+

WO1993021319A1 - ANTICORPS HUMANISES SPECIFIES PAR C-erbB-2 - Google Patents

ANTICORPS HUMANISES SPECIFIES PAR C-erbB-2 Download PDF

Info

Publication number
WO1993021319A1
WO1993021319A1 PCT/US1993/003080 US9303080W WO9321319A1 WO 1993021319 A1 WO1993021319 A1 WO 1993021319A1 US 9303080 W US9303080 W US 9303080W WO 9321319 A1 WO9321319 A1 WO 9321319A1
Authority
WO
WIPO (PCT)
Prior art keywords
immunoglobulin
humanized
constant region
human
sequence
Prior art date
Application number
PCT/US1993/003080
Other languages
English (en)
Inventor
Lelia Wu
Clayton Casipit
L. L. Houston
Hing C. Wong
Sheng-Yung Chang
Mark Deboer
Original Assignee
Cetus Oncology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetus Oncology Corporation filed Critical Cetus Oncology Corporation
Publication of WO1993021319A1 publication Critical patent/WO1993021319A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3015Breast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/034Fusion polypeptide containing a localisation/targetting motif containing a motif for targeting to the periplasmic space of Gram negative bacteria as a soluble protein, i.e. signal sequence should be cleaved

Definitions

  • the present invention related to the field of molecular biology in general, and the field of chimeric immunoglobulins in particular.
  • the present invention relates to altered immunoglobulin molecules in which at least part of the complementarity determining regions in the light or heavy chain variable domains have been replaced by analogous complementarity determining region(s) from a murine antibody specific for c-e ⁇ bB-2.
  • the c-erb-2 (HER-2) oncogene may be expressed in human breast carcinoma cells but is either not expressed, or expressed at much lower levels, in non-cancerous cells. It is thus of interest to provide antibodies specific for the erb encoded protein. Antibodies specific for this protein may be used to assay for the presence of cells expressing the erb encoded protein, or may be applied to patients so as to specifically bind to carcinoma cells either for diagnostic, imaging or therapeutic purposes.
  • Monoclonal antibodies have numerous advantages over polyclonal antibody preparations to the same antigen. These advantages include higher specificity and the ability to reproducibly generate large quantities of the antibody of interest. Since most monoclonal antibodies are of murine or non-human origin, their administration into human patients is a significant problem. Introduction of non-human antibodies into human patients may have a variety of adverse effects. Such adverse effects include the development of an antibody response directed to many portions of the administered monoclonal antibody, such as HAMA (human anti- mouse antibody).
  • HAMA human anti- mouse antibody
  • the antibody may fail to interact with other portions of the human immune system, e.g., a murine antibody Fc region may not interact with human Fc receptors, thus resulting in the absence of the desired immune response to cells displaying the antigen of interest, or may fail to activate complement.
  • a murine antibody Fc region may not interact with human Fc receptors, thus resulting in the absence of the desired immune response to cells displaying the antigen of interest, or may fail to activate complement.
  • Attempts to produce human monoclonal antibodies specific for antigens of interest have proven to be difficult for several reasons, including the lack of good fusion partners for human cells, ethical problems associated with immunizing human patients to obtain lymphocytes, as well as difficulty in obtaining human lymphocyte donors.
  • murine antibody specific for the antigen i.e., an antibody that contains primarily human amino acid sequences and some of the variable region sequence of a conventional murine antibody specific for the desired antigen.
  • Humanized antibodies have at least three potential advantages over murine antibodies for use in human therapy. Because the constant region portion is human, a humanized antibody may interact better with other parts of the human immune system (e.g., destroy the target cells more efficiently by complement dependant cytotoxicity or antibody- dependent cellular cytotoxicity).
  • the human immune system should not recognize the humanized portions of the humanized immunoglobulin as foreign, and therefore the immune response against an injected humanized immunoglobulin should be less than the immune response against an injected totally murine immunoglobulin.
  • Injected murine antibodies have been reported to have a half-life in the human circulation much shorter than the half-life of human antibodies (Shaw, et al., T Tmniiinnl 138:4534-4538 (1987)). It is possible that injected humanized immunoglobulins will have a half life more like that of human immunoglobulins, thus allowing smaller and less frequent doses of therapeutic immunoglobulins to be administered to the body with the same or better outcome.
  • murine monoclonal antibodies are raised against an antigen of interest, the immunoglobulin genes encoding the antibody of interest are then extracted from the hybridoma genome, sequenced, and genetically manipulated so as to replace non-human constant region sequences with human constant region sequences.
  • Such "chimeric" antibodies contain murine variable regions and human constant regions.
  • others e.g., Winter in EPA-0-239-400, have replaced human hypervariable sequences with murine hypervariable sequence specific for an antigen of interest in order to obtain humanized "hyperchimeric" antibodies specific for an antigen, such teachings provide no expectation of success for attempts to produce humanized antibodies (or derivatives thereof) specific for c- erbB-2 or any other given antigen.
  • Antigen combining sites have complex 3- dimensional structures that are in part dependant on the primary amino acid sequence of the variable region of immunoglobulins.
  • the general procedure and concerns associated with producing humanized, chimeric and hyperchimeric antibodies can be found in Antibody Engineering, edited by Borreback, W. H. Freeman and Co. Publishers. Thus changing several amino acids within the variable region of an immunoglobulin would not be expected to have an predictable effect on the structure (and consequently on antigen binding properties) of the variable region.
  • Summary of Invention The subject invention provides for humanized immunoglobulin molecules (and derivatives thereof) specific for c-e ⁇ bB-2. Nucleic acid sequences encoding these immunoglobulins, and cells for the expression of the humanized immunoglobulins are also provided for.
  • the subject invention also provides for methods of using the humanized immunoglobulins to diagnose and treat cancer.
  • Cells for the production of humanized c-e ⁇ b-2 immunoglobulins and in vitro synthesis methods for these immunoglobulins are also taught.
  • Figure 1 provides the nucleotide sequence (total 1554 base pairs) encoding a humanized anti-erbB2 specific Fab fragment (SEQ ID:No. 1) derived from the hypervariable regions (also referred to as complementarity determining regions, of abbreviated CDR] of murine anti-c-e ⁇ bB-2 monoclonal antibody 520C9.
  • the humanized light and heavy chains of the Fab fragment have been modified to contain an R coji phoA leader sequence.
  • a plasmid comprising the nucleotide sequence of Figure 1 is p W187.
  • the R. coli strain containing pLW187 is referred to as TLW170-1 in this application.
  • Figure 1 The sequence of Figure 1 (SEQ ID:No. 1) may be divided into the following subsequences: l-143bp phoA promoter and leader; 144-779bp Humanized Heavy Chain;
  • Figure 2 represents a general scheme for humanizing murine monoclonal antibodies by overlapping PCR.
  • Figure 3 represents the scheme and PCR primers used to produce a humanized heavy chain immunoglobulin.
  • Figure 4 represents the scheme and PCR primers used to produce a humanized light chain immunoglobulin.
  • Figure 5 represents the scheme used to introduce a phoA leader sequence and promoter sequence in front of a humanized immunoglobulin.
  • Figure 6 represents the scheme used to correct an unintentional sequence error made during the production of a humanized light chain derived immunoglobulin made according the scheme described in Figure 4.
  • LWOl is the primer specifically designed for amplifying the 5' end of the phoA sequence.
  • LW16 and LW17 is a set of complementary junction primers which sit at the end of the phoA leader and the beginning of the coding sequence in FRl.
  • the template pSYC1087 contains the phoA promter and, when used with primers LWOl and LW17, will yield a fragment (1) containing a 5' Hindm site and a 3' end bearing sequence for the beginning of PRl.
  • CLC27 is a primer which anneals to the end of FR2 and part of CDR2.
  • CLC26 is a primer which contains CDRI and partial FR2 sequence but does not reach amino acid #43.
  • CLC29 is complementary to CLC30 and anneals to FR4 as well as the beginning of the human light chain constant region.
  • PCR with CLC26 and CLC29, using template "38-18” yields a product (IE) containing correct CDRI, incorrect FR-2 containing alanine at amino acid #43, and correct CDR2, PR3, CDR3, and FR4. Since "38-18" has an incorrect constant region, "38-17” is used as template for primer CLC30 and LW20.
  • This fourth PCR product ((V) contains correct CDR3, FR4, and human light chain constant region. Complementarity of CLC29 and CLC30 at CDR3 allow fragments IH and IV to anneal for the second round of overlap PCR, producing fragment VI.
  • PCR fragments V and VI are complementary at framework 2 except at amino acid residue #43, where in fragment V the residue is threonine (ACC) and where in fragment VI, the residue is alanine (GCC). Annealing of these two fragments during the final round of PCR will yield products which due to the differing nature of its templates, will bear amino acid alanine or threonine at residue 43.
  • ACC threonine
  • GCC alanine
  • An immunoglobulin molecule may be divided into several regions.
  • An immunoglobulin molecule may comprise one or more polypeptide chains, i.e. a multi-polypeptide immunoglobulin.
  • IgG for example, consists of 2 heavy (H) chains and 2 light (L) chains.
  • An immunoglobulin chain typically comprises variable regions and constant regions; the H chain of IgG contains one variable region and one constant region, each constant region has a different sequence, and the (L) chain has one variable and one constant region.
  • the constant region of an H chain can be further subdivided into 3 domains, each of which forms a separate compact tightly folded 3 dimensional unit.
  • the L and H variable regions are similarly folded into separate compact units.
  • variable region of an immunoglobulin chain may be further divided into three hypervariable regions (also called complementarity determining regions, abbreviated CDR) and four framework regions (abbreviated FR).
  • the framework regions separate the hypervariable regions from each other in the linear amino acid sequence.
  • the framework regions comprise amino acids that do not vary as much between immunoglobulins produced by the same organism and are reasonably fixed in 3-dimensional space.
  • Framework region amino acids sequences may exhibit more variation within an organism than constant region amino acid sequences.
  • Hypervariable regions vary to a much greater extent between individual immunoglobulin molecules produced by the same organism, and are less well fixed in 3-dimensional space.
  • the hypervariable regions are believed to form a major part of the antigen binding site of an antibody.
  • the framework regions of the immunoglobulins are believed to form two opposing beta-pleated sheets, which are the basic structural element of the domain. These strands of the beta sheet are connected by loops of polypeptide chain which are thought to contain the hypervariable regions of the variable region of an immunoglobulin. Interactions between certain framework and CDR residues may influence the folding of the protein, particularly the hypervariable loops, and affect the ability of the antigen binding site to recognize antigen.
  • Constant regions of an immunoglobulin are located distal or C-te ⁇ ninal to the variable region. Constant regions may be of a light chain class including kappa and lambda chain constant regions (and the various subclasses thereof), or may be of a heavy chain class including the heavy chain constant regions of IgG, IgM, IgA, IgD, and IgE antibodies (and the various subclasses thereof).
  • coding sequence “operably joined” to expression control sequences refers to a configuration wherein the coding sequences can be expressed under the control of these sequences.
  • control may be direct, that is, a single gene associated with a single promoter, or indirect, as in the case where a polycistronic transcript is expressed from a single promoter.
  • Control sequence and "expression control sequence” refer to a DNA sequence or sequences necessary for the expression or regulation (transcriptional or translational) of an operably joined coding sequence in a particular host organism.
  • the control sequences that are suitable for procaryotes, for example, include a promoter, optionally an operator sequence, a ribosome binding site, a transcription terminator, and possible other as yet poorly understood sequences.
  • Eucaryotic cells are known to utilize control sequences, which include promoters, polyadenylation signals, enhancers, silencers, and the like.
  • variable regions (humanized or otherwise) intends a set of 2 variable regions (one derived from the L chain and one from the H chain) that form an antigen combining site in an antibody.
  • Functional pairs of variable regions specific for an antigen of interest may be found in the variable region from the heavy chain and the variable region from the light chain of an antibody specific for the antigen of interest. Examples of functional pairs of variable regions include the polypeptides encoded by nucleotides 144-488 and nucleotides 894-1220 of Figure 1 (SEQ ID:NOl).
  • variable regions humanized or otherwise
  • functional proximity when used with reference to variable regions (humanized or otherwise) intends that the functional pair of L and H variable regions be spatially located with respect to each other so as to form an antigen combining site.
  • variable region hypervariable sequences in the specified polypeptide are present on either the heavy chain or the light chain, respectively, of the antibody from which the hypervariable sequences of interest were originally discovered.
  • humanized intends that at least a portion of the framework regions of an immunoglobulin are derived from human immunoglobulin sequences. When sequences are said to be “human”, all human alleles for the given sequence, in addition to the sequence specifically exemplified, are included. Moreover, the subject invention contemplates that minor amino acid sequence changes, including substitutions, deletions, and insertions, typically in the range of about 1 to 5 amino acids, may be made to humanized immunoglobulins specific for c-erbB-2 without significantly altering the binding specificity of the immunoglobulin.
  • the antigen combining site formed by the functional pair is capable of binding to the antigen (or hapten) of interest more strongly than to randomly selected molecules.
  • the subject invention provides for immunoglobulin molecules with variable regions comprising the hypervariable regions of the anti-c-erbB-2 specific antibodies (in particular the murine monoclonal antibody 520C9), human framework regions, and human constant region sequences.
  • the subject invention also includes nucleic acid sequences encoding the humanized immunoglobulins, as well as cell host systems for the expression of humanized immunoglobulins.
  • Humanized immunoglobulins specific for antigens of interest may be obtained by preparing non-human, preferably murine, monoclonal antibodies against an antigen of interest, determining the amino acid sequence of the non- human antibody, preferably by isolating (by any of a variety of well known gene isolation techniques, including PCR) and sequencing cDNA sequences encoding the chains of the non-human monoclonal antibody of interest.
  • the amino acid sequence of the hypervariable regions of the non-human monoclonal antibody may then be compared with canonical framework region sequences and hypervariable region amino acid sequences of human immunoglobulin variable regions so as to determine which amino acids must be changed to humanize the non-human sequence.
  • Humanized variable regions specific for c-erbB-2 may be joined to a human constant region(s), or portions thereof. Joining of a humanized variable region to a constant region gives rise to a polypeptide in which the amino-terminal portion comprises the humanized variable region and the carboxyl-terminal portion comprises human constant region sequence. Such constructs may be referred to as "hyperchimeric".
  • Humanized light chain-derived variable regions may be operably joined to light chain constant regions so as to form functional immunoglobulin chains.
  • humanized heavy chain-derived variable regions may be operably joined to heavy chain constant regions so as to form functional immunoglobulin molecules.
  • humanized light chain-derived variable region is operably joined to human Hght chain constant region
  • humanized heavy chain-derived variable region is operably joined to a human heavy chain constant region(s).
  • the subject invention also provides for various polypeptides (and corresponding nucleic acid sequences) comprising portions of c-erbB-2 specific humanized immunoglobulins, in particular the variable region portion of the humanized immunoglobulin. Furthermore, the subject invention provides for various derivatives of c-erbB-2 specific immunoglobulin chains that comprise additional polypeptide sequences. These additional polypeptide sequences may have any of a variety of functions including, enzymes, toxins, antigenic tagging sequences, and the like.
  • a preferred method of synthesizing nucleic acid sequences encoding humanized immunoglobulins is by means of overlapping PCR.
  • the technique of overlapping PCR is described in the article by Horton, et al, Gene 77:61-68 (1989) and in U.S. Patent No. 5,023,171.
  • the technique of overlapping PCR may be used to produce a humanized immunoglobulin by performing overlapping PCR on cDNA sequence from a human immunoglobulin gene with the appropriate oligonucleotide primers.
  • PCR oligonucleotide primer pairs are prepared.
  • Each oligonucleotide primer comprises essentially two regions, a 5' region containing either sequences encoding a restriction endonuclease recognition site or a portion of complementarity determining region (CDR) from a non-human immunoglobulin gene of interest, and a 3' region complementary to a framework region adjacent to the complementarity determining region to which the 5' portion of the primer is complementary.
  • sets of such PCR primers are prepared for each framework region of the human immunoglobulin gene that will furnish the human sequences for humanizing the non-human immunoglobulin gene of interest.
  • the primers are constructed so that 5' and 3' regions that code within the same CDR region are overlapping.
  • An advantage of using overlapping PCR to synthesize a nucleic acid sequence encoding a humanized non-human immunoglobulin sequence is in the minimization of restriction digest ligation reactions and oligonucleotide synthesis reactions.
  • the 5' CDR complementary regions of the PCR primers are complementary to the CDR complementary regions of PCR primers that have 3' regions complementary to adjacent framework regions.
  • variable regions of the functional pair are preferably localized in space (the pair members are in functional proximity to each other) so as to form an antigen combining site in which the antigen binding site is, at least in part, formed by the hypervariable regions of both the light chain-derived and heavy chain- derived hypervariable regions of 520C9 or other c-erbB-2 specific antibodies.
  • the H chain variable region often contributes more that the L chain variable region in the interaction with antigen.
  • Single humanized immunoglobulin chains may be joined to each other so as to form multi-polypeptide immunoglobulins by a variety of means. Such joining means include both ionic interactions and covalent bonds.
  • the means of joining individual immunoglobulin chains so as to form a multi-polypeptide immunoglobulin are preferably, although not necessarily, by means of covalent linkage.
  • the preferred means of covalent linkage is by means of disulfide bridges between cysteine residues located within the humanized immunoglobulin chains of interest; however, covalent linkage may also be effected through the use of cross- linking reagents such as dimethyl-3,3'dithiobispropionimidate, N-(4-azidophenyl) phthalamide, and the like.
  • Humanized immunoglobulin chains may be joined so as to produce multi-polypeptide immunoglobulins molecules structurally analogous to antibodies or fragments thereof, including Fab fragments, Fab' fragments, F(ab') 2 fragments, Fabc fragments, Fd fragments, Fr fragments, Fv fragments, single chain Fv fragments, and the like.
  • the available literature provides for methods for producing antibodies and fragments thereof from polypeptides synthesized by recombinant DNA and in vitro synthesis techniques.
  • the humanized immunoglobulins of the subject invention may be conjugated to a variety of therapeutic moieties.
  • therapeutic moieties it is intended a variety of compounds or atoms that find use in the treatment or detection of disease conditions.
  • Compounds that find use in treating disease conditions include toxins (or active portions thereof) such as diphtheria toxin, ricin, or Pseudomonas exotoxin, enzymes, conventional drugs and prodrugs.
  • the humanized immunoglobulins of the subject invention may be derivatized by known method for conjugating therapeutic moieties to antibodies so as to produce highly specific drugs or imaging agents.
  • Other therapeutic moieties of interest for conjugation to the humanized immunoglobulins of the subject invention include radio-opaque imaging agents.
  • Therapeutic moieties also include radionuclides for use in imaging or in irradiating tissue, such as Y, 186 Re, 188 Re, 67 Cu, 211 At, 212 Pb, 212 Bi, 1 5 I, I, 1 3 I, and the like.
  • Humanized immunoglobulin sequences may be modified by the addition of a variety of a secretion signal sequences preferable joined to the amino terminus of the humanized immunoglobulin polypeptide.
  • Secretion signal sequences also referred to as “signal sequences" serve to provide a signal to the secretion "machinery" of a cell to export polypeptides bearing such a sequence.
  • the use of signal sequences to direct the cellular localization and/or export of polypeptides not naturally joined to the signal sequence, i.e., heterologous with respect to the signal sequence, is well known in the field of recombinant gene expression.
  • leader sequences may be used to simplify the process of purification of the subjects polypeptides from recombinant cell expression systems for several reasons, including obviating the need to lyse host cells and the need to produce subcellular fractions enriched for the polypeptide of interest.
  • Leader sequences typically comprise a charged amino acid at the N-te ⁇ ninus followed by a short hydrophobic amino acid sequences.
  • Leader sequences may be selected on the basis of the cellular expression system used to synthesize the humanized immunoglobulin polypeptide. Signal sequences are preferably selected so as to be removed either completely or substantially from the humanized immunoglobulin sequence of interest. The actual leader sequences employed will vary in accordance with the choice of cellular expression system selected.
  • leader sequences are known to direct the localization of proteins in heterologous expression systems, i.e., host cells not naturally producing the protein that is the source of the signal sequence, it is preferable to use leader sequences from polypeptide naturally expressed in the cellular expression host.
  • a PhoA i.e., alkaline phosphatase
  • signal sequence is preferably used for expression in E. coli.
  • Other bacterial protein signal sequences of interest include those from the ompA and pelB genes.
  • an immunoglobulin leader sequence is preferred.
  • an alpha factorleader sequence among others, may be used as a signal sequence.
  • the humanized immunoglobulins of the subject invention may or may not contain "tag" amino acid sequences.
  • Such "tag” sequences are short amino acid sequence, normally no more than 20 amino acids in length, preferable less than 15 amino acids in length.
  • Tag sequences may be included in the amino acid sequence of the subject humanized immunoglobulins for the purpose of purifying, detecting (or quantifying) the polypeptides of the subject invention by use of antibodies, including monoclonal antibodies, (or similar reagents) capable of specifically binding to the tag sequence.
  • Tag sequences without attached immunoglobulin amino acid sequences may be synthesized in vitro using various well-known techniques, including commercially available polypeptide synthesis machines.
  • Tag sequences are preferably attached at or near the COOH terminal end of immunoglobulin molecules.
  • a tag sequence of particular interest is a sequence recognized by the KT3 monoclonal antibody.
  • An amino acid sequence recognized by T3 is TPPPEPET.
  • Another example of a tag sequence that may be inserted at the carboxy terminal (or internally as well) of an immunoglobulin sequence is the sequence EEEEYMPME. (Gnissenmeyer, et al., Proc. Natl. Acad. Sci. USA 82, 7952-54 (1982)).
  • the humanized immunoglobulins of the subject invention may be expressed in cellular hosts after the sequences encoding the humanized immunoglobulins have been operably joined to expression control sequences.
  • Nucleotide sequences for expression may be conveniently operably joined to expression control sequences by insertion into restriction sites in expression vectors.
  • Expression vectors may contain expression control sequences located near useful restriction sites, and are typically replaceable in the host organism either as extra chromosomal elements, such as plasmids, or as an integral part of the host chromosomal DNA.
  • Expression vectors may contain selectable markers, such as antibiotic resistance, to permit detection of those cells transformed with the nucleotide sequences of interest, see for example U.S. Patent No. 4,794,362, which is herein incorporated by reference.
  • polypeptides of the subject invention may be expressed in a variety of cell types.
  • the literature available to those skilled in the art describe numerous cellular expression systems for polypeptides of interest and expression vectors for use in those systems. See for example Methods of En vmolo v Vol. 185, Goeddel, Academic Press (1990).
  • Humanized immunoglobulins may be recovered and purified from recombinant host cells using conventional techniques for recovery and purification of recombinantly produced proteins.
  • Nucleotide sequences encoding humanized immunoglobulins may be expressed in a variety of cells.
  • Cells for expression may be either eukaryotic or prokaryotic.
  • Prokaryotic hosts of interest include Bacillus subtilis.
  • E. coli is particularly preferred because of the great deal available literature dealing with expression in E. coli.
  • Saccharomyces cerrevisae is a preferred non-bacterial microbial expression host.
  • Other non-mammalian eukaryotic expression host cells of interest include insect cells that may be used with bacculovirus expression systems.
  • mammalian cells grown in tissue culture may also be used to produce the polypeptides of the present invention.
  • the polypeptides of the present invention may be expressed in any mammalian cell system that may be used to express immunoglobulin polypeptides.
  • Eukaryotic cells are preferred cellular hosts for the expression of subject polypeptides as opposed to non-mammalian cells, because of the numerous advantages associated with using mammalian cells, such advantages include suitable signal-sequence processing, glycosylation, secretion machinery and the production of functional full-length immunoglobulins.
  • Mammalian cells for use as expression hosts include CHO cell lines, various COS cell lines, HeLa cells, SP2/0 and the like.
  • Host cells for the expression of the polypeptides of the present invention may be genetically manipulated so as to produce one, or more humanized immunoglobulins.
  • two humanized immunoglobulin chains are produced by the same cell line, it is of interest to produce a first immunoglobulin chain having a humanized variable region that comprising one member of the functional pair of variable regions specific for c-erbB-2 and a second immunoglobulin chain comprising the other member of the same functional pair of variable regions for c- erbB-2.
  • multi-polypeptide immunoglobulins comprising a functional c-erbB-2 antigen binding site may be produced either in vivo, or in the supematants of cell cultures.
  • the humanized immunoglobulins of the subject invention and pharmaceutical compositions thereof are particularly useful for parenteral admimstration, e.g., subcutaneously intramuscularly or intravenously.
  • the compositions for parenteral administration will typically comprise a solution of the humanized immunoglobulin dissolved in a physiologically acceptable carrier, preferably an aqueous carrier.
  • a physiologically acceptable carrier preferably an aqueous carrier.
  • aqueous carriers can be used, e.g., water, buffered water, physiological saline, 0.3% glycine, and the like.
  • Solutions for parenteral administration are preferably sterile and generally free of particulate matter.
  • Compositions for parenteral administration may be lyopbilized for convenient storage and rehydrated prior to use.
  • compositions for parenteral admimstration may be sterilized by conventional sterilization techniques.
  • the compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like.
  • concentration of humanized immunoglobulin in these formulations can vary widely, i.e., from less than about 0.5%, but usually at or at least about 1 % to as much as 15% or 20% by weight and maybe selected primarily based on fluid volumes, viscosities.etc, in accordance with the particular mode of administration selected.
  • PCR is performed with primers that have complementary 5' ends so that products from a first round of reactions can be mixed, melted, and reannealed to provide a template for the synthesis of longer extension products in a second round reaction.
  • primers were designed whose 3' ends anneal to human frameworks, and whose 5' ends either contain cloning sites, or encode murine 520C9 CDR's.
  • Figure 2 A general scheme for humanizing an antibody is shown in Figure 2.
  • the first round of PCR utilizes DNA template from the selected human parent TSYC 1147- 28 or TYSC 1150-38 and results in four individual fragments, each containing either human FRl, human FR2, human FR3 or human FR4, flanked by cloning sites and/or CDR's.
  • the FR4 fragment is large because it also contains the first C H1 domain of the human constant region.
  • the next round of PCR involves annealing CDRI arms on first round products "A" and "B”, and results in a longer fragment. "E”, which consists of, in the 5' to 3' direction: a cloning site, human FRl, mouse CDRI, humanR2, and a primer generated CDR2 arm.
  • the other round two reaction anneals mouse CDR3 arms on first round products “C” and “D”, and produces a fragment containing human FR3, FR4 and constant regions.
  • This second round product, "F” is flanked at its 5' end by mouse CDR2, and on the 3' end by another cloning site.
  • the final round of PCR anneals the complementary CDR2 ends in fragments "E” and "F” and creates the complete humanized "G” fragment.
  • the "G” fragment is placed into an expression vector. Heavy and light chain "G” fragments undergo separate restriction digests for ligation into their own pUC vectors and are transformed into E. co ⁇ host DG101. Transfo ⁇ nants are screened for the presence of insert, and DNA from several potential candidates is sequenced. Clones with the correct sequence undergo another round of PCR with primers designed for incorporation of a phoA promotor/leader sequence in front of the antibody coding sequence (See Figure 5). The PCR product containing phoA- antibody sequence is digested and cloned into a pBR322 based vector and transformed into E. coli host MM294. Transformants are screened, and potential candidates are identified and sequenced.
  • Clones bearing the correct sequence of each chain are induced for expression on the putative humanized immunoglobulin and checked for expression by Western analysis.
  • the final construct to produce a humanized Fab fragment is made by combining the light chain coding sequence with the heavy chain coding sequence. This last process involves a PCR step and a restriction/ligation step.
  • Example 2 Selection of Human Parent Framework Human frameworks, or "parents", were chosen by a "TFASTA" computer alignment which generated the ten best fits with human immunoglobulin sequences in the searched database. The selection was based on overall similarity of amino acid residues between the human and the original mouse 520C9 sequence.
  • the human sequence database was produced by cloning approximately 100 heavy and light chains of immunoglobulin genes from EBV transformed human cells, and subsequently sequencing the cloned genes.
  • both L and H chain variable regions were sequenced from cDNA copied from human peripheral blood cells using primers that were designed for PCR amplification of the V rebvions into the adjacent constant domain these sequences and compared with the mouse variable regions that were to be hyperchimerized.
  • the chosen human framework must not interfere with the presentation of the mouse CDRs to the target antigen. Chothia, al. Nature 342:877-883 (1989) hypothesized tiiat a small repertoire of "canonical" conformations of hypervariable regions exist and the structure of a given CDR is strongly influenced by a few amino acid residues at key positions. Such canonical residues are found in CDR and FR regions.
  • the human frameworks selected for each chain have canonical residues similar to that of the mouse antibody.
  • the heavy chain canonical residues of special importance are amino acids #26, 27, 29, 34, 55, and 94.
  • these residues are, in order, Gly, Tyr, Phe, Met, Gly, and Arg.
  • TSYC1147-28 In the best fitting human heavy chain parent, TSYC1147-28, all canonical residues match except #34, which is an isoleucine instead of a methionine. No other human parent within the top five selected for overall sequence similarity matched better than TSYC1147-28. Thus, TSYC1147-28 was chosen as the human heavy chain framework parent for grafting with mouse heavy chain CDR's.
  • light chain canonical residues of special importance are amino acids #2, 25, 29, 33, 48, 64, 71, 90, and #95.
  • the residues are, in order, lie, Ala, He, Leu, He, Gly, Tyr, Gin, and Pro.
  • TSYC1150-38 eight of nine residues match. Only residue number 71, where phenylalanine replaces tyrosine, does not match.
  • the second best fitting light chain human patent, TSYC1150-08 matches at only six of the nine canonical residues.
  • Amino acid #29 is leucine instead of isoleucine; #71 is phenylalanine instead to tyrosine; and #95 is phenylalanine instead of proline.
  • 3' end anneals to the end of the HC or LC constant region.
  • 5' end contains cloning sites S ⁇ gI(HC) or XbaKLO
  • Primer W anneals to a portion of the plasmid pSYC1087 ahead of a region encoding for the phoA promoter and leader sequence.
  • the primer can be divided into two parts. One part anneals to pBR sequence, the plasmid backbone, and the other anneals to restriction sites which precede phoA sequences in pSYC 1087.
  • Primers X and Y together create an in-frame junction between the end of the phoA leader and the sequence encoding human amino acid #1 in the antibody. These primer sets are specific for each antibody. They are often modified to encode for amino acids that are missing from the human parent sequences. For example, immediately following, i.e. 3' to, the phoA sequences, the primers for the humanized 520C9 heavy chain junction region encode for the first six human consensus amino acids found in Kabat, et al., Sequences of proteins of immunological interest 4th ed, U.S. ⁇ ep. HHS (1987). It is necessary to supply these amino acids because the human library was created by primers which start at amino acid #7 of the heavy chain.
  • Primer Z is a back primer whose 3' end anneals to the final nucleotides of the human heavy or light chain constant region. Its 5' end contains cloning sites: either Spel for heavy chain, or Xbal for light chain.
  • the products were restriction digested with Hindi ⁇ and Spel and were cloned into a pBR based vector with an ampicillin selection marker. Downstream from the Seel site, the vector carried the KT3 peptide sequence, NH 3 -TPPPEPET- COOH, in frame with the heavy chain peptide and the B. thuringiensis crystal protein transcriptional terminator. Transformants in MM294 were screened for inserts, and several clones bearing insert were sequenced. LW156 contained correct phoA promoter and leader sequences and correctly encodes for the humanized "520C9-28" heavy chain.
  • Overlap PCR was performed (see Figure 6) to create the correctly fused light chain sequence by using templates which were correct for different regions of the variable and the constant region, and at the same time, to incorporate the phoA junction.
  • pSYC1087 was used as the phoA template.
  • "08-11” was used as a template for FRl, CDRI, and FR2 because it possessed the correct amino acid, threonine, at position #43.
  • "38-18” was used as the template for FR2, CDR2, FR3, CDR3, and FR4.
  • Another clone, "38-17” was used as template for the FR4 and the constant region.
  • Existing primers were used to create products which would anneal to each other in second and third round extensions.
  • Primer W, LWOl, and light chain junction primer Y, LW17 were used to amplify pSYC1087.
  • light chain junction primer X, LW16, and CLC27 amplified "08- 11".
  • CLC27 was described earlier and anneals to FR2 and CDR2 regions.
  • CLC26 and CLC20 amplified "38-18".
  • CLC26 anneals to CDRI and FR2
  • CLC29 anneals to FR4 and part of the constant region.
  • CLC30, a perfect complement to CLC29, and Z primer LW20 amplified "38-17" to provide the correct constant region.
  • PCR products were digested with Hindm and Xhol and were ligated into a pBR322 based vector, similar to the one for the heavy chain, but minus the KT3 tag sequence.
  • Transformants in MM294 were screened by colony PCR and by miniprep restriction analysis, and potential candidates were sequenced.
  • Clone LW206 contains the correct phoA promoter and leader sequence, and correct variable and constant region amino acid sequence for humanized "520C9-38" light chain.
  • Example 6 Construction of Humani ed Fab Plasmid from humanized heavy chain in the phoA expression vector, pLW144, was cut with Nsil and Xhol and purified. Separately, a PCR reaction was performed, using clone LW206 as template, to add a Nsil site ahead of the phoA leader sequence. Restriction digest of the PCR product with Nsil and Xhol resulted in a fragment of approximately 800bp ready for cloning behind the heavy chain V gene. ligation and transformation (TLW170) into MM294 E. coli host resulted in a large number of insert-bearing clones. Clones TLW170-1 and TLW170-3 were sequenced and confirmed to contain correct phoA, heavy chain, the KT3 tag, and Ught chain sequences.
  • Lo P medium Low Phosphate Medium (Lo P): IX MOPS, 0.4% glucose, 0.15% vitamin free casamino acids (L59), 2 ⁇ g/ml Bl (thiamine), 0.1 mM KH 2 PO 4 , antibiotic (ampicillin, 50-100 ⁇ g/
  • the cells were resuspended in the original volume in Lo P medium and then diluted 1:50 into fresh Lo P. The cells were incubated at 30°C for > 6 hrs to overnight on a shaker. The cells should achieve a final A ⁇ of approximately 1. Cells were removed by centrifugation at 10,000 rpm for 30 min. and washed once in 50 ml of PBS/NaN 3 . They were stored at -2°C.
  • the pellets were resuspended into PBS/NaN3, one pellet into 25 ml and the second pellet 40 ml.
  • the first was refrozen at -20°C and thawed at 37°C a total of four times including the initial thaw.
  • the second pellet was sonicated four times of two minute duration. Both the freeze/thaw and sonication mixtures were centrifuged at 10,000 rpm for 30 minutes.
  • Fab containing the KT3 tagged H chain
  • a 2ml affinity column of Protein G Sepharose KT3 was washed with 3 column volumes of 0.1 M Na 2 CO 3 , pH 10.5, and then a large volume of PBS/NaN 3 .
  • a sample of each supernatant (20 ml of E and 35 ml of G) were separately passed over the same column. After the sample loading was complete the column was washed with 10 ml of PBS/NaN 3 which was added to the flow-through volume. The material bound to the column was eluted using 10 ml of 0.1 M Na 2 CO 3 , pH 10.5.
  • E. coh were grown overnight in 25 mis of HiP medium.
  • the cells were harvested by centrifugation (10 minutes, 6,000 rpm in two 15 ml tubes), washed once in low phosphate medium.
  • the cells contained in 1 tube (equivalent to 12.5 mis of the HiP medium) were used to inoculate the low phosphate culture, which was grown at 30 °C for 7 hours.
  • the cells were harvested by centrifugation and combined into one 50 ml centrifuge tube. The cells were either frozen at -20°C overnight or treated with lysozyme.
  • the freshly collected or thawed cells were resuspended in 50 mis of 0.1 M Tris Cl, pH 7.8 containing 20 mM EDTA and 0.5 mg lysozyme/ml at room temperature for 1 hour.
  • the lysed cells were centrifuged at 20,000 rpm for 25 minutes and the supernatant stored frozen until they were assayed. Breakage was evident by the gel-like nature of the suspension.
  • the pellets were washed with 50 mM Tris Cl, pH8, containing 20 mM EDTA. Sonication of one batch was used at this stage to break up the pellet and provide better extraction.
  • the pellets were resuspended in 50 mM Tris Cl, pH 7.8, containing 1 %
  • Triton X-100 Triton X-100, 0.5 M NaCl, and 20 mM EDTA.
  • the pellets were collected by centrifugation and washed twice with 50 mM Tris Cl, pH 7.8, containing 20 mM EDTA.
  • To the drained pellets were added 0.1 M Tris Cl, pH8, containing 6 M guanidine HCl, 0.3 M dithiothreitol, and 2 mM EDTA.
  • the suspension was vortexed occasionally at room temperature for 1 hour and the pellet collected by centrifugation at 40,000 rpm for 15-20 minutes. The pellet was reextracted with a smaller volume of denaturant in one experiment.
  • the protein concentration was determined by Bradford analysis. SDS- PAGE was run on the samples with and without reduction to determine the purity and level of expression of Fab. Renaturation was achieved by diluting the guanidine/DTE solution of Fab into 0.1 M Tris Cl, pH 8.2, containing 2 mM EDTA, 0.2 M L-arginine, and 2 mM oxidized glutathione. The final dilution of the Fab was 1:100, which produces a final concentration of 3 mM DTE in the redox system. The renaturation buffer was brought to 11°C before dilution was made.
  • a pellet (F) (see section VI for details), produced from 170-1 humanized 520C9 Fab in E. coli was extracted with guanidine and DTE and renatured as described above.
  • the total protein concentration in the renaturation buffer was 35 and 18 ⁇ g/ml. Because the pellet during washing looked as if two layers were being separated during centrifugation, an attempt was made to separate them, resulting in two fractions. SDS-PAGE analysis did not indicate any differences between the two fractions.
  • dilutions from the guanidine/DTE solution of Fab were made at various times and renaturation started at 11 °C (10°C was intended). Dilutions were performed by adding 100 ⁇ l of Fab/guanidine/DTE solution to 10 mis of renaturation buffer (which had been stored in the refrigerator). After 86 hours of renaturation, the samples were all assayed at the same time. The staggered times of renaturation were 86, 74.5, 38.5, 16.5 and 0 hours of renaturation. The buffer control produced no signal. Activity was detected in all samples. The best recovery of activity was seen with the longest time of renaturation.
  • Renamration of TLW170-1 The cells from 500 mis of medium induced for 7 hours at 30°C were treated with lysozyme and the supernatant collected by centrifugation. The pellet was extracted with 4 mis of guanidine/DTE. Because of the presence of DNA, the pellets resembled rubber before extraction. Bradford analysis showed that the amber colored 40,000 rpm supernatant contained 3.2 mg of protein/ml. The protein was diluted into 340 ml of renaturation buffer and incubated at 11 °C. C- erbB-2 binding activity was observed by ELISA.
  • SDS-PAGE showed that little or no 50,000 MW Fab in the pellet was extracted by SDS sample buffer that did not contain reducing agent. However, a strong band having a molecular weight of about 25,000 was obtained when the pellet was extracted with SDS in reducing agent.
  • 169-1 and 170-1 are two different versions of humanized 520C9 Fab; 46-1 is the murine 520C9 Fab expressed in E. coli.
  • Extraction of the cells obtained from 500 mis medium with 1 ml of guanidine/DTE gave total protein concentrations (measured by Bradford assay) of 2.78, 3.81, and 5.22 mg/ml, respectively.
  • Extraction of the remaining pellet with an additional 0.75 ml of guanidine/DTE gave concentrations of 2.72, 1.92, and 3.32 mg/ml, respectively.
  • the total samples (1.75 ml) were diluted separately into 175 mis of renaturation buffer and incubated at 11°C. Erb-binding activity was observed with all three samples.
  • the initially refolded Fab pellet, TLW 170-1 (which was concentrated to about 5 ml), developed some turbidity after concentration.
  • a one ml sample was dialyzed against 20 mM Tris Cl, pH 8.3, overnight at 4°C. The sample was centrifuged at 100,000 x g for 30 minutes and the supernatant separated by chromatography using a Poros strong anion exchange column (0.5 ml fractions collected).
  • the total protein concentration was 240 ⁇ g/ml and when analyzed by ' nonreducing SDS-PAGE gel the Fab was just barely visible with Coomassie staining.
  • the yield of Fab was determined to be about 50 ⁇ g/ml.
  • the entire sample was injected onto the anion exchange column and developed with a NaCl gradient in 20 mM Tris Cl buffer, pH 8.3. Peak tubes were analyzed by SDS-PAGE with silver stain.
  • a murine Fab generated by papain digestion was used to identify the relative chromatographic elution time.
  • gel analysis failed to show any FAb band in any of the peaks.
  • An additional sample showed good activity on the SKBr3 TNN plate coat assay.
  • both murine and humanized 520C9 Fabs are active and can be renatured from guanidine in a redox system.
  • Large samples of E. coli; expressing murine 520C9 (46-1) have been grown at lower temperatures (23° and 27°C) to increase the amount of soluble Fab.
  • a 10 liter sample was induced and grown at 27°C before the cells were collected.
  • the periplasmic space was opened to release the soluble, secreted Fab localized to the periplasmic space.
  • This material contained active, soluble Fab, as measured by SDS-PAGE and ELISA.
  • the Fab obtained from the periplasmic space was concentrated and analyzed before it was passed over a column of immobilized c-erbB-2 extracellular domain.
  • the column was washed and then eluted with a high concentration of liCl (3.5M). From one-tenth of the "periplasmic Fab", about 400 ⁇ g of Fab was recovered. Fab that was not retained by the c-erbB-2 column was not active when assayed by a SDS-PAGE western blot.
  • ECD-HRP is horse radish peroxidase conjugated to an antibody specific for c-erbB-2 (Nu2) ECD, an extracellular domain (ECD) of c-erbB-2 expressed in a secreted form from baculovirus infected SF9 insect cells (the Nu2 construct has the TPPPEPET polypeptide sequence replacing the transmembrane domain of c-erbB-3.
  • Nu2 construct has the TPPPEPET polypeptide sequence replacing the transmembrane domain of c-erbB-3.
  • a number of nonspecific bands developed in both uninduced and induced lanes.
  • One additional band with near the expected. mobility for Fab may have developed only in the induced lanes, but was so close to another nonspecific band that it could be seen only as a widening of the lane.
  • Fab fragment generated from non-specific human IgG was bound directly to PVC microtiter wells and probed with ZymedTM goat anti-human antibody. Some signal was seen, but the signal was weak at the probe dilution used on the humanized Fab samples.
  • an ELISA was performed using wells coated with SK-Br-3 TNN cell extract, this extract is a source of cell expressed c-erbB-2 that does not bear the KT3 tag peptide. The presence of E. coli produced Fab bound to the cell extract was detected with KT3- HRP.
  • a reassay of humanized Fab samples with this protocol showed activity in various fractions, with the highest activity in the freeze/thaw supernatant. Active Fab could not be quantitated in absolute terms for lack of a purified standard.
  • Refolding can increase activity more than 10- fold.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne des immunoglobines spécifiques aux polypeptides, codées par l'oncogène erb. Les séquences d'acides aminés des immunoglobines sont modifiées de manière à ce qu'il y ait des séquences d'acides aminés d'immunoglobine humaine dans pratiquement toutes les régions de l'immunoglobine autres que celles qui déterminent la complémentarité. L'invention concerne également des séquences d'acides nucléiques qui codent des immunoglobines humanisées, des vecteurs de réplication contenant de telles séquences d'acides nucléiques, ainsi que des cellules-hôtes contenant les vecteurs, pour l'expression d'immunoglobines humanisées. L'invention concerne en outre des compositions thérapeutiques ou diagnostiques pour l'administration aux patients.
PCT/US1993/003080 1992-04-08 1993-04-01 ANTICORPS HUMANISES SPECIFIES PAR C-erbB-2 WO1993021319A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86601992A 1992-04-08 1992-04-08
US866,019 1992-04-08

Publications (1)

Publication Number Publication Date
WO1993021319A1 true WO1993021319A1 (fr) 1993-10-28

Family

ID=25346755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1993/003080 WO1993021319A1 (fr) 1992-04-08 1993-04-01 ANTICORPS HUMANISES SPECIFIES PAR C-erbB-2

Country Status (2)

Country Link
AU (1) AU4025193A (fr)
WO (1) WO1993021319A1 (fr)

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035885A1 (fr) * 1996-03-27 1997-10-02 Genentech, Inc. ANTICORPS DE LA PROTEINE ErbB3
US5840301A (en) * 1994-02-10 1998-11-24 Imclone Systems Incorporated Methods of use of chimerized, humanized, and single chain antibodies specific to VEGF receptors
US5861499A (en) * 1994-02-10 1999-01-19 Imclone Systems Incorporated Nucleic acid molecules encoding the variable or hypervariable region of a monoclonal antibody that binds to an extracellular domain
US5955311A (en) * 1994-02-10 1999-09-21 Imclone Systems Incorporated Monoclonal antibodies specific to VEGF receptors and uses thereof
US5968511A (en) * 1996-03-27 1999-10-19 Genentech, Inc. ErbB3 antibodies
WO2000069459A1 (fr) 1999-05-14 2000-11-23 Imclone Systems Incorporated Traitement de tumeurs humaines refractaires avec des antagonistes de recepteurs du facteur de croissance epidermique
WO2001053354A2 (fr) * 2000-01-20 2001-07-26 Chiron Corporation Methodes de traitement de tumeurs
US6627196B1 (en) 1999-08-27 2003-09-30 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US6632979B2 (en) 2000-03-16 2003-10-14 Genentech, Inc. Rodent HER2 tumor model
US6811779B2 (en) 1994-02-10 2004-11-02 Imclone Systems Incorporated Methods for reducing tumor growth with VEGF receptor antibody combined with radiation and chemotherapy
EP1514934A2 (fr) * 1992-02-06 2005-03-16 Chiron Corporation Protéine de liaison biosynthétique pour marqueur de cancer
US6890532B2 (en) 2000-05-16 2005-05-10 Thomas Jefferson University Rabies virus-specific neutralizing human monoclonal antibodies and nucleic acids and related methods
US6949245B1 (en) 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
WO2006021893A2 (fr) 2004-08-26 2006-03-02 The University Of Western Ontario Cibles bacteriennes d'acquisition de fer
WO2006033700A2 (fr) 2004-07-22 2006-03-30 Genentech, Inc. Composition d'anticorps anti-her2
WO2006034507A2 (fr) 2004-09-24 2006-03-30 Beth Israel - Deaconess Medical Center Methodes de diagnostic et de traitement lors de complications de la grossesse
US7041292B1 (en) 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
US7060268B2 (en) 1995-07-27 2006-06-13 Genentech, Inc. Protein formulation
US7071319B2 (en) 2000-05-16 2006-07-04 Thomas Jefferson University Recombinant antibodies, and compositions and methods for making and using the same
WO2006083355A2 (fr) 2004-11-19 2006-08-10 Cornell Research Foundation, Inc. Utilisation des cellules du recepteur du facteur de croissance endothelial vasculaire dans le traitement et la surveillance du cancer et dans le criblage d'agents chimiotherapeutiques
WO2007027751A2 (fr) 2005-08-30 2007-03-08 University Of Miami Immunomodulation des agonistes, des antagonistes et des immunotoxines du recepteur 25 du facteur de necrose tumorale (tnfr25)
WO2007053161A2 (fr) 2004-12-15 2007-05-10 Beth Israel Deaconess Medical Center Acides nucléiques et polypeptides utiles pour diagnostiquer et traiter des complications de la grossesse
US7371376B1 (en) 1996-10-18 2008-05-13 Genentech, Inc. Anti-ErbB2 antibodies
WO2008118324A2 (fr) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition et procédé de traitement du cancer avec un anticorps anti-uroplakine ib
US7435797B2 (en) 2002-04-10 2008-10-14 Genentech, Inc. Anti-HER2 antibody variants
US7449184B2 (en) 2005-01-21 2008-11-11 Genentech, Inc. Fixed dosing of HER antibodies
US7575748B1 (en) 2000-03-16 2009-08-18 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
EP2100618A2 (fr) 2005-06-17 2009-09-16 Imclone LLC Antagonistes de PDGFR-alpha pour le traitement du cancer osseux métastatique
EP2112167A2 (fr) 1999-06-25 2009-10-28 Genentech, Inc. Anticorps anti-ERBB2 humanisés et traitement avec les anticorps anti-ERBB2
EP2116262A2 (fr) 2000-05-19 2009-11-11 Genentech, Inc. Analyse de détection génique permettant d'améliorer la probabilité d'une réponse efficace à une thérapie du cancer basée sur un antagoniste d'ErbB
WO2010009124A2 (fr) 2008-07-15 2010-01-21 Genentech, Inc. Conjugués de dérivés d’anthracycline, procédé de préparation associé et utilisation comme composés antitumoraux
WO2010027364A1 (fr) 2008-09-07 2010-03-11 Glyconex Inc. Anticorps anti-glycosphingolipide de type i étendu, dérivés de celui-ci et utilisation
US7682609B2 (en) 1995-07-27 2010-03-23 Genentech, Inc. Protein formulation
EP2172220A1 (fr) 2004-02-04 2010-04-07 Beth Israel Deaconess Medical Center Procédés de diagnostic et de traitement de pré-éclampsie ou éclampsie
EP2194380A2 (fr) 2005-07-06 2010-06-09 F. Hoffmann-La Roche AG Détection d'un antigène- cible, indépendamment de la présence ou absence d'anticorps thérapeutiques correspondants
US7740841B1 (en) 2000-01-28 2010-06-22 Sunnybrook Health Science Center Therapeutic method for reducing angiogenesis
US7745584B2 (en) 2006-05-22 2010-06-29 California Institute Of Technology Antibodies to sulfated carbohydrates
WO2010108127A1 (fr) 2009-03-20 2010-09-23 Genentech, Inc. Anticorps anti-her di-spécifiques
WO2010136569A1 (fr) 2009-05-29 2010-12-02 F. Hoffmann-La Roche Ag Modulateurs de la signalisation her2 chez des patients exprimant her2 souffrant d'un cancer de l'estomac
EP2260858A2 (fr) 2003-11-06 2010-12-15 Seattle Genetics, Inc. Composés de monométhylvaline capable de conjugaison aux lignads.
EP2263691A1 (fr) 2002-07-15 2010-12-22 Genentech, Inc. Traitement de cancer avec l'anti-erbb2 anticorps recombinant humanisé monoclonal (rhuMAb 2C4)
WO2011012637A2 (fr) 2009-07-31 2011-02-03 F. Hoffmann-La Roche Ag Formulation sous-cutanée d'anticorps anti-her2
EP2283866A2 (fr) 1999-06-25 2011-02-16 Genentech, Inc. Procédés de traitement utilisant des conjugués maytansinoïdes-anticorps anti-ERBB
EP2286844A2 (fr) 2004-06-01 2011-02-23 Genentech, Inc. Conjugués anticorps-médicament et procédés
EP2305301A2 (fr) 2002-07-19 2011-04-06 Beth Israel Deaconess Medical Center Procédés de diagnostic et de traitement de pre-eclampsie ou d'eclampsie
WO2011039724A1 (fr) 2009-10-02 2011-04-07 Sanofi-Aventis Anticorps qui se lient spécifiquement au récepteur epha2
WO2011056983A1 (fr) 2009-11-05 2011-05-12 Genentech, Inc. Conjugués d'anticorps modifiés par cystéine, radiomarqués par le zirconium
US7951370B2 (en) 2008-03-12 2011-05-31 Imclone Llc Anti-TYRP1 antibodies
US7955806B2 (en) 2004-12-23 2011-06-07 Hoffmann—La Roche Inc. Detection of a therapeutic antibody in an experimental animal
EP2332990A1 (fr) 2004-03-19 2011-06-15 Imclone LLC Anticorps de récepteur de facteur de croissance anti-épidermique humain
US7981418B2 (en) 2007-03-02 2011-07-19 Genentech, Inc. Predicting response to a HER inhibitor
WO2011100403A1 (fr) 2010-02-10 2011-08-18 Immunogen, Inc Anticorps anti-cd20 et utilisations de ceux-ci
WO2011103242A1 (fr) 2010-02-18 2011-08-25 Genentech, Inc. Antagonistes de la neuréguline et leur utilisation dans le cadre du traitement du cancer
WO2011103389A1 (fr) 2010-02-19 2011-08-25 Cornell University Procédé pour traiter des maladies démyélinisantes auto-immunes et d'autres maladies auto-immunes ou inflammatoires
EP2365001A2 (fr) 2003-05-01 2011-09-14 Imclone LLC Anticorps humains dirigés contre le récepteur de facteur 1 de croissance de type insuline humaine
EP2371388A2 (fr) 2004-10-20 2011-10-05 Genentech, Inc. Formulations d'anticorps
EP2377555A2 (fr) 2004-11-18 2011-10-19 Imclone LLC Anticorps contre le récepteur 1 du facteur de croissance endothéliale vasculaire
WO2011145085A2 (fr) 2010-05-21 2011-11-24 Procognia (Israel) Ltd Nouveaux anticorps et procédés d'utilisation pour le traitement et le diagnostic du cancer
WO2011146568A1 (fr) 2010-05-19 2011-11-24 Genentech, Inc. Prédiction de réponses à un inhibiteur de her
US8071099B2 (en) 2008-05-30 2011-12-06 ImClone, LLC Anti-FLT3 antibodies
US8075892B2 (en) 1997-12-12 2011-12-13 Genentech, Inc. Treatment with anti-ErbB2 antibodies
WO2011156328A1 (fr) 2010-06-08 2011-12-15 Genentech, Inc. Anticorps et conjugués modifiés par la cystéine
EP2399605A1 (fr) 2005-02-23 2011-12-28 Genentech, Inc. Extension du laps de temps avant progression de la maladie ou de la survie chez les patients atteints de cancer
WO2012006552A1 (fr) 2010-07-09 2012-01-12 Exelixis, Inc. Associations d'inhibiteurs de kinases destinées au traitement du cancer
WO2012069466A1 (fr) 2010-11-24 2012-05-31 Novartis Ag Molécules multi-spécifiques
WO2012074757A1 (fr) 2010-11-17 2012-06-07 Genentech, Inc. Conjugués d'anticorps alaninyl-maytansinol
WO2012084829A1 (fr) 2010-12-21 2012-06-28 F. Hoffmann-La Roche Ag Préparation d'anticorps enrichie en isoformes et son procédé d'obtention
WO2012085111A1 (fr) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Complexe polypeptide-polynucléotide et son utilisation dans l'administration d'une fraction effectrice ciblée
WO2012125775A1 (fr) 2011-03-16 2012-09-20 Sanofi Utilisations d'une protéine de type anticorps à région v double
USRE43899E1 (en) 1999-10-01 2013-01-01 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
WO2013025853A1 (fr) 2011-08-17 2013-02-21 Genentech, Inc. Anticorps anti-neuréguline et utilisations associées
US8388965B2 (en) 2007-10-15 2013-03-05 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2592156A2 (fr) 2007-06-08 2013-05-15 Genentech, Inc. Marqueurs d'expression de gène de résistance tumorale à un traitement par inhibiteur HER2
WO2013081645A2 (fr) 2011-11-30 2013-06-06 Genentech, Inc. Mutations dans erbb3 dans des cancers
US8460667B2 (en) 2006-07-18 2013-06-11 Sanofi EPHA2 receptor antagonist antibodies
WO2013083810A1 (fr) 2011-12-09 2013-06-13 F. Hoffmann-La Roche Ag Identification de non-répondeurs aux inhibiteurs de her2
WO2013148315A1 (fr) 2012-03-27 2013-10-03 Genentech, Inc. Diagnostic et traitements concernant des inhibiteurs de her3
US8647622B2 (en) 2007-08-29 2014-02-11 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US20140127241A1 (en) * 2012-10-30 2014-05-08 Esperance Pharmaceuticals, Inc. Antibody/drug conjugates and methods of use
WO2014083178A1 (fr) 2012-11-30 2014-06-05 F. Hoffmann-La Roche Ag Identification de patients ayant besoin d'une cothérapie par un inhibiteur de pd-l1
WO2014182970A1 (fr) 2013-05-08 2014-11-13 Zymeworks Inc. Constructions de liaison aux antigènes her2 et her3 bispécifiques
US8912149B1 (en) 2007-11-28 2014-12-16 California Institute Of Technology Glycosaminoglycan mimetics
EP2857516A1 (fr) 2000-04-11 2015-04-08 Genentech, Inc. Anticorps multivalents et leurs utilisations
WO2015073721A1 (fr) 2013-11-13 2015-05-21 Zymeworks Inc. Produits de recombinaison liant un antigène monovalent et ciblant l'egfr et/ou l'her2 et leurs utilisations
WO2015077891A1 (fr) 2013-11-27 2015-06-04 Zymeworks Inc. Produits de recombinaison de liaison à l'antigène bispécifiques ciblant her2
US9150650B2 (en) 2007-06-13 2015-10-06 Pharmabcine Inc. Human monoclonal antibody neutralizing vascular endothelial growth factor receptor and use thereof
US9163086B2 (en) 2009-08-18 2015-10-20 President And Fellows Of Harvard College Methods and compositions for the treatment of proliferative and pathogenic diseases
WO2015198146A2 (fr) 2014-06-27 2015-12-30 Sanofi Anticorps bispécifiques anti-il4-il13
WO2016040856A2 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Anticorps et conjugués modifiés génétiquement avec de la cystéine
US9327023B2 (en) 2011-10-25 2016-05-03 The Regents Of The University Of Michigan HER2 targeting agent treatment in non-HER2-amplified cancers having HER2 expressing cancer stem cells
WO2016081796A1 (fr) 2014-11-21 2016-05-26 Yale University Compositions et procédés pour moduler salm5 et hvem
WO2016082044A1 (fr) 2014-11-27 2016-06-02 Zymeworks Inc. Procédés d'utilisation de constructions liant des antigènes bispécifiques ciblant her2
WO2016140910A2 (fr) 2015-03-04 2016-09-09 University Of Rochester Compositions et méthodes d'utilisation de l'hormone anti-müllérienne pour le traitement de l'infertilité
EP3088004A1 (fr) 2004-09-23 2016-11-02 Genentech, Inc. Anticorps et conjugués modifiés au niveau des cystéines
WO2016196344A1 (fr) 2015-05-30 2016-12-08 Molecular Templates, Inc. Supports de sous-unité a de toxine de shiga, déimmunisés, et molécules de ciblage de cellule les comprenant
US9551033B2 (en) 2007-06-08 2017-01-24 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
WO2017088734A1 (fr) 2015-11-23 2017-06-01 四川科伦博泰生物医药股份有限公司 Conjugué anticorps-médicament anti-erbb2 et composition à base de celui-ci, procédé de préparation associé et leur application
US9766251B2 (en) 2010-08-17 2017-09-19 Hoffmann-La Roche Inc. Anti-human IgG1 antibody
US9770461B2 (en) 2013-08-02 2017-09-26 California Institute Of Technology Tailored glycopolymers as anticoagulant heparin mimetics
WO2017194554A1 (fr) 2016-05-10 2017-11-16 Inserm (Institut National De La Sante Et De La Recherche Medicale) Polythérapies pour le traitement du cancer
US9937205B2 (en) 2012-09-04 2018-04-10 The Trustees Of The University Of Pennsylvania Inhibition of diacylglycerol kinase to augment adoptive T cell transfer
WO2018129029A1 (fr) 2017-01-04 2018-07-12 Immunogen, Inc. Anticorps anti-met, immunoconjugués et utilisations de ceux-ci
WO2018172465A1 (fr) 2017-03-22 2018-09-27 Sanofi Traitement du lupus à l'aide d'anticorps anti-cxcr5 humanisés
EP3401335A1 (fr) 2008-01-30 2018-11-14 Genentech, Inc. Composition comprenant un anticorps se liant au domaine ii de her2 et variantes acides de celle-ci
US10227370B2 (en) 2013-08-02 2019-03-12 California Institute Of Technology Heparan sulfate/heparin mimetics with anti-chemokine and anti-inflammatory activity
US10280227B2 (en) 2009-09-11 2019-05-07 Genentech, Inc. Highly concentrated pharmaceutical formulations
US10316037B1 (en) 2016-11-04 2019-06-11 Yale University Compounds and methods for treating cancer
EP3498735A1 (fr) 2006-10-19 2019-06-19 Sanofi Anticorps anti-cd38 pour le traitement de la leucemie
WO2019204272A1 (fr) 2018-04-17 2019-10-24 Molecular Templates, Inc. Molécules ciblant her2 comprenant des matrices de la sous-unité a, rendue non immunogène, de la shigatoxine
WO2019207021A1 (fr) 2018-04-27 2019-10-31 F. Hoffmann-La Roche Ag Procédés de purification de polypeptides à l'aide de polysorbates
WO2019207159A1 (fr) 2018-04-27 2019-10-31 Fondazione Ebri Rita Levi-Montalcini Anticorps dirigé contre un peptide neurotoxique dérivé de tau et ses utilisations
WO2020014306A1 (fr) 2018-07-10 2020-01-16 Immunogen, Inc. Anticorps anti-met, immunoconjugués et utilisations de ceux-ci
US10584181B2 (en) 2009-12-04 2020-03-10 Genentech, Inc. Methods of making and using multispecific antibody panels and antibody analog panels
US10689457B2 (en) 2008-06-16 2020-06-23 Genentech, Inc. Treatment of metastatic breast cancer
EP3699284A1 (fr) 2012-07-05 2020-08-26 The Trustees of the University of Pennsylvania Anticorps u1 snrnp de régulation de l'expression génique et de modulation de l'oncogénicité
US10844135B2 (en) 2003-10-10 2020-11-24 Immunogen, Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates and methods of making said
WO2020242989A1 (fr) 2019-05-24 2020-12-03 Sanofi Méthodes de traitement de la sclérodermie généralisée
US11155638B2 (en) 2018-05-08 2021-10-26 Rhode Island Hospital Anti-CHI3L1 antibodies for the detection and/or treatment of nonalcoholic fattly liver disease/nonalcoholic steatonhepatitis and subsequent complications

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003523A1 (fr) * 1984-02-08 1985-08-15 Cetus Corporation Anticorps antihumains monoclonaux du cancer du sein
WO1989010412A1 (fr) * 1988-04-18 1989-11-02 Applied Biotechnology, Inc. Detection d'expression de genes neu et produits

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985003523A1 (fr) * 1984-02-08 1985-08-15 Cetus Corporation Anticorps antihumains monoclonaux du cancer du sein
WO1989010412A1 (fr) * 1988-04-18 1989-11-02 Applied Biotechnology, Inc. Detection d'expression de genes neu et produits

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIO/TECHNOLOGY vol. 9, no. 12, December 1991, NEW YORK, US pages 1373 - 1377 L. GARRARD ET AL. 'Fab assembly and enrichment in a monovalent phage display system.' *
BIOCHEMISTRY vol. 31, no. 24, 23 June 1992, WASHINGTON DC, US pages 5434 - 5441 R. KELLEY ET AL. 'Antigen binding thermodynamics and antiproliferative effects of chimeric and humanized anti-p185HER2 antibody Fab fragments.' *
NATURE vol. 332, 24 March 1988, LONDON, GB pages 323 - 327 L. RIECHMANN ET AL. 'Reshaping human antibodies for therapy.' *

Cited By (221)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514934A3 (fr) * 1992-02-06 2006-04-19 Chiron Corporation Protéine de liaison biosynthétique pour marqueur de cancer
EP1514934A2 (fr) * 1992-02-06 2005-03-16 Chiron Corporation Protéine de liaison biosynthétique pour marqueur de cancer
EP1997894A3 (fr) * 1992-02-06 2009-11-04 Novartis Vaccines and Diagnostics, Inc. Protéine de liaison biosynthétique pour un marqueur du cancer
US7138497B2 (en) 1992-02-06 2006-11-21 Chiron Corporation Biosynthetic binding proteins for immuno-targeting
US5874542A (en) * 1994-02-10 1999-02-23 Imclone Systems Incorporated Single chain antibodies specific to VEGF receptors
US5955311A (en) * 1994-02-10 1999-09-21 Imclone Systems Incorporated Monoclonal antibodies specific to VEGF receptors and uses thereof
US6365157B2 (en) 1994-02-10 2002-04-02 Imclone Systems, Inc. Monoclonal antibodies specific to VEGF receptors and uses thereof
US6448077B1 (en) 1994-02-10 2002-09-10 Imclone Systems, Inc. Chimeric and humanized monoclonal antibodies specific to VEGF receptors
US5861499A (en) * 1994-02-10 1999-01-19 Imclone Systems Incorporated Nucleic acid molecules encoding the variable or hypervariable region of a monoclonal antibody that binds to an extracellular domain
US6811779B2 (en) 1994-02-10 2004-11-02 Imclone Systems Incorporated Methods for reducing tumor growth with VEGF receptor antibody combined with radiation and chemotherapy
US5840301A (en) * 1994-02-10 1998-11-24 Imclone Systems Incorporated Methods of use of chimerized, humanized, and single chain antibodies specific to VEGF receptors
US9180189B2 (en) 1995-07-27 2015-11-10 Genentech, Inc. Treating a mammal with a formulation comprising an antibody which binds IgE
US7060268B2 (en) 1995-07-27 2006-06-13 Genentech, Inc. Protein formulation
US9283273B2 (en) 1995-07-27 2016-03-15 Genentech, Inc. Protein formulation
US7682609B2 (en) 1995-07-27 2010-03-23 Genentech, Inc. Protein formulation
US5968511A (en) * 1996-03-27 1999-10-19 Genentech, Inc. ErbB3 antibodies
EP1728802A3 (fr) * 1996-03-27 2006-12-13 Genentech, Inc. Anticorps de la protèine ErbB3
WO1997035885A1 (fr) * 1996-03-27 1997-10-02 Genentech, Inc. ANTICORPS DE LA PROTEINE ErbB3
EP1728802A2 (fr) * 1996-03-27 2006-12-06 Genentech, Inc. Anticorps de la protèine ErbB3
US7285649B2 (en) 1996-03-27 2007-10-23 Genentech, Inc. Isolated nucleic acids, vectors and host cells encoding ErbB3 antibodies
US7371376B1 (en) 1996-10-18 2008-05-13 Genentech, Inc. Anti-ErbB2 antibodies
US8075892B2 (en) 1997-12-12 2011-12-13 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8309087B2 (en) 1997-12-12 2012-11-13 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8425908B2 (en) 1997-12-12 2013-04-23 Genentech, Inc. Treatment with anti-ErbB2 antibodies
EP2042194A2 (fr) 1999-05-14 2009-04-01 Imclone Systems, Inc. Traitement des tumeurs humaines réfractaires avec des antagonistes de récepteur de facteur de croissance épidermique
WO2000069459A1 (fr) 1999-05-14 2000-11-23 Imclone Systems Incorporated Traitement de tumeurs humaines refractaires avec des antagonistes de recepteurs du facteur de croissance epidermique
US6949245B1 (en) 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US7501122B2 (en) 1999-06-25 2009-03-10 Genentech, Inc. Treatment with anti-ErbB2 antibody combinations
US7041292B1 (en) 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
EP2283867A2 (fr) 1999-06-25 2011-02-16 Genentech, Inc. Procédés de traitement utilisant des conjugués maytansinoïdes-anticorps anti-erbb
US7618631B2 (en) 1999-06-25 2009-11-17 Genentech, Inc. Treatment with anti-ErbB2 antibodies and EGFR-targeted drugs
EP2112167A2 (fr) 1999-06-25 2009-10-28 Genentech, Inc. Anticorps anti-ERBB2 humanisés et traitement avec les anticorps anti-ERBB2
EP2803367A1 (fr) 1999-06-25 2014-11-19 ImmunoGen, Inc. Procédés de traitement utilisant des conjugués maytansinoïdes-anticorps anti-erbb
US7537931B2 (en) 1999-06-25 2009-05-26 Genentech, Inc. Humanized anti-ERBB2 antibodies and treatment with anti-ERBB2 antibodies
EP2283866A2 (fr) 1999-06-25 2011-02-16 Genentech, Inc. Procédés de traitement utilisant des conjugués maytansinoïdes-anticorps anti-ERBB
EP2977063A1 (fr) 1999-06-25 2016-01-27 Genentech, Inc. Procédés de traitement utilisant des conjugués maytansinoïdes-anticorps anti-ErbB
US7485302B2 (en) 1999-06-25 2009-02-03 Genentech, Inc. Treatment with anti-ErbB2 antibodies and chemotherapeutic agents
US7498030B2 (en) 1999-06-25 2009-03-03 Genetech, Inc. Treatment with anti-ErbB2 antibodies and anti-hormonal compounds
US7371379B2 (en) 1999-08-27 2008-05-13 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US10160811B2 (en) 1999-08-27 2018-12-25 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US6627196B1 (en) 1999-08-27 2003-09-30 Genentech, Inc. Dosages for treatment with anti-ErbB2 antibodies
US10280228B2 (en) 1999-08-27 2019-05-07 Genentech, Inc. Treatment with anti-ErbB2 antibodies
USRE44704E1 (en) 1999-10-01 2014-01-14 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
USRE43899E1 (en) 1999-10-01 2013-01-01 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
WO2001053354A2 (fr) * 2000-01-20 2001-07-26 Chiron Corporation Methodes de traitement de tumeurs
WO2001053354A3 (fr) * 2000-01-20 2002-04-04 Chiron Corp Methodes de traitement de tumeurs
EP2301579A1 (fr) 2000-01-28 2011-03-30 Sunnybrook Health Science Centre Procédé thérapeutique pour la réduction de l'angiogenèse
US7740841B1 (en) 2000-01-28 2010-06-22 Sunnybrook Health Science Center Therapeutic method for reducing angiogenesis
US6632979B2 (en) 2000-03-16 2003-10-14 Genentech, Inc. Rodent HER2 tumor model
US7575748B1 (en) 2000-03-16 2009-08-18 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
EP2857516A1 (fr) 2000-04-11 2015-04-08 Genentech, Inc. Anticorps multivalents et leurs utilisations
US7071319B2 (en) 2000-05-16 2006-07-04 Thomas Jefferson University Recombinant antibodies, and compositions and methods for making and using the same
US6890532B2 (en) 2000-05-16 2005-05-10 Thomas Jefferson University Rabies virus-specific neutralizing human monoclonal antibodies and nucleic acids and related methods
EP2116262A2 (fr) 2000-05-19 2009-11-11 Genentech, Inc. Analyse de détection génique permettant d'améliorer la probabilité d'une réponse efficace à une thérapie du cancer basée sur un antagoniste d'ErbB
US7993834B2 (en) 2000-05-19 2011-08-09 Genentech, Inc. Detection of ErbB2 gene amplification to increase the likelihood of the effectiveness of ErbB2 antibody breast cancer therapy
US8076066B2 (en) 2000-05-19 2011-12-13 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a HER2 antibody cancer therapy
US7435797B2 (en) 2002-04-10 2008-10-14 Genentech, Inc. Anti-HER2 antibody variants
US7850966B2 (en) 2002-04-10 2010-12-14 Genentech, Inc. Method of treating breast cancer using anti-HER2 antibody variants
US8840896B2 (en) 2002-04-10 2014-09-23 Genentech, Inc. Anti-HER2 antibody variants
EP2289942A2 (fr) 2002-04-10 2011-03-02 Genentech, Inc. Variantes d'anticorps anti-her2
EP2263691A1 (fr) 2002-07-15 2010-12-22 Genentech, Inc. Traitement de cancer avec l'anti-erbb2 anticorps recombinant humanisé monoclonal (rhuMAb 2C4)
EP2308507A2 (fr) 2002-07-19 2011-04-13 Beth Israel Deaconess Medical Center Procédés de diagnostic et de traitement de pre-eclampsie ou d'eclampsie
EP2305301A2 (fr) 2002-07-19 2011-04-06 Beth Israel Deaconess Medical Center Procédés de diagnostic et de traitement de pre-eclampsie ou d'eclampsie
EP2365001A2 (fr) 2003-05-01 2011-09-14 Imclone LLC Anticorps humains dirigés contre le récepteur de facteur 1 de croissance de type insuline humaine
US10844135B2 (en) 2003-10-10 2020-11-24 Immunogen, Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates and methods of making said
EP3858387A1 (fr) 2003-11-06 2021-08-04 Seagen Inc. Composés de monométhylvaline capables de conjugaison aux ligands
EP3434275A1 (fr) 2003-11-06 2019-01-30 Seattle Genetics, Inc. Méthode de dépistage de cellules cancéreuses basé sur l'utilisation de conjugués d'auristatin avec anticorps
EP2260858A2 (fr) 2003-11-06 2010-12-15 Seattle Genetics, Inc. Composés de monométhylvaline capable de conjugaison aux lignads.
EP2489364A1 (fr) 2003-11-06 2012-08-22 Seattle Genetics, Inc. Composés de monométhylvaline conjuguös avec des anticorps
EP2486933A1 (fr) 2003-11-06 2012-08-15 Seattle Genetics, Inc. Composés de monométhylvaline conjugués avec des anticorps
EP3120861A1 (fr) 2003-11-06 2017-01-25 Seattle Genetics, Inc. Composés intermédiaires pour la préparation de conjugués d'auristatin avec des éléments de liaison
EP2478912A1 (fr) 2003-11-06 2012-07-25 Seattle Genetics, Inc. Conjugués d'auristatin avec des anticorps dirigés contre le HER2 ou le CD22 et leur usage thérapeutique
EP2172220A1 (fr) 2004-02-04 2010-04-07 Beth Israel Deaconess Medical Center Procédés de diagnostic et de traitement de pré-éclampsie ou éclampsie
EP2332990A1 (fr) 2004-03-19 2011-06-15 Imclone LLC Anticorps de récepteur de facteur de croissance anti-épidermique humain
EP2286844A2 (fr) 2004-06-01 2011-02-23 Genentech, Inc. Conjugués anticorps-médicament et procédés
WO2006033700A2 (fr) 2004-07-22 2006-03-30 Genentech, Inc. Composition d'anticorps anti-her2
WO2006021893A2 (fr) 2004-08-26 2006-03-02 The University Of Western Ontario Cibles bacteriennes d'acquisition de fer
EP3088004A1 (fr) 2004-09-23 2016-11-02 Genentech, Inc. Anticorps et conjugués modifiés au niveau des cystéines
EP2347765A1 (fr) 2004-09-24 2011-07-27 Beth Israel Deaconess Medical Center Méthodes pour le diagnostic et le traitement de complications associées à une grossesse
WO2006034507A2 (fr) 2004-09-24 2006-03-30 Beth Israel - Deaconess Medical Center Methodes de diagnostic et de traitement lors de complications de la grossesse
EP2371388A2 (fr) 2004-10-20 2011-10-05 Genentech, Inc. Formulations d'anticorps
EP3498294A1 (fr) 2004-10-20 2019-06-19 Genentech, Inc. Formulations d'anticorps
US8143025B2 (en) 2004-11-18 2012-03-27 Imclone Llc Antibodies against vascular endothelial growth factor receptor-1
EP2377555A2 (fr) 2004-11-18 2011-10-19 Imclone LLC Anticorps contre le récepteur 1 du facteur de croissance endothéliale vasculaire
WO2006083355A2 (fr) 2004-11-19 2006-08-10 Cornell Research Foundation, Inc. Utilisation des cellules du recepteur du facteur de croissance endothelial vasculaire dans le traitement et la surveillance du cancer et dans le criblage d'agents chimiotherapeutiques
WO2007053161A2 (fr) 2004-12-15 2007-05-10 Beth Israel Deaconess Medical Center Acides nucléiques et polypeptides utiles pour diagnostiquer et traiter des complications de la grossesse
US7955806B2 (en) 2004-12-23 2011-06-07 Hoffmann—La Roche Inc. Detection of a therapeutic antibody in an experimental animal
US8404234B2 (en) 2005-01-21 2013-03-26 Genentech, Inc. Fixed dosing of HER antibodies
EP3698807A1 (fr) 2005-01-21 2020-08-26 Genentech, Inc. Dosage fixe d'anticorps anti-her
US7449184B2 (en) 2005-01-21 2008-11-11 Genentech, Inc. Fixed dosing of HER antibodies
EP2399605A1 (fr) 2005-02-23 2011-12-28 Genentech, Inc. Extension du laps de temps avant progression de la maladie ou de la survie chez les patients atteints de cancer
US8691232B2 (en) 2005-02-23 2014-04-08 Genentech, Inc. Extending time to disease progression or survival in cancer patients
EP2505205A1 (fr) 2005-06-17 2012-10-03 Imclone LLC Anticorps alpha anti-PDGFR
EP2100618A2 (fr) 2005-06-17 2009-09-16 Imclone LLC Antagonistes de PDGFR-alpha pour le traitement du cancer osseux métastatique
EP2100614A2 (fr) 2005-06-17 2009-09-16 Imclone LLC Antagonistes de PDGFR-alpha pour le traitement du cancer osseux métastatique
EP2194380A2 (fr) 2005-07-06 2010-06-09 F. Hoffmann-La Roche AG Détection d'un antigène- cible, indépendamment de la présence ou absence d'anticorps thérapeutiques correspondants
WO2007027751A2 (fr) 2005-08-30 2007-03-08 University Of Miami Immunomodulation des agonistes, des antagonistes et des immunotoxines du recepteur 25 du facteur de necrose tumorale (tnfr25)
US8912011B2 (en) 2006-05-22 2014-12-16 California Institute Of Technology Antibodies to sulfated carbohydrates
US7745584B2 (en) 2006-05-22 2010-06-29 California Institute Of Technology Antibodies to sulfated carbohydrates
USRE47123E1 (en) 2006-07-18 2018-11-13 Sanofi EPHA2 receptor antagonist antibodies
US8460667B2 (en) 2006-07-18 2013-06-11 Sanofi EPHA2 receptor antagonist antibodies
EP3909980A1 (fr) 2006-10-19 2021-11-17 Sanofi Nouveaux anticorps anti-cd38 pour le traitement du cancer
EP3498735A1 (fr) 2006-10-19 2019-06-19 Sanofi Anticorps anti-cd38 pour le traitement de la leucemie
EP2899541A1 (fr) 2007-03-02 2015-07-29 Genentech, Inc. Elément de prévision de la réponse à un inhibiteur de HER
US7981418B2 (en) 2007-03-02 2011-07-19 Genentech, Inc. Predicting response to a HER inhibitor
US8940302B2 (en) 2007-03-02 2015-01-27 Genentech, Inc. Predicting response to a HER inhibitor
WO2008118324A2 (fr) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition et procédé de traitement du cancer avec un anticorps anti-uroplakine ib
US9551033B2 (en) 2007-06-08 2017-01-24 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
EP2592156A2 (fr) 2007-06-08 2013-05-15 Genentech, Inc. Marqueurs d'expression de gène de résistance tumorale à un traitement par inhibiteur HER2
US10385405B2 (en) 2007-06-08 2019-08-20 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
US9150650B2 (en) 2007-06-13 2015-10-06 Pharmabcine Inc. Human monoclonal antibody neutralizing vascular endothelial growth factor receptor and use thereof
US9243067B2 (en) 2007-08-29 2016-01-26 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US9175087B2 (en) 2007-08-29 2015-11-03 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US8980262B2 (en) 2007-08-29 2015-03-17 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US9815902B2 (en) 2007-08-29 2017-11-14 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their uses
US9228019B2 (en) 2007-08-29 2016-01-05 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
US8647622B2 (en) 2007-08-29 2014-02-11 Sanofi Humanized anti-CXCR5 antibodies, derivatives thereof and their use
EP3686220A1 (fr) 2007-10-15 2020-07-29 Sanofi Anticorps liant il-4 et/ou il-13 et leurs utilisations
US11453727B2 (en) 2007-10-15 2022-09-27 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US9738728B2 (en) 2007-10-15 2017-08-22 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US8388965B2 (en) 2007-10-15 2013-03-05 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
US9732162B2 (en) 2007-10-15 2017-08-15 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2573118A1 (fr) 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
US10759871B2 (en) 2007-10-15 2020-09-01 Sanofi Antibodies that bind IL-4 and/or IL-13 and their uses
EP2574629A1 (fr) 2007-10-15 2013-04-03 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2574630A1 (fr) 2007-10-15 2013-04-03 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573119A1 (fr) 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2574626A1 (fr) 2007-10-15 2013-04-03 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573117A1 (fr) 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573121A1 (fr) 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573116A1 (fr) 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
EP2573115A1 (fr) 2007-10-15 2013-03-27 Sanofi Anticorps liant IL-4 et/ou d'IL-13 et leurs utilisations
US8912149B1 (en) 2007-11-28 2014-12-16 California Institute Of Technology Glycosaminoglycan mimetics
EP4119583A1 (fr) 2008-01-30 2023-01-18 Genentech, Inc. Composition comprenant un anticorps se liant au domaine ii de her2 et variantes acides de celle-ci
EP3401335A1 (fr) 2008-01-30 2018-11-14 Genentech, Inc. Composition comprenant un anticorps se liant au domaine ii de her2 et variantes acides de celle-ci
US7951370B2 (en) 2008-03-12 2011-05-31 Imclone Llc Anti-TYRP1 antibodies
US8071099B2 (en) 2008-05-30 2011-12-06 ImClone, LLC Anti-FLT3 antibodies
US11655305B2 (en) 2008-06-16 2023-05-23 Genentech, Inc. Treatment of metastatic breast cancer
US10689457B2 (en) 2008-06-16 2020-06-23 Genentech, Inc. Treatment of metastatic breast cancer
WO2010009124A2 (fr) 2008-07-15 2010-01-21 Genentech, Inc. Conjugués de dérivés d’anthracycline, procédé de préparation associé et utilisation comme composés antitumoraux
WO2010027364A1 (fr) 2008-09-07 2010-03-11 Glyconex Inc. Anticorps anti-glycosphingolipide de type i étendu, dérivés de celui-ci et utilisation
WO2010108127A1 (fr) 2009-03-20 2010-09-23 Genentech, Inc. Anticorps anti-her di-spécifiques
EP3088420A1 (fr) 2009-03-20 2016-11-02 F. Hoffmann-La Roche AG Anticorps anti-her bispécifiques
WO2010136569A1 (fr) 2009-05-29 2010-12-02 F. Hoffmann-La Roche Ag Modulateurs de la signalisation her2 chez des patients exprimant her2 souffrant d'un cancer de l'estomac
US9345661B2 (en) 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
EP4339212A2 (fr) 2009-07-31 2024-03-20 F. Hoffmann-La Roche AG Formulation d'anticorps anti-her2 sous-cutané
WO2011012637A2 (fr) 2009-07-31 2011-02-03 F. Hoffmann-La Roche Ag Formulation sous-cutanée d'anticorps anti-her2
EP2687202A1 (fr) 2009-07-31 2014-01-22 F. Hoffmann-La Roche AG Formulation d'anticorps anti-her2 sous-cutané
US9968676B2 (en) 2009-07-31 2018-05-15 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
US9163086B2 (en) 2009-08-18 2015-10-20 President And Fellows Of Harvard College Methods and compositions for the treatment of proliferative and pathogenic diseases
US10280227B2 (en) 2009-09-11 2019-05-07 Genentech, Inc. Highly concentrated pharmaceutical formulations
US10752696B2 (en) 2009-09-11 2020-08-25 Genentech, Inc. Highly concentrated pharmaceutical formulations
US10377831B2 (en) 2009-09-11 2019-08-13 Genentech, Inc. Highly concentrated pharmaceutical formulations
US8668910B2 (en) 2009-10-02 2014-03-11 Sanofi Antibodies that specifically bind to the EphA2 receptor
WO2011039724A1 (fr) 2009-10-02 2011-04-07 Sanofi-Aventis Anticorps qui se lient spécifiquement au récepteur epha2
US9676864B2 (en) 2009-10-02 2017-06-13 Sanofi Antibodies that specifically bind to the EphA2 receptor
WO2011056983A1 (fr) 2009-11-05 2011-05-12 Genentech, Inc. Conjugués d'anticorps modifiés par cystéine, radiomarqués par le zirconium
EP3778917A2 (fr) 2009-12-04 2021-02-17 F. Hoffmann-La Roche AG Anticorps multispécifiques, analogues d'anticorps, compositions et procédés
US10584181B2 (en) 2009-12-04 2020-03-10 Genentech, Inc. Methods of making and using multispecific antibody panels and antibody analog panels
WO2011100403A1 (fr) 2010-02-10 2011-08-18 Immunogen, Inc Anticorps anti-cd20 et utilisations de ceux-ci
WO2011103242A1 (fr) 2010-02-18 2011-08-25 Genentech, Inc. Antagonistes de la neuréguline et leur utilisation dans le cadre du traitement du cancer
WO2011103389A1 (fr) 2010-02-19 2011-08-25 Cornell University Procédé pour traiter des maladies démyélinisantes auto-immunes et d'autres maladies auto-immunes ou inflammatoires
WO2011146568A1 (fr) 2010-05-19 2011-11-24 Genentech, Inc. Prédiction de réponses à un inhibiteur de her
WO2011145085A2 (fr) 2010-05-21 2011-11-24 Procognia (Israel) Ltd Nouveaux anticorps et procédés d'utilisation pour le traitement et le diagnostic du cancer
WO2011156328A1 (fr) 2010-06-08 2011-12-15 Genentech, Inc. Anticorps et conjugués modifiés par la cystéine
WO2012006552A1 (fr) 2010-07-09 2012-01-12 Exelixis, Inc. Associations d'inhibiteurs de kinases destinées au traitement du cancer
US9766251B2 (en) 2010-08-17 2017-09-19 Hoffmann-La Roche Inc. Anti-human IgG1 antibody
WO2012074757A1 (fr) 2010-11-17 2012-06-07 Genentech, Inc. Conjugués d'anticorps alaninyl-maytansinol
WO2012069466A1 (fr) 2010-11-24 2012-05-31 Novartis Ag Molécules multi-spécifiques
WO2012084829A1 (fr) 2010-12-21 2012-06-28 F. Hoffmann-La Roche Ag Préparation d'anticorps enrichie en isoformes et son procédé d'obtention
WO2012085111A1 (fr) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Complexe polypeptide-polynucléotide et son utilisation dans l'administration d'une fraction effectrice ciblée
US11008389B2 (en) 2011-03-16 2021-05-18 Sanofi Uses of a dual V region antibody-like protein
EP3235508A1 (fr) 2011-03-16 2017-10-25 Sanofi Compositions comprenant une protéine double de type anticorps de région variable
WO2012125775A1 (fr) 2011-03-16 2012-09-20 Sanofi Utilisations d'une protéine de type anticorps à région v double
WO2013025853A1 (fr) 2011-08-17 2013-02-21 Genentech, Inc. Anticorps anti-neuréguline et utilisations associées
US9327023B2 (en) 2011-10-25 2016-05-03 The Regents Of The University Of Michigan HER2 targeting agent treatment in non-HER2-amplified cancers having HER2 expressing cancer stem cells
WO2013081645A2 (fr) 2011-11-30 2013-06-06 Genentech, Inc. Mutations dans erbb3 dans des cancers
WO2013083810A1 (fr) 2011-12-09 2013-06-13 F. Hoffmann-La Roche Ag Identification de non-répondeurs aux inhibiteurs de her2
US9592289B2 (en) 2012-03-26 2017-03-14 Sanofi Stable IgG4 based binding agent formulations
US10525130B2 (en) 2012-03-26 2020-01-07 Sanofi Stable IGG4 based binding agent formulations
WO2013148315A1 (fr) 2012-03-27 2013-10-03 Genentech, Inc. Diagnostic et traitements concernant des inhibiteurs de her3
EP4148135A1 (fr) 2012-07-05 2023-03-15 The Trustees of the University of Pennsylvania Anticorps u1 snrnp de régulation de l'expression génique et de modulation de l'oncogénicité
EP3699284A1 (fr) 2012-07-05 2020-08-26 The Trustees of the University of Pennsylvania Anticorps u1 snrnp de régulation de l'expression génique et de modulation de l'oncogénicité
US9937205B2 (en) 2012-09-04 2018-04-10 The Trustees Of The University Of Pennsylvania Inhibition of diacylglycerol kinase to augment adoptive T cell transfer
US11931380B2 (en) 2012-09-04 2024-03-19 The Trustees Of The University Of Pennsylvania Inhibition of diacylglycerol kinase to augment adoptive T cell transfer
EP4035685A1 (fr) 2012-10-30 2022-08-03 Esperance Pharmaceuticals, Inc. Conjugués anticorps-médicament et procédés d'utilisation
US20140127241A1 (en) * 2012-10-30 2014-05-08 Esperance Pharmaceuticals, Inc. Antibody/drug conjugates and methods of use
WO2014070957A1 (fr) 2012-10-30 2014-05-08 Esperance Pharmaceuticals, Inc. Conjugués anticorps/médicament et leurs procédés d'utilisation
US10233214B2 (en) 2012-10-30 2019-03-19 Esperance Pharmaceuticals, Inc. Antibody/drug conjugates and methods of use
US9492563B2 (en) * 2012-10-30 2016-11-15 Esperance Pharmaceuticals, Inc. Antibody/drug conjugates and methods of use
WO2014083178A1 (fr) 2012-11-30 2014-06-05 F. Hoffmann-La Roche Ag Identification de patients ayant besoin d'une cothérapie par un inhibiteur de pd-l1
EP3511718A1 (fr) 2012-11-30 2019-07-17 F. Hoffmann-La Roche AG Inhibiteur de pd-l1
WO2014182970A1 (fr) 2013-05-08 2014-11-13 Zymeworks Inc. Constructions de liaison aux antigènes her2 et her3 bispécifiques
US9770461B2 (en) 2013-08-02 2017-09-26 California Institute Of Technology Tailored glycopolymers as anticoagulant heparin mimetics
US10227370B2 (en) 2013-08-02 2019-03-12 California Institute Of Technology Heparan sulfate/heparin mimetics with anti-chemokine and anti-inflammatory activity
WO2015073721A1 (fr) 2013-11-13 2015-05-21 Zymeworks Inc. Produits de recombinaison liant un antigène monovalent et ciblant l'egfr et/ou l'her2 et leurs utilisations
WO2015077891A1 (fr) 2013-11-27 2015-06-04 Zymeworks Inc. Produits de recombinaison de liaison à l'antigène bispécifiques ciblant her2
US11136388B2 (en) 2014-06-27 2021-10-05 Sanofi Biomarkers for anti-IL4-IL13 bispecific antibodies
WO2015198146A2 (fr) 2014-06-27 2015-12-30 Sanofi Anticorps bispécifiques anti-il4-il13
WO2016040856A2 (fr) 2014-09-12 2016-03-17 Genentech, Inc. Anticorps et conjugués modifiés génétiquement avec de la cystéine
WO2016081796A1 (fr) 2014-11-21 2016-05-26 Yale University Compositions et procédés pour moduler salm5 et hvem
EP4512428A2 (fr) 2014-11-27 2025-02-26 Zymeworks BC Inc. Procédés d'utilisation de constructions liant des antigènes bispécifiques ciblant her2
WO2016082044A1 (fr) 2014-11-27 2016-06-02 Zymeworks Inc. Procédés d'utilisation de constructions liant des antigènes bispécifiques ciblant her2
WO2016140910A2 (fr) 2015-03-04 2016-09-09 University Of Rochester Compositions et méthodes d'utilisation de l'hormone anti-müllérienne pour le traitement de l'infertilité
WO2016196344A1 (fr) 2015-05-30 2016-12-08 Molecular Templates, Inc. Supports de sous-unité a de toxine de shiga, déimmunisés, et molécules de ciblage de cellule les comprenant
EP3660035A1 (fr) 2015-05-30 2020-06-03 Molecular Templates, Inc. Supports de sous-unité a de toxine de shiga, déimmunisés, et molécules de ciblage de cellule les comprenant
EP3636660A1 (fr) 2015-05-30 2020-04-15 Molecular Templates, Inc. Échafaudages à sous-unités a de shiga-toxines désimmunisés et molécules de ciblage de cellules les comprenant
WO2017088734A1 (fr) 2015-11-23 2017-06-01 四川科伦博泰生物医药股份有限公司 Conjugué anticorps-médicament anti-erbb2 et composition à base de celui-ci, procédé de préparation associé et leur application
WO2017194554A1 (fr) 2016-05-10 2017-11-16 Inserm (Institut National De La Sante Et De La Recherche Medicale) Polythérapies pour le traitement du cancer
US10316037B1 (en) 2016-11-04 2019-06-11 Yale University Compounds and methods for treating cancer
WO2018129029A1 (fr) 2017-01-04 2018-07-12 Immunogen, Inc. Anticorps anti-met, immunoconjugués et utilisations de ceux-ci
WO2018172465A1 (fr) 2017-03-22 2018-09-27 Sanofi Traitement du lupus à l'aide d'anticorps anti-cxcr5 humanisés
US10842869B2 (en) 2017-03-22 2020-11-24 Sanofi Method of treating lupus by administering humanized anti-CXCR5 (C-X-C motif chemokine receptor 5) antibodies
WO2019204272A1 (fr) 2018-04-17 2019-10-24 Molecular Templates, Inc. Molécules ciblant her2 comprenant des matrices de la sous-unité a, rendue non immunogène, de la shigatoxine
WO2019207021A1 (fr) 2018-04-27 2019-10-31 F. Hoffmann-La Roche Ag Procédés de purification de polypeptides à l'aide de polysorbates
WO2019207159A1 (fr) 2018-04-27 2019-10-31 Fondazione Ebri Rita Levi-Montalcini Anticorps dirigé contre un peptide neurotoxique dérivé de tau et ses utilisations
US11155638B2 (en) 2018-05-08 2021-10-26 Rhode Island Hospital Anti-CHI3L1 antibodies for the detection and/or treatment of nonalcoholic fattly liver disease/nonalcoholic steatonhepatitis and subsequent complications
US12012465B2 (en) 2018-05-08 2024-06-18 Rhode Island Hospital Anti-CHI3L1 antibodies for the detection and/or treatment of nonalcoholic fatty liver disease/nonalcoholic steatonhepatitis and subsequent complications
WO2020014306A1 (fr) 2018-07-10 2020-01-16 Immunogen, Inc. Anticorps anti-met, immunoconjugués et utilisations de ceux-ci
WO2020242989A1 (fr) 2019-05-24 2020-12-03 Sanofi Méthodes de traitement de la sclérodermie généralisée
US11827671B2 (en) 2019-05-24 2023-11-28 Sanofi Methods for treating systemic sclerosis

Also Published As

Publication number Publication date
AU4025193A (en) 1993-11-18

Similar Documents

Publication Publication Date Title
WO1993021319A1 (fr) ANTICORPS HUMANISES SPECIFIES PAR C-erbB-2
US5877305A (en) DNA encoding biosynthetic binding protein for cancer marker
US6207804B1 (en) Genetically engineered antibody analogues and fusion proteins thereof
US5091513A (en) Biosynthetic antibody binding sites
US5132405A (en) Biosynthetic antibody binding sites
AU675223B2 (en) Chimeric multivalent protein analogues and methods of use thereof
US5258498A (en) Polypeptide linkers for production of biosynthetic proteins
US5576184A (en) Production of chimeric mouse-human antibodies with specificity to human tumor antigens
US6107469A (en) Minimum recognition unit of a pem mucin tandem repeat specific monoclonal antibody
EP0364096B1 (fr) Eléments d'expression de gènes et production d'anticorps souris-humains chimériques
AU627183B2 (en) Method for producing recombinant dna proteins
US5892019A (en) Production of a single-gene-encoded immunoglobulin
AU634314B2 (en) Chimeric mouse-human a10 antibody with specificity to a human tumor cell antigen
JPH06510904A (ja) 少なくとも遊離のチオールとして存在するシステインを有する抗体フラグメントの大腸菌での発現、2官能性F(ab’)↓2抗体の産生のための使用
JPH1070991A (ja) 腫瘍関連抗原のためのキメラ免疫グロブリン遺伝子
EP0404003A2 (fr) Anticorps KM10 chimériques souris-humains, ayant une spécificité pour un antigène de cellules humaines tumorales
CA2131355C (fr) Production d'une immunoglobuline codee par un gene unique
CA1341615C (fr) Proteines multifonctions a cible definie
US20050196400A1 (en) Production of chimeric mouse-human antibodies with specificity to human tumor antigens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WD Withdrawal of designations after international publication

Free format text: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载