WO1993011574A1 - Pile a combustible - Google Patents
Pile a combustible Download PDFInfo
- Publication number
- WO1993011574A1 WO1993011574A1 PCT/GB1992/002172 GB9202172W WO9311574A1 WO 1993011574 A1 WO1993011574 A1 WO 1993011574A1 GB 9202172 W GB9202172 W GB 9202172W WO 9311574 A1 WO9311574 A1 WO 9311574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- cathode
- anode
- cell
- solid oxide
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 54
- 239000003792 electrolyte Substances 0.000 claims abstract description 46
- 239000007787 solid Substances 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 9
- 239000011533 mixed conductor Substances 0.000 claims abstract description 9
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims abstract description 7
- -1 lanthanum cobalt manganese oxide Chemical compound 0.000 claims abstract description 6
- 239000011148 porous material Substances 0.000 claims abstract description 3
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000010416 ion conductor Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000010406 cathode material Substances 0.000 claims description 4
- 229910021525 ceramic electrolyte Inorganic materials 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 claims description 2
- 238000003491 array Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 51
- 238000010276 construction Methods 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 239000010436 fluorite Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000010411 electrocatalyst Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- QBYHSJRFOXINMH-UHFFFAOYSA-N [Co].[Sr].[La] Chemical compound [Co].[Sr].[La] QBYHSJRFOXINMH-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2428—Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/242—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- a number of successful cells have also been constructed with a tubular configuration, basically comprising a similar series of layers arranged concentrically, an internal air flow, and an external fuel flow.
- a tubular configuration basically comprising a similar series of layers arranged concentrically, an internal air flow, and an external fuel flow.
- difficulties involved in scaling these up to large sizes and there are also complications involved in the fabrication of the assembly with its various layers.
- the level of performance and ease of construction of a solid oxide fuel cell do, of course, depend very much on the properties of the materials used, and it is, in fact, rather difficult to find materials for both the electrodes and the electrolyte which have the required characteristics at the necessary operating temperatures.
- the current zirconia solid oxide electrolyte (Zr 0>g Y 0#1 0 1>95 ) requires operating temperatures in excess of 900°C to achieve conductivities comparable to liquid electrolytes for electrodes of 200-300 microns thick, i.e. with adequate structural properties. It would be most desirable to reduce the operating temperature, so as to be able to use stainless steel (for example) in the construction of the cell.
- the present invention provides an electrolyte structure for a fuel cell, comprising a structural support material carrying a thin layer of ceramic electrolyte as an ionic conductor, in which the structural material is impermeable and in which conduction occurs by self diffusion rather than molecular diffusion through pores.
- the support material is arranged to form the cathode or anode of the fuel cell, thus avoiding the necessity for separate support means for each of the electrolyte and corresponding electrode structures.
- This construction is particularly suitable for solid oxide fuel cells but the same principle of a strong impermeable electrode supported thin film electrolyte structures can be extended to different systems, for example, composite Bi 2 0 3 - Tb 2 0 3 mixed cathode with Ce Q 9 G ⁇ o.l°1.95 thick film electrolytes can be used at 400°- 500°C in methanol fuel cells in transport applications for heavy lorries, buses, fleet vehicles, etc.
- the support material is one having a lattice structure that allows oxygen ions to diffuse through, such as lanthanum cobalt manganese oxide which has good gas diffusion properties at a temperature of 800°C.
- Figure 2 shows some examples of the conductivities of materials of this kind, at 800°C.
- suitable materials include solid solutions of Uo 2 -Y 2 0 3 (U 0 . 7 Y 0 . 3 O 2 -x) or Ce0 2 -Tb 2 0 3 (Ce 0#7 b 0>3 O 2 -_ ⁇ ) and composite materials which comprise ionic/mixed conductors e.g. (Ce0 2 -Gd 2 0 3 ) + ZnO(Fe).
- impermeable mixed conductivity cathode materials such as -L Q>6 Se 0#4 Co 0> gFe 0 2 0 3 _ ⁇ can be incorporated into the heat exchange stage of a fuel cell to separate oxygen from air. Pure oxygen is then fed to the fuel cell and the excess oxygen can be burnt with unused fuel to provide thermal energy for heat exchanger, steam turbines, process heat etc.
- the advantage of combusting excess fuel with pure oxygen is that the pollutant N0 ⁇ will not be produced.
- the invention also extends to a solid oxide fuel cell construction
- a solid oxide fuel cell construction comprising: a housing; a metal bipolar separator plate: an open structured resilient support means supported on said bipolar plate; a porous anode plate supported on said resilient support means; a compound cathode/electrolyte structure comprising a cathode of a mixed conductor material allowing both ionic and electronic conduction and a coating of ceramic solid oxide forming the electrolyte, on the side of the cathode facing the anode; a further separator plate above the cathode; means for introducing air on the cathode side, and means for introducing fuel on the anode side, whereby oxygen in the air passes through the cathode material and is ionically conducted through the electrolyte to react with the fuel at the anode.
- the construction in respect of the anode and cathode may be reversed, i.e. with a separate porous cathode plate, and an
- the invention also extends to a planar multi-cell solid oxide fuel cell comprising a rigid frame structure formed with a plurality of side-by-side apertures each of which is adapted to receive a cell assembly; each assembly comprising a compound first electrode/electrolyte plate structure, in which the first electrode is of a mixed conductor material and the electrolyte is a coating of ceramic solid oxide, and a second electrode plate facing the electrolyte, the frame also providing means for insulating the edges of adjacent cells from one another, means for electrically connecting the anode of one cell to the cathode of the next, and means for passing air over the cathode side of the frame and fuel over the anode side so as to pass over each cell in turn.
- Figure 3 is a vertical cross-section of a first type of fuel cell in accordance with the invention
- Figure 4 is a cross-section on line A-A of Figure
- Figure 5 shows the relationship between various types of fluorite and fluorite related oxygen ion conductors
- Figure 7 shows a cross-section through a planar multi-cell structure
- the electrolyte layer 34 comprises a zirconia solid oxide such as •Z-r 0#9 Y 0# ⁇ O 1 ⁇ g5 coated onto the cathode (e.g. by sputtering) or chemical vapour deposition and which can thus be made very thin e.g. 20-25 microns.
- a zirconia solid oxide such as •Z-r 0#9 Y 0# ⁇ O 1 ⁇ g5 coated onto the cathode (e.g. by sputtering) or chemical vapour deposition and which can thus be made very thin e.g. 20-25 microns.
- Thick electrolyte films (l-50 ⁇ m) can also be fabricated by a variety of techniques including pulsed laser depositions MOCVD, CVD, calendering tape-casting, electrophoresis etc. For some processing routes it will be necessary for dense electrode substances to be co-fired with the solid electrolyte which requires high temperature chemical compatibility.
- a chamber 36 above the cathode carries air which is introduced at an inlet 38, positioned transversely relative to the fuel inlet 40, Figure 4 , which supplies the chamber 22 as mentioned above.
- the oxygen in the air thus enters the cathode and oxygen ions are transported through it by self-diffusion to the electrolyte, where they react with the hydrocarbon fuel in a known fashion.
- impermeable cathode member 32 Whilst the impermeable cathode member 32 provides oxygen ion transport to the solid cathode/electrolyte interface it also has to act as an electro-catalyst, for example, for the Faradaic reduction of oxygen,
- a metal interconnecting frame 50 shown separately in Figure 8, comprises a separator plate 52 which is arranged to separate adjacent cell locations, and a pair of perforated support plates 54, 56 which extend at right angles from its opposite sides.
- One support plate 54 is arranged near the lower end of the separator plate 52 so as to extend underneath the cell which is to the right of the separator plate, whilst the other support plate 56 is arranged near the upper end of the separator plate so as to extend above the left-hand cell.
- Flanges 58 also extend outwardly from the top and bottom edges of plate 52 so as to locate the adjacent edges of the cells and co-operate with the adjacent frame 50, and thus it will be appreciated that a multi-cell structure of a large number of cells can be built up in this way.
- the electrical components of a cell of this kind will typically comprise: (60) Mixed conducting cathode as a dense impermeable structural support component ( « 200 ⁇ m thick)
- Porous anode structure e.g. Zr0 2 -Ni ( « 20 ⁇ m thick)
- a large insulator 66 for example of MgO or Mg A1 2 0 4
- a small insulator 68 of the same material is positioned at the top right hand side of the plate, so that the adjacent anode 64 to the right is also insulated from the plate.
- the frame structure 50 which is preferably of a high-Cr alloy, then acts to connect all the cells in series.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Structure électrolytique conçue pour une pile à combustible, particulièrement une pile à combustible à ''oxydes solides''. On constitue une structure de support à partir d'un conducteur mixte imperméable, tel qu'un oxyde de manganèse-cobalt de lanthane, dans lequel la conduction s'effectue par autodiffusion plutôt que par diffusion moléculaire à travers des pores, ce qui constitue une électrode de la pile et porte l'électrolyte à oxydes solides en tant que revêtement d'un matériau, tel que Zr0,9Y0,1O¿1,95. Ceci permet de réaliser une couche électrolytique très mince, ce qui est nécessaire pour un fonctionnement en température relativement basse, tout en optimisant la solidité structurale. On peut constituer des structures à piles multiples, disposées sous forme d'empilages ou situées sur le même plan.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB919125012A GB9125012D0 (en) | 1991-11-25 | 1991-11-25 | Solid oxide fuel cell |
GB9125012.6 | 1991-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993011574A1 true WO1993011574A1 (fr) | 1993-06-10 |
Family
ID=10705189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1992/002172 WO1993011574A1 (fr) | 1991-11-25 | 1992-11-25 | Pile a combustible |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2951192A (fr) |
GB (1) | GB9125012D0 (fr) |
WO (1) | WO1993011574A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996019015A3 (fr) * | 1994-12-17 | 1996-08-15 | Univ Loughborough | Agencements de piles voltaique et de piles combustibles |
EP1288658A3 (fr) * | 2001-09-03 | 2004-02-11 | NGK Spark Plug Company Limited | Capteur de gaz avec une couche à conduction protonique |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130693A (en) * | 1976-05-28 | 1978-12-19 | Den Berghe Paul Van | Electrolyte-cathode assembly for a fuel cell |
DE1771829B2 (de) * | 1967-07-19 | 1980-04-03 | Compagnie Francaise De Raffinage S.A., Paris | Mehrschichtige Elektrode für Hochtemperatur-Brennstoffelemente |
US4490444A (en) * | 1980-12-22 | 1984-12-25 | Westinghouse Electric Corp. | High temperature solid electrolyte fuel cell configurations and interconnections |
DE3436597A1 (de) * | 1984-10-05 | 1986-04-10 | Max Planck Gesellschaft | Oxidischer koerper mit ionischer und elektronischer leitfaehigkeit |
US4702971A (en) * | 1986-05-28 | 1987-10-27 | Westinghouse Electric Corp. | Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells |
-
1991
- 1991-11-25 GB GB919125012A patent/GB9125012D0/en active Pending
-
1992
- 1992-11-25 WO PCT/GB1992/002172 patent/WO1993011574A1/fr active Application Filing
- 1992-11-25 AU AU29511/92A patent/AU2951192A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1771829B2 (de) * | 1967-07-19 | 1980-04-03 | Compagnie Francaise De Raffinage S.A., Paris | Mehrschichtige Elektrode für Hochtemperatur-Brennstoffelemente |
US4130693A (en) * | 1976-05-28 | 1978-12-19 | Den Berghe Paul Van | Electrolyte-cathode assembly for a fuel cell |
US4490444A (en) * | 1980-12-22 | 1984-12-25 | Westinghouse Electric Corp. | High temperature solid electrolyte fuel cell configurations and interconnections |
DE3436597A1 (de) * | 1984-10-05 | 1986-04-10 | Max Planck Gesellschaft | Oxidischer koerper mit ionischer und elektronischer leitfaehigkeit |
US4702971A (en) * | 1986-05-28 | 1987-10-27 | Westinghouse Electric Corp. | Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells |
Non-Patent Citations (1)
Title |
---|
J. Electrochem Soc., Volume 138, No. 7, July 1991, Junichiro Mizusaki et al, "Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO03/YSZ" * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996019015A3 (fr) * | 1994-12-17 | 1996-08-15 | Univ Loughborough | Agencements de piles voltaique et de piles combustibles |
US6040075A (en) * | 1994-12-17 | 2000-03-21 | Loughborough University Of Technology | Electrolytic and fuel cell arrangements |
EP1288658A3 (fr) * | 2001-09-03 | 2004-02-11 | NGK Spark Plug Company Limited | Capteur de gaz avec une couche à conduction protonique |
Also Published As
Publication number | Publication date |
---|---|
AU2951192A (en) | 1993-06-28 |
GB9125012D0 (en) | 1992-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7989113B2 (en) | Solid-oxide shaped fuel cell module | |
US4248941A (en) | Solid electrolyte electrochemical cell | |
US6864009B2 (en) | Single cell and stack structure for solid oxide fuel cell stacks | |
JP4767406B2 (ja) | 電気化学装置および集積電気化学装置 | |
US6551735B2 (en) | Honeycomb electrode fuel cells | |
EP0055016A1 (fr) | Arrangements de piles à combustible à électrolyte solide fonctionnant à haute température | |
EP1300903A1 (fr) | Cellule à combustible miniaturisée à oxydes solides | |
KR102745790B1 (ko) | 전기화학 소자의 금속 지지체, 전기화학 소자, 전기화학 모듈, 전기화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 고체 산화물형 전해 셀 및 금속 지지체의 제조 방법 | |
EP3793012A1 (fr) | Corps de support métallique pour élément électrochimique, élément électrochimique, module électrochimique, dispositif électrochimique, système d'énergie, pile à combustible à oxyde solide, cellule électrolytique à oxyde solide, et procédé de fabrication de corps de support métallique | |
US5330859A (en) | Solid oxide fuel cell with single material for electrodes and interconnect | |
TWI729087B (zh) | 電化學元件、電化學模組、電化學裝置及能量系統 | |
JP4236298B2 (ja) | ハニカム一体構造の固体電解質型燃料電池 | |
KR102800207B1 (ko) | 금속판의 제조 방법, 금속판, 전기화학 소자, 전기화학 모듈, 전기화학 장치, 에너지 시스템, 고체 산화물형 연료 전지, 및 고체 산화물형 전해 셀 | |
US7045244B2 (en) | Fuel cells utilizing non-porous nanofilm microchannel architecture | |
JPH04298964A (ja) | 固体電解質型燃料電池及びその製造方法 | |
EP3584865A1 (fr) | Cellule unique à réaction électrochimique et assemblage de cellules à réaction électrochimique | |
WO1993011574A1 (fr) | Pile a combustible | |
TWI763812B (zh) | 電化學裝置、能源系統、及固態氧化物型燃料電池 | |
JPH10189024A (ja) | ハニカム一体構造の固体電解質型燃料電池 | |
US20050048352A1 (en) | Fuel-cell device utilizing surface-migration on solid oxide | |
US20250167274A1 (en) | Solid electrolyte layer, electrochemical cell, electrochemical cell device, module, and module housing device | |
EP4243128A1 (fr) | Traitement optimisé d'électrodes pour sofc et soec | |
US10680270B2 (en) | Fuel cell ink trace interconnect | |
EP3499616B1 (fr) | Cellule de réaction électrochimique individuelle, et empilement de cellules de réaction électrochimique | |
JPH11297343A (ja) | ハニカム一体構造の固体電解質型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |