WO1993015769A1 - Mutagenesis testing using transgenic non-human animals carrying test dna sequences - Google Patents
Mutagenesis testing using transgenic non-human animals carrying test dna sequences Download PDFInfo
- Publication number
- WO1993015769A1 WO1993015769A1 PCT/US1993/001293 US9301293W WO9315769A1 WO 1993015769 A1 WO1993015769 A1 WO 1993015769A1 US 9301293 W US9301293 W US 9301293W WO 9315769 A1 WO9315769 A1 WO 9315769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lambda
- dna sequence
- test dna
- gene
- terminator
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 343
- 108091028043 Nucleic acid sequence Proteins 0.000 title claims abstract description 193
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 79
- 231100000350 mutagenesis Toxicity 0.000 title claims abstract description 41
- 238000002703 mutagenesis Methods 0.000 title claims description 39
- 230000035772 mutation Effects 0.000 claims abstract description 101
- 239000003471 mutagenic agent Substances 0.000 claims abstract description 26
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 24
- 108090000623 proteins and genes Proteins 0.000 claims description 357
- 108700008625 Reporter Genes Proteins 0.000 claims description 214
- 210000004027 cell Anatomy 0.000 claims description 207
- 108020004414 DNA Proteins 0.000 claims description 149
- 238000000034 method Methods 0.000 claims description 113
- 241000588724 Escherichia coli Species 0.000 claims description 111
- 238000013518 transcription Methods 0.000 claims description 109
- 230000035897 transcription Effects 0.000 claims description 109
- 239000013612 plasmid Substances 0.000 claims description 102
- 230000014509 gene expression Effects 0.000 claims description 81
- 239000000284 extract Substances 0.000 claims description 74
- 238000004806 packaging method and process Methods 0.000 claims description 64
- 102000004169 proteins and genes Human genes 0.000 claims description 63
- 241000701959 Escherichia virus Lambda Species 0.000 claims description 59
- 101150109249 lacI gene Proteins 0.000 claims description 55
- 241001515965 unidentified phage Species 0.000 claims description 52
- 241000124008 Mammalia Species 0.000 claims description 41
- 101150077981 groEL gene Proteins 0.000 claims description 39
- 230000003505 mutagenic effect Effects 0.000 claims description 38
- 230000012010 growth Effects 0.000 claims description 35
- 239000002773 nucleotide Substances 0.000 claims description 32
- 125000003729 nucleotide group Chemical group 0.000 claims description 32
- 230000008901 benefit Effects 0.000 claims description 28
- 230000027455 binding Effects 0.000 claims description 28
- 108010005774 beta-Galactosidase Proteins 0.000 claims description 27
- 238000004166 bioassay Methods 0.000 claims description 26
- 230000010076 replication Effects 0.000 claims description 25
- 108700007698 Genetic Terminator Regions Proteins 0.000 claims description 24
- 230000002950 deficient Effects 0.000 claims description 24
- 244000005700 microbiome Species 0.000 claims description 22
- 230000001105 regulatory effect Effects 0.000 claims description 22
- 241001646716 Escherichia coli K-12 Species 0.000 claims description 21
- 231100000707 mutagenic chemical Toxicity 0.000 claims description 19
- 108091008146 restriction endonucleases Proteins 0.000 claims description 18
- 108010054278 Lac Repressors Proteins 0.000 claims description 17
- 102000005936 beta-Galactosidase Human genes 0.000 claims description 17
- 102000053602 DNA Human genes 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 16
- 241000894006 Bacteria Species 0.000 claims description 15
- 210000004602 germ cell Anatomy 0.000 claims description 14
- 238000011084 recovery Methods 0.000 claims description 13
- 101150006844 groES gene Proteins 0.000 claims description 12
- 230000007812 deficiency Effects 0.000 claims description 10
- 210000001082 somatic cell Anatomy 0.000 claims description 10
- 101710141454 Nucleoprotein Proteins 0.000 claims description 9
- 230000006798 recombination Effects 0.000 claims description 9
- 238000005215 recombination Methods 0.000 claims description 9
- 230000000392 somatic effect Effects 0.000 claims description 9
- 101710201961 Virion infectivity factor Proteins 0.000 claims description 8
- 238000003776 cleavage reaction Methods 0.000 claims description 7
- 230000007017 scission Effects 0.000 claims description 7
- 101100439426 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) groEL4 gene Proteins 0.000 claims description 6
- 230000003682 DNA packaging effect Effects 0.000 claims description 5
- -1 GroE Proteins 0.000 claims description 5
- 230000002255 enzymatic effect Effects 0.000 claims description 5
- 230000001404 mediated effect Effects 0.000 claims description 5
- 230000001131 transforming effect Effects 0.000 claims description 4
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 claims description 2
- 108010059013 Chaperonin 10 Proteins 0.000 claims description 2
- 108010058432 Chaperonin 60 Proteins 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims 2
- 102100024341 10 kDa heat shock protein, mitochondrial Human genes 0.000 claims 1
- 108700010839 phage proteins Proteins 0.000 claims 1
- 238000003556 assay Methods 0.000 abstract description 45
- 231100000243 mutagenic effect Toxicity 0.000 abstract description 16
- 230000035945 sensitivity Effects 0.000 abstract description 16
- 230000001965 increasing effect Effects 0.000 abstract description 11
- 238000012544 monitoring process Methods 0.000 abstract description 8
- 230000002269 spontaneous effect Effects 0.000 abstract description 8
- 241001465754 Metazoa Species 0.000 description 70
- 239000012634 fragment Substances 0.000 description 68
- 239000000047 product Substances 0.000 description 64
- 239000013598 vector Substances 0.000 description 64
- 230000000694 effects Effects 0.000 description 47
- 101150066555 lacZ gene Proteins 0.000 description 46
- 241000699666 Mus <mouse, genus> Species 0.000 description 34
- 239000002245 particle Substances 0.000 description 32
- 210000001519 tissue Anatomy 0.000 description 29
- 101150079876 mcrB gene Proteins 0.000 description 26
- 238000010276 construction Methods 0.000 description 25
- 210000001161 mammalian embryo Anatomy 0.000 description 25
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 24
- 230000001580 bacterial effect Effects 0.000 description 24
- 238000000338 in vitro Methods 0.000 description 24
- 230000007505 plaque formation Effects 0.000 description 23
- 238000007747 plating Methods 0.000 description 23
- 210000002257 embryonic structure Anatomy 0.000 description 22
- 239000006166 lysate Substances 0.000 description 21
- 230000002101 lytic effect Effects 0.000 description 20
- 239000004098 Tetracycline Substances 0.000 description 19
- 235000013601 eggs Nutrition 0.000 description 19
- 230000000415 inactivating effect Effects 0.000 description 19
- 238000002360 preparation method Methods 0.000 description 19
- 229960002180 tetracycline Drugs 0.000 description 19
- 229930101283 tetracycline Natural products 0.000 description 19
- 235000019364 tetracycline Nutrition 0.000 description 19
- 150000003522 tetracyclines Chemical class 0.000 description 19
- 229920001817 Agar Polymers 0.000 description 18
- 239000008272 agar Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 230000002068 genetic effect Effects 0.000 description 18
- 239000000499 gel Substances 0.000 description 17
- 102000001218 Rec A Recombinases Human genes 0.000 description 16
- 108010055016 Rec A Recombinases Proteins 0.000 description 16
- 230000006870 function Effects 0.000 description 16
- 208000015181 infectious disease Diseases 0.000 description 16
- 231100000219 mutagenic Toxicity 0.000 description 16
- 241000699670 Mus sp. Species 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 15
- 238000011830 transgenic mouse model Methods 0.000 description 15
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 14
- 239000008101 lactose Substances 0.000 description 14
- 238000007792 addition Methods 0.000 description 13
- 230000033228 biological regulation Effects 0.000 description 13
- 239000000872 buffer Substances 0.000 description 13
- 238000003780 insertion Methods 0.000 description 13
- 230000037431 insertion Effects 0.000 description 13
- 230000010354 integration Effects 0.000 description 13
- 238000010361 transduction Methods 0.000 description 13
- 230000026683 transduction Effects 0.000 description 13
- 230000006698 induction Effects 0.000 description 12
- 229930027917 kanamycin Natural products 0.000 description 12
- 229960000318 kanamycin Drugs 0.000 description 12
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 12
- 229930182823 kanamycin A Natural products 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 11
- 238000012217 deletion Methods 0.000 description 11
- 230000037430 deletion Effects 0.000 description 11
- 101150045500 galK gene Proteins 0.000 description 11
- 230000011987 methylation Effects 0.000 description 11
- 238000007069 methylation reaction Methods 0.000 description 11
- 238000012216 screening Methods 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000004075 alteration Effects 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 230000001320 lysogenic effect Effects 0.000 description 10
- 238000000527 sonication Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 241000251468 Actinopterygii Species 0.000 description 9
- 102000009661 Repressor Proteins Human genes 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 9
- 239000013615 primer Substances 0.000 description 9
- 230000002103 transcriptional effect Effects 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 8
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 8
- 108091029795 Intergenic region Proteins 0.000 description 8
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- 108010034634 Repressor Proteins Proteins 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 8
- 235000019688 fish Nutrition 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000002207 metabolite Substances 0.000 description 8
- 239000006151 minimal media Substances 0.000 description 8
- 239000013600 plasmid vector Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 210000000130 stem cell Anatomy 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 230000014616 translation Effects 0.000 description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 7
- 238000011579 SCID mouse model Methods 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 7
- 229960000723 ampicillin Drugs 0.000 description 7
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 210000004698 lymphocyte Anatomy 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 101150023497 mcrA gene Proteins 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000013519 translation Methods 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000006285 cell suspension Substances 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 230000029087 digestion Effects 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000009465 prokaryotic expression Effects 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 230000017105 transposition Effects 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- 239000003155 DNA primer Substances 0.000 description 5
- 206010059866 Drug resistance Diseases 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- 206010028400 Mutagenic effect Diseases 0.000 description 5
- 101150010882 S gene Proteins 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 101150034144 ci gene Proteins 0.000 description 5
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 210000001671 embryonic stem cell Anatomy 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 230000000937 inactivator Effects 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000010369 molecular cloning Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000013605 shuttle vector Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 102100031780 Endonuclease Human genes 0.000 description 4
- 108010042407 Endonucleases Proteins 0.000 description 4
- 241000644323 Escherichia coli C Species 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 101150038013 PIR gene Proteins 0.000 description 4
- 108020004566 Transfer RNA Proteins 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000001110 calcium chloride Substances 0.000 description 4
- 229910001628 calcium chloride Inorganic materials 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 101150083227 mrr gene Proteins 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 230000035935 pregnancy Effects 0.000 description 4
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 4
- 230000003362 replicative effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- GEBBCNXOYOVGQS-BNHYGAARSA-N 4-amino-1-[(2r,3r,4s,5s)-3,4-dihydroxy-5-(hydroxyamino)oxolan-2-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](NO)O1 GEBBCNXOYOVGQS-BNHYGAARSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241000218631 Coniferophyta Species 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000724791 Filamentous phage Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000218922 Magnoliophyta Species 0.000 description 3
- 108010021466 Mutant Proteins Proteins 0.000 description 3
- 102000008300 Mutant Proteins Human genes 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 241000276569 Oryzias latipes Species 0.000 description 3
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000000711 cancerogenic effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000002759 chromosomal effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229960000274 lysozyme Drugs 0.000 description 3
- 239000004325 lysozyme Substances 0.000 description 3
- 230000035800 maturation Effects 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 230000036438 mutation frequency Effects 0.000 description 3
- 230000000869 mutational effect Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 210000002741 palatine tonsil Anatomy 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 101150079601 recA gene Proteins 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000012137 tryptone Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 241000251730 Chondrichthyes Species 0.000 description 2
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 2
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 2
- 102100031673 Corneodesmosin Human genes 0.000 description 2
- 101710139375 Corneodesmosin Proteins 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 230000030914 DNA methylation on adenine Effects 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 108010046276 FLP recombinase Proteins 0.000 description 2
- 102000012673 Follicle Stimulating Hormone Human genes 0.000 description 2
- 108010079345 Follicle Stimulating Hormone Proteins 0.000 description 2
- DGMPVYSXXIOGJY-UHFFFAOYSA-N Fusaric acid Chemical compound CCCCC1=CC=C(C(O)=O)N=C1 DGMPVYSXXIOGJY-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 102000006771 Gonadotropins Human genes 0.000 description 2
- 108010086677 Gonadotropins Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 108010061833 Integrases Proteins 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 102000009151 Luteinizing Hormone Human genes 0.000 description 2
- 108010073521 Luteinizing Hormone Proteins 0.000 description 2
- 229910017621 MgSO4-7H2O Inorganic materials 0.000 description 2
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 2
- 102000016943 Muramidase Human genes 0.000 description 2
- 108010014251 Muramidase Proteins 0.000 description 2
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 2
- FUSGACRLAFQQRL-UHFFFAOYSA-N N-Ethyl-N-nitrosourea Chemical compound CCN(N=O)C(N)=O FUSGACRLAFQQRL-UHFFFAOYSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 230000006819 RNA synthesis Effects 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 101100173636 Rattus norvegicus Fhl2 gene Proteins 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 241000277331 Salmonidae Species 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 206010042573 Superovulation Diseases 0.000 description 2
- 108700025695 Suppressor Genes Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102000008579 Transposases Human genes 0.000 description 2
- 108010020764 Transposases Proteins 0.000 description 2
- 229960000643 adenine Drugs 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 2
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 231100000357 carcinogen Toxicity 0.000 description 2
- 239000003183 carcinogenic agent Substances 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 229940104302 cytosine Drugs 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229940028334 follicle stimulating hormone Drugs 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000002622 gonadotropin Substances 0.000 description 2
- 101150085823 hsdR gene Proteins 0.000 description 2
- 229940084986 human chorionic gonadotropin Drugs 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 229940040129 luteinizing hormone Drugs 0.000 description 2
- 235000010335 lysozyme Nutrition 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 231100000299 mutagenicity Toxicity 0.000 description 2
- 230000007886 mutagenicity Effects 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- 108010083127 phage repressor proteins Proteins 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000033458 reproduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 231100000606 suspected carcinogen Toxicity 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000003390 teratogenic effect Effects 0.000 description 2
- 101150064636 tnp gene Proteins 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005945 translocation Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 210000004340 zona pellucida Anatomy 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- OGQYJDHTHFAPRN-UHFFFAOYSA-N 2-fluoro-6-(trifluoromethyl)benzonitrile Chemical compound FC1=CC=CC(C(F)(F)F)=C1C#N OGQYJDHTHFAPRN-UHFFFAOYSA-N 0.000 description 1
- SHXWCVYOXRDMCX-UHFFFAOYSA-N 3,4-methylenedioxymethamphetamine Chemical compound CNC(C)CC1=CC=C2OCOC2=C1 SHXWCVYOXRDMCX-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical group CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 101710154282 Antitermination protein Q Proteins 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 238000011719 B6C3F1 mouse Methods 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000252229 Carassius auratus Species 0.000 description 1
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 241000252185 Cobitidae Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 241000252233 Cyprinus carpio Species 0.000 description 1
- 101150097493 D gene Proteins 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 230000009946 DNA mutation Effects 0.000 description 1
- 230000008265 DNA repair mechanism Effects 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 101150013191 E gene Proteins 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 101710204837 Envelope small membrane protein Proteins 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 241001131785 Escherichia coli HB101 Species 0.000 description 1
- 241000702191 Escherichia virus P1 Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 230000010558 Gene Alterations Effects 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102000009066 Hyaluronoglucosaminidase Human genes 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241000110847 Kochia Species 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 101710145006 Lysis protein Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- ZRKWMRDKSOPRRS-UHFFFAOYSA-N N-Methyl-N-nitrosourea Chemical compound O=NN(C)C(N)=O ZRKWMRDKSOPRRS-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 231100000264 OECD 451 Carcinogenicity Study Toxicity 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000002944 PCR assay Methods 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 241000269908 Platichthys flesus Species 0.000 description 1
- 241000276427 Poecilia reticulata Species 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 108091036333 Rapid DNA Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 206010038997 Retroviral infections Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000701835 Salmonella virus P22 Species 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 101100288418 Staphylococcus xylosus lacP gene Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 241000276707 Tilapia Species 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 241000276424 Xiphophorus Species 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 101150087698 alpha gene Proteins 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 101150114167 ampC gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 210000003578 bacterial chromosome Anatomy 0.000 description 1
- 230000010310 bacterial transformation Effects 0.000 description 1
- 108010028263 bacteriophage T3 RNA polymerase Proteins 0.000 description 1
- 239000013602 bacteriophage vector Substances 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000008238 biochemical pathway Effects 0.000 description 1
- 210000004952 blastocoel Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 241001233037 catfish Species 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 229960003185 chlortetracycline hydrochloride Drugs 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000013601 cosmid vector Substances 0.000 description 1
- 230000017858 demethylation Effects 0.000 description 1
- 238000010520 demethylation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004720 dielectrophoresis Methods 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000032692 embryo implantation Effects 0.000 description 1
- 230000002616 endonucleolytic effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000003239 environmental mutagen Substances 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 231100000221 frame shift mutation induction Toxicity 0.000 description 1
- 230000037433 frameshift Effects 0.000 description 1
- 101150022010 gam gene Proteins 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 231100000025 genetic toxicology Toxicity 0.000 description 1
- 230000001738 genotoxic effect Effects 0.000 description 1
- 229940094892 gonadotropins Drugs 0.000 description 1
- 101150053330 grpE gene Proteins 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 101150023479 hsdS gene Proteins 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 229960002773 hyaluronidase Drugs 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 230000028744 lysogeny Effects 0.000 description 1
- 101150017580 mcrC gene Proteins 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 210000004681 ovum Anatomy 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000008375 physiological alteration Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 239000003891 promutagen Substances 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 231100000462 teratogen Toxicity 0.000 description 1
- 239000003439 teratogenic agent Substances 0.000 description 1
- 101150061166 tetR gene Proteins 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 238000007483 tonsillectomy Methods 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 238000011824 transgenic rat model Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- YFDSDPIBEUFTMI-UHFFFAOYSA-N tribromoethanol Chemical compound OCC(Br)(Br)Br YFDSDPIBEUFTMI-UHFFFAOYSA-N 0.000 description 1
- 229950004616 tribromoethanol Drugs 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000009452 underexpressoin Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/8509—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
- C12N15/72—Expression systems using regulatory sequences derived from the lac-operon
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6897—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids involving reporter genes operably linked to promoters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5014—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
- G01N33/5017—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity for testing neoplastic activity
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2227/00—Animals characterised by species
- A01K2227/10—Mammal
- A01K2227/105—Murine
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2267/00—Animals characterised by purpose
- A01K2267/03—Animal model, e.g. for test or diseases
- A01K2267/0393—Animal model comprising a reporter system for screening tests
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/30—Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
Definitions
- This invention relates to transgenic animals and to tests for monitoring mutagenic agents in live animals. More specifically, this invention relates to the creation of transgenic non-human animals carrying test DNA sequences and to methods for monitoring and assessing the mutagenic potential of agents by
- DNA alterations that are caused by potential mutagenic agents have generally been approached by performing studies on procaryotic or eukaryotic cells in culture (in vitro tests).
- the well-known Ames' test uses a special strain of bacteria to detect these mutations. Ames et al, Proc. Nat. Acad. Sci., 70:782-86 (1973).
- This test and many analogues that use other types of bacterial or animal cells permit the rapid screening of very large numbers of cells for the appearance of an altered phenotype. The appearance of this altered phenotypic trait reflects the occurrence of a mutation within the test gene.
- These tests are, however, insensitive to or nonspecific for many mutagens that result from metabolic activation of the agent being screened.
- Eukaryotic cell lines have also been used to detect mutations.
- Glazer et al Proc. Natl. Acad. Sci. USA, 83:1041-1044 (1986).
- a target test gene the amber suppressor tyrosine tRNA gene of E. coli in a bacteriophage shuttle vector, was integrated into a genomic host mammalian cell line by DNA transfection of cultured cells in vitro. After exposing the host cell line to putative mutagenic agents, test genes were re-isolated, propagated in bacteria, and analyzed for mutations. Because the host is only a mammalian cell line and not a live animal, the test is incapable of accurately monitoring mutagenic metabolites of the agent being tested that are only produced at the appropriate concentrations by differentiated cells or the tissue of live animals.
- Test genes and large scale screening assays used for in vitro assays are not available for live animal studies. Short of relying on long term animal studies that detect phenotypic changes that require a long time to be identifiable, such as tumors, organ
- the present invention providing novel transgenic non-human organism and methods utilizing such
- the present invention provides a sensitive screen for the mutagenicity of suspected agents and permits the monitoring of the mutagenic effects of such agents and the mutagenic effects of the metabolites of such agents.
- the invention can permit the
- the methods of the invention offer the significant advantage of being rapid to perform, thus permitting the identification of potential mutagens appreciably before other tests can be completed, and is inexpensive relative to other whole animal tests. And, the present invention substantially reduces the number of organisms which must be used for mutagenesis testing.
- the present invention contemplates a method for assaying the mutagenic potential of an agent.
- the method generally comprises administering a
- a predetermined amount of the agent to an organism containing cells having a genome characterized by the presence of a target gene system containing a test DNA gene sequence that is capable of detection by bioassay in a host cell upon mutation of the test DNA sequence.
- predetermined amount of the target DNA system is then recovered from cells harvested from the exposed organism.
- the recovered target gene system is then introduced into and expressed in a restriction system deficient host cell, whereupon mutation of the target gene system is determined in bioassay.
- the invention describes a mutagenesis testing method comprising:
- transgenic organism comprises somatic and germ cells containing a test DNA sequence that is capable of detection in bioassay by expression of a test DNA sequence gene product;
- the host cell contains a reporter gene transcription unit controlled by a promoter that is regulated by the test DNA sequence gene product.
- the reporter gene product confers a selective growth advantage to the bioassay system, thereby allowing selectable detection of the mutated test DNA sequence over non-mutated test DNA sequences in the target gene system.
- the organism is a transgenic plant or animal, such as a transgenic fish or rodent, and preferably is a transgenic rat or mouse.
- a target gene system comprised of a set of two genes, a test gene and a reporter gene.
- the test gene is incorporated into an organism or its somatic and germ cells to screen for compounds having mutagenic, carcinogenic or teratogenic activity.
- the reporter gene can be present in a separate assay system such as a prokaryotic or eukaryotic host cell, or it can be incorporated in the organism with the test gene.
- test gene Exposure of the organism or its cells to compounds having any of these activities causes mutations resulting in alterations in expression of the test gene. Mutations in the test gene are measured by detecting reporter gene expression, which is affected by test gene expressions. Both the test gene and the reporter gene constructs are each operatively linked to a promoter, preferably a prokaryotic promoter.
- transgenic non-human organisms containing a target gene system of this invention for practicing the mutagenesis testing methods described herein.
- host cells that contain a reporter gene transcription unit for detecting a mutated test DNA sequence in a bioassay of this invention.
- This method has several advantages over the prior art methods of screening for compounds having mutagenic or teratogenic activity. The most
- FIG. 1 illustrates the sequence of process steps for performing the invention.
- FIG. 2 illustrates an alternative method for recovering the transgenic test DNA sequence.
- Figure 3 illustrates in two panels (3A and 3B) a
- Figure 4 illustrates a schematic depicting the construction of plasmid pBlue MI-.
- Figure 5 illustrates a schematic depicting the construction of plasmid pLacI q.
- Figure 6 illustrates a schematic depicting the construction of plasmid plnt.1.
- Figure 7 illustrates a schematic depicting the construction of plasmid pPreLacIqZ.
- Figure 8 illustrates in two panels ( Figure 8A and Figure 8B) a schematic depicting the construction of phage Lambda LIZ Alpha.
- Figure 9 is a graph that illustrates the mutation frequency for spontaneous (closed symbols) and induced (open symbols) mutations as described in Example 8.
- Figure 10 is a schematic in two panels ( Figure 10A and Figure 10B) illustrating a gene activating selectable system as described in Example 9.
- Figure 10A shows the operation of the system under the condition where a wild-type (non-mutated) lacI gene present on the Lambda LIZ Alpha vector (upper vector) represses the reporter gene transcription unit (lower vector), thereby inactivating groE gene expression and inhibiting plaque formation.
- Figure 10B shows the operation of the system under the condition where a mutated lacI gene present on the Lambda LIZ Alpha vector (upper vector) does not represses the reporter gene transcription unit (lower vector), thereby activating groE gene expression and allowing plaques to form.
- Figure 11 is a schematic in two panels ( Figure 11A and Figure 11B) illustrating a gene inactivating selectable system as described in Example 10.
- Figure 11A shows the operation of the system under the condition where a wild-type (non-mutated) lacI gene present on the Lambda LIZ Alpha vector (upper vector) represses the reporter gene transcription unit (lower vector), thereby activating S 5 gene expression and inhibiting plaque formation.
- Figure 11B shows the operation of the system under the condition where a mutated lacl gene present on the Lambda LIZ Alpha vector (upper vector) represses the reporter gene transcription unit (lower vector), thereby
- the present invention contemplates engineered somatic and germ cells of an organism, such as an animal, animal embryos or differentiated animals, having a genome characterized by the presence of a target gene system useful for the testing of mutagenic potential of a suspected mutagen.
- a target gene system useful for the testing of mutagenic potential of a suspected mutagen.
- the target gene system is recoverable from the test organism's genome by nucleotide sequences that define an excision means flanking the target gene system, such as an excisably integrated genetic element.
- the target gene system comprises a test gene
- the test gene is operatively linked to prokaryotic expression signals, such as a promoter, ribosome binding site, stop codon, and the like for expression of a test gene product.
- the recoverable target gene system is included within excisably integrated lambda phage DNA.
- the target gene system need not be included within lambda phage DNA to be recoverable for purposes of the present invention.
- the target gene system can be present within a plasmid, cosmid, filamentous phage, or present in the genome of the animal and be recoverable.
- test gene refers to a test gene
- reporter gene refers to a nucleotide sequence which expresses a detectable phenotype in an assay system, and the expression of which reporter gene is controlled by the test gene.
- animal cells will be used to include cells in cell cultures, embryos, and differentiated animals.
- mutant will be used to include toxins, carcinogens, teratogens, and other agents which alter DNA or RNA sequence or expression, unless stated otherwise.
- rDNA recombinant DNA molecule
- a target gene system preferably is operatively linked to a lambda phage and can be comprised of any of a variety of test genes (test DNA sequence) whose transcription results ultimately in a detectable phenotype or genotype where a mutation in the
- test genes measurably alters the detectable phenotype or genotype.
- Typical test genes include genes that confer drug resistance or other selective advantage, or genes whose expression alters the expression of a second reporter gene.
- Exemplary drug resistance genes confer resistance to ampicillin, kanamycin, chloramphenicol and the like.
- a test gene can be selected from the group of nucleotide sequences which encode regulatory molecules that bind to a sequence controlling reporter gene expression. These can be repressers or other
- test gene is a repressor or activator gene whose expression product directly alters the
- lacZ beta-galactosidase gene
- lacZ is a reporter gene.
- a preferred lacl test gene is the laclq variant that expresses eight- to ten-fold elevated levels of repressor protein and more tightly represses expression of the lacZ reporter gene when under the control of a lac operator.
- reporter gene encoding beta-galactosidase. Alteration of/the operator region for the reporter gene in a manner that prevents binding of the repressor protein produces the same effect. Derepression of the
- reporter gene can then be monitored by assaying for defined functions of the gene product.
- test gene of the target gene system is operatively linked to a reporter gene, i.e., both test and reporter genes are linked on the same DNA molecule.
- reporter gene is present in a host cell of the assay system and is regulated by the expression of the test gene.
- the reporter gene transcription unit acts in trans to influence the expression of the reporter gene product.
- a reporter gene provides a means for detecting mutations in the test gene.
- a reporter gene is a gene that encodes a detectable phenotype or genotype and whose expression is under the control of the test gene. Typically, the reporter gene is the final
- reporter gene in a biochemical pathway initiated or regulated by the test DNA gene product.
- the selection of reporter genes is based on the following criteria: (i) the gene product should provide a simple and sensitive detection system for its quantitation, and (ii) non-transformed cells should have a low constitutive background of gene products or activities that will be assayed.
- a reporter is lethal in the assay system, and in other systems the reporter is not lethal. Examples of a non-lethal reporter genes are genes which confer the ability for growth,
- any of a variety of genes can function as the reporter gene according to the present invention so long as the expressed reporter gene product is
- detectable include drug resistance markers, enzymes whose
- Candidate enzymes include beta-galactosidase (Norton et al, Mol. Cell. Biol, 5:281- 290 (1985), peroxidase and luciferase (de Wet et al, Mol. Cell. Biol, 7:725-737 (1987).
- a preferred reporter gene is the E. coli beta-galactosidase gene (lacZ).
- a preferred lacZ gene is one that utilizes alpha complementation, as described herein, whereby
- lacZ ⁇ M15 gene product requires the association of the alpha portion of the lacZ gene product with the complementary portion of the lacZ referred to as the lacZ ⁇ M15 gene product.
- the phenotype produced by the reporter gene can result in detection based on a phenotypic selection such as a colorimetric selection, growth selection, enzymatic activity, and the like.
- Reporter genes which encode enzymes, antigens or other biologically active proteins which can be monitored easily by biochemical techniques are preferred.
- a reporter gene is expressed when the test gene is not mutated, and is not
- test gene expressed when the test gene is expressed as a
- a reporter gene can be expressed only when the test gene is mutated.
- the reporter gene confers a growth
- a growth advantage in this context, is provided to the reporter gene, whether it replicates (grows) and is amplified in a host cell or in the form of an autonomous genetic element, such as the
- a mutation in the test gene is selected for, thereby increasing the efficiency of the system to detect mutagenic activity.
- a selective system Such a system is referred to herein as a "selectable system”.
- a reporter gene is under the transcriptional control of an operator that is repressed by a test gene product, i.e. the test gene product is a repressor.
- the test gene product is a repressor.
- the test gene loses its repressor function, and the reporter transcription unit is expressed providing a growth advantage to the assay system.
- a preferred system uses a lac operator controlling reporter gene transcription, and uses a lac repressor such as lacl or lacl q as the test gene.
- Preferred reporter genes that can be used to confer a selective growth advantage include groE and lambda S 5 as described herein, beta-galactosidase- based genes such as lacZ or alpha-lacZ, and E. coli gene that are essential for lambda DNA replication, but dispensable for E. coli, such as grpD, grpE or cro. See, for example, "Lambda II" Hendrix et al, eds., Cold Spring Harbor Press, 1983, p.147.
- Additional selectable genes which confer a useful growth advantage as reporter genes are amino acid genes, and tRNA genes
- the groE gene is an E. coli gene that is required for lambda phage particle morphogenesis.
- the groE operon is actually two closely linked genes that encode the GroEL and GroES proteins required for lambda phage head assembly. Mutations in groEL or groES genes block lambda head assembly at an early stage.
- a mutant E. coli host is utilized for reading the mutagenesis assay that has a deficiency in groEL, groES, or both, where defects in both is designated groESL.
- the wild type groE, the groEL or groES gene, or both (groESL) is/are supplied by the reporter gene's transcription unit, and upon expression confers the ability (selective advantage) to assemble phage particles.
- Preferred GroE systems are described in Examples 9 and 11.
- the expression of a groE reporter gene product is activated by the introduction of a mutated lacl test gene product into a host reporter system, which allows bacteriophage plaques to form, thereby indicating the presence of the mutated test gene in the host.
- a host reporter system which allows bacteriophage plaques to form, thereby indicating the presence of the mutated test gene in the host.
- Such a system is referred to as an "activating reporter gene system" because the activation of the reporter gene produces the
- Another preferred system utilizes a mutated lambda S gene product designated S 5 .
- S 5 gene product prevents plaque formation by inhibiting the formation of a functional inner membrane pore through which phage particles can extrude during
- the efficient expression of the S 5 phenotype requires that the reporter gene be expressed in E. coli which is supF.
- the gene is referred to as a dominant negative inactivating gene because its effect is dominant, not recessive, and because its expression is a negative marker, i.e., it inhibits plaque formation.
- the amino acid residue sequence of a lambda S gene is coded for in the wild-type lambda genome at nucleotide base residues 45186 to 45006.
- the complete nucleotide sequence of wild-type lambda is well known, and is also described in "Lambda II" by Hendrix et al., Cold Spring Harbor Press, 1983.
- a preferred S 5 gene for use in the invention has the nucleotide sequence shown in SEQ ID NO 18.
- inactivating reporter gene system Such a system is referred to as an "inactivating reporter gene system" because the inactivation of the reporter gene produces the detectable event.
- the inactivating reporter gene system utilizes competing transcripts as described further in Example 10 as exemplary. Any other dominant negative inactivating gene can be utilized in a reporter gene transcription unit according to the system described herein for the S 5 gene.
- the test gene is operatively linked to expression signals to facilitate the rapid detection of mutations by the present invention.
- the type of expression signals depends upon the host cell in which the reporter gene is bioassayed.
- a preferred host is a prokaryotic cell, and therefore the reporter is preferably under the control of prokaryotic expression signals.
- the test gene system is introduced into a prokaryotic expression system, such as a bacterial cell lawn, so that dilutions of the test genes can be expressed and thereby observed (reported) to quantify the extent of test gene mutation.
- test gene comprises a lacl, lacl q , lacl sq or lacl c ⁇ gene and includes a lacl
- the bacterial lac operator-repressor system is preferred because it is one of the most basic and thoroughly studied examples of a protein-nucleic acid interaction that regulates transcription of a gene, as described by Coulondre et al, Mol. Biol., 117:577 (1977), Miller, Ann. Rev. Genet., 17:215 (1983); and in "The Operon", Miller et al, eds., Cold Spring
- a lambda phage of this invention comprises a target gene system that is excisably-integrated into the genome of an animal cell or embryo.
- excisably-integrated is meant that the lambda phage comprises excision elements operatively linked to the genome that provide a means to conveniently remove the test gene system from the animal, cell or embryo genome subjected to mutagenesis conditions for the purpose of assessing the possible occurrence of mutation.
- excision elements are nucleotide sequences flanking the target gene, and if present the reporter gene, and other elements of the target gene system, that allow site-specific excision out of the genome to which the target gene system is operatively linked (integrated).
- Excision elements can be site-specific restriction endonuclease
- excision element nucleotide sequences are lambda cos sites, flp recombinase recognition sites, loxP sites recognized by the Cre protein, and the first and second halves of the filamentous bacteriophage (M13, ff or f1) origin of replication (referred to generically as an fl bacteriophage origin of
- cos site excision elements because of the convenience and the efficiency of excision of the genes contained between cos site nucleotide sequences when utilizing lambda bacteriophage in vitro packaging extracts as described herein.
- it is considered useful to boost the packaging reaction by the repeated addition of aliquots of packaging extract to the packaging reaction, as the extract becomes depleted during the packaging reaction, which can be remedied by multiple additions of extract.
- the excision elements of a target gene system confer the ability to readily recover the target gene system from the mutagen exposure conditions to the prokaryotic expression medium in which the reporter gene is measured.
- test gene system is the Lambda LIZ Alpha vector described herein in which a lacl q test gene is operatively linked to the alpha-complementation-based lacZ alpha gene, where both test and reporter genes are under the control of
- prokaryotic expression signals namely, lacl promoter and lacZ promoter/operator sequences.
- This preferred system further contains nucleotide sequences operatively linked to the test gene that define a prokaryotic origin of replication, a
- test gene can readily be transformed into a "f1-type" nucleic acid sequencing vector for rapid determination of the nature of the mutation in the test gene.
- This latter feature is provided according to the teachings of Short et al., Nucl. Acids Res., 16:7583-7600 (1988), where the terminator and initiator domains of the f1 intergenic region are separated and flank the test gene sequences of this invention to be recovered and sequenced.
- a promoter is a sequence of nucleotides that forms an element of a structural gene transcriptional unit which controls the gene's expression by providing a site for RNA polymerase binding resulting in the initiation of the process of transcription whereby a gene is transcribed to form a messenger ribonucleic acid (mRNA) molecule.
- mRNA messenger ribonucleic acid
- An operator is a sequence of nucleotides that forms a site for specific repressor binding. Thus, operators are specific for a particular repressor.
- a repressor binding site is considered specific if the equilibrium binding constant for repressor binding to the operator is greater than 10 -8 molar (M), preferably greater than 10 -9 M, and more
- lac repressor The operator for the lac repressor has been well characterized and is used as exemplary herein. See Miller et al, in "The Operon", Cold Spring Harbor Laboratory, New York (1980), for a detailed study. Alternative nucleotide sequences have been described for a lac repressor operator that specifically binds to repressor. See, for example, the description of numerous lac operator variants and the methods for characterizing their repressor-binding activity reported by Sartorius et al, EMBO J., 8:1265-1270 (1989); and Sadler et al, Proc. Natl. Acad. Sci. USA, 80:6785-6789 (1983).
- nucleotide sequence that binds lac repressor specifically can be used in the present invention, although wild type and optimized "ideal" operators are preferred and used as exemplary herein.
- the original lac operator sequence (5'- GGAATTGTGAGCGGATAACAATCC-3'; SEQ ID NO 1), or a mutant lac operator which binds repressor eight times tighter and has the sequence (5'-ATTGTGAGCGCTCACAAT-3'; SEQ ID NO 2), are preferred for use in vector construction.
- Two preferred optimized operators derived from the lac operon include the nucleotide sequences as follows:
- Operators function to control the promoter for a structural gene by a variety of mechanisms.
- the operator can be positioned within a promoter such that the binding of the repressor covers the promoter's binding site for RNA polymerase, thereby precluding access of the RNA polymerase to the promoter binding site.
- the operator can be positioned downstream from the promoter binding site, thereby blocking the movement of RNA polymerase down through the transcriptional unit.
- Multiple operators can be positioned on a rDNA molecule to bind more than one repressor.
- the advantage of multiple operators is several fold.
- transcriptional unit if the loop is located downstream from the promoter.
- a vector contemplated by the present invention includes a procaryotic replicon, i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a procaryotic host cell, such as a bacterial host cell, transformed therewith.
- a procaryotic replicon i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a procaryotic host cell, such as a bacterial host cell, transformed therewith.
- procaryotic replicon i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a procaryotic host cell, such as a bacterial host cell, transformed therewith.
- procaryotic replicon i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant
- Those vectors that include a procaryotic replicon may also include a procaryotic promoter capable of directing the expression (transcription and translation) of the gene transformed therewith.
- a promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur.
- Promoter sequences compatible with bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention. Bacterial expression systems, and choice and use of vectors in those systems is described in detail in "Gene Expression Technology", Meth.
- the detectable end point for the bioassay can be either lytic plaque formation or a lysogenic phenotype, depending on the manner in which the genetics of the test DNA sequence and reporter gene are designed.
- the resulting lysogen or lytic plaque can be designed to exhibit a color screen as the detection means, as shown herein.
- a representative combined phenotype reporter gene system is one where the test gene controls two separate reporter genes; one
- the system can exhibit a low level of false positives in the form of a growth advantage to a reporter gene, but that false positive is determinable as a false positive based on the color phenotype.
- the reporter gene in the host cell can be present in a variety of forms.
- the reporter gene can be present as a host cell genomic element, or as a transcription unit on a phage genome within the cell or on a plasmid, such as an F' plasmid, within the cell.
- Still further embodiments contemplate methods for providing further regulation of the expression of the reporter gene, including methods for preventing expression of the reporter gene transcription unit until the test gene is introduced to methods involving the tight regulation of the reporter gene
- reporter structural gene transcription units in which the reporter structural gene is reversed within the reporter gene transcription unit relative to its promoter such that it cannot be expressed in the reverse order.
- the reporter structural gene flips around to position in the correct orientation and therefore is under expression control of the reporter gene transcription unit's promoter.
- the structural gene can be flanked by nucleotide sequences defining flp sites which are activated by flp
- the reporter structural gene flips over and can be transcribed by the transcription unit.
- the structural gene can be flanked by nucleotides defining the Cre-lox system, and can be flipped upon introduction of means for initiating Cre-lox mediated recombination.
- Another mehcanism for closer regulation of the reporter gene transcription unit is to include a second repressor binding site to the transcription unit which is regulated independently from the test gene product.
- the second repressor is inducible, and derepression of the second repressor is controlled by the addition of an inducer of the second repressor which is selected to act independently of the test DNA gene product.
- reporter gene transcription is to include
- transcription or translation modifiers in the reporter gene transcription unit which repress translation until the test DNA gne is introduced into the host cell.
- These modifiers include the addition of a poly A transcription terminator after the reporter
- transcriptional modifiers include the introduction of various ribosome binding sites known to effect the efficiency of transcription, or the alteration of the nucleotide sequence around the ATG start site for translation to alter the effeciency of translation.
- endogenous levels of protease are inhibited would be useful for boosting the level of expression of the reporter gene product.
- An E. coli host cell having a mutation in the Ion gene or hfl gene are preferred examples of mutations that would desirably reduce the amount of endogenous protease in the host cell.
- the invention contemplates multi-level transcription control such as to regulat the reporter gene by a second transcription unit which, in turn, is regulated by the test DNA gene product.
- the test DNA gene product expresses lacI
- the host cell contains a first transcription unit having the lac operator to which the lac repressor binds.
- This first transcription unit expresses, for example, the T7 polymerase gene product, which, upon expression, binds to the T7 polymerase operator that is controlling expression of the reporter gene
- the invention contemplates the DNA molecules, plasmids, nucleotide sequences and the like that are utilized in the test DNA sequences and in the reporter gene transcription units described herein. Also contemplated are host cells containing the DNA molecules of this invention.
- the present invention provides novel transgenic non-human animals and methods for monitoring the mutagenic effects of potential
- At least one copy of at least one target test DNA sequence is introduced into cells of a non-human organism thereafter bred to produce test systems.
- test transgenic organism is then exposed to an agent suspected to be mutagenic and the test DNA sequence may be
- test DNA sequence may be transferred into a host cell containing a reporter gene transcription unit, although such recovery and transfer is not requisite, and assayed for mutations, allowing rapid examination of multiple tissue specific genetic mutations.
- Other methods to monitor mutations in the test DNA need not rely on rescue and involve either direct examination of the test DNA in situ, PCR amplification of the test DNA, examination of RNA transcription products of the test DNA or protein translation products of said RNA, or effects of said proteins or substrates for said proteins.
- mutagenic testing may be used as the starting
- the organism can be plant or animal, and a preferred and exemplary embodiment is a non-human mammal, preferably a rodent.
- a preferred and exemplary embodiment is a non-human mammal, preferably a rodent.
- genotype that is detectable upon mutation may be used for introduction into the transgenic non-human mammals of the invention.
- the construct for such a vector and insert preferably should contain regions for excision from the mammal host genome, and regions that allow replication in a bacterial host cell, as well as regions that permit expression and assay of the test DNA sequence. If integration into the host genome is not required, desired regions that allow for replication of the test DNA sequence in the animal host cells should be present. Elbrecht et al, Mol. Cell. Biol., 7:1276-1279 (1987).
- test DNA sequence is introduced into the host mammal, preferably (but not necessarily) at the single-cell embryo stage, so as to provide the stable presence of the test sequence throughout cells of the
- chimeric animals are also contemplated herein. Typically, this involves the integration of the test DNA sequence into the mammal host genome, although methods that allow the test sequence to be stably and heritably present through the use of autonomously replicating vectors will also be useful. Elbrecht et al, Mol. Cell.
- the copy number of the reporter gene in the bioassay host cell can be varied to optimize the expression of the reporter gene product.
- the promoter strength can be varied to optimize the expression of the reporter gene product.
- the transgenic cell or cells Following the introduction of the test DNA sequence and integration into the genome or cell, the transgenic cell or cells must be allowed to
- the animal is assayed for the presence of the test DNA sequence. Typically this involves removing small portions of tissue from the animal and using standard DNA hybridization assay techniques to detect the presence of the test DNA sequence.
- Transgenic animals carrying the test DNA sequence are thereafter bred and offspring carrying the test DNA sequence my be selected for mutagenesis testing.
- transgenic mammals are exposed to agents or substances in question under appropriate conditions. Such conditions will depend, for example, on the nature of the agent or substance, the purpose of the mutagenesis study and the type of data desired.
- tissue may be removed from the test animal. Because in the preferred embodiment the test DNA sequence is present in essentially all tissues, the tissue type tested is not limited by the process of insertion of the test DNA sequence. Any desired tissue may be removed and assayed at the DNA, RNA, protein or substrate/product level, by various methods including, but not limited to, in situ hybridization to the DNA or RNA, PCR, protein or enzymatic assays (PCR Protocols, A Guide to Methods and Applications, eds. Innis et al, Academic Press, Inc., 1990; Maniatis et al, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, New York 1982).
- genomic DNA may be purified from the tissue.
- the target test DNA sequence which is integrated may then be rescued (recovered) from the total genomic DNA of the host. This may be
- the rescued test DNA sequences may then be transferred into and expressed by host cells, such as microorganisms, suitable for large scale screening techniques.
- host cells such as microorganisms, suitable for large scale screening techniques.
- this involves excising the test DNA sequence vector from the genomic DNA by packaging the test DNA sequence with
- test DNA sequence may be ligated into an appropriate vector or merely involve direct transformation into a microorganism.
- test DNA sequence is thereafter replicated on indicator plates or in selective media.
- the test DNA sequence is grown in a host cell such as E. coli.
- a phenotype indicating mutation of the test DNA sequence will identify a mutated test DNA sequence.
- the ratio of mutated test DNA sequences to the total number of test DNA sequences is a measure of the mutagenicity of the agent and metabolites thereof.
- Bacteriophage packaging techniques involve the use of bacteriophage-infected host cell extracts to supply the mixture of proteins and precursors required for encapsidating the bacteriophage DNA from exogenous sources. We have recently discovered that the rescue efficiency of the test DNA sequence can be
- efficiencies may be increased up to at least 1,000 to about 10 6 pfu/ ⁇ g genomic DNA.
- the integrated target test DNA sequence is, preferably, recovered from the total genomic DNA of the test organism, e.g., by using a lambda packaging extract deficient in restriction systems which recognize and deactivate foreign DNA.
- the recovered test DNA sequences may then be
- restriction system deficient host cells having deficiencies as described further herein.
- a shuttle vector system can be constructed which provides rapid analysis of test DNA sequence.
- the test DNA sequence may be contained within a system which allows excision and
- test DNA sequence such as a system that is contained by a bacteriophage genome that is readily rescued.
- the test DNA may be further excised from the bacteriophage genome and
- the present invention contemplates the performance of mutagenesis testing by examining the phenotypes of cells containing the test DNA sequence without recovery of the test DNA sequence from the cell. This may be accomplished by the sectioning of tissues of the transgenic organism of the invention, after exposure to a potential mutagenic agent, and assaying the genotype or phenotype of the test DNA sequence by in situ hybridization or, e.g., by
- the present invention has application in the genetic transformation of multicellular eukaryotic organisms which undergo syngamy, i.e., sexual
- Preferred organisms include non-human mammals, birds, fish, gymnosperms and angiosperms.
- the present invention in one embodiment, the present invention
- transgenic fish for the in vivo
- Fish represent a category of animals of great interest for agricultural and ecological reasons in the context of water-borne mutagenic compounds, and provide a convenient system for screening mutagenic compounds in a variety of fish species including, but not limited to, trout, salmon, carp, shark, ray, flounder, sole, tilapia, medaka, goldfish, guppy, molly, platyfish, swordtail,
- Transgenic fish of numerous species have been prepared, providing the skilled practitioner with a variety of procedures for developing a transgenic fish having an excisably-integrated target gene according to the present invention. See, for example, the teachings of Ozato et al, Cell Differ., 19:237-244 (1986), Inoue et al, Cell Differ. Dev., 29:123-128
- the present invention contemplates a non-human animal containing a modified lambda
- transgenic animal excisably-integrated in the genome of the animal's somatic and germ cells, i.e., a transgenic animal.
- transgenic mammals particularly preferred are transgenic mammals, and are utilized as exemplary herein.
- transgenic mammal is the transgenic mouse described herein that contains a single copy of the lambda LIZ Alpha vector system.
- An embryo of the preferred transgenic mouse line is the transgenic mouse described herein that contains a single copy of the lambda LIZ Alpha vector system.
- Mammals containing a rDNA of the present invention are typically prepared using the standard transgenic technology described in Hogan et al,
- One technique for transgenically altering a mammal is to microinject a rDNA into the male
- pronucleus of the fertilized mammalian egg to cause one or more copies of the rDNA to be retained in the cells of the developing mammal.
- usually up to 40 percent of the mammals developing from the injected eggs contain at least 1 copy of the rDNA in their tissues.
- These transgenic mammals usually transmit the gene through the germ line to the next generation.
- the progeny of the transgenically manipulated embryos may be tested for the presence of the construct by Southern blot analysis of a segment of tissue.
- a small part of the tail is used for this purpose.
- the stable integration of the rDNA into the genome of the transgenic embryos allows permanent transgenic mammal lines carrying the rDNA to be established.
- Alternative methods for producing a non-human mammal containing a rDNA of the present invention include infection of fertilized eggs, embryo-derived stem cells, totipotent embryonal carcinoma (Ec) cells, or early cleavage embryos with viral expression vectors containing the rDNA. See for example, Palmiter et al, Ann. Rev. Genet., 20:465-499 (1986) and Capecchi, Science, 244:1288-1292 (1989).
- a transgenic mammal can be any species of mammal, including agriculturally significant species, such as sheep, cow, lamb, horse and the like. Preferred are animals significant for scientific purposes, including but not limited to rabbits, primates and rodents, such as mice, rats and the like. A transgenic mammal is not human.
- the present invention also contemplates a method of introducing a target gene system into a cell, i.e., genetically programming a cell within an organism by introducing a modified lambda genome containing a target gene system of the present invention into the genome of a zygote to produce a genetically altered zygote, or into the genome of individual somatic cells in the organism.
- the genetically altered zygote is then maintained under appropriate biological
- genetically programming means to permanently alter the DNA content of a cell within an organism such as a mammal so that a
- prokaryotic target gene system has been introduced into the genome of the cells of the organism.
- Any multicellular eukaryotic organism which undergoes sexual reproduction by the union of gamete cells may be genetically programmed using an rDNA of the present invention.
- Examples of such multicellular eukaryotic organisms include amphibians, reptiles, birds, mammals, bony fishes, cartilaginous fishes, cyclost ⁇ mes, arthropods, insects, mollusks,
- thallaphytes thallaphytes, embryophytes including gymnosperms and angiosperms.
- the thallaphytes including gymnosperms and angiosperms.
- multicellular eukaryotic organism is a mammal, bird, fish, gymnosperm or an angiosperm.
- a transgenic organism is an organism that has been transformed by the introduction of a recombinant nucleic acid molecule into its genome.
- the recombinant nucleic acid molecule will be present in all of the germ cells and somatic cells of the
- transgenic organisms examples include transgenic mammals, transgenic fish,
- transgenic mice transgenic rats and transgenic plants including monocots and dicots.
- Methods for producing transgenic organisms containing a rDNA of the present invention include standard transgenic technology; infection of the zygote or organism by viruses including retroviruses; infection of a tissue with viruses and then
- Transgenic mammals having at least 1 cell
- containing the rDNA's of a prokaryotic gene regulation system of the present invention can be produced using methods well known in the art. See for example,
- time period equal to a substantial portion of a gestation period of said mammal
- a fertilized mammalian egg may be obtained from a suitable female mammal by inducing superovulation with gonadotropins.
- gonadotropins typically, pregnant mare's serum is used to mimic the follicle-stimulating hormone (FSH) in combination with human chorionic gonadotropin (hCG) to mimic luteinizing hormone (LH).
- FSH follicle-stimulating hormone
- hCG human chorionic gonadotropin
- LH luteinizing hormone
- the efficient induction of superovulation in mice depends as is well known on several variables including the age and weight of the females, the dose and timing of the gonadotropin administration, and the particular strain of mice used. In addition, the number of
- the rDNA may be microinjected into the mammalian egg to produce a genetically altered mammalian egg using well known techniques. Typically, the rDNA is microinjected directly into the pronuclei of the fertilized mouse eggs as has been described by Gordon et al, Proc. Natl. Acad. Sci., USA, 77:7380-7384
- the integration appears to occur at the 1 cell stage, as a result the rDNA is present in every cell of the transgenic animal, including all of the primordial germ cells.
- the number of copies of the foreign rDNA that are retained in each cell can range from 1 to several hundred and does not appear to depend on the number of rDNA injected into the egg as is well known.
- An alternative method for introducing genes into the mouse germ line is the infection of embryos with virus vectors.
- the embryos can be infected by either wild-type or recombinant viruses leading to the stable of integration of viral genomes into the host
- chromosomes See, for example, Jaenisch et al, Cell, 24:519-529 (1981).
- One particularly useful class of viral vectors are virus vector derived from retro-viruses. Retroviral integration occurs through a precise mechanism, leading to the insertion of single copies of the virus on the host chromosome. The frequency of obtaining transgenic animals by
- retroviral infection of embryos can be as high as that obtained by microinjection of the rDNA and appears to depend greatly on the titre of virus used. See, for example, van der Putten et al, Proc. Natl. Acad. Sci., USA, 82:6148-6152 (1985).
- Another method of transferring new genetic information into the mouse embryo involves the
- the embryonic stem cells can be derived from normal blastocysts and these cells have been shown to colonize the germ line regularly and the somatic tissues when introduced into the embryo. See, for example, Bradley et al, Nature, 309:255-256 (1984). Typically, the embryo-derived stem cells are
- the transfected with the rDNA and the embryo-derived stem cells further cultured for a time period sufficient to allow the rDNA to integrate into the genome of the cell. In some situations this integration may occur by homologous recombination with a gene that is present in the genome of the embryo-derived stem cell. See, for example, Capecchi, Science, 244:1288-1292 (1989).
- the embryo stem cells that have incorporated the rDNA into their genome may be selected and used to produce a purified genetically altered embryo derived stem cell population. See, for example, Mansour et al, Nature, 336:348 (1988).
- the embryo derived stem cell is then injected into the blastocoel cavity of a preimplantation mouse embryo and the blastocyst is surgically transferred to the uterus of a foster mother where development is allowed to progress to term.
- the resulting animal is chimeric in that it is composed from cells derived of both the donor embryo derived stem cells and the host blastocyst. Heterozygous siblings are interbred to produce animals that are homozygous for the rDNA. See for example, Capecchi, Science, 244:1288-1292 (1989).
- the genetically altered mammalian egg is a cell
- Pseudopregnant recipient females may be produced by mating females in natural estrus with vasectomized or genetically sterile males. After mating with a sterile male, the female
- reproduction tract becomes receptive for transferred embryos even though her own unfertilized eggs
- the genetically altered mammalian eggs are then transferred to the ampullae or the uterine horns of the pseudopregnant recipient. If the
- genetically altered mammalian egg is transferred into the ampullae it must be enclosed in a zona pellucida membrane. If it is transferred into the uterine horns the genetically altered mammalian egg does not require a zona pellucida membrane.
- the host female mammals containing the implanted genetically altered mammalian eggs are maintained for a sufficient time period to give birth to a transgenic mammal having at least 1 cell containing a rDNA of the present invention that has developed from the
- mice genetically altered mammalian egg. Typically this gestation period is between 19 to 20 days depending on the particular mouse strain. The breeding and care of mice is well known. See for example, Manipulating the Mouse Embryo: A Laboratory Manual, Hogan et al, eds., Cold Spring Harbor, New York, (1986).
- an animal that contains a target gene system in specific tissues or cells is used to test the effect of a material, composition, or compound suspected of being a carcinogen on the specific tissue. The animal is exposed to the
- composition suspected of having carcinogenic activity is introduced into the animal by any suitable method including injection, or ingestion or topical administration.
- the animal is then maintained for a predetermined time period that is sufficient to allow the
- composition to produce a mutagenic effect on the genes of the target gene system.
- this time period ranges from several minutes to several days depending on the time the composition requires to mutagenize the genes.
- a change in a physiologic parameter is determined by measuring that parameter before introduction of the composition into the animal and comparing that
- transgenic animals alters the sensitivity of transgenic animals to the effects of the suspected carcinogen. Therefore, selection of transgenic animals with varying transgene copy numbers of the test gene will alter the sensitivity of the transgenic mice to the suspected carcinogen.
- the invention contemplates the use of mutagenesis testing systems according to the present invention which provide selection for
- Selectable systems are particularly preferred because (1) they provide increased speed and convenience (i.e., efficiency) in detecting the reporter gene product due to the selection of
- mutagenized test DNA sequences over a background of non-mutagenized test DNA sequences and may increase sensitivity of the assay, and (2) they allow for the screening of larger numbers of clones per unit of culture medium that is used to bioassay the mutagenic event.
- reporter gene in response to the test DNA gene product provides the switch between a selective growth
- the non-mutated test DNA gene product functions, directly or indirectly, to repress expression of the reporter gene product.
- the non-mutated test DNA gene product functions, directly or indirectly, to de-repress (or activate/promote) expression of the reporter gene product.
- the reporter gene transcription unit is independent of the test gene, and typically located within the host cell used for bioassaying the mutagenic event.
- the regulation of the reporter gene by the test gene occurs between separate genetic elements and is referred to as regulation in trans.
- Example 8 in which the use of lactose minimal growth medium in the bioassay is combined with the use of the Lac repressor as a test DNA sequence which controls the expression of the LacZ component of the beta-galactosidase gene as the reporter gene.
- An alternative selectable system utilizes a growth advantage provided by the expression of a reporter gene, such that upon mutation of the target gene, the reporter gene is expressed when the target gene is assayed. Thus clones containing mutations on the target gene are "selected" by the growth selection over clones without the mutation.
- Selectable reporter genes have been described earlier, and include
- Another selectable system involves the use of a tRNA suppressor gene on the test DNA sequence and the use of a reporter gene which depends of suppression for expression.
- Still another selectable system involves the vise of anti-terminator proteins to regulate the reporter gene transcription unit.
- the reporter gene transcription unit contains, in addition to the reporter gene itself, terminator and anti-terminator nucleotide sequences in the promoter region of the transcription unit that terminates
- a controlling element in such a system contains both a terminator sequence and an anti-terminator sequence that overrides termination of transcription and is referred to collectively as a terminator/anti-terminator nucleotide sequence.
- the target gene system contains, in addition to the test DNA gene sequence, an anti-terminator gene that expresses an anti-terminator protein that specifically binds the anti-terminator sequence in the reporter gene transcription unit and derepresses the terminator sequence, thereby allowing transcription of the reporter gene product.
- terminator/anti-terminator sequences in the reporter gene transcription unit provides a particular advantage in the present invention.
- the anti-terminator protein coding sequence on the test DNA sequence that is introduced into the host cell, the anti-terminator protein acts in trans relative to the terminator/anti-terminator sequence, and is not present until the test DNA sequence is added to the host cell bioassay system.
- the reporter gene transcription unit is kept off until the test DNA sequence is added, thereby reducing and preferably preventing any possible leakiness to the reporter gene, and thus any false regulation of reporter gene transcription. No reporter gene product can accumulate prior to the introduction of the test DNA due to low grade transcription of the reporter gene transcription unit. This insures a low
- a preferred anti-terminator protein is the lambda N protein that binds to the lambda nutR anti- terminator sequence or the lambda Q protein that binds to the lambda qut anti-terminator sequence.
- Numerous terminator and anti-terminator sequences are known in the art that are suitable for use in the present invention.
- the lambda nutR or nutL anti-terminator sequences are regulated by binding by lambda anti-terminator protein N
- the lambda qut anti-terminator sequence is regulated by binding by lambda anti-terminator protein Q.
- sequences that terminate transcription in the absence of anti-terminator protein can include any combination of one or more terminator sequences.
- Exemplary terminators include the lambda terminators tI, tL1, tL3, tR1, tR2, t6s (also known as t'Rl1, t'J1, t'J2, t'J3, t'J4 and tRO, the E. coli terminators IS1, IS2 and tryptophan gene terminator (tTRP), phage P82 tR' (t82), phage P22 tANT, tI4 and tfd.
- Terminator tR1 is particularly preferred and is exemplary of the diversity of numbers and position of terminators possible for use with an anti-terminator sequence.
- tR1 is known to contain 5 terminator sites, designated as tR1(I-V), and various combinations of the 5 sites can be used, such as tR1(I-II), tR1(I-III) and tR1(I-V), as described herein.
- tR1(I-V) 5 terminator sites
- tR1(I-II) 5 terminator sites
- tR1(I-III) tR1(I-III)
- tR1(I-V) tR1(I-V)
- multiple different terminators can be used, such as to combine tR1 with t6s, and the like combinations as described in the Examples.
- variables include (1) the type and thereby strength of the promoters used to express a reporter gene, the (2) the type and thereby the strength of the operators used to control the promoters, and (3) the copy number of the reporter gene transcription unit within the host cell relative to the copy number of the test DNA sequence. It is understood that for any phenotype dependent upon the regulation of gene expression there are optimum, and therefore preferred, combinations of promoters, operators and gene copy number.
- Promoters for use in controlling a reporter gene include Placl q , lacP, and Ptrp, which each exhibit a different promoter strength, and their selection depends on the promoter strength desired in adjusting the level of transcription for the reporter gene transcription unit.
- the present invention also contemplates a
- the invention also contemplates a prolysogenic organism for use in the system and methods of this invention.
- a preferred prolysogenic organism is a prolysogenic microorganism and will be used as exemplary herein.
- a prolysogenic microorganism is a microorganism containing an isolated bacteriophage cI gene.
- isolated bacteriophage cI gene is meant a cI gene separated from other bacteriophage genes.
- the isolated cI gene is present in the microorganism operatively linked to expression control elements for producing a bacteriophage lytic cycle-suppressing amount of cI gene product in the microorganism.
- the microorganism can be any microorganism, such as a yeast, bacterium and the like, adapted for infection by a bacteriophage, and preferably is a strain of E. coli .
- a lytic cycle-suppressing amount of cl gene product is an amount sufficient to prevent a lambda bacteriophage-infected cell from lysing during the lytic phase of the bacteriophage's life cycle.
- the study of bacteriophage lambda is extensive in the biological arts, and the life cycle, and the lytic and lysogenic phases of the lambda life cycle are
- lysogenic infection is well known in the art.
- the microorganism expressing a lytic cycle-suppressing amount of cl gene product is referred to as a prolysogen to connote its ability to impose a lysogenic life cycle upon a lambda-infected cell, even if the lambda would otherwise have the ability to be lytic.
- the control of lytic versus lysogenic life cycles for lambda bacteriophage is well known to reside in the expression of the cl gene product.
- the prolysogen is phage-free, i.e., is free of genetic material
- prolysogen that is
- restriction system deficient e.g., a prolysogenic strain of E. coli deficient in one or more of the mcrA, mcrBC, mrr, mcrF, hsdR restriction systems and the like. It is preferred that the prolysogen not contain any restriction system similar to a
- Methods for producing an isolated cl gene are well known in the art.
- a preferred method utilizes PCR amplification of the gene and its native promoter as a single DNA segment no more than about 1000 nucleotides in length. Typical and preferred are the methods described herein.
- the cl gene-containing DNA segment is then typically operatively linked to an genomic insertion element, such as a transposon, or the insertion elements of the transposon.
- the cl gene-containing DNA segment can be linked to a plasmid capable of low copy number maintenance in the host.
- the amount of cl gene, and therefore the amount of cl gene product expressed can vary, so long as the amount is sufficient to suppress lytic cycle, as described previously.
- the number of copies of the cl gene can vary, although typically 1 to 4 copies are preferred, particularly 1 copy as demonstrated herein in the preferred embodiment of the SCS-8cI lysogen.
- kits for practicing the methods of the present invention that comprise, in an aliquot, a prolysogen of this invention.
- a kit can further contain a lambda phage packaging extract of this invention for use with the prolysogen, and having a restriction system deficiency compatible with the prolysogen.
- BHB2688, which is E-, and BHB2690, which is D-, are available from the American Type Culture Collection (ATCC), Rockville, MD under the accession numbers 35131 and 35132, respectively. RecA + transformation is
- Step 1 A P1 lysate is made from the E. coli K-12 strain described above.
- Step 2 BHB2688 and BHB2690 are transduced with the P1 lysate (Miller, Experiments in Molecular Genetics, Cold
- Step 3 Tetracycline (tet R ) resistant colonies are selected and purified.
- Step 4 Loss of tetracycline resistance is selected for on Bochner plates (Bochner et al, J. Bacteriol., 143:926-933 (1980)), and colonies are purified.
- Step 5 Lack of McrA restriction activity is tested by comparing transformation efficiency of unmethylated pBR322 versus pBR322 that has been in vitro methylated by Hpall methylase (Raleigh, supra). A McrA + strain will show a greatly reduced efficiency with the methylated plasmid. If McrA activity is absent, this strain is then called BHB2688McrA- and BHB2690McrA-.
- Step 11 Test for lack of McrB restriction activity as done for the McrA test, however in this case, the pBR322 should be in vitro methylated by Alul methylase (Raleigh, supra; Ross, supra). A McrB + strain will show a greatly reduced efficiency with the methylated plasmid. Test for Mrr restriction activity by comparing plating efficiency of lambda versus lambda which has been in vivo methylated by Pst I methylase (Heitman, supra). An Mrr + strain will show reduced efficiency with the methylated lambda.
- the Mrr- strain is preferably also McrF-. McrF is tested using packaged lambda DNA that has been in vitro methylated with SssI methylasse. An McrF + strain shows a reduced number of plaques when using methylated lambda DNA. Test for HsdR
- restriction activity by comparing plating efficiency of lambda versus lambda which has been in vitro
- HsdM methylase methylated by HsdM methylase (Wood, J. Mol. Biol.. 16:118-133, (1966); Adams, Bacteriophages, New York: Interscience 1959; Bickle, supra. at pp. 95-100).
- HsdR+ strain will show reduced efficiency with
- a bacteriophage P1 lysate hereinafter referred to as P1, was made from any E. coli K12 strain that carries a tetracyline resistant Transposon 10 (Tn10) in or near the mcrA gene (Tn10: :McrA).
- E. coli BHB2690 (ATCC # 35132) was used as the specific strain for transduction.
- E. coli BHB2690 which was RecA-, was first transformed with pJC859 to introduce a functional RecA protein into the lysogen.
- pJC859 was a plasmid in which the nucleotide sequence encoding RecA had been inserted at the Bam HI site of the plasmid E. coli vector, pBR322 (ATCC # 31344).
- E. coli BHB2690 competent cells were prepared following standard procedures familiar to one skilled in the art. Maniatis et al, supra, Section 1.76. Alternatively, competent cells can be obtained commercially.
- tet R colonies were selected and purified following procedures well known to one skilled in the art. The tet R colonies were then replated on Bochner plates to select for the loss of tetR as described by Maloy. Maloy et al, J.
- tet-sensitive, tet s colonies were selected on a medium consisting of the following: 15 grams/liter (g/1) agar; 5 g/1 tryptone broth; 5 g/1 yeast extract; 4 milliliters/1 (ml/1) chlortetracycline hydrochloride (12.5 milligram (mg)/ml); 10 g/1 NaCl; 10 g/1 NaH 2 PO 4 -H 2 O; 6 ml/1 fusaric acid (2 mg/ml); and 5 g/1 ZnCl 2 (20 millimolar (mM)). Chemicals were obtained from Sigma. (Sigma, St. Louis, MO).
- McrA- strains Selected tet s colonies were then purified and tested for the lack of McrA restriction activity. The determination of McrA- strains was accomplished by comparing transformation efficiency of unmethylated pBR322 versus pBR322 that had been in vitro methylated by Hpa II methylase. A McrA- strain showed a greatly reduced efficiency with the methylated plasmid.
- BHB2690McrB- strains For this procedure, a P1 lysate was prepared as described above from any E. coli K12 strain that carried a Tn10 (tet R ) in the mcrB gene (McrB: :Tn10 (tet R ). The strain selected also carried the Tn5 with kanamycin (antibiotic) resistant gene (kan R ) in the mrr gene (Mrr : : Tn5 (kan R ) .
- E. coli BHB2690McrA- (tet s ) strains were then transduced with P1 lysate [(McrB::Tn10 (tet R ) and (Mrr::Tn5 (kan R ) as described in Example la above.
- Tet R colonies that were also kan R were selected and purified.
- the loss of tet R on Bochner plates was measured as described above. Colonies that were both tet s and kan s after selection on Bochner plates were purified.
- the Mrr-strain is preferably also McrF-, as described before.
- E. coli BHB2688 strains containing RecA + but lacking McrA, McrBC, McrF, Mrr and HsdR were prepared using the approach described above for preparing
- E. coli BHB2690R- E. coli BHB2690R-.
- E. coli lysogen BHB2688 ATCC # 35131 was used. The
- E. coli lysogen, strain BHB2690R- (prehead donor) prepared in Example la the genotype of the strain is first verified before large-scale culturing. The presence of the mutation that renders the
- bacteriophage cl gene product temperature-sensitive is determined by streaking from the master stocks of E. coli BHB2690R- onto two LB agar plates. One of the plates is maintained at 32°C while the other is maintained at 45°C. Bacteria with intact cl only grow on the plates maintained at 32°C. A single small colony of E. coli BHB2690R- is picked and maintained overnight at 32°C and 45°C. The bacteria with the mutation only grow at 32°C and grow slowly due to the RecA- mutation present in the BHB strains. A 100 ml subculture of the verified master stock of E. coli strain BHB2690R- is then prepared and maintained overnight at 32°C.
- NZM broth is prepared by admixing 10 g NZ amine, 5 g NaCl, and 2 g MgSO 4 -7H 2 O to 950 ml of deionized water; the pH of the solution containing dissolved solutes is adjusted to pH 7.0 with 5 N NaOH), prewarmed to 32°C, in a 2- liter flask, to result in a starting OD 600 of
- the bacterial admixture is then maintained at 32°C with vigorous agitation (300 cycles/minute in a rotary shaker) until an OD 600 of approximately 0.3 is reached.
- the OD 600 of 0.3 is generally attained within 2 to three hours of
- the cultures must be in the mid-log phase of growth prior to induction as
- the lysogen is induced by placing the flask in a water bath preheated to 45°C. The flask is swirled continuously for 15 minutes.
- An alternative approach for inducing lysogen is to immerse the flask in a shaking water bath set at 65°C. The temperature of the fluid contents of the flask is monitored. When the fluid reaches 45°C , the flask is then transferred to a water bath set at 45°C and maintained for 15 minutes. The induced cells are then maintained for 2 to 3 hours at 38 to 39°C with vigorous agitation as described above. A successful induction is verified by the visual clearance of an added drop of chloroform to the culture.
- Sonication buffer consists of 20 mM Tris-HCl, pH 8.0, (Tris [hydroxymethyl]-aminomethane
- the bacterial cell pellet is
- the sonicated bacterial sample is transferred to a centrifuge tube and debris is pelleted by centrifugation at 12,000g for 10 minutes at 4°C forming a clear supernatant.
- Packaging buffer consists of the
- a subculture of E. coli BHB2688R- , prepared in Example 1b above, for obtaining an extract of packaging protein donor is verified for the genotype and is prepared as described above for preparing E. coli BHB2690R-. Overnight cultures are maintained and lysogen is induced also as described above.
- the induced E. coli BHB2688R- cells are pelleted by centrifugation at 4000g for 10 minutes at 4°C. The resultant supernatant is removed and any excess liquid is removed. The pelleted cells are resuspended in a total of 3 ml of ice-cold sucrose solution (10% sucrose in 50 mM Tris-HCl, pH 8.0) to form a cell suspension. The resultant cell suspension is
- the frozen tubes are removed from the liquid nitrogen and the extracts are thawed on ice.
- Twenty-five ul of packaging buffer, as prepared above, is admixed to each tube containing thawed extract to form a packaging buffer-extract admixture.
- the separately prepared admixtures are then combined in a centrifuge tube and centrifuged at 45,000g for 1 hour at 4°C to form an supernatant containing packaging protein donor.
- the frozen-thawed lysate containing the protein donor thaws first and is admixed to the still-frozen sonicated prehead extract to form a prehead-protein donor admixture.
- the resultant admixture is mixed gently until almost totally thawed.
- the DNA to be packaged (up to 1 ug dissolved in 5 ul of 10 mM Tris-HCl, pH 8.0, 10 mM MgCl 2 ) is admixed with the thawed combined extracts and mixed with a fine glass stirring rod to form a DNA-extract admixture.
- the admixture is then
- SM buffer is prepared by admixing 5.8 g NaCl, 2g MgSO 4 -7H 2 O, 50 ml Tris-HCl, pH 7.5, and 5 ml 2% gelatin (w/v) to 1 liter of deionized water and adjusting the pH to 7.5) and a drop of chloroform is added and gently mixed. Debris is removed by centrifugation at 12,000g for 30 seconds at room temperature in a microfuge. The resultant supernatant is removed and contains packaged
- the titer of the viable bacteriophage particles is measured by plating on the appropriate indicator strains.
- Recombinant DNAs that are 90% or 80% of wild-type bacteriophage lambda in length are packaged with efficiencies that are 20-fold to 50-fold lower, respectively, than those obtained with unit-length bacteriophage lambda.
- the same packaging extracts may be used for the packaging of both bacteriophage lambda and cosmids.
- extracts can be admixed with the packaging reaction either simultaneously or by multiple additions of the packaging extract.
- a comparison between the single addition and multiple addition of extracts to packaging reaction admixture was made as follows. A conventional procedure using 4 ul of DNA to be packaged was admixed with 10 ul of freeze-thaw extract and 15 ul of sonicate extract, and the admixture maintained over 3 hours at 30°C. Thereafter, the titer of phage packaged was determined. In contrast, 4 ul of DNA was admixed with 5 ul of freeze-thaw extract and 7 ul of sonicate extract and maintained for 1.5 hours at 30°C.
- packaging extracts could be added to the packaging reaction during the packaging process to produce higher yields when compared to the result when a single admixture and incubation was conducted.
- the test sequence DNA can, theoretically, contain any number or variety of genes or other identifiable test DNA sequences.
- an E. coli bacteriophage lambda genome has been engineered to carry lacZ, a beta-galactosidase test DNA sequence.
- Lambda shuttle vectors L2B (46.5kb) or C2B (48.0kb) may be used.
- the genotype of the modified lambda genome L2B is lac5 delta (shind III lambda 2-3°) srl lambda 3-5° cI857 sXhL lambda 1° sScII lambda 4°.
- this lambda DNA was diluted to a concentration of 10 micrograms per milliliter and the cos ends were annealed and ligated under conditions predominantly forming circular lambda phage monomers.
- a variation of L2B was constructed that contains a plasmid sequence that can be readily excised from the lambda phage and contains the lacl repressor gene. This variation has several advantages. First, as discussed below, physical identification of phage carrying mutations is
- mice were used as the test animal. (Hogan et al, Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory, 1986). Single cell mouse embryos were harvested from female mice that were impregnated the evening before. The embryos were treated with hyaluronidase and briefly cultured in M16 medium. The embryos were transferred to M2 medium on a microscope glass depression slide. The embryos were observed with a 40X objective and a 10X eyepiece using a Nikon Diaphot microscope equipped with Hoffman optics. The embryos were held in place with a holding pipet that had been rounded with a microforge. The positions of both the holding pipets and the injection pipets were controlled with
- DNA as described above was loaded in the injection pipet at a concentration of 1 to 10 micrograms per milliliter. Approximately one
- Lambda DNA used as standards, that had been electrophoresed alongside the mouse genomic DNA were compared in intensity to the transgenic mouse DNA hybridized to the 32 P labeled lambda DNA to
- transgenic lines having approximately one copy of the test DNA sequence per cell can be obtained, it will be understood by one skilled in the art that multiple copy numbers per cell are obtainable and may be useful for many different applications.
- mice Six to eight week old transgenic male mice were treated on day 1 and day 4 by intraperitoneal injection of either 125 or 250 mg N-ethyl-N-nitrosourea (EtNu), per kg body weight. Control animals were injected with 100 mM phosphate buffer at 10 ml/kg body weight. Tissues were collected two hours after final injection.
- EtNu N-ethyl-N-nitrosourea
- the entire lambda bacteriophage genome is excised from the mouse chromosome by the in vitro packaging extract.
- the packaging extract recognizes the cos sites of the integrated lambda DNA and packages the sequences between the cos sites into lambda phage particles, as shown in Figure 1.
- test DNA sequence may be found within the genomic DNA purified from any tissue of the transgenic mouse. Since the test DNA sequence is contained within a lambda phage genome, it can be excised away from the remainder of genomic DNA by using a lambda phage packaging extract. Packaged lambda phage such as L2B or C2B, may then be plated on E. coli cells for further evaluation.
- Bacteriophage lambda DNA can be packaged in vitro using protein extracts prepared from bacteria infected with lambda phage lacking one or more genes for producing the proteins required for assembly of infectious phage particles. Typical in vitro
- packaging reactions are routinely capable of achieving efficiencies of 10 8 plaque forming units (pfu) per ⁇ g of intact bacteriophage lambda DNA. About 0.05 - 0.5 percent of the DNA molecules present in the reaction can be packaged into infectious virions.
- the E protein is the major component of the E protein
- Bacteriophages mutant in the E gene accumulate all of the components of the viral capsid.
- the D protein is localized on the outside of the bacteriophage head and is involved in the coupled process of insertion of bacteriophage lambda DNA into the "prehead" precursor and the subsequent maturation of the head.
- Bacteriophages mutant in the D gene accumulate the immature prehead but do not allow insertion of bacteriophage lambda DNA into the head.
- the A protein is involved in the insertion of bacteriophage lambda DNA into the bacteriophage prehead and cleavage of the concatenated precursor DNA at the cos sites.
- a bacteriophage lambda DNA packaging extract is a proteinaceous composition that is capable of packaging bacteriophage lambda DNA into infectious virus particles.
- the lambda DNA packaging extracts useful in this invention have a packaging efficiency of at least 10 8 , and more preferably at least 10 9 , pfu/ ⁇ g of intact lambda DNA.
- the packaging extracts of this invention are usually prepared from cells containing bacteriophage lambda lysogens of the appropriate genotype, e.g., amber mutations in genes A, D, E and the like.
- useful lysogens preferably have one or more of the following mutations:
- lambda repressor molecule This mutation causes lambda DNA to be maintained in the lysogenic state when the host bacteria are grown at 32°C;
- bacteriophage growth is induced by transiently raising the temperature to 42- 45°C to inactivate the repressor specified by the cl gene.
- Sam7 - an amber mutation in the bacteriophage S gene that is required for cell lysis. This mutation causes capsid components to
- b-region deletion (b2 or b1007) - a deletion in the bacteriophage genome that effectively removes the lambda DNA attachment site
- Red3 in lambda
- RecA in E. coli
- a lambda lysogen useful for producing a packaging extract is one deficient in one or more of the McrA, McrBC, McrF, HsdR and Mrr restriction systems.
- Packaging extracts are usually prepared from a lysogenic bacteria having one or more of the following mutations: McrA-, McrBC-, McrF-, Mrr-, HsdR-, and preferably prepared from K-12 ⁇ mcrB region, BHB2690R-, or BHB2668R-, by growing the appropriate lysogenic bacteria to mid-log phase at 32°C, inducing lytic functions by inactivating the cl repressor protein by raising the temperature to 45°C for 15 minutes, and then growing the cultures for an additional 2-3 hours at 38-39°C to allow packaging components to
- ⁇ -galactosidase deficient E. coli are grown in IX TB (5g/L NaCL, 10g/L tryptone) supplemented with 0.2% maltose and 10mM MgSO 4 overnight at 30° C. Cells are harvested by centrifugation and resuspended in 10mM MgSO 4 in preparation for plating (Maniatis, supra).
- the phage plaques turn blue if the beta-galactosidase sequence within the lambda genome has not mutated.
- a white plaque or faint blue plaque on the petri dish is evidence that a mutation in the beta-galactosidase sequence has, for example, altered the reading freme, altered essential codons, or has created stop codons in the sequence.
- These white or faint blue plaques will be scored as positive for mutations and they can be plaque purified and saved for further analysis. The ratio of white or faint blue to blue plaques minus background provides a numerical measure of the
- lac repressor lac I or lac I q
- selectable systems that include a reporter gene that selects for the growth of host cells containing the mutagenized test DNA
- test DNA sequence rescue efficiency can be influenced by the state of CpG methylation in the mouse chromosome. Highly methylated DNA may not be efficiently excised by lambda packaging extract, presumably because of inhibition of cleavage at the cos sites, inhibition of expression of lambda genes encoded on lambda phage, or restriction by E. coli restriction systems. This may be alleviated by placing transcriptional enhancers, promoters and/or other regions of the DNA which inhibit methylation near critical sites such as the cos site to reduce CpG methylation.
- the drug 5'-azacytidine can also be used to reduce the level of DNA methylation in the target cells prior to DNA purification and rescue. Jaenisch et al, Proc. Natl. Acad. Sci. USA, 82:1451-1455 (1985). In such a procedure, fibroblast cell lines are obtained from organisms containing the test DNA sequence of
- organisms containing the test DNA sequence can be directly injected with a 1 mg/ml solution of 5'-azacytidine in 0.15 M NaCl. This is done over a period of at least about 4 days, with a total of 400 ⁇ g administered. Jaenisch, supra. After this treatment, DNA can be extracted from various tissues and packaged as before.
- genotype of both the bacterial strain used to generate the packaging extract as well as the plating strains used for mutagenesis testing is due to, at least in part, host-controlled restriction
- DNA is modified by endonuclease cleavage.
- methylation of specific nucleotides usually serves to protect DNA from restriction by the endonucleolytic activity of the host, methylation at some DNA
- McrB restriction system of E. coli K-12 is responsible for the biological inactivation of foreign DNA that contains 5-methylcytosine residues. Ross et al, Journal of Bacteriology, 171:1974-1981 (1989).
- the Mrr system also involves adenine methylation, however, in this case the methylation does not serve to protect the DNA, but serves to make the DNA vulnerable to the restriction system.
- the mrr gene system has recently been shown to also recognize and restrict cytosine methylated sequences. This activity of the mrr gene has been named McrF.
- McrA and McrBC are similar to Mrr in that they recognize and restrict methylated DNA. However, these two systems differ from Mrr in that they have been shown to recognize only methylated cytosine.
- McrB function is provided by the products of at least two genes, mcrB and mcrC (Ross et al, J. Bacteriol.. 171:1974-1981 (1989)).
- the recognition sequences for mcr and mrr are contemplated in the literature, but precise sequences are as yet unknown.
- restriction systems may be isolated and used.
- Strain RR1-A and K-12 ⁇ mcrB are constructed as described below.
- Strain RR1-A is constructed with strain RR1
- Step 3 Tetracycline resistant colonies are selected and purified.
- Step 4 Loss of tetracycline resistance is selected for on Bochner plates (Bochner, B.R., et al., J. Bacteriol., 143:926-933 (1980)), and colonies are purified.
- Step 5 lack of McrA restriction activity is tested by comparing transformation efficiency of unmethylated pBR322 versus pBR322 that has been in vitro methylated by Hpall methylase (Raleigh, supra). A McrA + strain will show a greatly reduced efficiency with the methylated plasmid.
- McrA activity is absent, this strain is then called RR1-A.
- Strain K-12AmcrB is constructed using two donor E. coli K-12 strains with the relevant genotypes McrB: :Tn10 (tet R ), Mrr: :Tn5 (Kan R ) and McrA: :Tn10 (tet R ) and a recipient E. coli K-12 with the relevant genotypes McrB: :Tn10 (tet R ), Mrr: :Tn5 (Kan R ) and McrA: :Tn10 (tet R ) and a recipient E. coli K-12 with the relevant
- Steps 1-5 Perform steps 1-5 as described for construction of RR1-A. In step 2 , transduce any E. coli K-12 RecA + strain. Step 6:
- Step 10 Purify several colonies and test for sensitivity to tetracycline and
- Step 11 Test for lack of McrB restriction activity as done for the McrA tet, however in this case, the pBR322 should be in vitro methylated by Alul methylase (Raleigh, supra; Ross, supra). A McrB + strain will show a greatly reduced efficiency with the methylated plasmid. Test for Mrr restriction activity by comparing plating efficiency of lambda versus lambda which has been in vivo methylated by Pst I methylase (Heitman, supra). An Mrr + strain will show reduced efficiency with the methylated lambda. Test for HsdR restriction activity by comparing plating efficiency of lambda versus lambda which has been in vitro methylated by Hsd methylase (Wood, J. Mol.
- HsdR+ strain will show reduced efficiency with unmethylated lambda. If a strain (purified colony) lacks all restriction activities, namely, McrA, McrBC, McrF, Mrr, HsdR and was constructed by this method, it should then contain a deletion throughout the McrB region ( ⁇ mcrB). It will then also very efficiently plate lambda that has been rescued from the mouse. This strain is called K-12 ⁇ mcrB.
- the "A" symbol in Table 1 indicates that the strain contains a large deletion in the mcrB region. All other McrB- strains listed in Table 1 are K-12 derivatives believed to contain a small mutation in the mcrB region, with the exception of E. coli C which does not contain the K-12 mcrB region, and RR1-A which carries the wild type mcrB locus of E. coli B. It is known that all of these strains plate control L2B phage (amplified in HsdM+ E. coli K-12 rather than rescued from the mouse) with equal efficiency (within 1-4 fold). Rescued L2B phase were recovered from the mouse genome using Mcr- E. coli K-12 lambda packaging extracts (Gigapack II - Stratagene, La Jolla, CA) and plated onto the indicated bacterial strains. A "+" plating efficiency of phage indicates that
- Clones containing the 98 minute region were identified by colony hybridization using an
- oligonucleotide (ATGAGTGCGGGGAAATTG) probe specific to the Hsd region (Gough et al, J. Mol. Biol., 166:1-19 (1983)). All clones were propagated in the host RR1-A when tested for plating efficiency of phage. As shown in Figure 3, in panels 3A and 3B, the activity was isolated to a 2.6 kb fragment containing the mcrB gene. The mcrB region including open reading frames (Ross et al, supra) is shown in Figure 3A. The subclones corresponding to these groups are shown directly below. The table on the far left gives information pertaining to the DNA fragment shown on the right.
- E. coli strains for rescue of the lacZ construct from the transgenic animal genome are SCS-8 (Catalog Number 200,288) and VCS257 (Catalog Number 200,256) which are commercially available from
- SCS-8 has the following genotype: RecA1, endA1, mcrA, ⁇ (mcrBC-msdRMS-mrr), ⁇ (argF-lac)U169, phi80 ⁇ lacZ ⁇ M15, Tn10(tet r ).
- SCS-8 provides the lacZ ⁇ M15 gene which allows for alpha-complementation when SCS-8 is infected by the packaged bacteriophage. Additional commercially available E. coli strains which contain the lacZ ⁇ M15 genotype for use in this invention include the following: XL1-Blue
- restriction system deficient strains may be used for other eukaryotic DNA cloning projects.
- test DNA sequences or genes can be inserted between lambda cos sites.
- the in vitro packaging extract would still excise the DNA between the cos sites and package it into a lambda phage particle.
- a variety of recombinant lambda genomes or cosmids may be used for this excision event.
- Mutations evidenced by the production of white plaques resulting from disruption of the ⁇ -galactosidase ( ⁇ -gal) gene are useful for determining the mutation rate of a mutagen, but give little information regarding the specific mutation within the DNA.
- analysis of the specific mutation is hampered somewhat by the size of the test ⁇ -gal gene (i.e., about 3200 b.p.).
- the target lambda phage can be made to provide a target gene with reduced size (e.g., the lacl gene having about 1000 b.p.), and a rapid means with which the target gene is transferred from the lambda phage into plasmid vectors for sequence
- a target gene with reduced size e.g., the lacl gene having about 1000 b.p.
- Both the lacl and ⁇ -gal genes are inserted within a lambda vector, such that if the mutation occurs within the lacl gene, the repressor activity is lost allowing the ⁇ -gal gene to be expressed giving rise to blue plaques in the absence of IPTG.
- the lacI gene is positioned upstream of the alpha portion of the lacZ gene in the vector
- the AM15 portion of the lacZ gene provided by the host is provided either episomally (via a low copy number plasmid or F-factor) or stably integrated into the bacterial chromosome.
- the alpha portion of lacZ is used because 1) the ⁇ -gal protein formed by alpha-complementation is known to be weaker in activity than the contiguous protein, minimizing the possibility of background blue plaques due to inefficient repression by lacI, and 2) to provide a smaller and thus more easily characterized lacZ target should this gene be used in mutagenesis studies.
- the requirements of the host E. coli in this system are the following:
- the embodiment described utilizes the alpha portion of lacZ with lacI.
- the complete lacZ can also be used by providing a means to maintain complete repression by lacI until induction is desired. This can be done in a variety of ways including control of ⁇ M15 laZ expression by a lambda specific promoter
- lacI lacI-induced lacI
- the source of starting materials for the cloning procedures are as follows: the pBluescript II SK+ and SK-, pBS(+), lambda gtll, and lambda L2B are available from Stratagene Cloning Systems, La Jolla, CA. Lambda L47.1 and pPreB: Short et al, Nucleic Acids Res., 16:7583-7600 (1988). pMJR1560 is available from
- Lambda ZAP is a lambda phage vector which permits in vivo excision of inserts from the lambda vector to a plasmid. This is possible because the lambda phage contains the two halves of an fl bacteriophage origin of replication. In the presence of proteins supplied by f1 helper phage, all DNA present between the two partial f1 origins is automatically excised from the lambda phage. The two halves come together to form an intact f1 origin. The resulting phagemid contains a Col E1 origin of
- these fl origins are positioned so that the lacI gene can be
- the insert may be rapidly sequenced or characterized by other known methods.
- a lambda ZAP is used to convert the test DNA inserts from integration in the lambda vector to a plasmid.
- Other systems may also be used which allow excision and
- Such other systems include, but are not limited to, the use of FLP-mediated
- test DNA sequences include (but are not limited to): the lac I repressor, the cl repressor, any antibiotic resistance gene sequence (ampicillin, kanamycin, tetracycline, neomycin, chloramphenicol, etc.), the lambda Red and Gam gene sequences, a thymidine kinase gene sequence, a xanthine-guanine phosphoribosyl transferase gene sequence, sequences that code for restriction enzymes or methylation enzymes, a gene sequence that codes for luciferase, and/or a tRNA stop codon or frameshift suppressor gene sequence.
- test sequence (s) can be separated away from the mouse DNA with restriction enzymes (enzyme rX) and subsequently ligated with restriction sites of lambda or cosmid vectors which contain cos sites, or if the test sequence is linked to a replication origin it can be transformed directly. Background can be reduced in such a system by including with the test DNA sequences a sequence that is necessary for lambda phage
- Lambda LIZ alpha An exemplary modified Lambda genome, designated Lambda LIZ alpha, is prepared through a series of molecular gene manipulations as diagrammed in Figures 4 through 8.
- Figure 4 depicts the construction of pBlue MI-.
- pBluescript SK- (Stratagene, La Jolla, California) is modified using site directed mutagenesis to introduce an AvaIII restriction site at a position 5' to the open reading frame for the lacI gene, but downstream from the ampicillin resistance gene and the ColE1 origin of replication present on pBluescript to form pBlue MI-.
- Figure 5 depicts the construction of pLadq.
- pBluescript II SK+ (Stratagene) is digested with the restriction enzymes Pstl and EcoRI, both which cleave in the polylinker region to form linearized
- pBluescript SK+ lacking the small fragment derived from the polylinker.
- pMJR1560 (Amersham Corporation, Arlington Heights, Illinois) is digested with the restriction enzymes Pstl and EcoRI to release a lacl q -containing fragment that is separated by agarose gel electrophoresis and eluted from the gel. The lacl q -containing fragment is then ligated into the
- Figure 6 depicts the construction of plnt.l.
- a double stranded DNA segment defining multiple cloning sites (a polylinker) is produced by synthetic
- the polylinker contains multiple restriction endonuclease recognition sequences including two AvaIII sites flanking Xbal, Kpnl and Pvul sites.
- the polylinker is digested with AvaIII to form AvaIII cohesive termini on the polylinker.
- pBlueMI- is digested with AvaIII and the polylinker is ligated into pBlueMI-to
- Figure 7 depicts the construction of pPreLadqZ (pPRIAZ). To that end, pPre B is first prepared as described by Short et al, Nucl. Acids Res., 16:7583-7600 (1988).
- plasmid pUC 19 (ATCC #37254) described by Yanisch-Perron et al, Gene, 33:103-119 (1985), was digested with EcoRI, dephosphorylated and ligated to complementary oligonucleotides, each having compatible EcoRI ends and defining a T7 RNA polymerase promoter as described by McAllister et al, Nucl. Acids Res., 8:4821-4837 (1980) to form pJF3 having the T7 promoter oriented to direct RNA synthesis towards the multiple cloning site of pUC 19.
- pJF3 was digested with Hindlll, dephosphorylated and ligated to
- pBluescribe (pBS), was isolated that contained the T3 promoter oriented to direct RNA synthesis towards the multiple cloning site of pUC 19. pBS was then
- pBluescript SK(-) and SK(+) were produced from pBS(-) and pBS(+),
- blunt-ended molecules were ligated to a blunt-ended synthetic polylinker
- intergenic region is contained on the Rsal (position 5587) to Hinfl (position 5767) restriction fragment isolated from pEMBL8.
- the remaining terminator sequences were provided by preparing synthetic
- oligonucleotides as described by Short et al, supra, to provide a complete terminator, a gene II cleavage signal and unique restriction sites for EcoRV and Ndel.
- the synthetic oligonucleotide and the Rsal/Hinfl fragment were ligated with a 3009 bp Dral/Ndel
- pBSITO#12 The initiator domain of the fl intergenic region was separately cloned by digesting pEMBL8 with Sau961 and Dral to form a 217 bp fragment that was then blunt-ended with Klenow and then subcloned into the Narl site of pBST-B to form pBSITO#12.
- pBluescript SK(-) was digested with Nael and partially digested to cut only at the Pvul site located adjacent to the f1 origin, and the resulting fragment lacking the f1 origin was isolated. The isolated fragment was ligated to the Nael/Pvul fragment of pBSITO#12 that contains the terminator and initiator regions of the fl intergenic region to form plasmid pPre B.
- Lambda gtll (ATCC #37194) was digested with Kpnl and Xbal to produce a 6.3 kilobase (kb) fragment containing the lacZ gene, which was agarose gel purified.
- pBS(+) prepared above and available from Stratagene was digested with Kpnl and XbaI, and the resulting lacZ fragment was ligated into pBS(+) to form pBS (lacZ).
- pLadq from above was digested with Narl and Sail and the resulting small fragment
- plntladqZ containing the lacl q gene was isolated.
- pBS(lacZ) was digested with Narl and Sail and the resulting large fragment containing the lacZ gene was isolated and ligated to the small lacI q -containing fragment to form pladqZ.
- plnt.l prepared above was digested with Kpnl, and the resulting linear molecule was ligated to the lacI-lacZ fragment, produced by digesting pladqZ prepared above with Kpnl, to form plntladqZ.
- plntladqZ was then digested with Xbal, blunt-ended with Klenow, digested with Seal, and the resulting large fragment containing lacZ-lacI q and most of the ampicillin resistance gene was isolated.
- pPre B prepared above was digested with Pvul, blunt ended with mung bean nuclease, digested with Seal and the resulting fragment containing the terminator and initiator fl intergenic region components was isolated and ligated to the plfntladqZ-derived large fragment to form plasmid pPreladqZ (pPRIAZ)
- Figure 8 shown in two panels 8A and 8B, depicts the construction of Lambda LIZ Alpha.
- Lambda L47.1 described by Loenen et al, Gene, 10:249-259 (1980), by Maniatis et al, in "Molecular Cloning: a Laboratory Manual” , at page 41, Cold Spring Harbor, New York (1982), and by Short et al, supra, and having the genetic markers (srIlambdal-2) delta, imm434 cl-, NIN5, and chi A131, was digested with EcoRI, Hindlll and Smal to form a Lambda L47.1 digestion mixture.
- Lambda L2B available from Stratagene, was first digested with Xbal, then treated with Klenow to fill-in the 5 1 Xbal overhang, then digested with MluI to form a L2B digestion mixture.
- the L47.1 and L2b digestion mixtures were ethanol-precipitated to prepare the DNA for ligation, and were then ligated to pPRIAZ prepared above that had been linearized with Ndel to form Lambda LIZ alpha.
- Lambda LIZ alpha is a preferred modified Lambda bacteriophage for use in the present invention because it combines the elements of 1) a reporter gene in the form of the alpha component of lacZ, 2) the lambda bacteriophage excision
- an indicator gene system in the form of the lacl q target gene including a lacI
- PBLs Peripheral blood lymphocytes
- ml venous blood drawn from volunteer donors.
- PBS phosphate buffered saline
- Lymphocytes are also isolated from tonsils obtained from therapeutic tonsillectomies from
- lymphocytes are isolated over Histopaque as described above.
- Subject rDNA are then inserted into the isolated lymphocytes using techniques known to one skilled in the art. Preferred techniques are electroporation of lymphocytes and calcium chloride permeabilization of the lymphocytes.
- SCID mice having the autosomal recessive mouse mutations scid are obtained from Imdyme (San Diego, California). Alternatively, SCID mice are derived from an inbred strain of mice, C.B-17 (Balb/c-C57BL/Ka-Igh-1b/ICR (N17F34) as described by Bosma et al, Nature, 301: 527-530 (1983). Analysis of the pedigree of mice lacking IgM, IgGl or IgG2a determined that the defect was inheritable and under the control of the recessive scid gene. Bosma et al, supra. A colony of mice can be established which are homozygous for the defective gene. The SCID mice are maintained in microisolator cages (Lab Products, Maywood, New Jersey) containing sterilized food and water.
- SCID mice obtained in Example 6b are reconstituted by intraperitoneal injection with at least 5 X 10 7 human PBLs or tonsil lymphocytes prepared in Example 6a.
- the recipient SCID mice are designated SCID/hu chimeras which contain the subject rDNA.
- the human PBL reconstituted SCID mouse model is then used for assaying the effects of mutagens on human cells as described in this invention.
- a prolysogenic microorganism (a prolysogen) was prepared as described below, and was used as exemplary of the methods of this invention.
- the prolysogen was constructed in E. coli strain SCS-8 available from Stratagene (La Jolla, California) using the procedures of Herrero et al, J. Bacterial., 172:6557-6567 (1990), to introduce a stably integrated copy of the lambda cl gene into the genome, and form the E. coli designated SCS-8cI.
- SCS-8cI The genotype of E. coli strain SCS-8 has been described in some detail by Kohler et al,
- SCS-8 is resistant to the antibiotic tetracycline.
- the prolysogen E. coli strain SCS-8cI has been deposited with the American Tissue Culture Collection (ATCC; Rockville, MD) on February 14, 1992, and has been assigned an ATCC accession number 55297.
- pUC18Sfi I was first prepared as described by Herrero et al, supra.
- pUC18Sfi I was derived from pUC18 by adding two SfiI restriction sites flanking the
- p1 (SEQ ID NO 5) includes to nucleotides 38019 to 38039 of lambda, and p2 (SEQ ID NO 6) includes
- the resulting PCR product was inserted into the polylinker region of the plasmid pUC18Sfi I, and then removed from the plasmid by digestion with SfiI, to form a PCR fragment having SfiI cohesive termini.
- pUTKm contains the 19 base pair ends of the transposon Tn5 required for insertion of DNA fragments into genomic DNA. Between the flanking ends, termed insertion elements, is a selectable marker, the gene for kanamycin resistance (kan), and a restriction endonuclease site for SfiI into which the PCR fragment containing the cl gene was ligated. Outside the insertion elements is the tnp gene encoding the transposase protein required for the transposition function. Thus, upon transposition, the tnp gene is left behind, so that the genomically integrated insertion fragment having the cl and kan genes cannot be excised by transposition in the absence of a transposase protein.
- kan kanamycin resistance
- Plasmid pUTKm also contains an R6K origin of replication (ori) that requires the pir gene product for replication.
- pUTKm was propagated in the S17-1 E. coli strain that contains the pir gene (pir + ) also described and provided by Herrero et al, supra. S17-1 is sensitive to both of the antibiotics kanamycin and tetracycline. Plasmid pUTKm-cI was transformed into E. coli
- SCS-8 E. coli kills the S17-1 cells, leaving only the SCS-8 cells, which are tet R .
- the absence of the pir gene product in the SCS-8 cells prevents the plasmid pUTKm-cI from replicating, thereby providing the selective pressure for transposition to occur in order to maintain the kanamycin gene in the E. coli cells.
- the resulting viable cells are SCS-8 E. coli
- SCS-8cI cells are exemplary herein as a prolysogenic microorganism because the expression of the cl gene product prevents the cell from entering the lytic phase upon infection by a lysis-competent lambda bacteriophage when
- mutagenesis assays using either a lacZ or lacI target gene within a lambda shuttle vector.
- genomic DNA from a transgenic mouse was exposed to in vitro lambda packaging extract which allows lambda phage genomes containing the lacZ or lacI target gene to be recovered from the mouse genome.
- the resulting phage particles were then adsorbed to an E. coli host and plated with top agar on rich NZY media.
- both mutant and non-mutant targets are scored in this assay, it is considered a non-selectable system for screening for mutagenesis of the target gene.
- this system generated easily identifiable mutants, plating densities cannot exceed 50,000 plaques per 25x25 cm plate and are optimal at densities of 15,000 plaques per plate. Based on these numbers, 10-20 plates are required for each mouse tissue analyzed. The number of plates contributes significantly to the cost of the assay in terms of plates, media, X-gal substrate and labor.
- the system described in this example is a selectable, and preferred, version of this assay in which only phage that harbor mutant lacI target genes can survive and be identified on the plate. This selection allows a higher plating density to be used: up to 500,000 phage and thus 500,000 target genes, can be screened on one 25x25 cm plate, significantly decreasing the cost and time to perform the assay.
- the identification of mutants using the present selectable system depends on the expression of the alpha-lacZ gene to create a functional beta-galactosidase protein.
- This protein allows the cell to utilize lactose for growth.
- cells carrying phenotypically mutant lacI genes can grow on minimal media containing lactose as the sole carbon source.
- Cells carrying non-mutant lacI genes code for a functional lac repressor and therefore cannot express alpha-lacZ, and die from carbon starvation.
- the system is selectable for only those target genes which have been mutagenized, thereby inactivating the lacl gene.
- the plating media required for this selection is referred to as minimal media containing lactose as the sole carbon source and consists of the following components expressed per liter and are obtained from Sigma Chemical Co. (St. Louis, MO) unless noted differently: 6.0 g Na 2 HPO 4 , 1.0 g NH 4 Cl, 0.5 g NaCl, 20.0 g Bacto Agar, 0.5 g lactose, 0.34 g thiamine HCl, 1.0 ml of 1M MgsO 4 , 0.1 ml of 1M CaCl 2 .
- the top agar consists of the following components expressed per liter: 6.0 g Na 2 HPO 4 , 3.0 g KH 2 PO 4 , 1.0 g NH 4 Cl, 0.5 g NaCl, 3.5 g Seakem Agarose (FMC, Rockland, ME), 0.4 g Difco casamino acids, 2.0 g X-gal (Stratagene Cloning Systems, La Jolla, CA). Note that X-gal was used in this media not to allow distinction between mutants and non-mutants but to allow easier identification of the mutants on the light colored minimal media plates.
- Variations in the media formulation can be utilized, however, it was determined that lactose should not be included in the top agar, as this contributed to elevated levels of false positive bacterial cell growth (higher backgrounds). In addition, the rate of growth for the lactose-dependent cells was improved when casamino acids were included in the top agar.
- selection depends on survival of the host cells as opposed to plaque formation, it is necessary to inhibit lytic growth of the rescued phage particles once they have adsorbed to the host E. coli cells.
- a prolysogenic strain because it maintains the lambda infection in a non-lytic life cycle.
- the cl gene specifies the lambda repressor protein which allows lambda genomes to be maintained in the lysogenic state as opposed to replicating lytically.
- the cl gene is stably integrated in the E. coli chromosome as described above.
- E. coli strain SCS-8cI and the minimal media described above are the two major changes that are incorporated into the protocol described in the earlier Examples 1-6 for the non-selectable version of mutagenesis testing assay of this invention.
- the general method of the assay was as follows: First, genomic DNA was isolated from transgenic mouse tissue. Approximately 20.0 ul of the DNA was then packaged using Transpack in vitro lambda packaging extract (produced as described earlier) for three hours at 30°C. SM buffer was then added to the reaction tube to give a final volume of one ml. Fifty ul of the reaction was then plated according to the protocol described for the previous non-selectable system.
- the remaining 900 ul of the packaging reaction was then adsorbed to SCS-8cI cells (prepared as previously described with the exception that the cells are resuspended to an OD of 2.0 after spinning), for 20 minutes at 30°C followed by mixing with 2.5 ml of minimal top agar and pouring onto a 25 ⁇ 25 cm plate containing lactose minimal media. This plate was then incubated for approximately 60 hours at 30°C before scoring the blue mutant colonies. The non-selectable plate was scored for total number of plaques to determine the rescue efficiency as previously
- the various phage were adsorbed to SCS-8cI and plated in top agar on the selective minimal media described above. The plates were incubated at 30°C for 60-65 hours after which time the total number of colony forming units (cfu) was determined.
- the selectable system was then evaluated for its ability to detect both spontaneous and induced mutant lacI targets rescued from the mouse genome. Following a standard dosing regimen to treat mice with
- genomic DNA was prepared from the liver of animals treated as described in previous assays, as well as from untreated control animals. Briefly, 6-8 week old B6C3F1 mice were injected intraperitoneally with 100 mg MNU/kg/day for five days. The animals were sacrificed 12 days after the injections, and the genomic DNA prepared and assayed as described.
- the selectable mouse
- mutagenesis assay was then performed on three separate days (experiments 1, 2, 3) as described above.
- the results are shown in Figure 9 as mutant frequency versus time.
- the mutation frequency is the number of mutant colonies obtained divided by the total number of phage particles screened as calculated from the non-selectable plate.
- the time represents the hours at which the mutant colonies were counted after being placed in the 30°C incubator.
- the data show that both spontaneous and induced mutant lacI targets can be detected with this selectable assay allowing the calculation of mutant frequencies.
- the data also demonstrates the reproducibility of the assay as determined by three independent experiments. Additionally, induction rates can be detected with this system as seen by the increased number of mutants observed with the treated (induced) DNA relative to the untreated (control) DNA.
- the data in Figure 9 is expressed over time because mutants continue to arise over time. It is possible that a correlation exists between the time that a mutant colony appears and the specific type of mutation that is present in the lacI gene. This may aid in classifying the mutants. For example, a colony that appears early may contain a "strong" mutation while a colony that appears late may contain a "weak” mutation that confers more of a "leaky” lacZ
- the selectable system described above is flexible in that the components and concentrations of the components of the minimal media may be varied as can the incubation temperature of the plates. These changes can effect the growth rate of the cells and thus alter the time at which the plates can be scored.
- the selectable version of the previously described mouse mutagenesis assay can be used to determine mutation frequencies and induction rates.
- two major modifications to the original assay were:
- the new E. coli strain (designated as a prolysogen) was constructed, and a different plating media was developed.
- This system allows ⁇ 10 ⁇ 20 fewer plates to be used, thus significantly reducing the cost of the assay in terms of plates, media, X-gal chromogenic substrate, and labor.
- the selectable system allows the classification of lacI mutants and permits a wider and/or different spectrum of mutants to be detected.
- the above selectable system utilizing the SCS-8cI host cell and minimal lactose medium was conducted as above but at 37°C, rather than at 30°C, in order to reduce the growth time. Under these conditions, although lysogenization was induced, the lac repressor was unable to sustain lysogeny at 37°C for prolonged periods, and plaques form in the minimal media top agar after about 40 hours.
- the casamino acids in the top agar permitted the growth of a low density lawn of E. coli necessary for the plaque formation by the phage harboring the mutant lacI gene. Without the supplement, plaques were not visualized.
- the present embodiment allows mutants to be scored as lytic plaques after shorter incubation times of about 40 hours, rather than the longer 60-65 hours required when growth is at 30°C with the lysogenic assay. 9. Construction of a Gene Activating Selectable
- a plasmid vector containing a reporter gene under the transcriptional control of a lac promoter and lac operator is constructed having the E. coli groE as the reporter gene and the lambda terminator nucleotide sequences qut-t6s that is regulated by lambda
- a strain of E. coli that is GroE- is required as the host cell for use of the reporter gene construct.
- the E. coli strain SCS-8 tet r described earlier was selected for sensitivity to tetracycline by culturing on Bochner media as described by Maloy et al, J. Bacteriol. 145:1110-1112 (1981) to form SCS-8 tet s .
- the strain SCS-8 tet s was transformed with the RecA + plasmid pJC859 described earlier herein, to form SCS-8 tet s /pJC859.
- a P1 lysate was prepared according to standard procedures from E. coli strain CAG9269 described by Tilly et al, Proc. Natl. Acad. Sci USA, 78:1629-1633 (1981), that is groEL140 Tn10 tet r , the lysate was used to perform a standard P1 transduction of SCS-8 tet s /pJC859, and the resulting transductants were selected for tet r colonies to form SCS-8 tet r /pJC859. The resulting colonies were screened for the GroE mutant phenotype by infection by lambda phage and identifying colonies that inhibit plaque formation, indicating the presence of the groEL140 mutation.
- GroE- colonies were selected and designated SCS-8 tet r groEL140/pJC859.
- groEL140/pJC859 was cultured under conditions of rich liquid media (NZY) culture to select for the loss of pJC859 to form SCS-8 groEL140 (tet r) , which has the relevant genotype of groEL140, recA, deltaM151acZ, mcrA, delta (mcrCB-hsdR-mrr) Supo.
- the resulting GroE mutant E. coli strain is extremely efficient at inhibiting lambda plaque formation, and no plaques are observed when 4.5 ⁇ 10 8 phage particles are plated on strain SCS-8 groEL140 (tet r ). This level of inhibition is well below the amount of spontaneous mutations of about 10 -5 required for use in a mutagenic testing animal of this
- a second E. coli strain designated SCS-8 groES30 (tet r) was similarly prepared using the E. coli strain CAG759 described by Fayet et al, J. Bacteriol.,
- groE gene was PCR-amplified from a colony of E. coli strain XL1-Blue (Stratagene) using Taq DNA polymerase under standard PCR procedures with the following primers p3 (SEQ ID NO 7) and p4 (SEQ ID NO 8):
- the resulting PCR-amplified fragment contains a ribosome binding site, an ATG translational start sequence, and both the groES and groEL genes.
- a groE gene can readily be isolated from other E. coli
- the fragment was restriction endonuclease digested with Apal and Sail, treated with calf intestine alkaline phosphatase (CIAP), gel purified and cloned into pBluescript SK (pBS;
- Plasmid pBSG3 contained the groES and groEL genes under the control of the lac promoter and lac operator in pBS. Plasmid pBSG3 is designated a high copy number plasmid because it contains a ColE1 prokaryotic origin of replication that maintains the plasmid in the host cell at high copy number. Thus host cells used in the assay system of the present invention will contain high copy numbers of plasmid where the reporter gene transcription unit is based on pBSG3.
- Plasmid p15 SK was provided by Ronald Fisher (Federal Republic of Germany). Plasmid p15 SK contains the p15A replicon and is based on the pBluescript SK plasmid except for the replicon, and the presence of the chloramphenicol acetyltransferase gene (cat) selectable marker.
- Plasmid pBSG3 was digested with Apal and Sail to release the groE gene, and the resulting digested plasmid treated with CIAP.
- the resulting 2.2 kilobase (kb) fragment containing the groE gene was isolated, purified, and cloned into pl5 SK that was predigested with Apal and Sail to form plasmid p15G10.
- Plasmids p15G10 and pBSG3 were tested for their ability to complement GroE mutant E. coli strain
- CAG9269 groEL140 First, each plasmid was transformed into the mutant strain to form CAG9269 groEL140/p15G10 and CAG9269 groEL140/pBSG3. About 280 particles of lambda L2B were plated on XL1-Blue, on CAG9269
- Lambda LIZ Alpha were plated on XL1-Blue, on CAG9269 groEL140, on CAG9269 groEL140/p15G10 and on CAG9269 groEL140/pBSG3, to yield 203, 0, 212 and 0 plaques, respectively.
- Terminator sequences are cloned and inserted into the reporter gene transcription unit of the above described groE plasmids pBSG3 and p15G10. To that end, a DNA fragment containing the lambda terminator sequence qut-t6s was isolated from wildtype lambda by PCR amplification using the primers p5 (SEQ ID NO 9) and p6 (SEQ ID NO 10):
- the resulting PCR-amplified fragment contains the lambda terminator sequence qut-t6s. Thereafter, the fragment was restriction endonuclease digested with BamHI and Sail, treated with CIAP, gel purified and cloned into pDR720 (BRL; Bethesda, MD) that had been pre-cut with the BamHl and Sail to form pDR720Qut.
- the construction placed the qut-t6s termination sequence upstream of a galactosidase (galK) reporter gene in the vector, which can be utilized to determine if termination of transcription is being regulated by the lambda anti-terminator protein Q.
- galK galactosidase
- a galK mutant strain of E. coli HB101 was grown on MacConkey galactose color indicator agar plates, and forms white colonies indicating that no galK gene product is formed. Cells that utilize galactose on MacConkey plates form pink colonies while cells that do not utilize galactose form white or clear colonies.
- HB101 was transformed with plasmid pDR720, that expressed the galK gene product, pink colonies were formed, indicating that the pDR720 transcription unit was expressing the galK gene.
- N99 lambda + An E. coli strain designated N99 lambda + is a lambda lysogen that expresses the lambda anti-terminator Q protein at a low level, and that lacks the galK gene.
- N99 lambda + forms white colonies, indicating that no galK gene product is expressed.
- N99 lambda + is transformed with pDR720Qut, pink colonies are formed, indicating that the galK reporter gene transcription unit normally terminated by the qut-t6s sequence is expressed because the Q protein in the host cell is able to anti-terminate (i.e. activate) the terminated galK reporter gene transcription unit.
- the lambda qut-t6s the lambda qut-t6s
- termination sequence is effective at terminating the expression of a reporter gene transcription unit, and that the expression of the lambda Q anti-terminator protein is effective in trans to control transcription of the terminated reporter gene.
- the cloned lambda terminator sequence qut-t6s was then inserted into the groE reporter gene
- pBSG3 was digested with EcoRI and Spel, phosphatased with CIAP, and the resulting linear vector containing the groE reporter gene transcription unit was gel purified.
- the terminator sequence was isolated from pDR720Qut by PCR amplification using the following oligonucleotide primers pl3 (SEQ ID NO 19) and pl4 (SEQ ID NO 20):
- the resulting PCR amplified product was digested with EcoRI and Spel, and gel purified. Thereafter, the fragment containing the terminator sequence was cloned into the EcoRI/ Spel site of pBSG3 to form pBSG3Qut.
- pl5G10 A similar construction was prepared using pl5G10, adding the terminator sequence to form pl5G10Qut.
- Plasmid pl5G10 was digested with EcoRI and Spel as for pBSG3, and the qut-t6s terminator sequence was
- the qut-t6s terminator sequence was placed inside the groE reporter gene transcription unit upstream of the structural gene, and downstream of the lac promoter, thereby rendering transcription susceptible to
- the reporter gene transcription unit illustrated in Figure 10 shows the promotion of the groE reporter gene by a lac promoter/operator in which the lacI repressor also controls the transcription of the reporter gene.
- lacI when lacI is mutated, the lac promoter/operator is activated, groE is expressed and phage particles are produced in proportion to the amount of mutagenesis on the lacI test DNA sequence.
- lacI when lacI is not mutated, the lac operator is
- the presence of the terminator sequence in the reporter gene transcription insures that reporter gene transcription is inhibited in the absence of a test DNA sequence, thereby increasing the sensitivity of the assay.
- the invention describes a system related to the anti-terminator system described in Example 9, but which includes a dominant negative inactivator gene as the reporter gene (lambda S 5 mutant) and which includes the use of competing transcription as the means for controlling expression of the reporter gene.
- the system is illustrated in Figure 11, and is referred to as a reporter gene inactivating system in which plaque formation is inhibited until a mutated lacI test DNA sequence is introduced that inactivates expression of the reporter gene.
- Lambda S 5 is a mutant protein of the multi-subunit membrane pore complex that lambda forms in the inner membrane of an E. coli host cell that is SupF in order for lysis of the host cell during a lytic bacteriophage cycle.
- the complete membrane pore complex is required for a functional pore to be formed.
- the S 5 mutation is referred to as a dominant negative inactivator gene, because its phenotype is dominant, not recessive, (i.e., defective even in the presence of wild type S protein) and inactivator because the effect is to inactivate plaque formation.
- lambda genes suitable as dominant negative inactivator genes for use in a gene inactivating system include any lambda gene in which multiple protein subunits are required for a
- lac repressor lacl d- gene is an example of another dominant negative inactivator gene suitable for use in the present gene inactivating system.
- the lacl d- gene is described by Miller et al., in "The Operon", 2nd edition, Cold Spring Harbor Laboratory, 1980.
- Competing transcription is also required in the gene inactivating system shown in Figure 11.
- the system utilizes two transcriptional promoters of unequal transcriptional promotion strength that compete for transcription in converging orientations across the same reporter gene, the weaker promoter (PR 1 ) producing a transcript that yields reporter gene product, and the stronger promoter (TacP) producing a transcript in the wrong orientation for the reporter gene, thereby blocking expression of reporter gene product.
- PR 1 weaker promoter
- TacP stronger promoter
- the gene inactivating system produces a
- the mutant S 5 reporter gene is inactivated, no S 5 protein is made, and lytic plaque formation is no longer inhibited.
- lacI lac repressor
- the gene inactivating system shown in Figure 11 preferably contains, but does not require, the in trans terminator/anti-terminator system (Q protein on the test DNA sequence and qut-t6s in the weaker reporter gene transcriptional unit).
- terminator/anti-terminator system ensures that no S 5 protein can be produced in the host cell until the test DNA sequence is introduced into the host cell.
- oligonucleotide primers p5 and p6 are used in the PCR reaction.
- p7 (SEQ ID NO 11) and p8 (SEQ ID NO 12) have the following sequences:
- the resulting PCR-amplified fragment was digested with Nhel and BglII, gel purified and ligated into
- pMI/S 5 The resulting plasmid containing PR--qut-t6s-S 5 is designated pMI/S 5 .
- the nucleotide sequence of the lambda S gene is mutated at two positions to form the S 5 mutation as described herein.
- the nucleotide sequence of the S 5 gene is shown in SEQ ID NO 18.
- the other lambda sequences defining PR'-qut-t6s in plasmid pMI/S 5 have wild-type sequences and therefore can be readily prepared from a variety of sources of lambda DNA. If needed, the S 5 mutation can be introduced into wild-type lambda using well known mutagenesis procedures.
- the S 5 mutation in the lambda S gene requires that the E. coli host cells in which inhibition of plaque formation occurs must harbor the SupF mutation, and when used in this system is referred to as the lambda SY5 system.
- the genotype of a host cell for the S 5 system is restriction minus, RecA-, supF, and preferably lacZdeltaMIS, although the lacZ
- E. coli strain LE392.23 (Stratagene) which is SupE, SupF was made SupF only by using a P1
- the resulting E. coli was grown on tetracycline to insure stabilization of the transduced supE gene.
- the strain was screened for its inability to support plaque formation when infected by the lambda strain lambda: : 1105.
- This lambda strain requires the host cell to provide SupE. Thus those strains which do not support plaque formation have lost the SupE trait.
- the resulting strain was
- E. coli strain SCS-15 SupF is rendered restriction minus using the procedures described in Example 4.E.2. Thereafter, the strain is rendered Rec A- by subjecting it to a standard P1 transduction using a lysate from an E. coli which contained a Tn10 transposon near a mutant recA gene.
- the plasmid pMI/S 5 was then transformed into E. coli strain SCS-15 (supF), and tested for inhibition of lytic plaque formation using Lambda LIZ Alpha. The predicted amount of plaques were observed when the host cell was wild-type SCS-15 (supF) lacking plasmid pMI/S 5 .
- the S 5 system provides an example of a selectable system in which mutation in the test gene can be measured by two modes of reporter gene phenotype, simultaneously, namely by a selective growth
- test gene product controls both a first reporter gene transcription unit, namely the S 5 reporter gene, and controls a second gene (lacZ alpha) that can also function as a second reporter gene.
- second reporter gene allows for the capability to produce a detectable color indicator in the host cell.
- the above result indicates that the S 5 mutant is a suitable reporter gene for use in the reporter gene inactivating system described in Figure 11.
- the completed host vector is prepared by introducing the TacP promoter under the control of a lac operator (lacO). To that end, a PCR-generated fragment
- sequence described herein is produced using the plasmid vector pTL21 (Stratagene) and oligonucleotide primers p9 (SEQ ID NO 13) and plO (SEQ ID NO 14) having the sequences as follows:
- the resulting PCR-amplified fragment was digested with MluI and BglII, treated as before and ligated into the pMI/S 5 that was pre-digested with MluI and BglII to form a plasmid designated pMI/S 5 tac-lac that contains all the genetic elements shown for the host plasmid vector in Figure 11.
- the resulting plasmid pMI/S 5 tac-lac upon transformation into E. coli SCS-8, is used in the host cell for assaying a test DNA sequence such as Lambda LIZ Alpha recovered from a mutagenized mouse.
- Detection of the mutagenized lacI gene is indicated by the presence of blue plaques when the host cell is cultured as described earlier in the presence of X-gal.
- the system described in Figure 11 is a prototype for the use of first and second convergent promoters, where the first promoter (lacO) is regulated by the test DNA gene product (lacI) and the second promoter (PR 1 ) is regulated by an anti-terminator protein.
- Terminor/anti-terminator protein systems can be readily utilized in the groE or S 5 based assay systems described in Examples 9 and 10.
- suitable terminator nucleotide sequences are well characterized, including the Box-A like consensus sequence C/TGCTCTT(T)A (SEQ ID NO 15), and the related transcription terminator sequences for crp, trp, his. phe, thr, ampC, ilv, and rrnB.
- terminator/anti-terminator system provided by lambda in the nutR-tR1 nucleotide sequence and the N protein.
- the nutR-tR1 nucleotide sequence can readily be substituted into the above described terminator/anti-terminator
- a PCR-amplified fragment containing the nutR-tR1 sequence [that contains tR1(I-III)] is isolated by conducting PCR on wild-type lambda in the presence of oligonucleotide primers pll (SEQ ID NO 16) and pl2 (SEQ ID NO 17) having the sequences:
- the host reporter gene constructs can also be present as lower copy number, or as single copy genomic elements within the E. coli chromosome.
- the preparation of stably-integrated genetic elements was described earlier using the suicide vector system for the construction of the prolysogen strain of E. coli. That system can readily be utilized to produce stably integrated groE or S 5 reporter gene constructions as described herein. 11. Construction of a Gene Activating Selectable
- a plasmid vector containing a reporter gene under the transcriptional control of a lac promoter and lac operator is constructed having the E. coli groE as the reporter gene and the lambda anti-terminator
- nucleotide sequence nutR that is regulated by lambda terminator protein N, and one or more of either of the lambda terminator sequences tR1 or t6s, or both.
- a strain of E. coli that is GroE- is required as the host cell for use of this reporter gene construct, and was prepared earlier in Example 9A, designated SCS-8 groES30, and is tet r .
- the reporter gene plasmid construct used in a GroE system with the N anti-terminator protein can take a number of various forms, which can vary in the precise reporter gene, including groES, groEL or
- groESL and can vary in the structure of the
- the reporter construct on plasmid pALS74 is very similar to that shown in Figure 10, and can be represented by the following schematic:
- Plasmid pALS74 carries a nutR site for anti-termination, and has two primary terminators.
- the first terminator is the lambda terminator tR1 that has been shown to consist of a series of five terminator sequences, designated tR1(I-V), to connote the
- the second terminator is the lambda t6s terminator.
- pALS74 utilizes the groES reporter gene.
- Plasmid pALS74 was produced by cloning the lambda nutR-tR1 (I-V) region by PCR into plasmid p15G10Qut described earlier in Example 9 to form plasmid
- Plasmid pALS74 was then tranformed into the E . coli host SCS-8 groES30 described in Example 9 to form SCS-8 groES30(pALS74).
- the plasmid pALS74 has been deposited with the ATCC in the form of E. coli strain SCS-8 groES30
- Plasmid pALS74 is a low copy number plasmid because it contains the RSF1010 bacterial origin of replication.
- the reporter construct on plasmid pBQ is very similar to pALS74 and can be represented by the following schematic:
- Plasmid pBQ carries a nutR site for anti-termination, and has three primary terminators. The first
- terminator is the lambda terminator tR1 (I-V), and the second and third terminators are each the lambda t6s terminator.
- pBQ utilizes the groESL reporter gene.
- Plasmid pALS74 is restriction endonuclease digested with Apal and Sail to release a fragment containing the groES gene. The resulting fragments are treated with CIAP and the larger
- vector fragment is gel purified to form a vector fragment.
- Plasmid pBSG3 was prepared as described in Example 9, and is restriction endonuclease digested with Apal and Sail to release a 2.2 kilobase (Kb) fragment containing the groESL gene.
- Kb 2.2 kilobase
- pALS74(SL) is then restriction endonuclease digested with. EcoRI and Sail, treated with CIAP, and the largest (vector) fragment is gel purified to form phosphatased pALS74 (SL) linear vector.
- Wild-type lambda is then PCR-amplified using Pfu DNA polymerase (Stratagene) under standard PCR
- the resulting PCR-amplified fragment of about 215 bp contains the lambda t6s terminator sequence.
- the reporter construct on plasmid pBQ2 is very similar to pBQ, and can be represented by the following schematic:
- Plasmid pBQ2 carries a nutR site for anti-termination, and has three primary terminators. The first
- terminator is the lambda terminator tR1(I-II), and the second and third terminators are each the lambda t6s terminator.
- pBQ2 utilizes the groESL reporter gene.
- pBQ is restriction endonuclease digested with NotI and Spel to release a fragment of about 270 bp containing the nutR-tR1 (I-V) genes.
- the resulting fragments are treated with CIAP and the larger (vector) fragment is gel purified to form phosphatased linear pBQ vector fragment.
- Wild-type lambda is then PCR-amplified using Pfu DNA polymerase under standard PCR conditions with the following primers pl5 (SEQ ID NO ):
- the resulting PCR-amplified fragment of about 150 bp contains the nutR-tR1 (I-II) region of lambda.
- the fragment is restriction endonuclease digested with NotI and Spel, gel purified and ligated with the phosphatased linear pBQ vector fragment to form pBQ2.
- the reporter construct on plasmid pBQ2C is very similar to pBQ, and can be represented by the following schematic:
- Plasmid pBQ2C carries a nutR site for anti-termination, and has three primary terminators, and a T7 gene 10 ribosome binding site (T7rbs).
- the first terminator is the lambda terminator tR1 (I-II)
- the second and third terminators are each the lambda t6s terminator.
- pBQ2C utilizes the groES reporter gene.
- vector fragment is gel purified to form phosphatased linear pBQ2 vector fragment.
- Plasmid pBSG3 produced in Example 9 is then PCR-amplified using Pfu DNA polymerase under standard PCR conditions with the following primers pl7 (SEQ ID NO
- the resulting PCR-amplified fragment of about 300 bp contains the groES gene, and has a T7 gene10 ribosome binding site (rbs) in place of the groES rbs based on the design of the PCR primer. Thereafter, the fragment is restriction endonuclease digested with Apal and Sail, gel purified and ligated with the phosphatased linear pBQ2 vector fragment to form
- Example 9 selection is carried out essentially as described in Example 9 by transforming an E. coli host cell that is GroE-, such as SCS-8 groES30.
- Phage plaque formation is inhibited in a manner analogous to the mechanism shown in Figure 10 because groE gene products are required for phage assembly and the transcription of the groE reporter gene
- transcription unit is inhibited by the terminator sequences until the lambda infects and produces the lambda N anti-terminator protein.
- Expression of wild type lacl from Lambda LIZ Alpha then inhibits reporter gene transcription. Transcription will occur if mutant lad (non-repressing) is present.
- the selection systems allow for significantly more rapid analysis because larger numbers of packaged phage particles can be screened per assay plate. For example, whereas about 15,000 phage particles are plated per plate when using color detection in a non-selectable system based on lacI as the target gene as described in Example 4D(2), about 100,000 phage particles are plated per plate when using GroE or approximately 45,000 particles per plate for SY5 selection, and about 200,000 phage particles are plated per plate when using lactose selection with a prolysogenic host.
- Mutagenesis testing was also compared using the various systems described herein. For example a comparison was made for induction by mutagen (5 ⁇ 100 mg/kg MNU) compared to spontaneous induction using (1) non-selectable color detection, (2) lactose selection using prolysogen strain SCS-8cI, (3) SY5 selection, and (4) GroE selection using pALS74. The results, including fold induction ( induced/spontaneous), are shown in Table 3.
- the systems used are (1) the non-selectable color based assay, (2) lactose selection using prolysogen SCS-8cI, (3) S5 selection described in Example 10, and (4) GroE selection using pALS74.
- Table 3 illustrate that the various selection systems described herein allow the detection of mutagenic activity in transgenic animals.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Veterinary Medicine (AREA)
- Toxicology (AREA)
- Plant Pathology (AREA)
- Hematology (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Environmental Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Rheumatology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Gastroenterology & Hepatology (AREA)
- Endocrinology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Epidemiology (AREA)
- Diabetes (AREA)
- Public Health (AREA)
- Cell Biology (AREA)
- Animal Husbandry (AREA)
- Food Science & Technology (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93906965A EP0671955A4 (en) | 1992-02-14 | 1993-02-12 | Mutagenesis testing using transgenic non-human animals carrying test dna sequences. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83703192A | 1992-02-14 | 1992-02-14 | |
US07/837,031 | 1992-02-14 | ||
US94119092A | 1992-09-04 | 1992-09-04 | |
US07/941,190 | 1992-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993015769A1 true WO1993015769A1 (en) | 1993-08-19 |
Family
ID=27125907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1993/001293 WO1993015769A1 (en) | 1992-02-14 | 1993-02-12 | Mutagenesis testing using transgenic non-human animals carrying test dna sequences |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0671955A4 (en) |
CA (1) | CA2130081A1 (en) |
WO (1) | WO1993015769A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012970A1 (en) * | 1995-10-02 | 1997-04-10 | Cyclacel Limited | Antitumour vector constructs and methods |
WO1999038961A1 (en) * | 1998-01-30 | 1999-08-05 | Sepracor Inc. | Gene regulator fusion proteins and methods of using the same for determining resistance of a protein to a drug targeted thereagainst |
WO2001044513A2 (en) * | 1999-12-16 | 2001-06-21 | Iconix Pharmaceuticals, Inc. | Random domain mapping |
US6307121B1 (en) | 1998-05-31 | 2001-10-23 | The University Of Georgia Research Foundation, Inc. | Bacteriophage-based transgenic fish for mutation detection |
EP1176211A1 (en) * | 2000-07-27 | 2002-01-30 | Novartis Forschungsstiftung, c/o Novartis International AG | Process for monitoring mutagens in plants |
US6472583B1 (en) | 1998-10-26 | 2002-10-29 | The University Of Georgia Research Foundation, Inc. | Plasmid-based mutation detection system in transgenic fish |
EP2227553A2 (en) * | 2007-11-30 | 2010-09-15 | Scarab Genomics, LLC | Lac expression system |
US8530188B2 (en) | 2006-02-03 | 2013-09-10 | Fujifilm Diosynth Biotechnologies (UK) Limited | Expression system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4736866A (en) * | 1984-06-22 | 1988-04-12 | President And Fellows Of Harvard College | Transgenic non-human mammals |
EP0289121A2 (en) * | 1987-05-01 | 1988-11-02 | Stratagene | Mutagenesis testing using transgenic non-human animals carrying test DNA sequences |
EP0353812A2 (en) * | 1988-07-19 | 1990-02-07 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A process for the rescue of DNA and for detecting mutations in marker genes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009272A1 (en) * | 1988-03-22 | 1989-10-05 | Chemical Industry Institute Of Toxicology | A transgenic mouse for measurement and characterization of mutation induction in vivo |
EP0370813A3 (en) * | 1988-11-25 | 1991-06-19 | Exemplar Corporation | Rapid screening mutagenesis and teratogenesis assay |
CA2079792A1 (en) * | 1990-04-05 | 1991-10-06 | Joseph A. Sorge | Mutagenesis testing using transgenic non-human animals carrying test dna sequences |
NL9100567A (en) * | 1991-04-02 | 1992-11-02 | Ingeny Bv | METHOD FOR DETECTING MUTATIONS, TRANSGEN MAMMAL, TRANSGENIC MAMMAL CELL, AND METHOD FOR EXAMINING SUBSTANCES OR CONDITIONS FOR MUTAGENIC PROPERTIES |
-
1993
- 1993-02-12 CA CA 2130081 patent/CA2130081A1/en not_active Abandoned
- 1993-02-12 EP EP93906965A patent/EP0671955A4/en not_active Withdrawn
- 1993-02-12 WO PCT/US1993/001293 patent/WO1993015769A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4736866A (en) * | 1984-06-22 | 1988-04-12 | President And Fellows Of Harvard College | Transgenic non-human mammals |
US4736866B1 (en) * | 1984-06-22 | 1988-04-12 | Transgenic non-human mammals | |
EP0289121A2 (en) * | 1987-05-01 | 1988-11-02 | Stratagene | Mutagenesis testing using transgenic non-human animals carrying test DNA sequences |
EP0353812A2 (en) * | 1988-07-19 | 1990-02-07 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | A process for the rescue of DNA and for detecting mutations in marker genes |
Non-Patent Citations (12)
Title |
---|
Can. J. Genet. Cytol., Volume 28, issued 1986, SINGH et al., "Genotype-and Age-Associated in Vivo Cytogenetic Alterations Following Mutagenic Exposures in Mice", pages 286-293, see the entire document. * |
Cell, Volume 41, issued June 1985, PALMITER et al., "Transgenic Mice", pages 343-345, see the entire document. * |
J. Embryol. Exp. Morph., Volume Supplement, issued 1984, BRAMMAR et al., "A Programme for the Construction of a Lambda", pages 75-88, see the entire document. * |
Mutation Research, Volume 181, issued 1987, LOHMAN et al., "DNA Methods for Detecting and Analyzing Mutations in Vivo", pages 227-234, see the entire document and especially page 229, left column, last paragraph. * |
Mutation Research, Volume 220, issued 1989, SUMMERS et al., "Lambda Phage Shuttle Vectors for Analysis of Mutations in Mammalian Cell in Culture and in Transgenic Mice", pages 263-268, see the entire document and especially page 265 and Fig. 2. * |
Nucleic Acid Research, Volume 18, Number 10, issued 1990, KOHLER et al., "Development of Short-Term, in Vivo Mutagenesis Assay: The Effects of Methylation on the Recovery of a Lambda Phage Shuttle Vector from Transgenic Mice", pages 3007-3013, see the entire document. * |
Nucleic Acids Research, Volume 16, Number 19, issued 1988, GOSSEN et al., "E. coli C: A Convenient Host Strain for Rescue of Righly Methyleted DNA", page 9343, see the entire document. * |
Nucleic Acids Research, Volume 16, Number 4, issued 1988, RALEIGH et al., "Mcr A and Mcr B Restriction Phenotypes of Some E. coli Strains and Implications for Gene Cloning", pages 1563-1575, see the entire document. * |
Proceedings of the National Academy of Sciences, USA, Volume 83, issued February 1986, GLAZER et al., "Detection and Analysis of UV-Induced Mutations in Mammalian Cell DNA Using a Phage Shuttle Vector", pages 1041-1044, see the entire document. * |
Proceedings of the National Academy of Sciences, USA, Volume 87, issued June 1990, GRANT et al., "Differential Plasmid Rescue from Transgenic Mouse DNAs into Escherichia coli Methylation-Restriction Mutants", pages 4645-4649, see the entire document. * |
Proceedings of the National Academy of Sciences, USA, Volume 88, issued September 1991, KOHLER et al., "Spectra of Spontaneous and Mutagen-Indiced Mutations in the lac L Gene in Transgenic Mice", pages 7958-7962, see the entire document. * |
See also references of EP0671955A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997012970A1 (en) * | 1995-10-02 | 1997-04-10 | Cyclacel Limited | Antitumour vector constructs and methods |
US6943026B1 (en) | 1995-10-02 | 2005-09-13 | Cyclacel Limited | Antitumour vector constructs and methods |
WO1999038961A1 (en) * | 1998-01-30 | 1999-08-05 | Sepracor Inc. | Gene regulator fusion proteins and methods of using the same for determining resistance of a protein to a drug targeted thereagainst |
US6307121B1 (en) | 1998-05-31 | 2001-10-23 | The University Of Georgia Research Foundation, Inc. | Bacteriophage-based transgenic fish for mutation detection |
US6472583B1 (en) | 1998-10-26 | 2002-10-29 | The University Of Georgia Research Foundation, Inc. | Plasmid-based mutation detection system in transgenic fish |
WO2001044513A3 (en) * | 1999-12-16 | 2002-07-04 | Iconix Pharm Inc | Random domain mapping |
US6653075B2 (en) | 1999-12-16 | 2003-11-25 | Iconix Pharmaceuticals, Inc. | Random domain mapping |
WO2001044513A2 (en) * | 1999-12-16 | 2001-06-21 | Iconix Pharmaceuticals, Inc. | Random domain mapping |
EP1176211A1 (en) * | 2000-07-27 | 2002-01-30 | Novartis Forschungsstiftung, c/o Novartis International AG | Process for monitoring mutagens in plants |
US8530188B2 (en) | 2006-02-03 | 2013-09-10 | Fujifilm Diosynth Biotechnologies (UK) Limited | Expression system |
US9677103B2 (en) | 2006-02-03 | 2017-06-13 | Fujifilm Diosynth Biotechnologies Uk Limited | Expression system |
US11098335B2 (en) | 2006-02-03 | 2021-08-24 | Fujifilm Diosynth Biotechnologies Uk Limited | Expression system |
EP2227553A2 (en) * | 2007-11-30 | 2010-09-15 | Scarab Genomics, LLC | Lac expression system |
EP2227553A4 (en) * | 2007-11-30 | 2011-01-19 | Scarab Genomics Llc | Lac expression system |
Also Published As
Publication number | Publication date |
---|---|
EP0671955A1 (en) | 1995-09-20 |
EP0671955A4 (en) | 1997-04-09 |
CA2130081A1 (en) | 1993-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5510099A (en) | Mutagenesis testing using transgenic non-human animals carrying test DNA sequences | |
JP4015183B2 (en) | Isolation, selection, and expansion of animal transgenic stem cells | |
Wilmut et al. | Genetic manipulation of mammals and its application in reproductive biology | |
US5919997A (en) | Transgenic mice having modified cell-cycle regulation | |
WO1993015769A1 (en) | Mutagenesis testing using transgenic non-human animals carrying test dna sequences | |
JP2005511050A (en) | Gene targeting methods and vectors | |
Torres | 5 The Use of Embryonic Stem Cells for the Genetic Manipulation of the Mouse | |
CA2490753A1 (en) | Methods for developing animal models | |
US20110054247A1 (en) | Methods for cloning ferrets and transgenic ferret models for diseases | |
WO1991015579A1 (en) | Mutagenesis testing using transgenic non-human animals carrying test dna sequences | |
US6221647B1 (en) | Efficient construction of gene targeting using phage-plasmid recombination | |
WO2001005962A1 (en) | Conditional homologous recombination of large genomic vector inserts | |
US5824287A (en) | Mutagenesis testing using transgenic non-human animals carrying test DNA sequences | |
US6821759B1 (en) | Methods of performing homologous recombination based modification of nucleic acids in recombination deficient cells and use of the modified nucleic acid products thereof | |
Skynner et al. | Transgenic mice ubiquitously expressing Human Placental Alkaline Phosphatase (PLAP): an additional reporter gene for use in tandem with�-galactosidase (lacZ) | |
US6472583B1 (en) | Plasmid-based mutation detection system in transgenic fish | |
WO1999062333A9 (en) | Bacteriophage-based transgenic fish for mutation detection | |
WO1989009272A1 (en) | A transgenic mouse for measurement and characterization of mutation induction in vivo | |
US5548075A (en) | DNA cassette and transgenic organisms carrying lytic peptide-encoding genes | |
JP2002515764A (en) | Method for preforming modifications based on homologous recombination of nucleic acids in non-recombinant cells and use of the modified nucleic acid products | |
JP3116091B2 (en) | Method for introducing foreign gene into cultured cells or fertilized eggs | |
WO1993017123A1 (en) | Mutagenicity testing using reporter genes with modified methylation frequencies | |
US20030092183A1 (en) | Rapid creation of gene targeting vectors using homologous recombination in yeast | |
JPH1056915A (en) | Animal having inactivated ldl receptor gene | |
Genes | Inducible Gene Trapping with |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/13-13/13,DRAWINGS,REPLACED BY NEW PAGES 1/13-13/13;DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2130081 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1993906965 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 1995 284601 Country of ref document: US Date of ref document: 19950117 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 1993906965 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1993906965 Country of ref document: EP |