+

WO1993024051A1 - Coil for generating gradient magnetic field on opposed type magnet - Google Patents

Coil for generating gradient magnetic field on opposed type magnet Download PDF

Info

Publication number
WO1993024051A1
WO1993024051A1 PCT/JP1993/000697 JP9300697W WO9324051A1 WO 1993024051 A1 WO1993024051 A1 WO 1993024051A1 JP 9300697 W JP9300697 W JP 9300697W WO 9324051 A1 WO9324051 A1 WO 9324051A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic field
gradient magnetic
current
coils
Prior art date
Application number
PCT/JP1993/000697
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Inoue
Original Assignee
Ge Yokogawa Medical Systems, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Yokogawa Medical Systems, Ltd. filed Critical Ge Yokogawa Medical Systems, Ltd.
Publication of WO1993024051A1 publication Critical patent/WO1993024051A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/201Details of the nose radius and immediately surrounding areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2200/00Details of milling cutting inserts
    • B23C2200/20Top or side views of the cutting edge
    • B23C2200/205Discontinuous cutting edges

Definitions

  • the present invention relates to a facing magnetic field gradient coil for use in an MRI (nuclear magnetic resonance imaging apparatus).
  • MRI is a device that obtains a tomographic image of a subject by focusing on a specific nucleus using a nuclear magnetic resonance phenomenon.
  • the nuclei such as H, F, Na, C, and P have their own magnetic moments. When these are placed in a static magnetic field H0 whose magnetic field is in the z-axis direction, these nuclei become Perform precession.
  • the angular frequency ⁇ of this precession is given by the following equation.
  • the magnetic moment ⁇ points in various directions, but if the average of // is M ', M' points in the z-axis direction.
  • M ' starts to fall in the y-axis direction.
  • the receiving coil is arranged in the y-axis direction, a high-frequency current proportional to M 'is induced in the coil.
  • a high-frequency current flows through the receiving coil, and a signal from the living body can be obtained.
  • a gradient magnetic field is used to obtain a slice image of a tomographic image and obtain positional information in a cross section in order to obtain a tomographic image in a living body.
  • a gradient magnetic field coil in which two coils for passing currents in different directions are arranged in the z-axis direction is used.
  • a facing magnet made of a permanent magnet shown in FIG. 8 is often used as a magnet for a static magnetic field.
  • the figure shows the cross section of the opposed magnet, and the magnetic field H 0 is applied in the z-axis direction.
  • reference numeral 1 denotes a permanent magnet that forms a static magnetic field, and is provided above and below the figure so as to face each other.
  • the yoke 1 is magnetically connected to form a magnetic circuit
  • 3 is a magnetic shunt provided between the upper and lower parts of the permanent magnet 1. The subject is inserted between the upper and lower permanent magnets in a direction perpendicular to the paper.
  • Fig. 9 is a diagram of a pair of Maxwell-type gradient magnetic field coils used in the magnet device using the opposed permanent magnets.
  • Reference numeral 4 denotes a coil C having a radius R0 for generating a gradient magnetic field
  • reference numeral 5 denotes a coil D having a radius R0 arranged in parallel with the coil 4.
  • These coils C 4 and D 5 are installed in parallel at a fixed distance 2 Z0, and currents in opposite directions are supplied to both coils. In these coils, the current distribution is concentrated on the circumference of R0 from the center. Therefore, if the magnetic field on the central axis formed by one virtual coil is represented by H (Z), the magnetic field Hm ( Z) is as follows.
  • Hm (Z) H (Z-ZO) one H (Z + Z0)
  • the present invention has been made in view of the above points, and has as its object to increase the gradient of a gradient magnetic field coil having good linearity of the gradient magnetic field without increasing the inductance of the coil in order to avoid an increase in the capacity of the drive power supply. It is to provide a magnetic field coil. Disclosure of the invention
  • a first invention for solving the above-mentioned problem is a gradient magnetic field coil for opposed magnets comprising two coils which are opposed to each other with a substantially circular current flowing in opposite directions and sandwiching a gradient magnetic field generation region.
  • Each of the opposed coils is provided with a plurality of substantially circular and substantially concentric current paths.
  • the current paths include a region where the current density is low near the center of the coil and a region where the current density is high near the edge of the coil.
  • the second invention is characterized in that, in addition to the above, a plurality of substantially circular and substantially concentric current paths in each coil are arranged at a pitch substantially inversely proportional to the current distribution. is there.
  • the third invention is characterized in that, in addition to the above, a plurality of substantially circular and substantially concentric current paths in each coil are substantially spiral continuous current paths.
  • FIG. 1 is a schematic configuration diagram of a gradient coil according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a pattern of a gradient magnetic field coil according to one embodiment of the present invention.
  • FIG. 3 is a diagram showing an outer shape for coil pattern design.
  • Figure 4 is a flowchart of the procedure for designing a coil pattern based on a file.
  • FIG. 5 is an explanatory diagram of a method of obtaining a coil winding position from a current density curve.
  • FIG. 6 is a characteristic curve diagram showing a linearity error of a conventional coil.
  • FIG. 7 is a characteristic curve diagram showing a linearity error of the coil according to the present invention.
  • FIG. 8 is a cross-sectional view showing a schematic structure of a facing magnet of MRI.
  • FIG. 9 is a schematic diagram of a Maxwell coil. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic configuration diagram of one embodiment of the present invention.
  • 11 is a coil A having a plurality of substantially circular and substantially concentric patterns formed on a plane perpendicular to the z-axis
  • 12 is a coil A 11 on a plane parallel to the plane of the coil A 11.
  • the centers of the concentric circles of the coil All and the coil B 12 are located on the z-axis or a straight line parallel to the z-axis.
  • 2 Z 0 is selected as a fixed value, for example, 450 bandits, due to the relationship between facilities.
  • FIG 2 shows the actual detailed patterns of the coils A ll and B 12, which are composed of copper wires with a diameter of about 2 h. The leads are taken out at C l and C 2.
  • This coil A 1 1 1
  • the current distribution pattern of both current paths of B12 is such that the current distribution is as shown in Fig. 5, where the current density is low near the center of the coil whose radius is 0 to r2, and the radius is r3 to The current distribution is set to include a region with a high current density near the edge of the coil.
  • the number and position of small maxima and minima near the center, the rate of increase near the edge, and the like vary slightly depending on the magnitude relationship between Z0 and R0.
  • a plurality of substantially circular and substantially concentric current paths can form a substantially spiral continuous pattern. Since the coil shown in Fig. 2 has a small number of turns, the local maximum of the small current density near the center is hidden by the pattern interval of the current path.However, if the number of turns is increased so that the local maximum of the current density appears clearly Accuracy improves.
  • this coil is made by making a groove in the disk in the shape of the coil pattern shown in Fig. 2, and burying a copper wire in the groove.
  • FIG. 3 is a diagram showing the outer shape of the coil A11.
  • the horizontal axis has r, and the radius of the coil Al1 is R0.
  • the current distribution: ⁇ ⁇ ⁇ ⁇ ( ⁇ ) is obtained by the following equation in order to find the pattern that minimizes the error in the current distribution at each point on the coil plane.
  • the above procedure is the procedure for creating file A, which is created in advance.
  • an example of the procedure for setting the pattern of the coil A11 using the file A created as described above will be described with reference to the flowchart of FIG.
  • Step 2 Set the gradient magnetic field linearity error to a desired limit, for example, 2% or less.
  • step 5 In order to obtain the optimal solution, consider whether to relax the tolerance of the linearity error set in step 1. If loose, increase the tolerance and return to step 2. If not, go to step 5.
  • Step 7 Increase and set the number of n and m, and return to step 2 to calculate for the increased a n and b m. Step 7
  • a concentric pattern is composed of a copper wire of about ⁇ 2.
  • the lead outlets are C I and C 2.
  • the specific manufacturing method is to machine a groove corresponding to the above-mentioned coil pad with a NC machine or the like on a disk with a diameter of about 80 mm and a thickness of about 5 mni formed by FRP, and embed a copper wire in the groove. Make it.
  • the characteristics of the gradient magnetic field coil of the present embodiment obtained as described above are compared with those of a conventional Maxwell-type gradient magnetic field coil.
  • Figure 6 shows the characteristic curve of a Maxwell coil.
  • the horizontal axis shows the z-axis coordinates with respect to the zero point on the z-axis shown in Fig. 1, and the vertical axis shows the linearity error of the gradient magnetic field.
  • the parameter X of each curve is the radial distance of coil A11. As is clear from the figure, the linearity error at each position in the radial direction varies greatly as it approaches the coil surface.
  • FIG. 7 is a characteristic curve obtained by the gradient magnetic field coil of the pattern obtained according to the present embodiment.
  • the vertical axis and the horizontal axis are the same as in FIG. As is clear from this figure, the linearity error at each radial position is extremely small and within ⁇ 3%.
  • Table 1 shows the inductance and resistance of the coil necessary to obtain a gradient magnetic field strength of 1 gaussZcm by applying a current of 7 OA.
  • the gradient magnetic field coil of this embodiment has a larger number of turns but a smaller inductance than the Maxwell type gradient magnetic field coil.
  • the image distortion caused by the gradient magnetic field can be improved as compared with the related art.
  • image distortion has been corrected in image processing, and there have been problems such as long processing times and the occurrence of artifacts.However, since linearity errors can be kept within an allowable range. The distortion correction at the image processing stage is no longer necessary.
  • the present invention is not limited to the above embodiment.
  • a coil pattern is formed by a copper wire
  • the coil pattern may be formed by etching a copper plate.
  • a gradient magnetic field coil having good gradient magnetic field linearity can be realized without increasing the inductance of the coil, and the practical effect is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A coil unit for generating a gradient magnetic field on an opposed type magnet comprises two coils through which spiral currents flow in opposite directions. The two coils are disposed on opposite sides of a region where a gradient magnetic field is generated. The linearity of the gradient magnetic field is improved without increasing inductance of the coil. Each of the mutually opposed coils includes a plurality of substantially circular and substantially concentric current paths, which are connected to form a spiral coil. The coil has a current distribution in which current density is low near its center and high near its periphery. The pitch of the spiral is substantially inversely proportional to the current distribution.

Description

明 細 書  Specification
対向型マグネッ ト用勾配磁場コイル  Gradient magnetic field coil for facing magnet
: ά i l分野 : Ά i l field
本発明は M R I (核磁気共鳴画像撮影装置) に用いる対向型マグネッ ト用勾配 磁場コイルに関する。 背景技術  The present invention relates to a facing magnetic field gradient coil for use in an MRI (nuclear magnetic resonance imaging apparatus). Background art
核磁気共鳴現象を用いて特定原子核に注目して被検体の断層像を得る装置に M R Iがある。  MRI is a device that obtains a tomographic image of a subject by focusing on a specific nucleus using a nuclear magnetic resonance phenomenon.
H, F , N a , C, P等の原子核は、 それぞれ個別の磁気モーメントおを持つ ており、 これらを磁場の方向が z軸方向である静磁場 H0 中に置くとこれらの原 子核は歳差運動を行う。 この歳差運動の角周波数 ωθ は次式で与えられる。  The nuclei such as H, F, Na, C, and P have their own magnetic moments. When these are placed in a static magnetic field H0 whose magnetic field is in the z-axis direction, these nuclei become Perform precession. The angular frequency ωθ of this precession is given by the following equation.
ω θ = r HO  ω θ = r HO
7は核磁気回転比と呼ばれ、 原子に固有の定数である。 磁気モーメント ^は種々 の方向を向いているが、 //の平均を M' とすると、 M' は z軸方向を向く。 この 状態で X軸方向から ω θ と同じ角周波数を持つ電磁場を印加すると、 M' は y軸 方向に倒れ始める。 この時、 y軸方向に受信コイルを配置すると、 コイルには M ' に比例した高周波電流が誘起される。 このように M R Iでは、 静磁場中の被 検体に角周波数 ωθ の電磁波を印加すると、 受信コイルに高周波電流が流れ、 生 体からの信号を得ることができる。  7 is called the nuclear gyromagnetic ratio and is a constant peculiar to an atom. The magnetic moment ^ points in various directions, but if the average of // is M ', M' points in the z-axis direction. In this state, when an electromagnetic field having the same angular frequency as ωθ is applied from the X-axis direction, M 'starts to fall in the y-axis direction. At this time, if the receiving coil is arranged in the y-axis direction, a high-frequency current proportional to M 'is induced in the coil. As described above, in the MRI, when an electromagnetic wave having an angular frequency ωθ is applied to a subject in a static magnetic field, a high-frequency current flows through the receiving coil, and a signal from the living body can be obtained.
M R Iでは生体内の断層像を得るために、 断層像のスライス位置決め及び断面 内の位置情報を得るため勾配磁場を用いる。  In MRI, a gradient magnetic field is used to obtain a slice image of a tomographic image and obtain positional information in a cross section in order to obtain a tomographic image in a living body.
静磁場の方向である z軸方向の勾配磁場を発生させる手法として、 向きの異な る電流を流す 2個のコイルを z軸方向に配置した勾配磁場コィルを用いている。 従来、 この磁場を構成する磁石装置には、 静磁場用の磁石として図 8に示す永 久磁石による対向型磁石が多く用いられている。 図は対向型磁石の断層面を示し、 磁界 H 0 は z軸方向に掛けられている。 図において、 1は静磁場を形成する永久 磁石で、 図の上下に対向して設けられている。 2は上下に対向している永久磁石 1を磁気的に接続して磁気回路を構成するヨーク、 3は永久磁石 1の上, 下部間 に設けた整磁板である。 被検体は上下の永久磁石の間に紙面に垂直な方向に挿入 される。 As a method for generating a gradient magnetic field in the z-axis direction, which is the direction of the static magnetic field, a gradient magnetic field coil in which two coils for passing currents in different directions are arranged in the z-axis direction is used. Conventionally, in a magnet device constituting this magnetic field, a facing magnet made of a permanent magnet shown in FIG. 8 is often used as a magnet for a static magnetic field. The figure shows the cross section of the opposed magnet, and the magnetic field H 0 is applied in the z-axis direction. In the figure, reference numeral 1 denotes a permanent magnet that forms a static magnetic field, and is provided above and below the figure so as to face each other. 2 is a permanent magnet facing up and down The yoke 1 is magnetically connected to form a magnetic circuit, and 3 is a magnetic shunt provided between the upper and lower parts of the permanent magnet 1. The subject is inserted between the upper and lower permanent magnets in a direction perpendicular to the paper.
図 9はこの対向型永久磁石を用いた磁石装置に用いられる 1組のマクスゥエル 型の勾配磁場コイルの図である。 4は勾配磁場を作るための半径 R0のコイル C、 5はコイル 4に対向して平行に配置した半径 R0 のコイル Dである。 これらコィ ル C 4とコイル D 5は、 一定の距離 2 Z0 を隔てて平行に設置され、 両コイルに 互いに逆向きの電流が供給される。 これらのコイルは中心より R0 の円周上に電 流分布が集中している。 そこで、 1つの仮想的なコイルによって形成される中心 軸上の磁場を H (Z) で表すと、 Z = ±Z0 に位置する 1組のマクスゥヱル型の 勾配磁場コイルによる z軸上の磁界 Hm (Z) は、 次のようになる。  Fig. 9 is a diagram of a pair of Maxwell-type gradient magnetic field coils used in the magnet device using the opposed permanent magnets. Reference numeral 4 denotes a coil C having a radius R0 for generating a gradient magnetic field, and reference numeral 5 denotes a coil D having a radius R0 arranged in parallel with the coil 4. These coils C 4 and D 5 are installed in parallel at a fixed distance 2 Z0, and currents in opposite directions are supplied to both coils. In these coils, the current distribution is concentrated on the circumference of R0 from the center. Therefore, if the magnetic field on the central axis formed by one virtual coil is represented by H (Z), the magnetic field Hm ( Z) is as follows.
Hm (Z) =H (Z-ZO ) 一 H (Z + Z0 )  Hm (Z) = H (Z-ZO) one H (Z + Z0)
この Hm (Z) を Z = 0でテーラー展開すると、 Zの奇数次項のみのべき級数と なる。 そこで、 Zに対して直線的な勾配磁界を得るため、 Zの 3次項の係数が 0 になるようにすると、 次のようなコイル間隔 Z0 と半径 R0 の最適な関係が求め られる。 When this Hm (Z) is Taylor-expanded at Z = 0, it becomes a power series consisting only of odd-order terms of Z. Therefore, if the coefficient of the third-order term of Z is set to 0 in order to obtain a linear gradient magnetic field with respect to Z, the following optimal relationship between the coil interval Z0 and the radius R0 is obtained.
Z0 = 0. 866 R0  Z0 = 0.866 R0
このようなマクスゥエル型コイルにおいては、 計算の過程において、 Zの 5次 以上の高次項が残るため、 直線性が良くない。  In such Maxwell type coils, the linearity is not good because higher-order terms of the fifth or higher order of Z remain in the process of calculation.
本発明は上記の点に鑑みてなされたもので、 その目的は、 駆動電源の容量増加 を避けるためにコイルのインダクタンスを大きく しないで、 勾配磁場のリニアリ ティの良い勾配磁場コイルを得るための勾配磁場コイルを提供することにある。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to increase the gradient of a gradient magnetic field coil having good linearity of the gradient magnetic field without increasing the inductance of the coil in order to avoid an increase in the capacity of the drive power supply. It is to provide a magnetic field coil. Disclosure of the invention
前記の課題を解決する第 1の発明は、 互いに逆向きの略円状の電流が流され勾 配磁場発生領域を挾んで対向設置された 2つのコィルからなる対向型マグネッ ト 用勾配磁場コイルにおいて、 対向設置されたそれぞれのコイルは複数の略円状で 略同心の電流路を備え、 該電流路は、 コイルの中央付近の電流密度が低い領域と コィルの縁部付近の電流密度が高い領域を含んだ電流分布を持つものであること を特徴とするものである。 A first invention for solving the above-mentioned problem is a gradient magnetic field coil for opposed magnets comprising two coils which are opposed to each other with a substantially circular current flowing in opposite directions and sandwiching a gradient magnetic field generation region. Each of the opposed coils is provided with a plurality of substantially circular and substantially concentric current paths. The current paths include a region where the current density is low near the center of the coil and a region where the current density is high near the edge of the coil. Must have a current distribution that includes It is characterized by the following.
第 2の発明は、 上記に加え、 それぞれのコイルにおける複数の略円状で略同心 の電流路は、 電流分布にほぼ反比例したピッチで配設されたものであることを特 徴とするものである。  The second invention is characterized in that, in addition to the above, a plurality of substantially circular and substantially concentric current paths in each coil are arranged at a pitch substantially inversely proportional to the current distribution. is there.
第 3の発明は、 上記に加え、 それぞれのコイルにおける複数の略円状で略同心 の電流路は、 略渦巻状の連続した電流路であることを特徵とするものである。 図面の簡単な説明  The third invention is characterized in that, in addition to the above, a plurality of substantially circular and substantially concentric current paths in each coil are substantially spiral continuous current paths. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施例の勾配磁場コィルの概略構成図である。  FIG. 1 is a schematic configuration diagram of a gradient coil according to an embodiment of the present invention.
図 2は本発明の一実施例の勾配磁場コイルのパタンを示す図である。  FIG. 2 is a diagram showing a pattern of a gradient magnetic field coil according to one embodiment of the present invention.
図 3はコイルパタン設計のための外形を示す図である。  FIG. 3 is a diagram showing an outer shape for coil pattern design.
図 4はファイルを基にしたコイルパタン設計のための手順のフローチヤ一トで あ  Figure 4 is a flowchart of the procedure for designing a coil pattern based on a file.
図 5は電流密度曲線からコィルの巻線位置を求める方法の説明図である。 図 6は従来のコイルのリニアリティエラーを示す特性曲線図である。  FIG. 5 is an explanatory diagram of a method of obtaining a coil winding position from a current density curve. FIG. 6 is a characteristic curve diagram showing a linearity error of a conventional coil.
図 7は本発明によるコイルのリニアリティエラーを示す特性曲線図である。 図 8は M R Iの対向型マグネッ 卜の概略構造を示す断面図である。  FIG. 7 is a characteristic curve diagram showing a linearity error of the coil according to the present invention. FIG. 8 is a cross-sectional view showing a schematic structure of a facing magnet of MRI.
図 9はマクスゥエルコイルの概略図である。 発明を実施するための最良の形態  FIG. 9 is a schematic diagram of a Maxwell coil. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施例を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明の一実施例の概略構成図である。 図中、 1 1は z軸に垂直な平面 上に複数の略円状で略同心状のパタンを形成したコイル A、 1 2はコイル A 1 1 の平面に平行な平面にコイル A 1 1と同一のパタンを形成したコイル Bで、 コィ ル A l lとコイル B 1 2の同心円の中心は z軸上若しくは z軸に平行な直線上に 位置しており、 その距離を 2 Z 0 とすると、 通常、 設備の関係等からこの 2 Z 0 を一定の値、 例えば 4 5 0匪に選ぶ。  FIG. 1 is a schematic configuration diagram of one embodiment of the present invention. In the figure, 11 is a coil A having a plurality of substantially circular and substantially concentric patterns formed on a plane perpendicular to the z-axis, and 12 is a coil A 11 on a plane parallel to the plane of the coil A 11. In the coil B having the same pattern, the centers of the concentric circles of the coil All and the coil B 12 are located on the z-axis or a straight line parallel to the z-axis. Normally, 2 Z 0 is selected as a fixed value, for example, 450 bandits, due to the relationship between facilities.
図 2はコイル A l l , B 1 2の実際の詳細なパタンの図で、 2隱程度の径の銅 線で構成してあり、 リードの取り出しは C l, C 2 で行う。 このコイル A 1 1 , B 12の双方の電流路のパタンは、 電流を流した時の電流分布が、 図 5に示すよ うに、 半径が 0〜r2 のコイルの中央付近の電流密度が低い領域と半径が r3 〜 R0 のコィルの縁部付近の電流密度が高い領域を含んだ電流分布になるように設 定されている。 この電流分布は、 Z0 と R0 の大小関係によって、 央付近の小さ な極大や極小の数や位置、 縁部付近の増加の割合等が多少変化する。 更に、 複数 の略円状で略同心の電流路のピツチは、 電流密度にほぼ反比例するように設定さ れているため、 それぞれの略円状の電流路に流す電流値は同一でよい。 そのため、 図 2に示されるように、 複数の略円状で略同心の電流路は、 略渦巻状の連続した パタンが形成されることが可能となる。 尚、 図 2に示したコイルは巻数が少ない ので、 中央付近の小さな電流密度の極大が電流路のパタン間隔に隠れているが、 巻数を多く して電流密度の極大が明確に現れるようにすると精度がよくなる。 Figure 2 shows the actual detailed patterns of the coils A ll and B 12, which are composed of copper wires with a diameter of about 2 h. The leads are taken out at C l and C 2. This coil A 1 1, As shown in Fig. 5, the current distribution pattern of both current paths of B12 is such that the current distribution is as shown in Fig. 5, where the current density is low near the center of the coil whose radius is 0 to r2, and the radius is r3 to The current distribution is set to include a region with a high current density near the edge of the coil. In this current distribution, the number and position of small maxima and minima near the center, the rate of increase near the edge, and the like vary slightly depending on the magnitude relationship between Z0 and R0. Further, since the pitches of a plurality of substantially circular and substantially concentric current paths are set so as to be substantially inversely proportional to the current density, the current values flowing through the respective substantially circular current paths may be the same. Therefore, as shown in FIG. 2, a plurality of substantially circular and substantially concentric current paths can form a substantially spiral continuous pattern. Since the coil shown in Fig. 2 has a small number of turns, the local maximum of the small current density near the center is hidden by the pattern interval of the current path.However, if the number of turns is increased so that the local maximum of the current density appears clearly Accuracy improves.
このコイルは、 具体的には、 円盤に図 2のコイルパタン状に溝を作って、 その 溝に銅線を埋め込んで作るものである。  Specifically, this coil is made by making a groove in the disk in the shape of the coil pattern shown in Fig. 2, and burying a copper wire in the groove.
次に、 このコイル A 11, B 12 (以下単にコイル A 11で代表させる) のパ タンの設計法を説明する。 図 3はコイル A 11の外形を示す図で、 横軸に rを取 つてあって、 コイル Al 1の半径は R0 である。 このコイル Al 1において、 コ ィル平面上の各点における電流分布の誤差を最小にするバタンを求めるため、 次 式により電流分布: ί·(Γ) を求める。  Next, a method of designing patterns of the coils A11 and B12 (hereinafter, simply represented by the coil A11) will be described. FIG. 3 is a diagram showing the outer shape of the coil A11. The horizontal axis has r, and the radius of the coil Al1 is R0. In this coil Al1, the current distribution: 求 め る · (Γ) is obtained by the following equation in order to find the pattern that minimizes the error in the current distribution at each point on the coil plane.
J (r) =∑ an sin{(n ττ / 2 )( r /RO)} +∑ bm cos{(m )( r /RO)} n=l m=l … 。ヽ この計算の手順を以下に説明する。  J (r) = ∑an sin {(nττ / 2) (r / RO)} + ∑bm cos {(m) (r / RO)} n = l m = l ...手 順 The procedure for this calculation is described below.
( 1 ) 式に含まれる各項単独の電流分布をもつコィルに単位電流を流した時に 作られる磁場をピオ ·サバールの法則により計算し、 磁場データファイル Aを作 成する。 例えば、 a 1 以外の項の係数 a 2〜 a 6, bl〜b6を零とした J (r) = al · s i n { ίπ/2) (r/RO) } の電流分布をもつコイルに単位電流を印 加したものと想定し、 リニアな勾配磁場が必要な領域内の各点での磁場を計算す る。 以下、 同様に a 2 の項, a 3 の項と次々に計算すれば、 ファイル Aが作成で き O 0 (1) Calculate the magnetic field generated when a unit current is applied to the coil having the current distribution of each term included in equation (1) according to Pio-Savart's law, and create a magnetic field data file A. For example, if the coefficients a 2 to a 6 and bl to b 6 of the terms other than a 1 are set to zero, a unit current is applied to a coil having a current distribution of J (r) = al · sin {ίπ / 2) (r / RO)}. Is calculated, and the magnetic field at each point in the area where a linear gradient magnetic field is required is calculated. In the same way, if the same calculation is performed for the terms a 2 and a 3 one after another, file A can be created and O 0
上記の手順はファイル A作成の手順で、 予め作っておく ものである。 次に、 上記のように作成されたファイル Aを用いて行うコイル A 1 1のパタン 設定の手順の一例を図 4のフローチヤ一トを用いて説明する。 The above procedure is the procedure for creating file A, which is created in advance. Next, an example of the procedure for setting the pattern of the coil A11 using the file A created as described above will be described with reference to the flowchart of FIG.
ステップ 1  step 1
勾配磁場のリニァリティエラーを所望の限度例えば 2 %以下に設定する。 ステップ 2  Set the gradient magnetic field linearity error to a desired limit, for example, 2% or less. Step 2
ファイル Aを参照して n , mを選定し、 勾配磁場がリニアになるように各 a l 〜a n, b l 〜b m について線型計画法若しくは最小二乗法により最適解を求め る。 即ち、 各係数 a l 〜a n , b l〜b m に基づいてビォサバールの法則により 演算した勾配磁場が、 勾配磁場が必要な領域内の各点でリニァリティエラーが 2 %以下になるように、 線型計画法若しくは最小二乗法により最適解を求める演算 を行う。  Select n and m with reference to file A, and find the optimal solution by a linear programming method or a least-squares method for each of al to an and bl to bm so that the gradient magnetic field is linear. That is, the linear programming is performed so that the gradient magnetic field calculated based on the coefficients of al to an and bl to bm according to the Beos-Savart law has a linearity error of 2% or less at each point in the area where the gradient magnetic field is required. Perform the operation to find the optimal solution by the method of least squares.
ステップ 3  Step three
最適解が得られたかチェックする。 得られていなければステップ 4に進む。 得 られていればステップ 7に進む。  Check whether the optimal solution was obtained. If not, go to step 4. If so, go to step 7.
ステップ 4  Step 4
最適解を得るために、 ステップ 1で設定したリニアリティエラーの許容値を弛 めるかどうか検討する。 弛める場合は許容値を増やしてステップ 2に戻る。 弛め ない場合はステップ 5に進む。  In order to obtain the optimal solution, consider whether to relax the tolerance of the linearity error set in step 1. If loose, increase the tolerance and return to step 2. If not, go to step 5.
ステップ 5  Step 5
a n, b in の n , mの数を増やして最適解を求めるかどうか検討する。 増やさな い場合、 ステップ 2に戻る。 増やす場合、 ステップ 6に進む。  Consider whether to find the optimal solution by increasing the number of n and m in a n and b in. If not, return to step 2. If more, go to step 6.
ステップり  Step
n , m数を増やして設定し、 増やした a n, b m について計算するためステップ 2に戻る。 ステップ 7  Increase and set the number of n and m, and return to step 2 to calculate for the increased a n and b m. Step 7
電流分布: i (r) の最適解による曲線を求め、 コイルのパタンを以下に示す方法 ax XL "9 o o  Current distribution: Find the curve by the optimal solution of i (r) and calculate the coil pattern as shown below.
上記の手順により、 図 3に示す領域において、 横軸の各 rの値、 即ち各半径の 円周上における電流分布 J (r) を求め、 図 5の電流分布曲線 2 1を得る。 この曲 線は 1つの例である。 電流分布曲線 2 1と r軸が挟む面積を Sとし、 求めようと するコイルの巻数を nとすれば、 面積 Sを nで割って得た面積を Δ Sとする。 図 に置ける r l, r 2, ···, r n, R 0 は電流分布曲線 2 1による面積 Sを等面積 Δ Sに 分割する点で、 巻線位置をそれぞれ Δ Sを 2等分割する位置に選ぶ。 According to the above procedure, in the region shown in FIG. 3, the value of each r on the horizontal axis, that is, the current distribution J (r) on the circumference of each radius is obtained, and the current distribution curve 21 of FIG. 5 is obtained. This curve is one example. Let S be the area between the current distribution curve 2 1 and the r-axis. Assuming that the number of turns of the coil is n, the area obtained by dividing the area S by n is ΔS. Rl, r2, ..., rn, R0 in the figure are points at which the area S according to the current distribution curve 21 is divided into equal areas ΔS, and the winding position is set to a position at which ΔS is divided into two equal parts. Choose.
上記のようにして選定した各巻線の位置は図 2に示す通りであり、 同心円状の パタンを ø 2程度の銅線で構成する。 リードの取り出し口は C I, C 2 である。 具体的な製法は F R Pで形作った厚さ 5 mni程度の直径 8 0 O mmの円盤に N Cマ シン等で上記コイルパ夕ンに相当する溝を機械加工して、 その溝に銅線を埋め込 んで作る。  The positions of the windings selected as described above are as shown in Fig. 2. A concentric pattern is composed of a copper wire of about ø2. The lead outlets are C I and C 2. The specific manufacturing method is to machine a groove corresponding to the above-mentioned coil pad with a NC machine or the like on a disk with a diameter of about 80 mm and a thickness of about 5 mni formed by FRP, and embed a copper wire in the groove. Make it.
以上のようにして得られた本実施例の勾配磁場コィルの特性を従来のマクスゥ エル型の勾配磁場コイルと比較する。  The characteristics of the gradient magnetic field coil of the present embodiment obtained as described above are compared with those of a conventional Maxwell-type gradient magnetic field coil.
図 6はマクスゥエルコイルの特性曲線である。 この曲線図は、 横軸に図 1に示 す z軸上の 0点を基準とした z軸の座標を取ってあり、 縦軸に勾配磁場のリニァ リティエラーを取ってある。 各曲線のパラメータ Xはコイル A 1 1の半径方向の 距離である。 図で明らかなようにコイル面に近付く程各半径方向の位置における リニアリティエラ一は大きくばらついている。  Figure 6 shows the characteristic curve of a Maxwell coil. In this curve diagram, the horizontal axis shows the z-axis coordinates with respect to the zero point on the z-axis shown in Fig. 1, and the vertical axis shows the linearity error of the gradient magnetic field. The parameter X of each curve is the radial distance of coil A11. As is clear from the figure, the linearity error at each position in the radial direction varies greatly as it approaches the coil surface.
図 7は本実施例によつて求められたパタンの勾配磁場コイルによる特性曲線で、 縦軸と横軸とは図 6と同じである。 この図に明らかなように、 各半径位置におけ るリニァリティエラ一は極めて小さく、 ± 3 %以内に納まっている。  FIG. 7 is a characteristic curve obtained by the gradient magnetic field coil of the pattern obtained according to the present embodiment. The vertical axis and the horizontal axis are the same as in FIG. As is clear from this figure, the linearity error at each radial position is extremely small and within ± 3%.
次にマクスゥエル型の勾配磁場コイルと本実施例のパタンの勾配磁場コイルと のィンダクタンスと抵抗を比較する。  Next, the inductance and the resistance of the Maxwell type gradient magnetic field coil and the gradient magnetic field coil of the pattern of the present embodiment are compared.
7 O Aの電流を流し、 1 gaussZcmの勾配磁場強度を得るのに必要なコイルの ィンダク夕ンスと抵抗を求めると次の表 1のようになる。 ィンダクタンス (mH) 抵抗 ( Ω ) 巻数 (ターン) マクスゥエルコイル  The following Table 1 shows the inductance and resistance of the coil necessary to obtain a gradient magnetic field strength of 1 gaussZcm by applying a current of 7 OA. Inductance (mH) Resistance (Ω) Number of turns (turn) Max.
(R0=260mm) 0. 5 3 0. 1 5 2 8 本実施例のコイル (R0 = 260mm) 0.5 3 0. 1 5 2 8 Coil of this embodiment
Figure imgf000008_0001
Figure imgf000008_0001
( 2 Z0=450mm) 表から明らかなように本実施例の勾配磁場コィルはマクスゥエル型の勾配磁場 コイルに比べて、 ターン数は多くなつているがィンダクタンスは少ない。 (2 Z0 = 450mm) As is clear from the table, the gradient magnetic field coil of this embodiment has a larger number of turns but a smaller inductance than the Maxwell type gradient magnetic field coil.
以上説明したように本実施例によれば、 リニアリティが良いため、 勾配磁場に 起因したイメージ歪を従来に比べて改善できる。 従来ではイメージ歪みを画像処 理において捕正することが行われていて、 処理時間が長くなつたり、 アーティフ ァク 卜が発生するなどの問題があつたが、 リニアリティエラーを許容範囲に入れ られるので、 画像処理段階での歪補正は不要になった。  As described above, according to the present embodiment, since the linearity is good, the image distortion caused by the gradient magnetic field can be improved as compared with the related art. Conventionally, image distortion has been corrected in image processing, and there have been problems such as long processing times and the occurrence of artifacts.However, since linearity errors can be kept within an allowable range. The distortion correction at the image processing stage is no longer necessary.
—方、 インダクタンスは従来と略同程度か、 むしろ少なくなつているので、 電 源容量の増加は不必要である。  —On the other hand, since the inductance is almost the same as before, or rather less, it is not necessary to increase the power supply capacity.
尚、 本発明は上記実施例に限定されるものではない。 本実施例では銅線でコィ ルパタンを形成する例を示したが、 銅板のエッチングにより形成してもよい。 産業上の利用可能性  The present invention is not limited to the above embodiment. In this embodiment, an example in which a coil pattern is formed by a copper wire has been described, but the coil pattern may be formed by etching a copper plate. Industrial applicability
以上詳細に説明したように本発明によれば、 コイルのインダクタンスを大きく することなく、 勾配磁場のリニァリティの良い勾配磁場コィルを実現することが できて、 実用上の効果は大きい。  As described above in detail, according to the present invention, a gradient magnetic field coil having good gradient magnetic field linearity can be realized without increasing the inductance of the coil, and the practical effect is great.

Claims

請求の範囲 The scope of the claims
1 互いに逆向きの略円状の電流が流され勾配磁場発生領域を挾んで対向設置 された 2つのコイルからなる対向型マグネッ ト用勾配磁場コイルにおいて、 対向 設置されたそれぞれのコィルは複数の略円状で略同心の電流路を備え、 該電流路 は、 コィルの中央付近の電流密度が低い領域とコィルの縁部付近の電流密度が高 い領域を含んだ電流分布を持つものであることを特徴とする対向型マグネッ ト用 勾配磁場コイル。 (1) In an opposed magnet gradient magnetic field coil composed of two coils installed opposite to each other across a gradient magnetic field generation region by flowing substantially circular currents in opposite directions, each of the coils installed opposite each other has a plurality of coils. It has a circular and substantially concentric current path, and the current path has a current distribution including a region where the current density is low near the center of the coil and a region where the current density is high near the edge of the coil. This is a gradient magnetic field coil for facing magnets.
2 それぞれのコイルにおける複数の略円状で略同心の電流路は、 電流分布に ほぼ反比例したピッチで配設されたものであることを特徴とする請求の範囲 1に 記載の対向型マグネッ 卜用勾配磁場コイル。 2. The opposed magnet according to claim 1, wherein a plurality of substantially circular and substantially concentric current paths in each coil are arranged at a pitch substantially inversely proportional to the current distribution. Gradient field coil.
3 それぞれのコイルにおける複数の略円状で略同心の電流路は、 略渦巻状の 連続した電流路であることを特徵とする請求の範囲 2に記載の対向型マグネッ ト 用勾配磁場コイル。 3. The gradient magnetic field coil for opposed-type magnet according to claim 2, wherein the plurality of substantially circular and substantially concentric current paths in each coil are substantially spiral continuous current paths.
PCT/JP1993/000697 1992-05-26 1993-05-25 Coil for generating gradient magnetic field on opposed type magnet WO1993024051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4/133603 1992-05-26
JP13360392 1992-05-26

Publications (1)

Publication Number Publication Date
WO1993024051A1 true WO1993024051A1 (en) 1993-12-09

Family

ID=15108665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000697 WO1993024051A1 (en) 1992-05-26 1993-05-25 Coil for generating gradient magnetic field on opposed type magnet

Country Status (2)

Country Link
JP (1) JP2700506B2 (en)
WO (1) WO1993024051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079650A (en) * 2006-09-26 2008-04-10 Hitachi Medical Corp Gradient magnetic field coil and nuclear magnetic resonance tomographic apparatus using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268742A (en) * 1989-04-11 1990-11-02 Sanyo Electric Co Ltd Gradient magnetic field coil used in magnetic field generator for nuclear magnetic resonance imaging
JPH0349736A (en) * 1989-07-17 1991-03-04 Hitachi Medical Corp Inclined magnetic field coil for nuclear magnetic resonance imaging device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2923575B2 (en) * 1990-08-08 1999-07-26 ジーイー横河メディカルシステム株式会社 Curved coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268742A (en) * 1989-04-11 1990-11-02 Sanyo Electric Co Ltd Gradient magnetic field coil used in magnetic field generator for nuclear magnetic resonance imaging
JPH0349736A (en) * 1989-07-17 1991-03-04 Hitachi Medical Corp Inclined magnetic field coil for nuclear magnetic resonance imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008079650A (en) * 2006-09-26 2008-04-10 Hitachi Medical Corp Gradient magnetic field coil and nuclear magnetic resonance tomographic apparatus using the same

Also Published As

Publication number Publication date
JP2700506B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US4840700A (en) Current streamline method for coil construction
US4646024A (en) Transverse gradient field coils for nuclear magnetic resonance imaging
EP0140259B1 (en) Transverse gradient field coil
EP0231879B1 (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
US6150818A (en) Low eddy current and low hysteresis magnet pole faces in MR imaging
JP2009112870A (en) Coil device and its manufacturing method
JPH0350543B2 (en)
WO2007119726A1 (en) Magnetic resonance imaging device and gradient magnetic field coil
KR100341201B1 (en) Method of manufacturing gradient coil, gradient coil unit, gradient coil and mri apparatus
JPS612048A (en) Correction coil device
US4728895A (en) System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance
JP2022100322A (en) Magnetic detection device
JP3299308B2 (en) Gradient magnetic field coil unit, gradient magnetic field coil and MRI apparatus
US5088185A (en) Method for manufacturing gradient coil system for a nuclear magnetic resonance tomography apparatus
WO1993024051A1 (en) Coil for generating gradient magnetic field on opposed type magnet
US7034536B2 (en) Inclined magnetic field generation coil and magnetic field generator for MRI
JP2958549B2 (en) Static magnetic field drift correction coil and static magnetic field drift correction method
JP2570044B2 (en) Superconducting magnet assembly for MRI and MRI diagnostic device
JP2001353137A (en) Method for manufacturing gradient magnetic field coil
JPH11135327A (en) Thin film inductor
JP4004038B2 (en) Coil apparatus and magnetic resonance imaging apparatus
JPH0576507A (en) Gradient magnetic field coil and production thereof
JP3194699B2 (en) Permanent magnet magnetic circuit
JP2003153879A (en) Gradient magnetic field generating coil and magnetic field generating device for mri
JPH10216102A (en) Gradient magnetic field coil apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)

Free format text: JP, EUROPEAN PATENT(AT,BE,DK,IE,IT,LU,MC,PT,SE)

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载