleyensis Species 0.000 description 1
- 241001502335 Orpinomyces Species 0.000 description 1
- 241000229173 Orpinomyces joyonii Species 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 241000235383 Piromyces communis Species 0.000 description 1
- 101710188313 Protein U Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical group O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000037037 animal physiology Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 108020001778 catalytic domains Proteins 0.000 description 1
- 101150052795 cbh-1 gene Proteins 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000004545 gene duplication Effects 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- -1 isopropyl- Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- FLNGSZOQLNORPV-UHFFFAOYSA-M lithium;urea;chloride Chemical compound [Li+].[Cl-].NC(N)=O FLNGSZOQLNORPV-UHFFFAOYSA-M 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004076 pulp bleaching Methods 0.000 description 1
- 238000011536 re-plating Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- ADWNFGORSPBALY-UHFFFAOYSA-M sodium;2-[dodecyl(methyl)amino]acetate Chemical compound [Na+].CCCCCCCCCCCCN(C)CC([O-])=O ADWNFGORSPBALY-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical group CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 125000000969 xylosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)CO1)* 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01032—Xylan endo-1,3-beta-xylosidase (3.2.1.32), i.e. endo-1-3-beta-xylanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2477—Hemicellulases not provided in a preceding group
- C12N9/248—Xylanases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01008—Endo-1,4-beta-xylanase (3.2.1.8)
Definitions
- This invention relates to a recombinant xylanase derived from an anaerobic fungus and a method of production of the recombinant xylanase and clonen utilised in the method.
- Xylan is a major component of hemicellulose and the second major component of plant fibre.
- Xylan consists of a backbone of ß-1,4-linked xylose units.
- xylanases endo-ß-1,4-xylanases
- Many microorganisms produce extracellular xylanases.
- many xylanase genes were isolated from lignocellulolytic bacteria, but isolation of xylanase genes from fungi with functional expression in E. coli has not been documented prior to this invention.
- Lignocellulolytic fungi usually produce more active xylanaseI than bacteria, in particular, the anaerobic fungus Neocallimastix patriciarum, isolated from the sheep rumen, has a high capacity for xylan degradation.
- Cloning of xylanase genes from bacteria can be achieved by isolation of enzymatically active clones from genomic libraries established in E. coli.
- this approach for isolation of xylanase genes from fungal genomic libraries with functional expression of xylanase is not possible. This is because fungi are eucaryotic microorganisms. Most eucaryotic genes contain introns and E. coli is unable to perform post-transcriptional modification of mRNAs in order to splice out introns. Therefore, enzymatically functional protein cannot normally be synthesised in clones obtained from a fungal genomic library.
- the cDNA cloning approach can be used to overcome the post-transcriptional modification problem in E. coli.
- xylanases in fungi are usually glycosylated and glycosylation is often required for biological activity of many glycosylated enzymes.
- E. coli lacks a glycosylation mechanism. This problem can be solved if the cloned gene is transferred to an eucaryotic organism, such as yeast.
- yeast eucaryotic organism
- coli are (i) that many eucaryotic mRNAs contain translational stop codons upstream of the translational start codon of a gene which prevents the synthesis of the cloned protein from the translational start provided in the vector, and (ii) that synthesis of the cloned protein is based on fusion proteins and the biological function of the cloned protein is often adversely affected by the fused peptide derived from the cloning vector.
- a further object of the invention is to provide a method of cloning of xylanase cDNAs from an anaerobic rumen fungus which may encode the recombinant xylanase of the invention.
- a further object of the invention is to provide xylanase clones which may be produced in the abovementioned method.
- the method of cloning of the invention includes the following steps:
- step (ii) isolating total RNA from the culture in step (i);
- step (iii) isolating poly A + mRNA from the total RNA referred to in step (ii);
- step (i) above in relation to preparation of the recombinant xylanase from anaerobic fungi, particularly alimentary tract fungi, may be cultivated as described hereinbelow.
- These fungi are strict anaerobes and may be exemplified by Neocallimastix patriciarum, Neocallimastix frontalis, Neocallimastix hurleyensis, Neocallimastix stanthorpensis, Sphaeromonas communis, Caecomyces equi, Piromyces communis, Piromyces equi, Piromyces dumbonica, Piromyces lethargicus, Piromyces mai, Ruminomyces elegans, Anaeromyces mucronatus, Orpinomyces bovis and Orpinomyces joyonii.
- the cultivation may proceed in appropriate culture media containing rumen fluid and also may contain cellulose such as Avicel (ie. a form of microcrystalline cellulose) as a carbon source under anaerobic conditions.
- cellulose such as Avicel (ie. a form of microcrystalline cellulose)
- After cultivation of the fungi total RNA may be obtained in any suitable manner.
- the fungal cells may be harvested by filtration and subsequently lysed in appropriate cell lysis buffer by mechanical disruption.
- a suitable RNA preserving compound may also be added to the fungal cells to maintain the RNA intact by denaturing RNAses which would otherwise attack the fungal RNA.
- the total RNA may subsequently be isolated from the homogenate by any suitable technique such as by ultracentrifugation through a CsCI 2 cushion or alternative technique as described by Sambrook et. al.
- Total fungal RNA in this alternative technique may also be isolated from the above homogenate by extraction with phenol chloroform at pH4 to remove DNA and associated protein. Total RNA obtained was further purified by washing with lithium chloride-urea solution.
- Poly (A) + mRNA may then be isolated from the total RNA by affinity chromatography on a compound containing multiple thymine residues such as oligo (dT) cellulose. Alternatively a compound containing multiple uracil residues may be used such as poly (U)- Sephadex. The poly (A) + mRNA may then be eluted from the affinity column by a suitable buffer.
- a cDNA expression library may then be constructed using a standard technique based on conversion of the poly (A) + mRNA to cDNA by the enzyme reverse transcriptase.
- the first strand of cDNA may be synthesised using reverse transcriptase and the second strand of the cDNA may be synthesised using E. coli DNA polymerase I.
- the cDNA may subsequently be fractionated to a suitable size and may be ligated to the bacteriophage expression vector, preferably ⁇ ZAP or ⁇ ZAPII.
- the cDNA library may then be amplified after packaging in vitro, using any suitable host bacterial cell such as a suitable strain of E. coli.
- step (v) The choice of the bacteriophage expression vector in step (v) is important in that such expression vector should include the following features:
- the fusion peptide derived from the vector should be as small as possible as the biological function of the cloned protein is usually adversely affected by the fused peptide derived from the vector. Therefore the polyclonal sites of the bacteriophage expression vector are suitably located at the N-terminus of lacZ peptides such as in ⁇ ZAPII.
- vectors of similar properties to ⁇ ZAP or ⁇ ZAPII includes within its scope expression vectors having the abovementioned features (i), (ii), (iii) and (iv).
- the screening of xylanase positive recombinant clones may be carried out by any suitable technique based on hydrolysis of xylan.
- the clones may be grown on culture media incorporating xylan and hydrolysis may be detected by the presence of xylanase-positive plaques suitably assisted by a suitable colour indicator.
- Xylanase positive recombinant clones may then be purified and the cDNA insert in the clones may then be excised into pBluescript (SK(-)) to provide an expression vector of simplified structure when compared to the ⁇ ZAP II construct which will enhance expression of the xylanase in E. coli.
- Any suitable E. coli promoter may be used in the expression vector described above. Suitable promoters include lacZ, Tac, Bacteriophage T 7 and lambda-P L .
- the enzyme has no residual activity against cellulose, while many other xylanases possess some cellulase activity. This property of the xylanase is particularly useful in its application to pulp and paper industry to remove xylan and dissociate lignin from plant fibre without damaging cellulose fibre.
- the high specific activity of the cloned xylanases is an excellent intrinsic property of this fungal xylanases.
- the expression level of the present constructs of xylanase cDNAs can be further improved by manipulating the gene and promoters.
- Neocallimastix patriciarum type species was isolated from a sheep rumen by Orpin and Munn (1986) in Trans.
- the vectors were ⁇ ZAPII, pBluescript SK(-) (Stratagene). N. patriciarum culture was maintained in a medium containing 10% rumen fluid as described by Kemp et. al. (1984). E. coli strains were grown in
- N. patriciarum was grown in a rumen fluid-containing medium as described in Kemp et. al. J. Gen. Microbiol. 130 27-37 (1984) in the present of 1 % Avicel at 39 °C and under anaerobic conditions for 48hr (Alternative culture media, such as described by Philips and Gordon in
- the frozen mycelia were ground to fine powder under liquid nitrogen with a mortar and pestle. 5-10 vol of guanidinium thiocyanate solution
- Poly A + was purified from the total RNA by Oligo (dT) cellulose chromatography (Sambrook et. al., 1989). 6. Construction of a cDNA expression library of N. patriciarum.
- the cDNA library was constructed, using Stratagene's ⁇ ZAP cDNA synthesis Kit, basically according to the manufacturer's instructions.
- RNA was converted to the first strand cDNA by reverse transcriptase, using XhoI linker - oligo (dT) primer and 5-methyl dCTP.
- Double-stranded cDNA was synthesised from the first-strand cDNA by the action of RNase H and DNA polymerase I. After blunting cDNA ends, the cDNA was ligated with EcoR I adaptor, phosphorylated and digested with Xho1 to create cDNA with the EcoR I site at 5' region and the XhoI site at 3' region.
- the cDNA was size-fractionated by 1 % low-melting point agarose gel electrophoresis and 1.2-8Kb sizes of the cDNA were recovered by phenol extraction (Sambrook et. at., 1989). The size-fractionated cDNA was then ligated to the EcoRI/XhoI digested ⁇ ZAPII vector.
- the cDNA library was packaged in vitro and amplified using E. coli
- Recombinant phage were grown in E. coli XL1-Blue in 0.7% top agar containing 0.1% xylan and 10mM isopropyl-ß-thio-galactopyranoside (IPTG, an inducer for LacZ promoter controlled gene expression). After overnight incubation at 37°C, 0.5% Congo red solution was added over the top agar. After incubation at RT for 15 min, the unbound dye was removed by washing with 1 M NaCI.
- IPTG isopropyl-ß-thio-galactopyranoside
- Xylanase-producing phage plaques were surrounded by yellow haloes against a red background.
- the xylanase-positive recombinant phage were purified to homogeneity by replating and rescreening the phage as above for 2-3 times.
- the cDNA insert in xylanase-positive phage were excised into pBluescript SK (-) using R408 helper phage. 8. Xylanase and related-enzyme assays.
- the cloned enzyme extracts from E. coli harbouring xylanase-positive recombinant plasmids were prepared by harvesting the cells by centrifugation. The cell pellet was suspended in 25mM Tris-CI/ 2mM EDTA containing lysozyme (0.25mg/ml) and incubated on ice for 60 mins. After freezing, thawing and homogenisation, the crude cell lysate was used for enzyme assays.
- the enzymes were assayed for hydrolysis of xylan or other substrates at 40°C in 50 mM Na-citrate, pH 6.5, except where otherwise indicated in the text.
- the reducing sugars released from xylan or other plant polysaccharides (Avicel) were measured as described by
- Xylanase activity on Kraft pulp was conducted as follows: Kraft pulp was suspended in tap water, and pH was adjusted to pH 7 with 1 M H 2 SO 4 . The xylanase extract was added to the Kraft pulp suspension and the reducing sugar released was measured as above.
- Single-stranded plasmid DNA was prepared basically according to Stratagene's protocol. Sequencing of the resultant DNA was based on the protocol recommended by the manufacturer of the T7 DNA polymerase sequencing kit (Promega) .
- the cultures were grown at 30°C for 17hr, 24hr and 30hr.
- the cells were harvested for measurement of xylanase yield.
- a cDNA library consisting of 10 6 clones was constructed using mRNA isolated from N. patriciarum cells grown with Avicel as sole carbon source. Thirty-one recombinant bacteriophage, which hydrolysed xylan, were identified after an initial screening of 5 ⁇ 10 4 clones from the library and 16 strongly xylanase-positive phage and two weakly xylanase-positive phage were isolated and purified. Xylanase activity of these recombinant bacteriophage clones was initially analysed by scoring xylan-hydrolysis zones (Fig. 1 and Table 1).
- pNPX30 has a similar length to pNPX21 but it has about 15-fold higher xylanase activity than pNPX21. Because of the remarkable difference in enzyme activity between pNPX21 and pNPX30, the xylanase cDNA of pNPX30 clone was sequenced. The result shows that DNA sequence of pNPX30 shares the same sequence with pNPX21 in a large part of cDNA, but differ in both the 5' and 3' regions. (Fig. 3). pNPX30 cDNA is not full-length. Interestingly, the N-terminus of pNPX30 xylanase has six repeated arginine/glutamic acid residues (Fig. 4).
- the pH and temperature optima of xylanases produced by pNPX21 and pNPX30 were investigated. These enzymes were active in a wide range of pH and preferably at pH 5 - 8. The thermostability of these enzymes was tested at temperatures from 30°C - 60°C. The enzymes are active at 30°C- 55°C and preferably at 40°C - 50°C.
- N. patriciarum xylanase cDNA pNPX30 contains two large repeated domains. Three main constructs were produced from pNPX30.
- pNPX30 plasmid (pNPX21 can also be used) was used as a template for in vitro DNA amplification by PCR for construction of pNXD- Tac using primer I and primer IV (Fig.5).
- the amplified DNA was digested with EcoR1 and Hind111 and ligated to EcoR1 and Hind111 digested pBTac2 (Boehringer) to produce pNXD-Tac.
- pNXD-Tac plasmid was digested with Hind111 and blunted by filling-in with Klenow followed by partial digestion with Seal . After fractionation on LMT agarose gel, the 5.3Kb band was recovered from the gel and ligated to produce the pDGXS construct, which has xylanase activity.
- pDGXS plasmid was used as a template for in vitro DNA amplification for construction of pNXS-Tac using primer I and primer II (Fig.5). The amplified DNA was digested with EcoR1 and Hind111 and ligated to EcoR1 and Hindi 11 digested pBTac2 vector to produce pNXS-Tac.
- pNPX30 plasmid (pNPX21 or other xylanase cDNAs listed in Fig.2 can be used) was digested with RsaI and a 709bp fragment as indicated in Fig.5 was isolated after fractionation on agarose gel electrophoresis. The 709 fragment was ligated to Sma1 and Pst1 digested pUC18 (Pst1 end was blunted with T4 DNA polymerase). This construct is designated pNXP2 and the xylanase activity of this construct with the right orientation of truncated xylanase cDNA from pNPX30 confirmed that this fragment of the cDNA encodes a caterlytically functional domain.
- oligonucleotide primers primer III and primer IV, (Fig.5) were then designed for PCR amplification of the pNXP2 xylanase cDNA insert.
- the PCR amplified fragment was digested with EcoR1 and Hind111 and ligated to EcoR1 and Hind111 digested pBTac2 vector to produce pNX-Tac.
- constructs are all modified at the N-terminal sequence of the truncated xylanase cDNA and a translational stop codon (TAA) was introduced into the end of the truncated xylanase coding region.
- TAA translational stop codon
- the expression of xylanase was controlled by the Tac promoter (Fig.6) and xylanases in these constructs are synthesised as nonfusion proteins.
- the modified xylanase cDNA sequence in pNX-Tac is shown in Fig 7.
- the specific activity of crude xylanase preparations of pNXD-Tac, pNXS-Tac and pNX-Tac clones were 228, 124 and 672 U/mg of total cellular protein of E.coli respectively, measured in 50mM Na-citrate buffer (pH6) and at 50°C (Fig.5).
- the xylanase synthesised by the clone pNX-Tac was found mainly in the cell pellet, but a small amount of xylanase (about 5%) was released into the culture medium (Table 3).
- the pNX-Tac xylanase has a temperature optimum at 50°C and retained > 80% of the maximum activity from 40°C to 55°C, and 55% of the activity at 60°C (Fig.8) .
- pNX-Tac xylanase has a broad pH range (Fig 9) and is most active at pH5-7.5, 50% at pH8.5 and 20% at pH9.5.
- the pNX-Tac xylanase has a high activity in the release of reducing sugar from Kraft pulp at 55°C and in tap water (pH was adjusted to pH7 with H 2 SO 4 , see Fig.8) and remains active in the hydrolysis of xylan from the pulp at 55°C and pH7 for at least 3hr (Fig.10)
- the pNX-Tac xylanase is able to hydrolyse a significant amount of xylan from Eucalypt and Pine Kraft pulps (Table 4).
- IPTG 2-fold higher xylanase yield than LBS.
- Xylanase has many industrial applications, such as the pulp and paper industry, food processing, the feed industry and animal production industry.
- the enzymes produced by these recombinant xylanase clones have no cellulase activity and have the pH and temperature profile (especially the genetically modified xylanase clone, pNX-Tac) fitted to conditions used for the enzymatic pre-treatment of pulp. Therefore it is believed that the xylanases of the present invention are applicable to the paper and pulp industry.
- the xylanase of the invention could find a valuable application in the sugar industry and in relation to the treatment of bagasse or other products containing xylan for more efficient disposal as well as for the treatment of feedstock to improve nutritional value.
- the genetically modified xylanase gene can also be used for modification of rumen bacteria to improve plant fibre utilization by ruminants.
- the invention includes within its scope not only the recombinant xylanase described above but also xylanases derived from other anaerobic fungi as described above which may be prepared by the methods described herein.
- the invention also includes within its scope:
- DNA sequences derived from these xylanase cDNAs (particularly the sequences in pNPX30, pNXD-Tac, pNXS-Tac and pNX-Tac) and DNA sequences capable of hybridising thereto using a standard nucleic acid hybridisation technique as described in
- Plasmid pNX-Tac in E. coli strain JM83 has been deposited at the International Depository ie. Australian Government Analytical Laboratories 17 March 1993 under accession number N93/12211.
- the cloning method of the invention is based upon obtaining a large number of recombinant xylanase clones with strong xylanase activity from an anaerobic rumen fungus such as N. patriciarum which were functionally expressed in E. coli.
- This approach for isolation of fungal xylanase or other plant polysaccharide hydrolases such as cellulases has not been documented prior to this invention.
- the approach used in this invention is very efficient and requires only a single cloning step to obtain biologically functional recombinant xylanases from an anaerobic fungus. Therefore it takes much less time to obtain biologically functional xylanase clones from a fungal source compared to previous approaches for isolation of plant polysaccharide hydrolases from fungi which are described in the prior art discussed above.
- ⁇ NPX29 and ⁇ NPX30 were isolated after further screening of N.patriciarum cDNA library. Table 2
- Crude enzyme extracts were used for enzyme assay. The reactions were carried out at 40°C in 50 mM Na-citrate, pH6.5, containing 0.25% xylan or 1% Avicel.
- E.coli strain JM83 harbouring pNX-Tac plasmid was grown in L-broth at 30°C for 17hrs.
- Xylanase activity was measured in 50mM Na-citrate pH6 containing 0.25% Xylan at 50°C and the reducing sugar released was measured as described in the method.
- the crude xylanase extract from pNX-Tac clone was incubated with 6%(W/V) pulp suspension in tap water at pH 7.0. The hydrolysis was carried out at 52°C for 3 hours.
- E.coli strain JM83 harbouring pNX-Tac plasmid was grown in the specified media containing 50 ⁇ g/ml Amp at 30°C and IPTG was added at the beginning of the cultivation.
- LBS Bacto-tryptone 10g LBSG: LBS plus
- LBMG Bacto-tryptone 5g LBMHG: LBMG plus
- Bacto-yeast ext. 3g glucose increased to 1% by
- E.coli strain JM83 harbouring pNX-Tac plasmid was grown in LBMG containing 50 ⁇ g/ml Amp and 0.5 mM IPTG at 30°C for 24 hours.
- Neocallimastix patriciarum cDNA library Neocallimastix patriciarum cDNA library.
- B BstXI; E, EcoRI; H, HpaI; K, KpnI; P, PvuII; S, SacI; Sc, ScaI; X, XhoI.
- the DNA sequence of pNPX30 xylanase cDNA comes from the pBluescript SK vector.
- amino acid sequence of pNPX30 xylanase The amino acid residues underlined come from the N-terminus of LacZ peptide and encoded by polylinker sequence in the pBluescript SK vector.
- B BstX I; E, EcoR I; H, Hpa I; K, Kpn I; P, Pvu II; S, Sac I; Sc, Sea I; X, Xho I.
- Xylanase assays were performed in 50 mM Na-citrate (pH7) and 0.25%
- Xylanase assays were performed at 50 C in 50 mM Na-citrate (pH5-7) or 25 mM Tris-CI / 50 mM NaCl (pH7.5-9.5) with 0.25% xylan for 30 min. The pHs of the buffers were measured at room temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR9306576A BR9306576A (pt) | 1992-06-17 | 1993-06-17 | Xilanase recombinante |
EP93912444A EP0746607A4 (fr) | 1992-06-17 | 1993-06-17 | Xylanase recombinante |
JP6500969A JPH07508647A (ja) | 1992-06-17 | 1993-06-17 | 組換えキシラナーゼ |
AU42983/93A AU696724B2 (en) | 1992-06-17 | 1993-06-17 | Recombinant xylanase |
NO944851A NO944851L (no) | 1992-06-17 | 1994-12-14 | Rekombinant xylanase |
FI945889A FI945889L (fi) | 1992-06-17 | 1994-12-14 | Rekombinoitu ksylanaasi |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPL298592 | 1992-06-17 | ||
AUPL2985 | 1992-06-17 | ||
AUPL3238 | 1992-06-29 | ||
AUPL323892 | 1992-06-29 | ||
AUPL810093 | 1993-04-01 | ||
AUPL8100 | 1993-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993025671A1 true WO1993025671A1 (fr) | 1993-12-23 |
Family
ID=27157666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1993/000294 WO1993025671A1 (fr) | 1992-06-17 | 1993-06-17 | Xylanase recombinante |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0746607A4 (fr) |
JP (1) | JPH07508647A (fr) |
BR (1) | BR9306576A (fr) |
CA (1) | CA2138399A1 (fr) |
FI (1) | FI945889L (fr) |
NZ (1) | NZ252937A (fr) |
WO (1) | WO1993025671A1 (fr) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998002539A1 (fr) * | 1996-07-15 | 1998-01-22 | The Regents Of The University Of California | GENES ISSUS DE L'AMPLICON 20q13 ET LEURS UTILISATIONS |
US5871730A (en) * | 1994-07-29 | 1999-02-16 | Universite De Sherbrooke | Thermostable xylanase DNA, protein and methods of use |
US5892010A (en) * | 1996-07-15 | 1999-04-06 | The Regents Of The University Of California | Genes from the 20Q13 amplicon and their uses |
US5935836A (en) * | 1994-07-29 | 1999-08-10 | Rohm Enzyme Finland Oy | Actinomadura xylanase sequences and methods of use |
US6268184B1 (en) | 1995-10-20 | 2001-07-31 | The Regents Of The University Of California | Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer |
US6300114B1 (en) | 1994-07-29 | 2001-10-09 | Rohm Enzyme Finland Oy | Sequences of xylanase and xylanase expression vectors |
US7413899B2 (en) | 1996-07-15 | 2008-08-19 | The Hospital For Sick Children | Genes from the 20q13 amplicon and their uses |
US7455964B1 (en) | 1996-07-15 | 2008-11-25 | The Hospital For Sick Children | Genes from the 20q13 amplicon and their uses |
US7816129B2 (en) | 1994-07-29 | 2010-10-19 | Ab Enzymes Gmbh | Production and secretion of proteins of bacterial origin in filamentous fungi |
US8021837B2 (en) | 1992-03-04 | 2011-09-20 | The Regents Of The University Of California | Detection of chromosomal abnormalities associated with breast cancer |
WO2014107953A1 (fr) * | 2013-01-09 | 2014-07-17 | 中国农业科学院饲料研究所 | Domaine c-terminal de xylanase xyna provenant d'une panse et procédé pour améliorer le rendement catalytique de la xylanase |
WO2018124984A1 (fr) | 2016-12-28 | 2018-07-05 | Istanbul Teknik Universitesi | Méthode d'amélioration du potentiel du biogaz de digestions anaérobies avec des champignons du rumen |
WO2018124988A1 (fr) | 2016-12-28 | 2018-07-05 | Istanbul Teknik Universitesi | Procédé d'amélioration de la production de méthane à partir de microalgues |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113913410B (zh) * | 2021-10-29 | 2022-09-23 | 甘肃省科学院生物研究所 | 一种牦牛瘤胃厌氧真菌木聚糖酶基因工程菌的构建及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU8066891A (en) * | 1990-06-19 | 1992-01-07 | Quest International Services B.V. | Xylanase production |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE20040144A1 (en) * | 1990-07-24 | 2004-05-19 | Dsm Nv | Cloning and expression of xylanase genes from fungal origin |
BR9306580A (pt) * | 1992-06-17 | 1998-12-08 | Biotech & Biolog Scien Res | Xilanase molécula de dna isolda ou recombinada codificando umaxilanase sequência de dna célula hospedeira uso de uma xilanase e molécula de dna isolada ou recombinante |
-
1993
- 1993-06-17 CA CA002138399A patent/CA2138399A1/fr not_active Abandoned
- 1993-06-17 BR BR9306576A patent/BR9306576A/pt not_active Application Discontinuation
- 1993-06-17 EP EP93912444A patent/EP0746607A4/fr not_active Withdrawn
- 1993-06-17 NZ NZ252937A patent/NZ252937A/en unknown
- 1993-06-17 WO PCT/AU1993/000294 patent/WO1993025671A1/fr not_active Application Discontinuation
- 1993-06-17 JP JP6500969A patent/JPH07508647A/ja active Pending
-
1994
- 1994-12-14 FI FI945889A patent/FI945889L/fi unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU8066891A (en) * | 1990-06-19 | 1992-01-07 | Quest International Services B.V. | Xylanase production |
Non-Patent Citations (6)
Title |
---|
AUSTRALIAN MICROBIOLOGIST, Vol. 13(3), issued July 1992, by the Australian Society for Microbiology (Parkville, Vic.), G.P. XUE et al., "Expression of a Multifunctional Cellulolytic cDNA from the Rumen Fungus Neocallimastix Patriciarum in E. Coli", page A22. * |
BIOSCI. BIOTECH. BIOCHEM., Vol. 56(6), issued 1992, by the Society for Bioscience, Biotechnology and Agriculture (Tokyo), K. ITO et al., "Cloning and Sequencing of the xynA Gene Encoding Xylanase A of Aspergillus Kawachii", pages 906-912. * |
BIOSCI. BIOTECH. BIOCHEM., Vol. 56(8), issued 1992, by the Society for Bioscience, Biotechnology and Agriculture (Tokyo), K. ITO et al., "Cloning and Sequencing of the xynC Gene Encoding Acid Xylanase of Aspergillus Kawachii", pages 1338-1340. * |
CAN. J. MICROBIOL., Vol 39(1), issued January 1993, J.M. TAMBLYN LEE et al., "Cloning of a Xylanase Gene from the Ruminal Fungus Neocallimastix Patriciarum 27 and its Expression in Escherichia Coli", pages 134-139. * |
FEMS MICROBIOLOGY REVIEWS, Vol. 104, (1 and 2), issued January 1993, by the Federation of European Microbiological Societies (Elsevier, Amsterdam), J.A. THOMSON, "Molecular Biology of Xylan Degradation", pages 65-82. * |
See also references of EP0746607A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8021837B2 (en) | 1992-03-04 | 2011-09-20 | The Regents Of The University Of California | Detection of chromosomal abnormalities associated with breast cancer |
US6667170B1 (en) | 1994-07-29 | 2003-12-23 | Röhm Enzyme Finland OY | Sequences of Xylanase and Xylanase expression vectors |
US5871730A (en) * | 1994-07-29 | 1999-02-16 | Universite De Sherbrooke | Thermostable xylanase DNA, protein and methods of use |
US5935836A (en) * | 1994-07-29 | 1999-08-10 | Rohm Enzyme Finland Oy | Actinomadura xylanase sequences and methods of use |
US7816129B2 (en) | 1994-07-29 | 2010-10-19 | Ab Enzymes Gmbh | Production and secretion of proteins of bacterial origin in filamentous fungi |
US6300114B1 (en) | 1994-07-29 | 2001-10-09 | Rohm Enzyme Finland Oy | Sequences of xylanase and xylanase expression vectors |
US6506593B2 (en) | 1994-07-29 | 2003-01-14 | Rohm Enzyme Finland Oy | Production and secretion of proteins of bacterial origin in filamentous fungi |
US6268184B1 (en) | 1995-10-20 | 2001-07-31 | The Regents Of The University Of California | Amplifications of chromosomal region 20q13 as a prognostic indicator breast cancer |
US8993251B2 (en) | 1995-10-20 | 2015-03-31 | The Regents Of The University Of California | Genes from 20q13 amplicon and their uses |
US6808878B1 (en) | 1996-07-15 | 2004-10-26 | The Regents Of The University Of California | Genes from the 20Q13 amplicon and their uses |
US7413899B2 (en) | 1996-07-15 | 2008-08-19 | The Hospital For Sick Children | Genes from the 20q13 amplicon and their uses |
US7455964B1 (en) | 1996-07-15 | 2008-11-25 | The Hospital For Sick Children | Genes from the 20q13 amplicon and their uses |
US7811986B2 (en) | 1996-07-15 | 2010-10-12 | The Regents Of The University Of California | Genes from the 20Q13 amplicon and their uses |
WO1998002539A1 (fr) * | 1996-07-15 | 1998-01-22 | The Regents Of The University Of California | GENES ISSUS DE L'AMPLICON 20q13 ET LEURS UTILISATIONS |
US5892010A (en) * | 1996-07-15 | 1999-04-06 | The Regents Of The University Of California | Genes from the 20Q13 amplicon and their uses |
WO2014107953A1 (fr) * | 2013-01-09 | 2014-07-17 | 中国农业科学院饲料研究所 | Domaine c-terminal de xylanase xyna provenant d'une panse et procédé pour améliorer le rendement catalytique de la xylanase |
WO2018124984A1 (fr) | 2016-12-28 | 2018-07-05 | Istanbul Teknik Universitesi | Méthode d'amélioration du potentiel du biogaz de digestions anaérobies avec des champignons du rumen |
WO2018124988A1 (fr) | 2016-12-28 | 2018-07-05 | Istanbul Teknik Universitesi | Procédé d'amélioration de la production de méthane à partir de microalgues |
Also Published As
Publication number | Publication date |
---|---|
BR9306576A (pt) | 1999-01-12 |
NZ252937A (en) | 1996-10-28 |
JPH07508647A (ja) | 1995-09-28 |
EP0746607A4 (fr) | 1997-03-12 |
FI945889A0 (fi) | 1994-12-14 |
CA2138399A1 (fr) | 1993-12-23 |
FI945889L (fi) | 1995-02-08 |
EP0746607A1 (fr) | 1996-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Millward‐Sadler et al. | Evidence for a general role for high‐affinity non‐catalytic cellulose binding domains in microbial plant ceil wall hydroiases | |
CA2242767C (fr) | Enzymes de type glycosidase | |
Hong et al. | Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast | |
EP1070117B1 (fr) | Produits de synthese genetique et microbes genetiquement modifies pour une production accrue de beta-glucosidase | |
KR20120115206A (ko) | 신규 글리코실 히드롤라제 효소 및 이의 용도 | |
KR20140027154A (ko) | 글리코실 가수분해효소 및 바이오매스 가수분해를 위한 그의 용도 | |
KR20140023313A (ko) | 셀룰라제 조성물 및 리그노셀룰로스계 바이오매스의 발효성 당으로의 전환을 향상시키기 위해 상기 조성물을 사용하는 방법 | |
CN101283092A (zh) | 植物细胞壁降解酶之间的融合蛋白及其用途 | |
EP0746607A1 (fr) | Xylanase recombinante | |
Chidi et al. | Production, purification and characterization of celullase-free xylanase from Aspergillus terreus UL 4209 | |
Rixon et al. | Characterization of the gene celD and its encoded product 1, 4-β-D-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa | |
Zhang et al. | Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase | |
CA2331392C (fr) | Gene xylanase cxy1 de coniothyrium minitans | |
US20160201045A1 (en) | Endo-xylanase and Coding Gene and Use Thereof | |
Manin et al. | Purification and characterization of an α-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA) | |
EP0506190B1 (fr) | Clonage et expression de gènes codant pour des enzymes d'origine fongique dégradant l'arabinane | |
US7226772B2 (en) | Recombinant xylanases derived from anaerobic fungi, and the relevant sequences, expression vectors and hosts | |
US8383798B2 (en) | Polynucleotide encoding a cellulase enzyme and method for producing the enzyme | |
Bergouist et al. | Hyperthermophilic xylanases | |
CA2139099A1 (fr) | Cellulases recombinantes | |
AU696724B2 (en) | Recombinant xylanase | |
US6268198B1 (en) | Cellulases and coding sequences | |
US11371032B2 (en) | Beta glucosidase with high glucose tolerance, high thermal stability and broad PH activity spectrum | |
Echeverría et al. | Penicillium purpurogenum produces a set of endoxylanases: identification, heterologous expression, and characterization of a fourth xylanase, XynD, a novel enzyme belonging to glycoside hydrolase family 10 | |
CN109679935A (zh) | 快速水解木聚糖生成单一木糖的糖苷水解酶的编码基因及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR BY CA CH CZ DE DK ES FI GB HU JP KP KR KZ LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 252937 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 945889 Country of ref document: FI |
|
ENP | Entry into the national phase |
Ref document number: 1994 356393 Country of ref document: US Date of ref document: 19941216 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2138399 Country of ref document: CA Ref document number: 1993912444 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1993912444 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993912444 Country of ref document: EP |