+

WO1993013367A1 - Appareil solaire de refroidissement - Google Patents

Appareil solaire de refroidissement Download PDF

Info

Publication number
WO1993013367A1
WO1993013367A1 PCT/JP1992/001732 JP9201732W WO9313367A1 WO 1993013367 A1 WO1993013367 A1 WO 1993013367A1 JP 9201732 W JP9201732 W JP 9201732W WO 9313367 A1 WO9313367 A1 WO 9313367A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
evaporator
pressure
heat
vapor
Prior art date
Application number
PCT/JP1992/001732
Other languages
English (en)
Japanese (ja)
Inventor
Seishi Watanabe
Original Assignee
Seishi Watanabe
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seishi Watanabe filed Critical Seishi Watanabe
Publication of WO1993013367A1 publication Critical patent/WO1993013367A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/14Sorption machines, plants or systems, operating continuously, e.g. absorption type using osmosis

Definitions

  • the present invention relates to a cooling device, and relates to a solar cooling device using solar heat as a power source thereof.
  • cooling systems using solar heat have been developed for the purpose of energy saving.
  • an absorption cooling system using an aqueous solution of lithium bromide has been developed.
  • Components such as an evaporator, an absorber, a steam generator, a solar water heater, and a condenser were connected by piping.
  • pumps and expansion valves were provided in the middle of the piping to supply liquid for absorbing water vapor and maintain low pressure.
  • the conventional apparatus has to be a large fixed facility due to a large number of pipes and devices. Therefore, it is usually limited to use as an indirect cooling device that is a supply source of cold water. In addition, power is required in addition to solar heat as a power source for the equipment.
  • the present invention has been made in view of such circumstances, requires no power source other than solar heat, and has all of the above functions integrated, is compactly movable, and is directly movable. It aims to provide a cooling type solar cooling device.
  • the solar thermal cooling system of the present invention has a low-pressure evaporator and normal-pressure steam.
  • the semi-permeable membrane which is a partition wall between the absorption generator and the condenser, serves as a wall for each of the above-mentioned components and also serves as a pipe connecting them.
  • the water vapor generated by the absorption passes through the semipermeable membrane, which is a partition, and is absorbed by the aqueous solution of the solution stored in the upper vapor absorption generator.
  • the heat taken by the evaporator is condensed and sensible heat Release as The water generated by the condensation of the water vapor is evaporated by the condensed sensible heat and the solar heat radiated to the vapor absorption generator, and becomes water vapor again.
  • This water vapor touches the radiator plate protected by the radiation shield plate at the top of the condenser at the same atmospheric pressure, and is cooled again by external air outside the radiator plate to become water again.
  • the water returns to the evaporator again through the semipermeable membrane separating the condenser and the evaporator.
  • the water moves into the evaporator when the concentration of the aqueous solution becomes lower than the osmotic pressure equal to the differential pressure between the condenser and the evaporator due to the condensed water.
  • the concentration of the aqueous solution increases, and when the solution concentration exceeds the osmotic pressure, the movement of water stops.
  • the airtightness of the semipermeable membrane is maintained by the presence of the dilute aqueous solution in the condenser at all times, the evaporator ⁇ ⁇ is maintained at a low pressure, and the heat transfer is repeated. The evaporator is continuously cooled.
  • the semi-permeable membrane is used for the partition wall between the low-pressure component and the normal-pressure component.
  • FIG. 1 is a diagram showing a solar cooling device.
  • FIG. 1 denotes a solar heat cooling device having an evaporator 2. a vapor absorption generator 3 and a condenser 4.
  • the evaporator 2 maintained at a pressure of about 0 mm ⁇ ⁇ is provided with an evaporative cooling plate 21 and a superabsorbent resin 22, and the water impregnated in the superabsorbent resin 22 is under low pressure and low temperature. Evaporates into water vapor
  • the water vapor passes through the semi-permeable membrane 3 1 which is a partition wall between the low-pressure evaporator 2 and the normal pressure, and impregnates the superabsorbent resin 3 2 provided in the vapor absorption generator 3 It is absorbed by the saturated aqueous solution of saturated ruthenium.
  • the steam absorption generator 3 further includes a solar heat absorbing plate 33 and a semipermeable membrane supporting floor 34.
  • the water in the aqueous chloridium solution evaporates by the heat absorbed from the solar heat absorbing plate 33 and the condensed sensible heat of the steam from the evaporator 2 to become steam.
  • the condenser 4 is provided with a semipermeable membrane 41 as a partition wall with the evaporator 2, a superabsorbent resin 42, a heat sink 43, a shielding plate 44, and a semipermeable membrane supporting floor 45. .
  • the superabsorbent resin 42 is impregnated with a low-concentration aqueous solution of chloridized sodium chloride.
  • the water vapor contacts the heat sink 43 and is cooled and condensed into water.
  • the heat absorbed by the evaporator 2 and the solar heat absorbing plate 33 is When, f ⁇ ⁇ water released into the atmosphere, the superabsorbent polymer 4 2 after absorption, the ⁇ Ru c to the evaporator 2 through the semipermeable membrane 4 1
  • the semi-permeable membranes 3 1 and 4 i are membranes such as ⁇ -cell acetate, supported by the membrane support beds 3 4 and ⁇ 45, respectively, with the low-pressure evaporator 2 and the normal-pressure vapor absorption.
  • Generator 3 and condenser 4 are provided.
  • the present invention separates the evaporator having a cooling function kept at a low pressure from the vapor absorption generator and the condenser at a normal pressure with a semi-permeable membrane to thereby provide a pipe and a pump.
  • a compact cooling device that does not require an expansion valve and that uses only solar ripening as a power source.
  • the structure that integrates all necessary components is suitable for cooling not only fixed objects but also objects that are constantly moving. Therefore, automobiles, houses, public telephone boxes and Portable cooler
  • the present invention can be used and positively prevented when solar heat itself causes a high temperature, such as in automobiles, homes, and public telephone boxes in summer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

Appareil solaire de refroidissement compact et transportable sans tube, sans pompe et sans soupape de détente, n'utilisant comme source d'alimentation que la chaleur solaire. Des membranes semi-perméables font office de paroi de cloisonnement entre un évaporateur (2) basse pression et un générateur (3) d'absorption de vapeur à pression normale, et de paroi de cloisonnement entre l'évaporateur (2) basse pression et un condenseur (4) à pression normale. Le solvant se trouvant dans l'évaporateur (2) absorbe la chaleur et la transforme en vapeur à solvant, laquelle passe à travers une membrane (31) semi-perméable pour être absorbée dans la solution, dans le générateur (3) d'asorption de vapeur et changé en solvant. Ledit solvant se transforme alors à nouveau en vapeur à solvant du fait de la chaleur sensible à la condensation se produisant à ce moment et de la chaleur solaire, et ensuite il pénètre dans le condenseur (4). La vapeur à solvant en contact avec une plaque (43) dégageant de la chaleur produit de la chaleur à l'extérieur et elle se transforme aussitôt en un solvant, lequel passe à travers une membrane (41) semi-perméable, le solvant revenant alors à nouveau à l'évaporateur (2). Les processus précités sont renouvelés, et l'évaporateur est refroidi en continu.
PCT/JP1992/001732 1991-12-24 1992-12-21 Appareil solaire de refroidissement WO1993013367A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/361308 1991-12-24
JP3361308A JPH0784965B2 (ja) 1991-12-24 1991-12-24 太陽熱冷却装置

Publications (1)

Publication Number Publication Date
WO1993013367A1 true WO1993013367A1 (fr) 1993-07-08

Family

ID=18473047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001732 WO1993013367A1 (fr) 1991-12-24 1992-12-21 Appareil solaire de refroidissement

Country Status (2)

Country Link
JP (1) JPH0784965B2 (fr)
WO (1) WO1993013367A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2088389A1 (fr) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Machine de refroidissement à absorption
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
WO2022117956A1 (fr) * 2020-12-04 2022-06-09 Alpinov X Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130648A (ja) * 1974-09-07 1976-03-16 Kajima Corp Hantomakuryonokyushushikireitoki
DE3143534A1 (de) * 1981-11-03 1983-06-01 Joachim 2930 Varel Rieder Kontinuierlich arbeitende absorptionskaelteanlage ohne kaeltemittel - destillationsprozess
JPS60179103A (ja) * 1984-02-27 1985-09-13 Hitachi Ltd 温度回生装置および温度回生方法
JPS61107096A (ja) * 1984-10-31 1986-05-24 Nippon Oil Co Ltd 熱エネルギ−の移送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130648A (ja) * 1974-09-07 1976-03-16 Kajima Corp Hantomakuryonokyushushikireitoki
DE3143534A1 (de) * 1981-11-03 1983-06-01 Joachim 2930 Varel Rieder Kontinuierlich arbeitende absorptionskaelteanlage ohne kaeltemittel - destillationsprozess
JPS60179103A (ja) * 1984-02-27 1985-09-13 Hitachi Ltd 温度回生装置および温度回生方法
JPS61107096A (ja) * 1984-10-31 1986-05-24 Nippon Oil Co Ltd 熱エネルギ−の移送方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069687B2 (en) 2005-06-17 2011-12-06 Evonik Degussa Gmbh Working media for refrigeration processes
WO2009098155A1 (fr) * 2008-02-05 2009-08-13 Evonik Degussa Gmbh Machine frigorifique à absorption
US8932478B2 (en) 2008-02-05 2015-01-13 Evonik Degussa Gmbh Process for the absorption of a volatile substance in a liquid absorbent
EP2088389A1 (fr) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Machine de refroidissement à absorption
US8500892B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8500867B2 (en) 2009-02-02 2013-08-06 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethylpiperidine
US8623123B2 (en) 2009-02-02 2014-01-07 Evonik Degussa Gmbh CO2 absorption from gas mixtures using an aqueous solution of 4-amino-2,2,6,6-tetramethyl piperidine
US8696928B2 (en) 2009-12-07 2014-04-15 Evonik Degussa Gmbh Operating medium for an absorption refrigeration device
US8784537B2 (en) 2010-11-12 2014-07-22 Evonik Degussa Gmbh Amine-containing absorption medium, process and apparatus for absorption of acidic gases from gas mixtures
US9878285B2 (en) 2012-01-23 2018-01-30 Evonik Degussa Gmbh Method and absorption medium for absorbing CO2 from a gas mixture
US9630140B2 (en) 2012-05-07 2017-04-25 Evonik Degussa Gmbh Method for absorbing CO2 from a gas mixture
US10500540B2 (en) 2015-07-08 2019-12-10 Evonik Degussa Gmbh Method for dehumidifying humid gas mixtures using ionic liquids
US10105644B2 (en) 2016-06-14 2018-10-23 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
US10138209B2 (en) 2016-06-14 2018-11-27 Evonik Degussa Gmbh Process for purifying an ionic liquid
US10493400B2 (en) 2016-06-14 2019-12-03 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US9840473B1 (en) 2016-06-14 2017-12-12 Evonik Degussa Gmbh Method of preparing a high purity imidazolium salt
US10512883B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
US10512881B2 (en) 2016-06-14 2019-12-24 Evonik Degussa Gmbh Process for dehumidifying moist gas mixtures
WO2022117956A1 (fr) * 2020-12-04 2022-06-09 Alpinov X Evaporateur pour installation frigorifique délimitant deux enceintes d'évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration
FR3117199A1 (fr) * 2020-12-04 2022-06-10 Alpinov X Evaporateur pour installation frigorifique délimitant deux enceintes d’évaporation respectivement à haute pression et basse pression et séparées par un écran de filtration

Also Published As

Publication number Publication date
JPH074775A (ja) 1995-01-10
JPH0784965B2 (ja) 1995-09-13

Similar Documents

Publication Publication Date Title
WO1993013367A1 (fr) Appareil solaire de refroidissement
US3390672A (en) Solar heating device
US4287721A (en) Chemical heat pump and method
US8613839B2 (en) Water distillation method and apparatus
CN113544446B (zh) 具有吸收冷却器的气候控制系统
JP2959141B2 (ja) 吸収式冷凍装置
WO1997048646A1 (fr) Appareil de dessalement et procede de mise en oeuvre de cet appareil
US20210359644A1 (en) System and method for cooling photovoltaic panel with atmospheric water
KR102035098B1 (ko) 히트펌프 기술을 이용한 태양열 증발식 해수담수화 장치
GB2035813A (en) Heat pump type water distilling apparatus
JPH0145548B2 (fr)
US20170030612A1 (en) Adsorbing heat exchanger
JP2000353774A (ja) 水蒸発式発熱体冷却装置
CA1279483C (fr) Procede de conditionnement d'air et appareil connexe
JP6246046B2 (ja) 化学蓄熱を利用した排熱蓄熱空調熱源システム
JP2009174783A (ja) 低温廃熱を利用した吸着式ヒートポンプシステム
JP3207138B2 (ja) 水蒸発式冷却装置
US2273108A (en) Method and apparatus for treating air
AU2012293656A1 (en) Absorption refrigeration machine
US2473389A (en) Low-pressure absorption refrigerating system
JPH10170092A (ja) 吸収式冷暖房機
CN105174338A (zh) 聚光加热多效回热矩阵式空气加湿除湿型太阳能海水淡化装置
JPH0413619B2 (fr)
JP2527221B2 (ja) 冷暖房装置
US5566552A (en) Vapor pressure enhancement (VPE) direct water chilling-heating process and apparatuses for use therein

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载