+

WO1993017231A1 - Method and system of air-fuel ratio control of internal combustion engine - Google Patents

Method and system of air-fuel ratio control of internal combustion engine Download PDF

Info

Publication number
WO1993017231A1
WO1993017231A1 PCT/JP1991/000598 JP9100598W WO9317231A1 WO 1993017231 A1 WO1993017231 A1 WO 1993017231A1 JP 9100598 W JP9100598 W JP 9100598W WO 9317231 A1 WO9317231 A1 WO 9317231A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
correction amount
ratio correction
value
Prior art date
Application number
PCT/JP1991/000598
Other languages
English (en)
French (fr)
Inventor
Junichi Furuya
Original Assignee
Junichi Furuya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junichi Furuya filed Critical Junichi Furuya
Publication of WO1993017231A1 publication Critical patent/WO1993017231A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the present invention relates to a device for controlling an air-fuel ratio of an internal combustion engine, and in particular, an air-fuel ratio sensor is provided upstream and downstream of an exhaust purification catalyst device, and the air-fuel ratio is increased based on the detection values of these two air-fuel ratio sensors.
  • the present invention relates to a method and apparatus for performing feedback control with high accuracy.
  • the feedback correction is performed using the air-fuel ratio feedback correction coefficient (air-fuel ratio correction amount), and the fuel supply amount ⁇ , is finally set by performing the correction using the battery voltage.
  • the air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed so that the air-fuel ratio is controlled near the target air-fuel ratio (the stoichiometric air-fuel ratio).
  • This is an exhaust purification catalyst device (3) that is interposed in the exhaust system to oxidize CO and HC (hydrocarbon) in the exhaust and reduce and purify ⁇ . This is because the conversion efficiency (purification efficiency) of the main catalyst is set to function effectively in the exhaust state during stoichiometric air-fuel ratio combustion.
  • the generated electromotive force (output voltage) of the air-fuel ratio sensor has a characteristic that changes abruptly near the stoichiometric air-fuel ratio.
  • the reference voltage (slice level) SL corresponding to the stoichiometric air-fuel ratio to determine whether the air-fuel ratio of the mixture is rich or lean with respect to the stoichiometric air-fuel ratio.
  • the air-fuel ratio feedback correction coefficient AL ⁇ is set by integral control in which the proportional component is omitted.
  • one air-fuel ratio sensor is provided in a collective portion of the exhaust manifold as close to the combustion chamber as possible in order to enhance responsiveness.
  • the air-fuel ratio sensor tends to change its characteristics due to thermal effects and deterioration due to high exhaust temperature, and it is difficult to detect the average air-fuel ratio of all cylinders due to insufficient mixing of exhaust gas for each cylinder. There was difficulty in detecting the air-fuel ratio, which in turn reduced the air-fuel ratio control accuracy.
  • the air-fuel ratio sensor on the downstream side is
  • it is downstream of the exhaust gas purification catalytic converter, it is hardly affected by the exhaust component balance (c ⁇ , HC, NOx, C02, etc.), and is poisoned by toxic components in the exhaust. Because of its small volume, it is hard to be affected by characteristic changes due to poisoning.
  • the exhaust gas mixture is good, so it can detect the average air-fuel ratio of all cylinders. The obtained detection performance is obtained.
  • the two air-fuel ratio feedback correction coefficients which are respectively set by the same calculation based on the detection values of the two air-fuel ratio sensors, are combined, or the air-fuel ratio sensor set by the upstream air-fuel ratio sensor is used. Variations in the output characteristics of the upstream air-fuel ratio sensor by correcting the control constants (proportional or integral) of the fuel ratio feedback correction coefficient, the comparison voltage of the output voltage of the upstream air-fuel ratio sensor, and the delay time Is compensated by the air-fuel ratio sensor on the downstream side, and high-precision air-fuel ratio feedback control is performed.
  • the air-fuel ratio changes greatly due to the response delay of the air-fuel ratio feedback control by the air-fuel ratio sensor on the upstream side. If the air-fuel ratio feedback control is performed by the sensor, the air-fuel ratio will be overcorrected. For example, at the time of acceleration, the air-fuel ratio feedback control by the air-fuel ratio sensor on the downstream side causes overcorrection to the rich side.As a result, the return to the target air-fuel ratio after acceleration is delayed, and in the worst case During this period, the air-fuel ratio diverges greatly, which leads to deterioration of fuel consumption, deterioration of exhaust emission, and deterioration of output.
  • Transient operation is detected by judging whether or not the value is equal to or greater than a predetermined value.
  • the air-fuel ratio feedback control by the downstream air-fuel ratio sensor is stopped to prevent overcorrection.
  • the transient operation determination method in which the air-fuel ratio feedback control by the downstream air-fuel ratio sensor is stopped is effective when the degree of transient is large, but the inversion of the air-fuel ratio feedback correction coefficient is effective.
  • the detection of operating conditions with a sufficiently low degree of transient was not possible because of the low accuracy and long detection delay time, so good detection performance could not be obtained and overcorrection of the air-fuel ratio could not be prevented.
  • the present invention has been made in view of such a conventional problem.
  • the purpose of the present invention is to prevent the air-fuel ratio from being over-corrected during transient operation.
  • Another object of the present invention is to reduce the emission of pollutants such as CO, HC and NOX by properly controlling the air-fuel ratio.
  • Another object of the present invention is to ensure that transient operation performance can be maintained well by proper control of the air-fuel ratio.
  • the first and second pumps are provided upstream and downstream of an exhaust purification catalyst device provided in an exhaust passage of an internal combustion engine, respectively, and have output values that change in response to the concentration of a specific gas component in exhaust gas that changes according to an air-fuel ratio.
  • an air-fuel ratio sensor of 2 A first air-fuel ratio correction amount calculating step or means for calculating a first air-fuel ratio correction amount according to an output value of the first air-fuel ratio sensor;
  • the air-fuel ratio correction amount setting means sets the air-fuel ratio correction amount in the air-fuel ratio correction amount setting means until the change returns to within the predetermined value and a predetermined time elapses.
  • a second air-fuel ratio correction amount fixing step or means for fixing the second air-fuel ratio correction amount to a predetermined value when calculating the fuel ratio correction amount is provided.
  • the first air-fuel ratio correction amount setting means sets the first air-fuel ratio correction amount based on the detection value from the first air-fuel ratio sensor.
  • a second air-fuel ratio correction amount is calculated based on a detection value from the second air-fuel ratio sensor.
  • the first air-fuel ratio correction amount set based on the detection values from the first and second air-fuel ratio sensors.
  • a final air-fuel ratio correction amount is calculated based on the second air-fuel ratio correction amount and the second air-fuel ratio correction amount. Further, if the change amount of the average value of the first air-fuel ratio correction amount exceeds a predetermined value, the second air-fuel ratio correction amount fixing step or means returns to within the predetermined value again from the time when the first air-fuel ratio correction amount exceeds the predetermined value.
  • the second air-fuel ratio correction amount is fixed at a predetermined value, and the air-fuel ratio correction amount is fixed based on the fixed second air-fuel ratio correction amount and the first air-fuel ratio correction amount.
  • Fuel ratio correction amount The final air / fuel ratio correction amount is calculated by a calculation step or means.
  • the air-fuel ratio is controlled by the final air-fuel ratio correction amount calculated based on the first air-fuel ratio correction amount and the second air-fuel ratio correction amount.
  • the air-fuel ratio feedback control is performed with high accuracy and stability, as in the past, during normal operation, without causing changes in the air-fuel ratio.
  • the transient operation by detecting the transient operation based on the amount of change in the average value of the first air-fuel ratio correction amount, it is possible to detect the transient operation at a low level with high accuracy and high response. Because the air-fuel ratio correction amount of the second air-fuel ratio is fixed for the response delay time of the second air-fuel ratio sensor due to the influence and the final air-fuel ratio correction amount is calculated, the second air-fuel ratio during transient operation is calculated. The effect of the deviation of the air-fuel ratio due to the correction based on the correction amount can be removed as much as possible, and good air-fuel ratio feedback control can be performed even during transient operation.
  • the air-fuel ratio can be appropriately controlled not only during steady-state operation but also during transient operation, so that the emission of pollutants such as CO, HC, and N ⁇ X can be reduced as much as possible, and good transient operation ( Acceleration / deceleration) Performance can be secured.
  • the predetermined time in the second air-fuel ratio correction amount fixing step or means may be, specifically, a period from when the exhaust reaches the first air-fuel ratio sensor to the second air-fuel ratio sensor. of the delay time, to set the exhaust gas purifying catalyst device 0 2 your storage capacity of the response delay time and the combined value to the phase equivalent to the according to the first air-fuel ratio sensor of the second air-fuel ratio sensor the Is good.
  • the first air-fuel ratio correction amount calculating step or means compares the magnitude of the output value of the first air-fuel ratio sensor with the reference value, and performs the first air-fuel ratio correction by an addition / subtraction operation using a control constant.
  • the second air-fuel ratio correction amount calculating step or means calculates a correction amount for correcting the control constant used in the calculation of the first air-fuel ratio correction amount by the second air-fuel ratio sensor.
  • the output value of the first air-fuel ratio sensor is compared with the output value of the first air-fuel ratio sensor to calculate the second air-fuel ratio correction amount.
  • a configuration may be adopted in which the control constant in the first air-fuel ratio correction amount is adjusted by the second air-fuel ratio correction amount while comparing the magnitude with the value.
  • the control constant of the first air-fuel ratio correction amount that is corrected by the second air-fuel ratio correction amount may be proportional or integral.
  • the detection value of the first air-fuel ratio sensor shifts and the first air-fuel ratio
  • the second air-fuel ratio sensor detects the tendency of the rich (lean) downstream of the exhaust gas, and the first air-fuel ratio is detected.
  • the second air-fuel ratio correction amount is calculated so that the proportional or integral component for calculating the fuel-ratio correction amount is corrected toward the lean side, thereby finally correcting the air-fuel ratio deviation. it can.
  • the air-fuel ratio feedback control step or means may include, for example, a basic fuel supply amount set in accordance with the cylinder intake air amount based on the engine operating state.
  • the feedback correction is performed by the final air-fuel ratio correction amount calculated by the air-fuel ratio correction amount calculation step or means.
  • the air-fuel ratio feedback correction based on the basic fuel supply amount is performed, so that the fluctuation width of the air-fuel ratio correction amount can be reduced, and the fluctuation of the air-fuel ratio can be basically suppressed.
  • FIG. 1 is a block diagram showing the configuration of the present invention.
  • FIG. 2 is a diagram showing a configuration of one embodiment of the present invention.
  • FIG. 3 is a flowchart showing a fuel injection amount setting routine of the embodiment.
  • FIG. 4 is a flowchart showing the air-fuel ratio feedback correction coefficient setting routine.
  • FIG. 5 is a diagram showing the state of each part at the time of air-fuel ratio feedback control according to the embodiment.
  • FIG. 2 showing the structure of one embodiment, an intake passage 12 of an engine 11 has an air flow meter 13 for detecting an intake air flow rate Q and a throttle valve for controlling the intake air flow rate Q in conjunction with an accelerator pedal.
  • an electromagnetic fuel injection valve 15 is provided for each cylinder. The fuel injection valve 15 was driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, was pressure-fed from a fuel pump (not shown), and was controlled to a predetermined pressure by a pressure regulator.
  • a water temperature sensor 17 for detecting a cooling water temperature Tw in the cooling jacket of the engine 11 is provided.
  • the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 for detecting the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold collecting section, and the exhaust gas on the downstream side thereof is provided.
  • the three-way catalyst 20 is set as an exhaust purifying catalyst device for purifying performing the reduction of C 0, and the oxidation of HC N_ ⁇ x in the exhaust gas pipe vignetting, further first air on the downstream side of the three-way catalyst 20
  • a second air-fuel ratio sensor 21 having the same function as the fuel ratio sensor is provided.
  • a crank angle sensor 22 is built in a display (not shown in FIG. 2), and a crank unit angle signal output from the crank angle sensor 22 in synchronization with the engine rotation is counted for a predetermined time. Or the period of the crank reference angle signal is measured to detect the engine speed N.
  • FIG. 3 shows a fuel injection amount setting routine, which is performed at predetermined intervals (for example, 10 ms).
  • step (denoted by S in the figure) 1 based on the intake air flow rate Q detected by the air flow meter 13 and the engine speed N calculated on the basis of the signal from the crank angle sensor 24, per unit rotation
  • the basic fuel injection amount TP corresponding to the intake air amount of the above is calculated by the following equation.
  • step 2 various correction coefficients C0EF are set based on the cooling water temperature ⁇ w detected by the water temperature sensor 17.
  • step 3 the air-fuel ratio feedback correction coefficient ALPP set by the air-fuel ratio feedback correction coefficient setting routine that moves backward is read.
  • a voltage correction amount T S is set based on the battery voltage value. This is for correcting a change in the injection flow rate of the fuel injection valve 15 due to a change in the battery voltage.
  • step 5 the final fuel injection amount (fuel supply amount) T, is calculated according to the following equation.
  • step 6 the calculated fuel injection valve T, is set in the output register.
  • the routine for controlling the air-fuel ratio to the target air-fuel ratio by setting the fuel supply amount using the air-fuel ratio feedback correction coefficient ALPP read in step 3 as described above is performed by the air-fuel ratio feedback control step. Or means.
  • an air-fuel ratio feedback correction coefficient setting routine will be described with reference to FIG. This routine is executed in synchronization with the engine rotation. In step 11, it is determined whether or not the operating condition is such that feedback control of the air-fuel ratio is performed. If the operating conditions are not satisfied, this routine ends. In this case, the air-fuel ratio feedback correction coefficient AL PP is clamped to the value at the end of the previous air-fuel ratio feedback control or a fixed reference value, and the air-fuel ratio feedback control is stopped. .
  • step 12 the signal voltage V 02 from the first air-fuel ratio sensor 19 and the signal voltage V ′ 02 from the second air-fuel ratio sensor 21 are input.
  • step 13 compared with the steps 1 1 signal voltage V 0 input 2 and the target air-fuel ratio (stoichiometric air-fuel ratio) corresponding reference value SL, the air-fuel ratio from the lean or slurry Tutsi or re Tutsi to lean It is determined whether it is the time of inversion.
  • step 14 If it is determined that the reversal has occurred, proceed to step 14 and use the current air-fuel ratio feedback correction coefficient ALPP.
  • the average value ALPAVE of the air-fuel ratio feedback correction coefficient ALPP-, at the time of air-fuel ratio reversal, detected by the first air-fuel ratio sensor 19 last time. ( ⁇ ALPP o + ALPP ⁇ / 2).
  • step 15 the calculated average value ALPAVE.
  • the difference between the previous average value ALPP- and DALPAVE, that is, the average value ALPAVE. is calculated.
  • the absolute value I DALPAVE I of the deviation of the average value calculated at step 15 is compared with the positive reference value RDALRC for judging the transient operation. Then, when it is determined that I DALPAVE I ⁇ RDALRC, it is determined that the operation is not a transient operation, and the process proceeds to step 17, where the second air-fuel ratio correction amount (the air-fuel ratio feedback It is determined whether or not the stop flag FSP for stopping the setting update of the correction coefficient P H0 S) is set.
  • the stop flag FSP is when not being Bok set proceeds to step 18 to compare the second signal voltage V from the air-fuel ratio sensor 21 '02 and the target air-fuel ratio (stoichiometric air-fuel ratio) corresponding reference value.
  • step 19 when the air-fuel ratio is determined to re-pitch (V '02> SL), the previous proportional part correction amount PH0S -! (Or divided by the engine speed N.
  • the basic fuel injection quantity T P, etc. The value obtained by subtracting the predetermined value DPH0S from the value obtained by learning the proportional correction amount as it is or by learning the weighted average or the like for each operating region as it is, and retrieving it from the corresponding operating region). After updating the proportional correction amount PH0S, go to step 24.
  • step 16 If it is determined in step 16 that I DALPAVE I> RDALRC, the process proceeds to step 21, in which the above-mentioned stop flag FSP is set to 1 and the delay period of the second air-twist ratio correction amount setting update stop is measured. After resetting the COUNT value to 0, the proportional amount PH0S is not updated and the previous value (the search value in the case of performing the learning described above) without going through steps 16 to 20. ) Is fixed to.
  • step 17 If it is determined in step 17 that the stop flag FSP has been set, the process proceeds to step 22, counts up the above-mentioned count COUNT, and then proceeds to step 23 to set the predetermined value COUNT. Compare with the count value COUNT ⁇ G0UNT. In the case of, the process proceeds to step 24 without updating and learning of the proportional amount PH0S.
  • the predetermined value COUNTo is First air-fuel ratio of the second air-fuel ratio sensor 21 by the air-fuel ratio sensor 19 1 0 2 be sampled Les temporary capacity of the delay time between the three-way catalyst 20 up to the second air-fuel ratio sensor 21 This is set to correspond to the value obtained by adding the response delay time to the sensor 19.
  • the value obtained by adding the delay time due to the flow of the exhaust gas and the response delay time corresponds to the delay of the detection value of the second air-fuel ratio sensor 21 with respect to the detection value of the first air-fuel ratio sensor 19.
  • the predetermined value COUNT is calculated according to the total value.
  • step 24 the first air-fuel ratio sensor 19 performs a rich / lean determination, and when lean ⁇ rich is reversed, proceeds to step 25, where the air-fuel ratio feedback correction coefficient ALPP for setting the ALPP is set. reference the decreasing direction of the proportional part P R to give the Tutsi when reversing value P R. Is updated with the value obtained by subtracting the proportional correction amount P H0S from. Then updated with the value obtained by subtracting the proportional part P R fuel ratio Fi over Doba' click compensation coefficient ALPP from the current value in step 26.
  • step 27 the proportional amount PL in the increasing direction given when the lean is reversed for setting the air-fuel ratio feedback correction coefficient ALPP is set to the reference value P L.
  • the second air-fuel ratio correction amount P H0S is added to the value. Then updated with the value obtained by adding the proportional amount P L to the current value of step 28 the air-fuel ratio Fi over Doba' click correction factor AL PP.
  • step 13 the output of the first air-fuel ratio sensor 19 is not at the time of inversion. And when it is determined the stomach line Li pitch, the lean determination proceeds to step 29, it decreases the integrated amount I R fuel ratio Fi one Doba' click correction coefficient ALPP proceeds when Li pitch is to step 30 from the current value At the time of lean operation, go to step 31 and update with the value obtained by adding the integral IL.
  • the function of setting the air-fuel ratio feedback correction coefficient ALPP in steps 24 to 31 except for the corrections in steps 25 and 27 is the first air-fuel ratio correction by the first air-fuel ratio sensor 19.
  • Steps 18 and 19 constitute a quantity calculation step or means (in which steps 24 and 29 correspond to the first comparison step or means, and the other steps correspond to the air-fuel ratio feedback correction coefficient calculation step or means).
  • the function of setting the proportional correction amount P H0S in Step 20 constitutes the second air-fuel ratio correction amount calculation step or means (in which Step 18 is the second comparison means and other steps are control constant corrections).
  • the function of jumping from step 18 to step 20 by step 15 to step 17 and step 21 to step 23 to step 24 is the second air-fuel ratio correction amount.
  • Step 23 corresponds to a predetermined time setting step or means
  • the first air-fuel ratio sensor 19 is compared with the reference value, and the air-fuel ratio feedback is performed by the proportional amount correction amount P H0S.
  • the function of steps 24 to 27 for correcting the correction coefficient ALPP constitutes the air-fuel ratio correction amount calculation step or means (in which, step 24 also serves as the third comparison step or means, and steps 25, 26 Constitutes a control constant correction means).
  • the calculation of the average value of the air-fuel ratio feedback correction coefficient ALPP is the average value of the values including both the first air-fuel ratio correction amount and the second air-fuel ratio correction amount. Since the influence of the proportional correction amount P H0S, which is the air-fuel ratio correction amount, can be ignored in the calculation of the average value for determining the transient operation, sufficient accuracy can be obtained as it is.
  • the air-fuel ratio feedback control based on the detection value of the first air-fuel ratio sensor 19 is used as the basis, and the proportional amount of the air-fuel ratio feedback correction coefficient is used as the second air-fuel ratio.
  • the integral may be similarly corrected.
  • the first air-fuel ratio feedback correction coefficient as the first air-fuel ratio correction amount and the second air-fuel ratio feedback amount as the second air-fuel ratio correction amount are obtained by proportional integration control or the like by the respective air-fuel ratio sensors.
  • a method may be used in which an air-fuel ratio feedback correction coefficient obtained by setting a correction coefficient and a sum of both values by integration or the like is used.
  • the second air-fuel ratio sensor detects the deviation of the air-fuel ratio
  • the first air-fuel ratio feedback correction coefficient is calculated.
  • the deviation of the air-fuel ratio can be corrected by the final air-fuel ratio correction amount determined by the product of the air-fuel ratio and the second air-fuel ratio correction coefficient.
  • the final air-fuel ratio correction amount is calculated by adjusting the reference value used for calculating the air-fuel ratio feedback correction coefficient as the first air-fuel ratio correction amount by the second air-fuel ratio correction amount. It is good also as a method of doing.
  • the determination result is corrected by correcting the reference value with the second air-fuel ratio correction amount. By making the correction, the deviation of the air-fuel ratio can be finally corrected.
  • the delay time from when the magnitude relationship between the output value of the first air-fuel ratio sensor and the reference value is inverted by the second air-fuel ratio correction amount to when the addition / subtraction operation using the control constant is inverted is set.
  • a method of calculating the final air-fuel ratio correction amount by performing addition / subtraction correction may be employed.
  • the detection value of the first air-fuel ratio sensor is inverted by the second air-fuel ratio correction amount.
  • the delay time until the first air-fuel ratio correction amount is reversed is corrected, so that the deviation of the air-fuel ratio can be finally corrected.
  • an air-fuel ratio sensor is provided upstream and downstream of an exhaust purification catalyst device, and air-fuel ratio feedback control is performed based on detection values of both air-fuel ratio sensors. Since the transient operation state is detected based on the change in the average value of the i-th air-fuel ratio correction amount, the transient operation with a low level can be detected with high accuracy and high response, and the transient operation state due to the detected transient operation can be detected.
  • the air-fuel ratio based on the second air-fuel ratio correction amount during transient operation Since the effect of the ratio deviation can be eliminated and good air-fuel ratio feedback control can be maintained, the function of reducing the emission of pollutants such as C ⁇ , HC, and NOx can be enhanced as much as possible. Also, transient operation performance can be maintained well.
  • the air-fuel ratio control device for an internal combustion engine has improved responsiveness during transient operation, and particularly when applied to an internal combustion engine for a vehicle, the acceleration / deceleration performance of the vehicle is improved, and Because of its excellent exhaust gas purification performance, it can greatly contribute to improving environmental conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

明 糸田 書
内燃機関の空燃比制御方法及び装置
〈技術分野〉
本発明は、 内燃機関の空燃比を制御する装置に関し、 特に空燃比 センサを排気浄化触媒装置の上流側及び下流側に備え、 これら 2つ の空燃比センサの検出値に基づいて空燃比を高精度にフィ ー ドバッ ク制御する方法及び装置に関する。
く背景技術〉
従来の一般的な内燃機関の空燃比制御装置としては例えば特開平 1 - 1 3 4 7 4 9号公報に示されるようなものがある。
このものの概要を説明すると、 機関の吸入空気流量 Q及び回転数 Nを検出してシリ ンダに吸入される空気量に対応する基本燃料供給 量 T P ( = Κ · Q / N ; Kは定数) を演算し、 この基本燃料供給量 Τ Ρ を機関温度等により捕正したものを排気中酸素濃度の検出によ つて混合気の空燃比を検出する空燃比センサ (酸素センサ) からの 信号によって設定される空燃比フィ一ドバッ ク補正係数 (空燃比補 正量) を用いてフィ ー ドバッ ク補正を施し、 バッテリ電圧による補 正等をも行って最終的に燃料供給量 Τ , を設定する。
そして、 このようにして設定された燃料供給量 Τ , に相当するパ ルス巾の駆動パルス信号を所定タイ ミ ングで燃料噴射弁に出力する ことにより、 機関に所定量の燃料を噴射供給するようにしている。 上記空燃比センサからの信号に基づく空燃比フィ一ドバッ ク補正 は空燃比を目標空燃比 (理論空燃比) 付近に制御するように行われ る。 これは、 排気系に介装され、 排気中の C O , H C (炭化水素) を酸化すると共に Ν〇χ を還元して浄化する排気浄化触媒装置 (三 元触媒) の転化効率 (浄化効率) が理論空燃比燃焼時の排気状態で 有効に機能するように設定されているからである。
前記、 空燃比センサの発生起電力 (出力電圧) は理論空燃比近傍 で急変する特性を有しており、 この出力電圧 V。 と理論空燃比相当 の基準電圧 (スライスレベル) S Lとを比較して混合気の空燃比が 理論空燃比に対してリ ッチかリーンかを判定する。 そして、 例えば 空燃比がリーン (リ ッチ) の場合には、 前記基本燃料洪給量 T P に 乗じる空燃比フィ一ドバッ ク補正係数 ALPPをリーン (リ ッチ) に転 じた初回に大きな比例分 Ρを増大 (減少) した後、 所定の積分分 I ずつ徐々に増大 (減少) していき燃料供給量 Ί\ を増量 (減量) 補 正することで空燃比を目標空燃比 (理論空燃比) 近傍に制御する。 尚、 比例分を省略した積分制御で空燃比フィ一ドバッ ク補正係数 AL ΡΡを設定するものもある。
ところで、 上記のような通常の空燃比フィ一ドバック制御装置で は 1個の空燃比センサを応答性を高めるため、 できるだけ燃焼室に 近い排気マ二ホールドの集合部分に設けているが、 この部分は排気 温度が高いため空燃比センサが熱的影響や劣化により特性が変化し 易く、 また、 気筒毎の排気の混合が不十分であるため全気筒の平均 的な空燃比を検出しにく く空燃比の検出精度に難があり、 引いては 空燃比制御精度を悪く していた。
この点に鑑み、 排気浄化触媒装置の下流側にも空燃比センサを設 け、 2つの空燃比センサの検出値を用いて空燃比をフィ一ドバック 制御するものが提案されている (特開昭 6 1 — 2 3 7 8 5 2号公報 参照) 。
即ち、 下流側の空燃比センサは燃焼室から離れているため応答性 には難があるが、 排気浄化触媒装置の下流であるため、 排気成分バ ラ ンスの影響 ( c〇, H C, N O x , C 0 2 等) を受け難く、 排気 中の毒性成分による被毒量が少ないため被毒による特性変化も受け にく く、 しかも排気の混合状態がよいため全気筒の平均的な空燃比 を検出できる等上流側の空燃比センサに比較して、 高精度で安定し た検出性能が得られる。
そこで、 2つの空燃比センサの検出値に基づいて前記同様の演算 によって夫々設定される 2つの空燃比フィ ー ドバッ ク補正係数を組 み合わせたり、 或いは上流側の空燃比センサにより設定される空燃 比フィー ドバッ ク補正係数の制御定数( 比例分や積分分) 、 上流側 の空燃比センサの出力電圧の比較電圧や遅延時間を補正するこ と等 によって上流側空燃比センサの出力特性のばらつきを下流側の空燃 比センサによって補償して高精度な空燃比フィ一ドバッ ク制御を行 うようにしている。
また、 このものでは過渡運転時 (加減速時) は上流側の空燃比セ ンサによる空燃比フィ ー ドバッ ク制御の応答遅れにより、 空燃比変 化が大き く、 この間にも下流側の空燃比センサによる空燃比フィ一 ドバッ ク制御を行う と、 空燃比が過補正されてしまう。 例えば、 加 速時には下流側の空燃比センサによる空燃比フィ一ドバッ ク制御に よってリ ツチ側に過補正される結果、 加速終了後に目標空燃比への 戻りに遅れがおとき く、 最悪の場合には空燃比が大き く発散して、 その間燃費の悪化, 排気ェミ ッ ショ ンの悪化, 出力の悪化等を招く こととなる。
このため、 スロッ トル弁が全閉か否か、 或いはスロ ッ トル弁開度, 吸入空気流量, 吸入空気圧, 機関回転数, 車速の何れかの変化率が 所定値以上か否かを判定して過渡運転を検出し、 過渡運転検出時に は下流側空燃比センサによる空燃比フィ一ドバッ ク制御を停止して 過補正の防止を図っている。
しかしながら、 上記のように下流側の空燃比センサによる空燃比 フィー ドバック制御を停止する過渡運転の判定方式では、 過渡の程 度が大きい時には有効であるが、 空燃比フィ一ドバッ ク補正係数の 反転が十分可能な程度の過渡の程度が低い運転状態の検出は、 精度 が低く検出の遅れ時間も大きいため良好な検出性能が得られず、 空 燃比の過補正を防止できるものではなかった。
本発明は、 このような従来の問題点に鑑みなされたもので、 上流 側の空燃比センサの出力を監視しつつ下流側の空燃比センサによる 空燃比フィー ドバック制御の実行, 停止を決めることにより、 過渡 運転時の空燃比の過捕正を防止することを目的とする。
そして、 定常運転時のみならず、 過渡運転時にも空燃比を適正に 制御できるようにすることを目的とする。
また、 空燃比の適正な制御で、 C O, H C , N O X等の汚染物質 の排出量を低減することを目的とする。
更に、 空燃比の適正な制御で、 過渡運転性能も良好に維持できる ようにすることを目的とする。
〈発明の開示〉
上記目的を達成するための本発明は、
内燃機機関の排気通路に備えられた排気浄化触媒装置の上流側及 び下流側に夫々設けられ、 空燃比によって変化する排気中特定気体 成分の濃度に感応して出力値が変化する第 1及び第 2の空燃比セン ザと、 を備える一方、 前記第 1 の空燃比センサの出力値に応じて第 1 の空燃比補正量を 演算する第 1 の空燃比補正量演算ステツプ又は手段と、
前記第 2の空燃比センサの出力に基づいて第 2の空燃比補正量を 演算する第 2の空燃比補正量演算ステツプ又は手段と、
前記第 1 の空燃比補正量と、 第 2の空燃比補正量と、 に基づいて 最終的な空燃比補正量を演算する空燃比補正量演算ステツプ又は手 段と、
前記最終的な空燃比補正量に基づいて空燃比を目標空燃比にフィ 一ドバッ ク制御する空燃比フイー ドバッ ク制御ステップ又は手段と、 を含んで構成される内燃機関の空燃比制御方法及び装置において、 前記第 1 の空燃比センサによる第 1 の空燃比補正量の平均値を演 算する平均値演算ステツブ又は手段と、
前記第 1 の空燃比補正量の平均値の変化量が所定値を超えた場合 は、 超えてから所定値以内に戻って所定時間経過するまでの間、 前 記空燃比補正量設定手段における空燃比補正量の演算に際して第 2 の空燃比補正量を所定値に固定する第 2の空燃比補正量固定ステッ プ又は手段と、 備えて構成した。
かかる構成において、 第 1 の空燃比補正量設定手段は、 第 1 の空 燃比センサからの検出値に基づいて、 第 1 の空燃比補正量を設定し. 第 2の空燃比補正量設定手段は、 第 2の空燃比センサからの検出値 に基づいて、 第 2の空燃比補正量を演算する。
そして、 前記第 1 の空燃比補正量の平均値が所定値以下である場 合には、 第 1 及び第 2の空燃比センサからの検出値に基づいて設定 された第 1 の空燃比補正量及び第 2の空燃比補正量とによって最終 的な空燃比補正量を演算する。 また、 前記第 1 の空燃比補正量の平均値の変化量が所定値を超え た場合は、 第 2の空燃比補正量固定ステップ又は手段により、 超え た時点から再び所定値以内に戻って所定時間を柽過する時点までの 間は、 第 2の空燃比補正量を所定値に固定し、 この固定された第 2 の空燃比補正量と、 第 1 の空燃比補正量とに基づいて空燃比補正量 演算ステツプ又は手段により最終的な空燃比補正量を演算する。
このようにすれば、 第 1 の空燃比補正量及び第 2の空燃比補正量 によって演算された最終的な空燃比捕正量により空燃比が制御され るため、 排気成分の影響や劣化による特性の変化を生じにく く、 定 常運転時に、 従来同様高精度で安定した空燃比フィ一ドバッ ク制御 が行われる。
また、 第 1 の空燃比補正量の平均値の変化量によって過渡運転を 検出することにより、 程度の低い過渡運転も高精度で応答良く検出 することができ、 該検出された過渡運転時及びその影響による第 2 の空燃比センサの応答遅れ時間分だけ第 2の空燃比の空燃比補正量 を固定して最終的な空燃比補正量が演算されるため、 過渡運転時の 第 2の空燃比補正量に基づく補正による空燃比のズレの影響を可及 的に取り除く ことができ、 過渡運転時にも良好な空燃比フィ一ドバ ッ ク制御を行える。
その結果、 定常運転時は勿論、 過渡運転時も空燃比を適正に制御 できるため、 C O , H C , N〇 X等の汚染物質の排出量を可及的に 低減しつつ、 良好な過渡運転 (加減速) 性能を確保できる。
また、 第 1 の空燃比センサ及び第 2の空燃比センサは、 一般的に は排気中の酸素濃度に感応して空燃比を検出する酸素センサを用い ればよい。 前記酸素センサを用いた場合、 前記第 2の空燃比補正量固定ステ ップ又は手段における前記所定時間は、 具体的には排気が第 1 の空 燃比センサから第 2の空燃比センサに至るまでの遅れ時間と、 前記 排気浄化触媒装置の 0 2 ス ト レージ容量分による第 2の空燃比セン ザの第 1 の空燃比センサに対する応答遅れ時間とを合わせた値に相 当して設定するのがよい。
即ち、 過渡運転時には前記排気の流動による遅れ時間と応答遅れ 時間とを合わせた値が、 第 1 の空燃比センサの検出値に対する第 2 の空燃比センサの検出値の遅れとなってあらわれるから、 その時間 分は第 2の空燃比補正量を固定することによって、 該遅れによる第 1 の空燃比補正量の第 2の空燃比補正量による過補正の影響を高精 度に回避できる。
また、 前記第 1 の空燃比補正量演算ステップ又は手段は、 第 1 の 空燃比センサの出力値と基準値との大小を比較しつつ、 制御定数を 用いた加減演算によって第 1 の空燃比補正量を演算し、 第 2の空燃 比補正量演算ステツプ又は手段は、 前記第 1 の空燃比補正量の演算 で使用される制御定数を補正するための補正量を第 2の空燃比セン ザの出力値と基準値との大小を比較しつつ加減補正して第 2の空燃 比補正量として演算し、 空燃比補正量演算ステップ又は手段は、 第 1 の空燃比センサの出力値と基準値との大小を比較しつつ、 第 2の 空燃比補正量によって第 1 の空燃比補正量における制御定数を加減 補正する構成としてもよい。 その場合、 前記第 2の空燃比補正量に よって補正される第 1 の空燃比補正量の制御定数は、 比例分又は積 分分とすればよい。
これにより、 第 1 の空燃比センサの検出値がずれて、 第 1 の空燃 比補正量により補正される空燃比がリ ツチ (リーン) 側にずれてく ると、 第 2の空燃比センサが排気下流側で該リ ツチ (リ ーン) 傾向 を検出し、 第 1 の空燃比補正量演算用の比例分又は積分分をリ一ン (リ ツチ) 側に補正するように第 2の空燃比補正量が演算されるこ とにより、 最終的に空燃比のずれを捕正できる。
また、 前記各種の空燃比制御方式に対して、 空燃比フィードバッ ク制御ステップ又は手段は、 例えば、 機関運転伏態に基づいてシリ ンダ吸入空気量に対応して設定された基本燃料供給量を、 前記空燃 比補正量演算ステツプ又は手段によって演算された最終的な空燃比 補正量によってフィ一ドバッ ク補正する。
これにより、 基本燃料供給量を基本とした空燃比フィ一ドバッ ク 補正が行われるので、 空燃比補正量の変動幅を小さくでき、 基本的 に空燃比の変動を抑制できる。
〈図面の簡単な説明〉
第 1図は本発明の構成を示すプロ ック図である。
第 2図は本発明の一実施例の構成を示す図である。
第 3図は同上実施例の燃料噴射量設定ルーチンを示すフローチヤ 一トである。
第 4図は同じく空燃比フィ一ドバッ ク補正係数設定ルーチンを示 すフローチヤ一トである。
第 5図は同上実施例による空燃比フィ一ドバッ ク制御時の各部の 状態を示す線図である。
〈実施例〉
既述した本発明に係る内燃機関の空燃比制御装置は、 第 1 図に示 した各ステップ又は手段により構成される。 また、 内燃機関の空燃 比制御装置の実施例の構成及び作用が第 2図〜第 5図に示される。 一実施例の構成を示す第 2図において、 機関 1 1の吸気通路 12には 吸入空気流量 Qを検出するエアフローメ一夕 1 3及びアクセルペダル と連動して吸入空気流量 Qを制御する絞り弁 14が設けられ、 下流の マ二ホール ド部分には気筒毎に電磁式の燃料噴射弁 1 5が設けられる。 燃料噴射弁 1 5は、 マイクロコンピュータを内蔵したコン トロール ュニッ ト 1 6からの噴射パルス信号によって開弁駆動し、 図示しない 燃料ポンプから圧送されてプレツ シャ レギユ レ一夕により所定圧力 に制御された燃料を噴射供給する。 更に、 機関 1 1の冷却ジャケッ ト 内の冷却水温度 T wを検出する水温センサ 1 7が設けられる。 一方、 排気通路 18にはマ二ホール ド集合部に排気中酸素濃度を検出するこ とによって吸入混合気の空燃比を検出する第 1 の空燃比センサ 1 9が 設けられ、 その下流側の排気管に排気中の C 0 , H Cの酸化と N〇 x の還元を行って浄化する排気浄化触媒装置としての三元触媒 20が設 けられ、 更に該三元触媒 20の下流側に第 1 空燃比センサと同一の機 能を持つ第 2の空燃比センサ 21が設けられる。
また、 第 2図で図示しないディス ト リ ビュー夕には、 クランク角 センサ 22が内蔵されており、 該クランク角センサ 22から機関回転と 同期して出力されるクランク単位角信号を一定時間カウン ト して、 又は、 クランク基準角信号の周期を計測して機関回転数 Nを検出す る
次に、 コン トロールュニッ ト 1 6による空燃比制御ル一チンを第 2 図及び第 3図のフローチャー トに従って説明する。 第 3図は燃料噴 射量設定ルーチンを示し、 このルーチンは所定周期 (例えば 1 0ms ) 毎に行われる。 ステップ (図では S と記す) 1では、 エアフローメータ 13によつ て検出された吸入空気流量 Qとクランク角センサ 24からの信号に基 づいて算出した機関回転数 Nとに基づき、 単位回転当たりの吸入空 気量に相当する基本燃料噴射量 T P を次式によって演算する。
TP =K x Q/N ( Kは定数)
ステップ 2では、 水温センサ 17によつて検出された冷却水温度 Τ w等に基づいて各種補正係数 C 0 E Fを設定する。
ステップ 3では、 後逑する空燃比フィ一ドバック捕正係数設定ル 一チンにより設定された空燃比フィ― ドバッ ク補正係数 ALPPを読み 込 。
ステップ 4では、 バッテリ電圧値に基づいて電圧補正分 T S を設 定する。 これは、 バッテリ電圧変動による燃料噴射弁 15の噴射流量 変化を補正するためのものである。
ステップ 5では、 最終的な燃料噴射量 (燃料供給量) T , を次式 に従って演算する。
T I = T P X C 0 E F XALPP+ T S
ステップ 6では、 演算された燃料噴射弁 T , を出力用レジスタに セッ トする。
これにより、 予め定められた機関回転同期の燃料噴射タイ ミ ング になると、 演算した燃料噴射量 T , のパルス巾をもつ駆動パルス信 号が燃料噴射弁 15に与えられて燃料噴射が行われる。
このようにステップ 3で読み込んだ空燃比フィ一ドバック補正係 数 ALPPを用いて燃料供給量を設定することにより、 空燃比を目標空 燃比に制御する上記ルーチンが、 空燃比フィ一ドバッ ク制御ステツ プ又は手段を構成する。 次に、 空燃比フイ ー ドバッ ク補正係数設定ルーチンを第 4図に従 つて説明する。 このルーチンは機関回転に同期して実行される。 ステップ 1 1では、 空燃比のフィ ー ドバッ ク制御を行う運転条件で あるか否かを判定する。 運転条件を満たしていないときには、 この ルーチンを終了する。 この場合、 空燃比フィ ー ドバッ ク補正係数 AL PPは前回の空燃比フィ一ドバッ ク制御終了時の値若しく は一定の基 準値にクランプされ、 空燃比フィ一ドバッ ク制御は停止される。
ステップ 12では、 第 1 の空燃比センサ 19からの信号電圧 V 0 2及び 第 2の空燃比センサ 21からの信号電圧 V ' 0 2を入力する。
ステップ 13では、 ステップ 1 1で入力した信号電圧 V 0 2と目標空燃 比 (理論空燃比) 相当の基準値 S Lとを比較し、 空燃比がリーンか らリ ツチ又はリ ツチからリーンへの反転時か否かを判定する。
反転時と判定されたときはステツプ 14へ進み、 現在の空燃比フィ ― ドバック補正係数 ALPP。 と前回の第 1 の空燃比センサ 19で検出さ れた空燃比反転時の空燃比フィ一ドバッ ク補正係数 ALPP- ,との平均 値 ALPAVE。(= { ALPP o + ALPP } /2) を演算する。
ステップ 15では、 前記演算された平均値 ALPAVE。 と前回の平均値 ALPP- ,との偏差 DALPAVE 即ち平均値 ALPAVE。 の変化量を演算する。
ステツプ 16では、 ステツブ 15で演算された平均値の偏差の絶対値 I DALPAVE I と過渡運転判定用の正の基準値 RDALRCとを比較する。 そして、 I DALPAVE I ≤RDALRCと判定された時には、 過渡運転で はないと判断してステップ 17へ進み、 第 2の空燃比センサ 21による 第 2の空燃比補正量 (後述する空燃比フィ一ドバッ ク補正係数 P H0 S ) の設定更新を停止させる停止フラグ FSP がセッ トされているか 否かを判定する。 そして、 停止フラグ FSP がセッ 卜されていない時にはステップ 18 へ進み、 第 2の空燃比センサ 21からの信号電圧 V' 02と目標空燃比 (理論空燃比) 相当の基準値とを比較する。
そして、 空燃比がリ ッチ (V' 02> S L) と判定されたときには ステップ 19へ進み、 前回の比例分補正量 PH0S -! (又は機関回転数 N. 基本燃料噴射量 TP 等で区分された運転領域毎に比例分補正量 をそのまま若しく は加重平均等の学習を行って記憶しておき、 対応 する運転領域から検索して得た値) から所定値 DPH0S を差し引いた 値を新たな比例分補正量 PH0S として更新設定した後、 ステップ 24 へ進む。
また、 空燃比がリーン (V' 02< S L) と判定されたときにはス テツプ 20へ進み、 同様にして得た比例分補正量 PH0S に所定値 DP H0S を加算した値を新たな比例補正量 PH0S として更新設定した後、 ステツプ 24へ進む。
また、 ステップ 16で I DALPAVE I > RDALRCと判定された時には、 ステツプ 21へ進み、 前述の停止フラグ FSP を 1 にセッ トすると共に 第 2の空撚比補正量の設定更新停止の遅延期間を計測するカウン夕 COUNT の値を 0 リセッ トした後、 ステツブ 16〜ステツプ 20を経由す ることなく、 比例分捕正量 PH0S は更新されることなく、 前回値 (前述の学習を行う場合は検索値) に固定される。
また、 ステップ 17で停止フラグ FSP がセッ 卜されていると判定さ れた時にはステップ 22へ進み、 前述のカウン夕 COUNT の値をカウン トアップした後、 ステップ 23へ進んで所定値 COUNT。と比較しカウン ト値 COUNT ≤G0UNT。の場合は、 比例分捕正量 PH0S の更新, 学習を 行うことなくステップ 24へ進む。 ここで、 所定値 COUNToは排気が第 1 の空燃比センサ 19から第 2の空燃比センサ 21に至るまでの遅れ時 間と三元触媒 20の 0 2 ス ト レ一ジ容量分による第 2の空燃比センサ 21の第 1 の空燃比センサ 19に対する応答遅れ時間とを合わせた値に 相当して設定されている。
前述したように、 過渡運転時には前記排気の流動による遅れ時間 と応答遅れ時間とを合わせた値が、 第 1 の空燃比センサ 19の検出値 に対する第 2の空燃比センサ 21の検出値の遅れとなってあらわれる ので、 その合計値に応じて前記所定値 COUNT。を設定して第 2の空燃 比補正量 (P H0S ) を固定するこ とによって、 該遅れによる第 1 の 空燃比補正量 (Aし PP) の第 2の空燃比補正量による過補正の影響を 高精度に回避できる。
一方、 カウン ト値 COUNT > COUNT 。 の場合にはステップ 24へ進み、 比例分補正量 P H0S の設定更新を再開する。
ステツプ 24では、 第 1 の空燃比センサ 19による リ ッチ, リーン判 定を行い、 リーン→リ ッチの反転時にはステップ 25へ進んで、 空燃 比フィ ー ドバッ ク補正係数 ALPP設定用のリ ツチ反転時に与える減少 方向の比例分 P R を基準値 P R。から前記比例分補正量 P H0S を減少 した値で更新する。 次いで、 ステップ 26で空燃比フィ ー ドバッ ク補 正係数 ALPPを現在値から前記比例分 P R を減じた値で更新する。
又、 リ ッチ→リーンの反転時にはステツプ 27へ進み、 空燃比フィ 一ドバッ ク補正係数 ALPP設定用のリ一ン反転時に与える増加方向の 比例分 P L を基準値 P L。に第 2の空燃比補正量 P H0S を加算した値 で更新する。 次いで、 ステップ 28空燃比フィ ー ドバッ ク補正係数 AL PPを現在値に前記比例分 P L を加算した値で更新する。
また、 ステップ 13で第 1 の空燃比センサ 19の出力が反転時でない と判定された時には、 ステップ 29へ進んでリ ッチ, リーン判定を行 い、 リ ッチ時はステツプ 30へ進んで空燃比フィ一ドバッ ク補正係数 ALPPを現在値から積分分 I R を減少した値で更新し、 リーン時はス テツプ 31へ進んで積分分 I L を加算した値で更新する。
ここで、 ステップ 24〜ステップ 31の部分でステップ 25, ステップ 27による補正を除いて空燃比フィ一ドバッ ク補正係数 ALPPを設定す る機能が第 1 の空燃比センサ 19による第 1 の空燃比補正量演算ステ ップ又は手段を構成し (その中、 ステップ 24, 29が第 1 の比較ステ ップ又は手段、 その他のステツプが空燃比フィ一ドバック補正係数 演算ステップ又は手段に相当) 、 ステップ 18〜ステップ 20で比例分 補正量 P H0S を設定する機能が第 2の空燃比補正量演算ステツプ又 は手段を構成し (その中、 ステップ 18が第 2の比較手段, その他の ステップが制御定数補正量演算ステップ又は手段に相当) 、 ステツ プ 15〜; 17及びステツプ 21〜ステツプ 23によりステップ 18〜ステップ 20をジャンプしてステツプ 24に至る機能が第 2の空燃比補正量固定 ステップ又は手段を構成し (その中、 ステップ 23は所定時間設定ス テツプ又は手段に相当) 、 第 1空燃比センサ 19と基準値とを比較し つつ、 比例分補正量 P H0S によって空燃比フィードバック補正係数 ALPPを捕正するステツプ 24〜ステツプ 27の機能が空燃比補正量演算 ステップ又は手段を構成する (その中、 ステップ 24は、 第 3の比較 ステップ又は手段の構成を兼ね、 ステップ 25, 26が制御定数補正手 段を構成する) 。
かかる構成とすれば、 程度の低い過渡運転も空燃比フィ一ドバッ ク補正係数の平均値の変化量の大きさに基づいて高精度で応答良く 検出することができ、 該検出された過渡運転時及びその影響による 第 2の空燃比センサ 21の応答遅れ時間分だけ比例分補正量 P H0 S を 固定して空燃比フィ一ドバッ ク補正係数 ALPPを設定するため、 過渡 運転時の比例分補正による空燃比のずれの影響を可及的に取り除く こ とができ、 良好な空燃比フィ一ドバッ ク制御を維持できる。 ここ で空燃比フィ一ドバッ ク補正係数 ALPPの平均値の演算は第 1 の空燃 比補正量と第 2の空燃比補正量との双方を含んだ値の平均値である が、 第 2の空燃比補正量である比例分補正量 P H0S の影響は過渡運 転判定のための平均値の演算には無視できるので、 そのまま使用し て十分な精度を得られる。
尚、 本実施例では第 1 の空燃比センサ 1 9の検出値に基づく空燃比 フィ ー ドバッ ク制御を基調としつつ、 その空燃比フィ一ドバッ ク補 正係数の比例分を第 2の空燃比センサの検出値に基づいて補正する ものに適用した例を示したが、 積分分を同様に補正してもよい。 また、 夫々の空燃比センサによって比例積分制御等により第 1 の 空燃比補正量としての第 1 の空燃比フィ一ドバッ ク補正係数と第 2 の空燃比補正量としての第 2の空燃比フィー ドバッ ク補正係数とを 設定し、 双方の値を積算等により合成して得た空燃比フィ ー ドバッ ク補正係数を使用する方式としてもよい。
この方式においても、 第 1 の空燃比センサの検出値のずれに伴い 第 1 の空燃比フィ一ドバッ ク補正係数にずれを生じると、 第 2の空 燃比センサが空燃比のずれを検出し、 第 2の空燃比フィ一ドバッ ク 補正係数は第 1 の空燃比フィ一ドバッ ク補正係数による空燃比のず れを補正する方向に演算されるので、 第 1 の空燃比フィ一ドバッ ク 補正係数と第 2の空燃比補正係数との積とで定まる最終的な空燃比 補正量により、 該空燃比のズレを補正できる。 また、 第 2の空燃比補正量によって第 1 の空燃比補正量としての 空燃比フィ一ドバッ ク補正係数の演算に用いられる基準値を加減補 正することによって最終的な空燃比補正量を演算する方式としても よい。
この方式においても、 第 1 の空燃比センサの検出値のずれに伴い 空燃比フィ一ドバッ ク補正係数がずれてく ると、 第 2の空燃比補正 量によって基準値を補正することによって判定結果を補正すること により、 最終的に空燃比のずれを補正できる。
また、 第 2の空燃比捕正量によって、 第 1 の空燃比センサの出力 値と基準値との大小関係が反転してから制御定数を用いた加減演算 の加減を反転させるまでの遅延時間を加減補正することによって最 終的な空燃比補正量を演算する方式としてもよい。
この方式においても、 第 1 の空燃比センサの検出値のずれに伴い 空燃比フィ一ドバック補正係数がずれてく ると、 第 2の空燃比補正 量によって第 1 の空燃比センサの検出値が反転した時に第 1 の空燃 比捕正量を反転させるまでの遅延時間が補正されることによって最 終的に空燃比のズレを補正できる。
以上説明したように本発明によれば、 排気浄化触媒装置の上流側 及び下流側に空燃比センサを備え、 これら両空燃比センサの検出値 に基づいて空燃比フイー ドバッ ク制御を行う ものにおいて、 第 i の 空燃比補正量の平均値の変化量によって過渡運転状態を検出したた め、 程度の低い過渡運転も高精度で応答良く検出することができ、 該検出された過渡運転の影響による第 2の空燃比センサの応答遅れ 時間分だけ第 2の空燃比補正量を固定して最終的な空燃比補正量を 演算設定するため、 過渡運転時の第 2の空燃比補正量に基づく空燃 比のずれの影響を取り除く ことができ、 良好な空燃比フィ 一 ドバッ ク制御を維持できるため、 C〇, H C , N O x等の汚染物質の排出 量の低減機能を可及的に高められると共に、 過渡運転性能も良好に 維持できるものである。
〈産業上の利用可能性〉
以上のように、 本発明に係る内燃機関の空燃比制御装置は、 過渡 運転時の応答性が向上し、 特に、 車両用内燃機関に適用した場合に は車両の加減速性能が向上し、 かつ排気浄化性能にも優れるため、 環境条件の改善にも多いに寄与できるものである。

Claims

言青求 の 箪 囲
(1) 機関の排気通路に備えられた排気浄化触媒装置の上流側の排 気通路に設けられ、 空燃比によって変化する排気中特定気体成分の 濃度に感応して出力値が変化する第 1 の空燃比センサからの出力値 に応じて第 1 の空燃比補正量を演算する第 1 の空燃比補正量演算ス テツプと、
前記排気浄化触媒の下流側の排気通路に設けられ、 空燃比によつ て変化する排気中特定気体成分の濃度に感応して出力値が変化する 第 2の空燃比センサからの出力値に応じて第 2の空燃比補正量を演 算する第 2の空燃比補正量演算ステツプと、
これら第 1 の空燃比補正量と第 2の空燃比補正量とに基づいて最 終的な空燃比捕正量を演算する空燃比補正量演算ステツプと、
前記最終的な空燃比補正量に基づいて空燃比を目標空燃比にフィ 一ドバッ ク制御する空燃比フィ一ドバック制御ステツプと、 を含む内燃機関の空燃比制卸方法において、
前記第 1 の空燃比補正量の平均値を演算する平均値演算ステツプ と、
前記第 1 の空燃比補正量の平均値の変化量が所定値を超えた場合 は、 超えた時点から再び所定値以内に戻って所定時間経過する時点 までの間、 前記空燃比補正量演算ステツプにおける空燃比補正量の 演算に際して第 2の空燃比捕正量を所定値に固定する第 2の空燃比 補正量固定ステツプと、 を含んだことを特徴とする内燃機関の空燃 比制御方法。
(2) 前記第 2の空燃比補正量固定ステップは、 前記所定時間を、 排気が第 1 の空燃比センサから第 2の空燃比センサに至るまでの遅 れ時間と、 前記排気浄化触媒装置の〇 2 ス ト レージ容量分による第 2の空燃比センサの第 1 の空燃比センサに対する応答遅れ時間とを 合わせた値に相当する値に設定する所定時間設定ステツプを含んで なる請求項 1 に記載の内燃機関の空燃比制御方法。
(3) 前記第 1 の空燃比補正量演算ステップは、 前記第 1 の空燃比 センサの出力値と予め設定された基準値との大小を比較する第 1 の 比較ステップと、 該第 1 の比較ステップの比較結果に応じて、 制御 定数を用いた加減演算によって第 1 の空燃比補正量としての空燃比 フィ ー ドバッ ク補正係数を演算する空燃比フィ一ドバッ ク補正係数 演算ステップとからなり、 前記第 2の空燃比補正量演算ステツプは 、 第 2の空燃比センサの出力値と基準値との大小を比較する第 2の 比較ステップと、 該第 2の比較ステツプの比較結果に応じて前記第 1 の空燃比補正量の演算で使用される制御定数を補正するための補 正量を加減補正して第 2の空燃比補正量として演算する制御定数補 正量演算ステツプとからなり、 前記空燃比補正量演算ステツプは、 前記第 1 の空燃比センサの出力値と基準値との大小を比較する第 3 の比較ステップと、 前記第 2の空燃比補正量により前記第 1 の空燃 比補正量における制御定数を加減補正することによって空燃比補正 量を演算する制御定数補正ステツプとからなることを特徴とする請 求項 1 に記載の内燃機関の空燃比制御装置。
(4) 機関の排気通路に備えられた排気浄化触媒装置の上流側及び 下流側の排気通路に夫々設けられ、 空燃比によって変化する排気中 特定気体成分の濃度に感応して出力値が変化する第 1 及び第 2の空 燃比センサと、
前記第 1 の空燃比センサの出力値に応じて第 1 の空燃比補正量を 演算する第 1 の空燃比補正量演算手段と、
前記第 2の空燃比センサの出力に基づいて第 2の空燃比補正量を 演算する第 2の空燃比補正量演算手段と、
前記第 1 の空燃比補正量と、 第 2の空燃比補正量と、 に基づいて 最終的な空燃比補正量を演算する空燃比補正量演算手段と、
前記最終的な空燃比補正量に基づいて空燃比を目標空燃比にフィ ―ドバック制御する空燃比フィ一ドバック制御手段と、
を含んで構成される内燃機関の空燃比制御装置において、 前記第 1 の空燃比センサによる第 1 の空燃比補正量の平均値を演 算する平均値演算手段と、
前記第 1 の空燃比補正量の平均値の変化量が所定値を超えた場合 は、 超えた時点から再び所定値以内に戻って所定時間経過する時点 までの間、 前記空燃比補正量設定手段における空燃比捕正量の演算 に際して第 2の空燃比補正量を所定値に固定する第 2の空燃比補正 量固定手段と、 を備えて構成したことを特徵とする內燃機関の空燃 比制御装置。
(5) 前記第 1 の空燃比センサ及び前記第 2の空燃比センサは、 排 気中の酸素濃度に感応して空燃比を検出する酸素センサである請求 項 4に記載の内燃機関の空燃比制御装置。
(6) 前記第 2の空燃比補正量固定手段は、 前記所定時間を、 排気 が第 1 の空燃比センサから第 2の空燃比センサに至るまでの遅れ時 間と、 前記排気浄化触媒装置の 0 2 ス ト レージ容量分による第 2の 空燃比センサの第 1 の空燃比センサに対する応答遅れ時間とを合わ せた値に相当する値に設定する所定時間設定手段を含んで構成した ことを特徵とする請求項 5に記載の内燃機関の空燃比制御装置。
(7) 前記第 1 の空燃比補正量演算手段は、 前記第 1 の空燃比セン ザの出力値と予め設定された基準値との大小を比較する第 1 の比較 手段と、 該第 1 の比較手段の比較結果に応じて、 制御定数を用いた 加減演算によって第 1 の空燃比補正量としての空燃比フィ一ドバッ ク補正係数を演算する空燃比フィ一ドバッ ク補正係数演算手段とか らなり、 前記第 2の空燃比補正量演算手段は、 前記第 2の空燃比セ ンサの出力値と基準値との大小を比較する第 2.の比較手段と、 該第 2の比較手段の比較結果に応じて前記第 1 の空燃比補正量の演算で 使用される制御定数を補正するための補正量を加減補正して第 2の 空燃比補正量として演算する制御定数補正量演算手段とからなり、 前記空燃比補正量演算手段は、 前記第 1 の空燃比センサの出力値と 基準値との大小を比較する第 3の比較手段と、 前記第 2の空燃比補 正量によって前記第 1 の空燃比補正量における制御定数を加減補正 するこ とによって空燃比補正量を演算する制御定数補正手段とから なることを特徴とする請求項 4 に記載の内燃機関の空燃比制御装置 <
(8) 前記第 2の空燃比補正量によって補正される前記第 1 の空燃 比補正量の制御定数は、 比例分である請求項 7記載の内燃機関の空 燃比制御装置。
(9) 前記第 2の空燃比補正量によって補正される前記第 1 の空燃 比補正量の制御定数は、 積分分である請求項 7記載の内燃機関の空 燃比制御装置。
ο) 前記空燃比フィ ー ドバッ ク制御手段は、 機関運転状態に基づ いてシリ ンダ吸入空気量に対応して設定された基本燃料供給量を、 前記空燃比補正量演算手段によって演算された最終的な空燃比補正 量によってフィ ー ドバッ ク補正するこ とにより空燃比を制御してな る請求項 4 に記載の内燃機関の空燃比制御装置 <
PCT/JP1991/000598 1990-05-01 1991-05-01 Method and system of air-fuel ratio control of internal combustion engine WO1993017231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/111768 1990-05-01
JP2111768A JPH0833127B2 (ja) 1990-05-01 1990-05-01 内燃機関の空燃比制御装置

Publications (1)

Publication Number Publication Date
WO1993017231A1 true WO1993017231A1 (en) 1993-09-02

Family

ID=14569686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000598 WO1993017231A1 (en) 1990-05-01 1991-05-01 Method and system of air-fuel ratio control of internal combustion engine

Country Status (3)

Country Link
US (1) US5168700A (ja)
JP (1) JPH0833127B2 (ja)
WO (1) WO1993017231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376205B1 (en) * 1995-03-27 2002-04-23 University Court Of The University Of Aberdeen Screening methods for agents that modulate or inhibit tau association with tau or map2

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315823A (en) * 1991-02-12 1994-05-31 Nippondenso Co., Ltd. Control apparatus for speedily warming up catalyst in internal combustion engine
DE4125154C2 (de) * 1991-07-30 2001-02-22 Bosch Gmbh Robert Verfahren und Einrichtung zur Lambdasonden-Überwachung bei einer Brennkraftmaschine
JP2917632B2 (ja) * 1991-12-03 1999-07-12 日産自動車株式会社 エンジンの空燃比制御装置
JPH05163974A (ja) * 1991-12-12 1993-06-29 Yamaha Motor Co Ltd 内燃機関の燃料噴射制御装置
US5337555A (en) * 1991-12-13 1994-08-16 Mazda Motor Corporation Failure detection system for air-fuel ratio control system
US5337557A (en) * 1992-02-29 1994-08-16 Suzuki Motor Corporation Air-fuel ratio control device for internal combustion engine
US5379587A (en) * 1992-08-31 1995-01-10 Suzuki Motor Corporation Apparatus for judging deterioration of catalyst of internal combustion engine
US5282360A (en) * 1992-10-30 1994-02-01 Ford Motor Company Post-catalyst feedback control
US5255512A (en) * 1992-11-03 1993-10-26 Ford Motor Company Air fuel ratio feedback control
JP3074975B2 (ja) * 1992-11-04 2000-08-07 スズキ株式会社 内燃機関の触媒劣化判定装置
JP3331650B2 (ja) * 1992-12-28 2002-10-07 スズキ株式会社 内燃機関の空燃比制御装置
JP2880872B2 (ja) * 1993-02-26 1999-04-12 本田技研工業株式会社 内燃機関の気筒群別空燃比制御装置
JP2893308B2 (ja) * 1993-07-26 1999-05-17 株式会社ユニシアジェックス 内燃機関の空燃比制御装置
US5359852A (en) * 1993-09-07 1994-11-01 Ford Motor Company Air fuel ratio feedback control
US5375415A (en) * 1993-11-29 1994-12-27 Ford Motor Company Adaptive control of EGO sensor output
US5392599A (en) * 1994-01-10 1995-02-28 Ford Motor Company Engine air/fuel control with adaptive correction of ego sensor output
FR2740176B1 (fr) * 1995-10-18 1997-11-28 Renault Systeme et procede de double boucle de commande pour moteur a combustion interne
US6253542B1 (en) 1999-08-17 2001-07-03 Ford Global Technologies, Inc. Air-fuel ratio feedback control
JP2002180876A (ja) * 2000-12-07 2002-06-26 Unisia Jecs Corp 内燃機関の空燃比制御装置
JP2010216436A (ja) * 2009-03-18 2010-09-30 Daihatsu Motor Co Ltd 内燃機関の排気ガス再循環制御方法
US8290688B2 (en) * 2009-09-01 2012-10-16 Denso Corporation Exhaust gas oxygen sensor diagnostic method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535181A (en) * 1978-09-05 1980-03-12 Nippon Denso Co Ltd Air fuel ratio control device
JPS61237852A (ja) * 1985-04-13 1986-10-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134749A (ja) * 1987-11-19 1989-05-26 Sanyo Electric Co Ltd ディスクプレーヤ
DE3816558A1 (de) * 1988-05-14 1989-11-16 Bosch Gmbh Robert Verfahren und vorrichtung zur lambdaregelung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535181A (en) * 1978-09-05 1980-03-12 Nippon Denso Co Ltd Air fuel ratio control device
JPS61237852A (ja) * 1985-04-13 1986-10-23 Toyota Motor Corp 内燃機関の空燃比制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376205B1 (en) * 1995-03-27 2002-04-23 University Court Of The University Of Aberdeen Screening methods for agents that modulate or inhibit tau association with tau or map2

Also Published As

Publication number Publication date
JPH0833127B2 (ja) 1996-03-29
US5168700A (en) 1992-12-08
JPH0412151A (ja) 1992-01-16

Similar Documents

Publication Publication Date Title
WO1993017231A1 (en) Method and system of air-fuel ratio control of internal combustion engine
WO1991017349A1 (en) Method of controlling air-fuel ratio in internal combustion engine and system therefor
WO1992004538A1 (en) Method of controlling air-fuel ratio in internal combustion engine and system therefor
JPH07229439A (ja) 内燃機関の空燃比制御装置
JPH0821283A (ja) 内燃機関の空燃比制御装置
JPS63120835A (ja) 内燃機関の空燃比制御装置
JPH03134241A (ja) 内燃機関の空燃比制御装置
JP3203440B2 (ja) 内燃機関の空燃比フィードバック制御装置
JP2676884B2 (ja) 内燃機関の空燃比制御装置
JPH09310636A (ja) 内燃機関の空燃比制御装置
JP2737482B2 (ja) 内燃機関における触媒コンバータ装置の劣化診断装置
JPH041439A (ja) 内燃機関の空燃比制御装置
JPS62147034A (ja) 内燃機関の空燃比制御装置
JP2606389B2 (ja) 空燃比制御装置の診断装置
JP3601210B2 (ja) エンジンの空燃比制御装置
JP2592349B2 (ja) 内燃機関の空燃比制御装置
JP4064092B2 (ja) エンジンの空燃比制御装置
JP3593388B2 (ja) 内燃機関の空燃比制御装置
JPS63134835A (ja) 内燃機関の空燃比制御装置
JP2757065B2 (ja) 内燃機関の空燃比制御装置
JP2759545B2 (ja) 内燃機関の空燃比制御装置
JP3023614B2 (ja) 内燃機関の空燃比制御装置
JP2692307B2 (ja) 内燃機関の空燃比制御装置
JPH06346775A (ja) 内燃機関の空燃比制御装置
JPH0833133B2 (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载