WO1993020584A1 - Procede de fabrication d'une couche de silicium monocristalline sur un dielectrique noye - Google Patents
Procede de fabrication d'une couche de silicium monocristalline sur un dielectrique noye Download PDFInfo
- Publication number
- WO1993020584A1 WO1993020584A1 PCT/EP1993/000734 EP9300734W WO9320584A1 WO 1993020584 A1 WO1993020584 A1 WO 1993020584A1 EP 9300734 W EP9300734 W EP 9300734W WO 9320584 A1 WO9320584 A1 WO 9320584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- layer
- simox
- wafer
- etching
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 229910021421 monocrystalline silicon Inorganic materials 0.000 title claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 72
- 239000010703 silicon Substances 0.000 claims abstract description 72
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 70
- 235000012431 wafers Nutrition 0.000 claims abstract description 68
- 238000005530 etching Methods 0.000 claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000002513 implantation Methods 0.000 claims description 19
- 239000012212 insulator Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000005496 tempering Methods 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims 2
- 238000007254 oxidation reaction Methods 0.000 claims 2
- 238000003631 wet chemical etching Methods 0.000 claims 1
- 238000001039 wet etching Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 57
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 241000478345 Afer Species 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2007—Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
Definitions
- the present invention relates to a method for producing a monocrystalline silicon layer which is separated from an underlying silicon substrate by a buried insulator layer.
- ZMR process Zone Melt Recrystallization
- SIMOX SIMOX
- MA Guerra The Status of SIMOX technology. DN Schmidt, editor, Silicon-on-Insulator Technology and Devices, vol. 90-6, pages 21 to 47. The Electrochemical Society, Inc., 1990.
- the third method which is counted among SOI technologies, is the afer bonding method. This is known from the following literature, among others: W. P. Maszara. Silicon-on-Insulator by Wafer Bonding: A review. J. Electrochem. Soc. , 138: 341-347, 1991.
- the most important advantage of this method is that the thickness of the silicon film is extremely uniform and can be set very precisely between about 50 nm and a few 10 ⁇ m by the choice of ion energy or by subsequent epitaxial growth of silicon.
- the main disadvantages of this method lie in the need for very high implantation doses as well as in the associated high costs and in the practical and physical limitation of the maximum oxide thickness to approximately 0.5 ⁇ m.
- the surface of a wafer can first be thermally oxidized or a dielectric layer can be deposited on the wafer.
- a second wafer is treated in the same way or else leave treated.
- the surfaces of the two wafers are brought into contact with one another after hydrophilization, whereupon the wafers which adhere easily to one another by hydrogen bonding are insolubly connected to one another in a subsequent tempering step.
- one of the two wafers is thinned from the original thickness, which is surely a few 100 ⁇ m, to the desired level. This is done either by grinding or ' by polishing or by chemical etching as well as by combinations of these thin processes.
- the process is checked using complex measuring methods.
- etching stop processes are used.
- an etching stop is introduced into one of the two wafers before bonding, which inhibits the chemical reaction during the thinning on the back.
- the layer thickness of the insulated silicon layer is determined by the depth in which the etching stop layer is introduced into the wafer to be thinly etched.
- the person skilled in the past therefore chose either the SIMOX process for producing a monocrystalline silicon layer on a buried dielectric, if a uniform, precisely adjustable silicon film thickness is required for the desired application and the processes associated with this process high costs due to the high implantation doses required and the restriction to a maximum oxide layer thickness of 0.5 ⁇ m.
- the wafer bonding method was used instead.
- the invention is therefore based on the object of specifying a method for producing monocrystalline silicon layers which leads to a high uniformity of the thickness of the silicon film produced, with which a high crystal quality of the silicon layer is achieved and with which the buried layer Insulator layers can be produced, the thickness of which is not limited to the oxide thickness which can be achieved with SIMOX processes.
- a preferred exemplary embodiment of the method according to the invention is explained in more detail below.
- the starting point of the method according to the invention are two silicon wafers.
- a SIMOX silicon wafer is first produced from one of the two silicon wafers using the SIMOX method.
- a buried SIMOX oxide layer is first formed by high-dose oxygen implantation, through which a silicon layer is separated from the silicon substrate of the SIMOX wafer.
- the thickness of the silicon layer can then be reduced or increased by methods known per se. For example, it is possible to strengthen the silicon layer by epitaxial growth.
- the silicon layer of the SIMOX silicon wafer is cured by tempering. This is preferably done at temperatures between 700 ° C and 1412 ° C for a period between thirty minutes and 15 hours.
- either the SIMOX silicon wafer or the other wafer, which will be referred to below as the carrier wafer, or both wafers are now thermally oxidized and / or provided with a dielectric.
- the dielectric layer is deposited on the carrier wafer, it is considered preferable to produce it on the entire surface of the carrier wafer. Then, as will be explained in more detail, it can then be used to protect the carrier wafer against Etching agents are used.
- Typical temperatures used in this tempering step are in the range of 800 ° C to 1300 ° C.
- the wafers bonded together to form a single disk of essentially twice the thickness are now etched in an alkaline solution until the chemical reaction on the buried SIMOX oxide layer is slowed down.
- the now exposed SIMOX oxide layer is preferably removed using hydrofluoric acid, which exposes the essentially monocrystalline silicon layer.
- the surface that is now exposed is the previous interface between the silicon layer and the SIMOX oxide layer that has now been removed by etching.
- the bonded wafer can be thermally oxidized and the resulting sacrificial oxide can then be etched away by wet chemistry.
- the wafer can also be polished chemically and / or mechanically.
- Another possibility which leads to both an improvement in the surface and a reduction in the crystal defect density of the silicon layer, is to introduce the required oxygen dose in the SIMOX oxygen implantation in sequential partial implantations of partial doses and tempering.
- Implantationsdo ⁇ sen from l ' ⁇ o 17 cm be applied "2 to 3 • 10 18 cm” 2.
- tion dose 4-10 17 cm “ 2 to produce the etching stop.
- this implantation dose which is far below the implantation doses that are typically used in SIMOX technology for producing buried, insulating layers, there is a considerable cost reduction achieved with simultaneous improvement in the quality of the silicon layer.
- the tempering is preferably carried out at 700 ° C. to 1412 ° C. with a duration of thirty minutes to 15 hours. Compared to the temperatures of above 1300 ° C with tempering times of six hours used in typical SIMOX tempering, a further cost reduction is therefore possible.
- Any etching medium with sufficient selectivity of the etching rate between silicon and silicon dioxide can be used for the back etching of the SIMOX silicon wafer.
- a 20 percent KOH solution at 80 ° C. is preferred. In this case a doping of 1.8 ⁇ 10 18 cm 2 is necessary.
- the method according to the invention while saving costs compared to the SIMOX method, it is possible to produce high-quality silicon layers with a very homogeneous layer thickness and an essentially monocrystalline structure, without being subject to restrictions with regard to the thickness of the buried insulator layer .
- the advantages of the SIMOX method and the wafer bonding method are therefore combined without having to accept the disadvantages and limitations of these methods.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
- Recrystallisation Techniques (AREA)
Abstract
L'invention concerne un procédé de fabrication d'une couche de silicium monocristalline qui est séparée d'un substrat de silicium par une couche d'isolation noyée. Outre les opérations de base mises en ÷uvre dans un procédé SIMOX, qui servent à produire une structure en plaquettes SIMOX avec une couche d'oxyde noyée et une couche de silicium située sur cette dernière, les étapes suivantes sont prévues selon l'invention: fabrication d'une couche diélectrique sur la plaquette au silicium SIMOX et/ou sur une plaquette-support de silicium; connexion de ces plaquettes de manière à ce qu'elles soient reliées les unes aux autres au niveau de leurs faces avant; application d'une couche de protection contre l'attaque chimique sur la plaquette-support de silicium et attaque chimique à l'arrière de la plaquette de silicium-SIMOX jusqu'à la couche d'oxyde-SIMOX noyée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19924210859 DE4210859C1 (fr) | 1992-04-01 | 1992-04-01 | |
DEP4210859.4 | 1992-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993020584A1 true WO1993020584A1 (fr) | 1993-10-14 |
Family
ID=6455732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1993/000734 WO1993020584A1 (fr) | 1992-04-01 | 1993-03-25 | Procede de fabrication d'une couche de silicium monocristalline sur un dielectrique noye |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE4210859C1 (fr) |
FR (1) | FR2689682B1 (fr) |
WO (1) | WO1993020584A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005074033A1 (fr) | 2004-01-30 | 2005-08-11 | Sumco Corporation | Procede pour la fabrication de tranches soi |
EP1914799A4 (fr) * | 2005-07-29 | 2010-03-17 | Shanghai Simgui Technology Co | Procede de production de silicium sur isolant |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19715138A1 (de) * | 1997-04-13 | 1998-10-22 | Fraunhofer Ges Forschung | Verfahren zur Herstellung einer Anordnung von in Serie bzw. Reihe geschalteten Einzel-Solarzellen |
WO2001006546A2 (fr) * | 1999-07-16 | 2001-01-25 | Massachusetts Institute Of Technology | Liaison silicium iii-v d'un semiconducteur destinee a une integration monolithique optoelectronique |
DE102004029929A1 (de) * | 2004-06-21 | 2006-01-05 | Infineon Technologies Ag | Verfahren zum Herstellen von Mikrostrukturen |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976511A (en) * | 1975-06-30 | 1976-08-24 | Ibm Corporation | Method for fabricating integrated circuit structures with full dielectric isolation by ion bombardment |
EP0444943A1 (fr) * | 1990-02-28 | 1991-09-04 | Shin-Etsu Handotai Company Limited | Méthode de fabrication d'un substrat lié |
-
1992
- 1992-04-01 DE DE19924210859 patent/DE4210859C1/de not_active Expired - Fee Related
-
1993
- 1993-03-25 WO PCT/EP1993/000734 patent/WO1993020584A1/fr active Search and Examination
- 1993-03-31 FR FR9303955A patent/FR2689682B1/fr not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3976511A (en) * | 1975-06-30 | 1976-08-24 | Ibm Corporation | Method for fabricating integrated circuit structures with full dielectric isolation by ion bombardment |
EP0444943A1 (fr) * | 1990-02-28 | 1991-09-04 | Shin-Etsu Handotai Company Limited | Méthode de fabrication d'un substrat lié |
Non-Patent Citations (5)
Title |
---|
1989 IEEE SOS/SOI TECHNOLOGY CONFERENCE OCTOBER 3-5 ,1989 1989, IEEEE NEW-YORK Seiten 64 - 65 , XP000167653 A. SÖDERBÄRG 'FABRICATION OF BESOI-MATERIALS USING IMPLANTED NITROGEN AS AN EFFECTIVE ETCH STOP BARRIER.' * |
JOURNAL OF APPLIED PHYSICS. Bd. 69, Nr. 9, 1. Mai 1991, NEW YORK US Seiten 6656 - 6664 , XP000235687 K. VANHEUSDEN ET AL. 'CHEMICAL ETCH RATES IN HF SOLUTIONS AS A FUNCTION OF THICKNESS OF THERMAL SIO2 FORMED BY OXYGEN IMPLANTATION.' * |
JOURNAL OF THE ELECTROCHEMICAL SOCIETY Bd. 138, Nr. 1, Januar 1991, MANCHESTER, NEW HAMPSHIRE US Seiten 341 - 347 , XP000177334 W.P. MASZARA 'SILICON-ON-INSULATOR BY WAFER BONDING: A REVIEW.' * |
PATENT ABSTRACTS OF JAPAN vol. 016, no. 233 (E-1209)28. Mai 1992 & JP,A,40 45 556 ( FUJITSU LTD ) 14. Februar 1992 * |
PATENT ABSTRACTS OF JAPAN vol. 016, no. 542 (E-1290)12. November 1992 & JP,A,42 06 766 ( KUSUKAWA KIKUO ) 28. Juli 1992 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005074033A1 (fr) | 2004-01-30 | 2005-08-11 | Sumco Corporation | Procede pour la fabrication de tranches soi |
EP1710836A4 (fr) * | 2004-01-30 | 2010-08-18 | Sumco Corp | Procede pour la fabrication de tranches soi |
US7867877B2 (en) | 2004-01-30 | 2011-01-11 | Sumco Corporation | Method for manufacturing SOI wafer |
EP1914799A4 (fr) * | 2005-07-29 | 2010-03-17 | Shanghai Simgui Technology Co | Procede de production de silicium sur isolant |
Also Published As
Publication number | Publication date |
---|---|
FR2689682A1 (fr) | 1993-10-08 |
FR2689682B1 (fr) | 1998-07-31 |
DE4210859C1 (fr) | 1993-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19840421C2 (de) | Verfahren zur Fertigung von dünnen Substratschichten und eine dafür geeignete Substratanordnung | |
DE69728355T2 (de) | Verfahren zur Herstellung eines Halbleitergegenstands | |
DE69710031T2 (de) | Verfahren zur Übertragung einer Halbleiterschicht mittels Silizium-auf-Isolator (SOI) Technologie | |
DE4229628C2 (de) | Halbleitereinrichtung mit Stapelstruktur und Verfahren zur Herstellung einer solchen | |
DE69738278T2 (de) | Herstellungsverfahren von einem dünnen Halbleiterfilm, der elektronische Anordnungen enthält | |
DE69233314T2 (de) | Verfahren zur Herstellung von Halbleiter-Produkten | |
DE69332511T2 (de) | Verfahren zur Herstellung eines Halbleitersubstrats | |
DE69025911T2 (de) | Verfahren zur Herstellung von CMOS/SOI-Anordnungen mit hoher Geschwindigkeit, niedrigem Leckstrom und verbesserter Strahlungshärte | |
DE69428284T2 (de) | Verfahren zur herstellung von verbundenen wafern unter verwendung von diamant als isolator | |
DE69728950T2 (de) | Verfahren zur Herstellung eines Halbleitergegenstands | |
DE69133004T2 (de) | Verfahren zur Herstellung eines Halbleiterkörpers | |
DE69728022T2 (de) | Vefahren zum Herstellen eines Halbleiterartikels unter Verwendung eines Substrates mit einer porösen Halbleiterschicht | |
DE69738608T2 (de) | Verfahren zur Herstellung einer Halbleiter-Dünnschicht | |
DE69931221T2 (de) | SOI-Substrat und Herstellungsverfahren dafür | |
DE60125952T2 (de) | Verfahren für die herstellung eines halbleiterartikels mittels graduellem epitaktischen wachsen | |
DE4021541C1 (fr) | ||
DE69826053T2 (de) | Halbleitersubstrat und Verfahren zu dessen Herstellung | |
DE102008051494A1 (de) | SOI-Substrate mit einer feinen vergrabenen Isolationsschicht | |
DE69225881T2 (de) | Verfahren zur Herstellung eines Substrates vom SOI-Typ mit einer uniformen dünnen Silizium-Schicht | |
DE102011002546A1 (de) | Verfahren zum Herstellen einer mehrschichtigen Struktur mit Trimmen nach dem Schleifen | |
DE102015112648A1 (de) | Verfahren zum bilden einer waferstruktur, verfahren zum bilden eines halbleiterbauelements und einer waferstruktur | |
DE69126153T2 (de) | Verfahren zur Herstellung von verbundenen Halbleiterplättchen | |
DE2432544C3 (de) | Als Halbleiterschaltung ausgebildetes Bauelement mit einem dielektrischen Träger sowie Verfahren zu seiner Herstellung | |
DE19936941A1 (de) | Verfahren zur Herstellung dünner Schichten, insbesondere Dünnschichtsolarzellen, auf einem Trägersubstrat | |
DE4210859C1 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) |