+

WO1993010527A1 - Magnetooptical disk apparatus and recording medium - Google Patents

Magnetooptical disk apparatus and recording medium Download PDF

Info

Publication number
WO1993010527A1
WO1993010527A1 PCT/JP1992/001460 JP9201460W WO9310527A1 WO 1993010527 A1 WO1993010527 A1 WO 1993010527A1 JP 9201460 W JP9201460 W JP 9201460W WO 9310527 A1 WO9310527 A1 WO 9310527A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
pulse
optical
signal
mark
Prior art date
Application number
PCT/JP1992/001460
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Toda
Kazuo Shigematsu
Seiichi Mita
Toshimitsu Kaku
Takeshi Maeda
Fumiyoshi Kirino
Hiroshi Ide
Atsushi Saito
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3294145A external-priority patent/JP3063314B2/en
Priority claimed from JP4100897A external-priority patent/JPH05298737A/en
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to DE4293957A priority Critical patent/DE4293957C2/en
Priority to DE4293957T priority patent/DE4293957T1/en
Priority to US08/087,777 priority patent/US5642343A/en
Publication of WO1993010527A1 publication Critical patent/WO1993010527A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10504Recording
    • G11B11/10508Recording by modulating only the magnetic field at the transducer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/1053Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed to compensate for the magnetic domain drift or time shift
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10212Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter compensation for data shift, e.g. pulse-crowding effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • G11B20/1258Formatting, e.g. arrangement of data block or words on the record carriers on discs where blocks are arranged within multiple radial zones, e.g. Zone Bit Recording or Constant Density Recording discs, MCAV discs, MCLV discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits

Definitions

  • the present invention relates to a magneto-optical recording control method and an apparatus for enabling high-density optical recording.
  • One of the means for recording digital i on a recording medium is an optical disk device.
  • the optical disk focuses laser light on a recording surface by a lens, changes its intensity in accordance with the information to be recorded, and adjusts the reflectance and reflectance of the recording film in the area where the laser light is irradiated.
  • information is recorded by changing the magnetization direction by external magnetization or the like.
  • a laser beam with a lower intensity than that at the time of recording is irradiated, and changes in the amount of light from the reflected light from the recording film or rotation of the polarization plane due to a difference in the magnetization direction are detected. This is done.
  • the recording density is mainly determined by the size of the spot of the laser beam focused on the recording surface, and its size is as small as about 1 ⁇ m at present, so it is about 10 times the size of a magnetic disk High-density recording can be realized.
  • the mark length recording method in which information is recorded at positions before and after a recording mark recorded by modulating the irradiation light power, uses two or more data points per recording mark. This is an effective means for realizing high density.
  • the recorded mark shape is likely to be unstable. Also, if the recording linear velocity is different, the amount of heat applied per unit area and the distribution of heat are different, so that the recording mark shape is different. Therefore, in order to actually form a stable recording mark shape and perform recording / reproducing, “application of pit edge recording to PbTbSe film” (70th anniversary of IEICE) In the Commemorative National Convention Lecture Papers, p 4 — 1 7 6), the recording irradiation light pulse was set to be large, and the mark length was recorded so that it did not become longer than the target value according to the linear velocity. Adjustments are sometimes made to shorten the laser pulse length or to reduce the pulse length of the binarized signal during playback.
  • the shape of a recorded mark mainly depends on the recording sensitivity and thermal conductivity of the recording medium, the intensity distribution of the focused laser beam used for recording, the wavefront aberration, and the like.
  • the characteristics change when the combination of and the recording medium changes.
  • the level of the irradiation light power at the time of recording on the device side changes with time. This phenomenon is unavoidable even in the case where the laser power automatic control mechanism (APC) is provided, and fluctuations in the recording / reproducing characteristics also occur due to this factor. This fluctuation leads to fluctuations in the recording mark length during recording and fluctuations in the pulse interval of the reproduced signal during reproduction.
  • APC laser power automatic control mechanism
  • the recording correction amount and recording light power are set to constant values before shipment from the device, these setting specifications will be used for recording and playback with many combinations of recording media and recording devices. Determined after measuring characteristics. At that time, the combination In order to guarantee the reliability at the time of detection in all cases, taking into account the variation range of the recording / reproducing characteristics, a large margin is given to the recording density, and the recording density is sacrificed.
  • a test pattern is recorded in advance, and the reproduction signal is used to adjust recording conditions.
  • Methods for obtaining information have been proposed. For example, in the device described in Japanese Patent Application Laid-Open No. 6-11,394, the irradiation light power level, which is a constant value during recording, is set, and in the device described in Japanese Patent Application Laid-Open No. In the apparatus described in Japanese Patent Application Laid-Open No. 63-304427, both of them and the automatic equalization coefficient during reproduction are simultaneously adjusted.
  • optical discs are basically a recording method that uses thermal diffusion
  • the phenomenon in which the shape of a recording mark changes due to the diffusion of heat distribution due to a plurality of recording pulses before and after the recording mark (hereinafter referred to as “the recording mark”).
  • the recording mark the phenomenon in which the shape of a recording mark changes due to the diffusion of heat distribution due to a plurality of recording pulses before and after the recording mark.
  • Called thermal interference This phenomenon also leads to variations in the pulse interval of the reproduced signal during reproduction. Therefore, it is necessary to consider the effect of this thermal interference in order to perform the optimal correction during recording. As a countermeasure against this,
  • each recording pulse width is changed according to the interval to the immediately preceding recording pulse.
  • the conventional recording method is described in Japanese Patent Application Laid-Open No. 3-222223.
  • the recording code sequence of the recording mark is pulsed to form a series of pulse trains corresponding to the length of the recording code sequence, and the pulse sequence is recorded immediately before the recording code sequence of the pulse sequence length and amplitude.
  • control is performed according to the length of the reverse phase of a certain recording code string, the pulse string is divided into three parts 5, and recording is performed by changing the pulse width of each pulse.
  • the track on the disk is divided into a plurality of zones consisting of trackers, and the recording is performed so that the recording linear density is the same in the zone.
  • the optical disk device has already been described in detail in Japanese Patent Application No. 2-1333819.
  • the line density in each zone on the disk cannot be kept constant due to the recording / reproducing characteristics of the write-once film. It is higher than the recording linear density in the zone.
  • the above conventional technology does not take into account the fact that the recording sensitivity of the recording medium fluctuates due to fluctuations in the film thickness of the recording medium or fluctuations in the environmental temperature, and it is not possible to control the recording mark with high accuracy. There was a problem that caused the capacity to drop.
  • the length of the interval between multiple recording pulses of the recording irradiation light pulse has an effect due to the diffusion of heat, and as a result, the recording of the same length Even if a pulse is applied, the edge position will change depending on the combination of the recording patterns located earlier in time.
  • the thermal conductivity is generally large, and the range affected by the thermal interference is large.
  • this recording pulse width adjustment method uses a preset value irrespective of the recording condition at that time regarding the adjustment amount, so that the variation in the recording characteristics is affected.
  • the adjustment amount cannot be changed, and as much as the recording characteristic deviates from the setting, it appears as an error in the adjustment, making accurate adjustment impossible.
  • the recording irradiation light power or the single amount of the recording pulse width is adjusted, and the fluctuation of the recording mark length due to thermal interference is not reduced. .
  • a linear equalizer such as a transversal filter has been generally used in the field of communication and magnetic recording as a measure against intersymbol interference components on the reproducing side. This is to reduce the linear intersymbol interference generated by superimposing on the nearby waveform, because the frequency band of the signal reproduction system is narrow and the tail of the reproduction signal pulse is widened.
  • the effect of the thermal diffusion described above mainly appears as a waveform shift in the time direction during reproduction. This is a nonlinear intersymbol interference component that cannot be simply expressed as a linear superposition of the basic waveforms according to the recorded information. Therefore, the edge position fluctuation component cannot be handled by the linear equalizer, and it is actually very difficult for the reproducing side to deal with the interference component in real time.
  • the first object of the present invention is to provide a recording control method for precisely controlling the size of a recording magnetic domain, in particular, a magnetic domain length and a magnetic domain width, thereby providing a magneto-optical recording suitable for ultra-high density optical recording. It is to provide a recording control method of the recording.
  • a second object of the present invention is to propose a recording / reproducing apparatus for recording information at a high density using a magneto-optical recording medium. In particular, it proposes an effective method for recording on a disc.
  • a third object of the present invention is to suppress recording mark fluctuation due to the recording sensitivity fluctuation as much as possible and to perform highly accurate recording mark control.
  • a fourth object of the present invention is to improve compatibility between a recording / reproducing device and a recording medium and to suppress fluctuation in recording sensitivity due to the recording / reproducing device.
  • a fifth object of the present invention is to improve the reliability, storage capacity, and information transfer rate of a recording / reproducing apparatus.
  • factors that affect the size of the magnetic domain to be formed include environmental temperature, variations between recording media, and variations in laser power. When recording or erasing, these fluctuation factors are detected, and appropriate feedback is applied for recording or erasing, so that the formed magnetic domains do not interfere with each other. Density can be increased.
  • the data recording area on one disk is divided into a plurality of zones in the radial and track directions to obtain information necessary for performing recording control.
  • a recording condition can be found by providing an area for each zone and performing at least recording and reproduction in this area.
  • At least one type of information selected from the magnetic domain width, the magnetic domain length, and the interval between magnetic domains of the formed magnetic domains must be collected. I just need.
  • the user's data is recorded by controlling the laser at the time of recording, the control of the recording pulse width, or the waveform of the recording pulse.
  • the control is coarser than the previous case.
  • Information should be collected. This is because the information obtained here is mainly information on environmental temperature changes. Among them, the information obtained when a disc is inserted also includes variations in the sensitivity of the disc. This makes it possible to ensure compatibility of the medium.
  • a test track shall be provided to collect various data for recording control of at least one track in one sector or the entire circumference of one track. Is in the disk In order to eliminate the effects on these recordings due to variations in the recording or erasing when the recording or erasing is performed under a constant rotation speed, the heat flow differs for each zone and the recording conditions differ. It is.
  • This test track can be placed at any position within one zone, as long as it is representative of the characteristics of each zone.However, considering the usability, the first zone of each zone is considered. The part or end or the center of the zone is particularly preferred.
  • the data recording area on one disk is divided into multiple zones in the radial and track directions, and each zone has at least one track in one sector.
  • the entire circumference of one track was provided as a test track for collecting various data for recording control.
  • test Z erasure By performing test Z erasure on this track, it is possible to detect changes in the recording magnetic domain shape due to changes in environmental conditions and variations between recording media. Therefore, when recording is performed based on this information, a recorded magnetic domain having the same shape and the same size is always obtained.
  • a minute recording magnetic domain can be formed without being affected by disturbance, so that stable recording and Z reproduction can be performed. As a result, ultra-high density magneto-optical recording was realized.
  • a trial writing is performed in advance at a predetermined position on the recording medium, and the reproduction signal obtained by the trial writing and the trial are used. Written and compared with the night, after obtaining good results, regular information Start recording.
  • test writing data and the input data bit sequence of the legitimate information are used as the code sequence of the recording device, and the data sequence for recording the code sequence on the recording medium is generated.
  • the test writing is performed in advance at a predetermined position on the recording medium in order to improve the compatibility between the recording medium and the device that performs the recording.
  • fluctuations in the recording media such as fluctuations in the recording temperature due to fluctuations in the environmental temperature and changes in the characteristics of the recording device, etc. Performs an operation of writing on a recording medium before recording.
  • the reproduced signal obtained from the recorded test writing data is compared with the test writing data, and the light intensity or energy of the recording waveform for recording is changed so as to obtain a good result. Operates to match the recording medium with the recording device. As a result, the optimum recording conditions for the recording medium can be always obtained, so that the above-described information recording malfunction due to the fluctuation of the recording sensitivity is eliminated and the reliable recording / reproducing is performed. Can be done.
  • recording / reproducing is performed immediately after recording of regular information or at a certain period, the input data bit string is compared with the output data bit string, and if a malfunction occurs, the above-mentioned test writing is performed to improve reliability.
  • Recording and playback with in order to minimize trial writing performed immediately after recording of regular information or by recording / reproducing at a certain period, a recording pulse train and a recording auxiliary pulse corresponding to the recording mark are used. The length and width of the recording mark were controlled by keeping the temperature of the recording medium almost constant using two light intensities or two energy levels for the recording pulse train and the recording auxiliary pulse.
  • the quality of the recording conditions is determined without improving the amplitude and frequency characteristics of the reproduced signal. It is.
  • a recording pulse train and a recording auxiliary pulse corresponding to the recording mark of the trial data and the input data bit train of regular information are generated, and the recording pulse train and Recording assistance, It was recorded on a recording medium using two light intensities or two energy levels for the virus.
  • the recording power and the erasing power are reduced by modulating the light intensity of the recording pulse train and the recording auxiliary pulse in a recording medium on which information can be overwritten. It has been applied.
  • reproduction is performed immediately after recording the input data bit sequence of regular information, and the input data bit sequence and the output data bit sequence are compared.
  • the bit sequence is converted into a code sequence of a recording device, and a data sequence for recording the code sequence on a recording medium is generated, and a laser light source is driven to form a recording area on the recording medium. It controls the light intensity and energy level of the recording pulse train and recording assist pulse corresponding to the recording mark in the recording waveform to be recorded.
  • a device for recording and reproducing information concentrically on a disk-shaped recording medium in an optically identifiable form The track on the disk is divided into a plurality of tracks.
  • the recording is performed so that the recording linear density is the same in the zone, and in the inner circumference of the circle, the recording linear density in the zone is lower than the linear density in the outer zone. Lower.
  • the line density can be reduced on the inner circumference side, so that information can be read accurately even if there is thermal interference.
  • the contribution to the storage capacity that can fit on the entire disc of the inner track is not large, even if the linear density is loosened on the inner track, almost all It is possible to efficiently increase the density without reducing the capacity.
  • the fluctuation of the edge position of a recording mark due to thermal interference is temporally forward or rearward for each edge in accordance with a combination of a plurality of recording pulses positioned before the recording pulse.
  • Side adjustment, and adjust In addition to recording by the laser with the recorded recording pulse signal, a predetermined recording signal is recorded and reproduced at predetermined time intervals, and the light beam intensity and environmental temperature fluctuation at the time of recording are determined based on the result.
  • the recording mark length does not fluctuate under all recording conditions. Accurate information recording is performed, and more accurate recording mark edge position control for high-density recording by mark length recording can be realized.
  • Adjustment to shift the edge position of the recording mark due to thermal interference temporally forward or backward for each edge according to the combination of the immediately preceding plural recording pulses By performing recording with the laser using the adjusted recording pulse signal, it is possible to absorb the variation of the recording mark length when the recording pattern sequence differs due to the influence of thermal interference. it can.
  • the recording pulse can be accurately adjusted at any position on the recording medium.
  • the recording medium when the recording medium is replaced, and at predetermined time intervals, recording and reproduction are performed using a predetermined recording signal, and a recording mark section of the reproduction signal is performed.
  • the pulse length that hits the The duty with the gap length is detected, and the light beam intensity during recording and the deviation from the set value of the recording medium temperature are extracted from the information, and the light beam intensity during recording is set according to the result. If the value deviates from the set value, change the light beam intensity at the time of recording.If the temperature of the recording medium deviates from the set value, check the contents of the adjustment table or the light beam at the time of recording. If the intensity can be adjusted by changing the intensity, the light beam intensity during recording can be changed, and the recording pulse can be adjusted accurately even if the recording conditions fluctuate over time.
  • the present invention proposes a method for stably forming (recording) minute magnetic domains without thermal interference or the like, as the density of magneto-optical recording increases.
  • 1) a method using a recording pulse waveform, 2) a method using a recording method on a disk, and 3) a method in which test recording is performed and recording control information is obtained using the results. was suggested.
  • the recording capacity can be increased.
  • higher-density recording becomes possible.
  • the present invention typically includes, as shown in FIG. 1, a light source 8 for irradiating an optical disk 1 with a light beam, an encoder 4 for converting an information signal to be recorded into a code sequence, Modulates the light beam according to the train and converts it into a light pulse train.
  • An optical disc device comprising: a discriminator 15 for detecting a code string recorded on an optical disc from a pulse signal; and a decoder 17 for decoding a code string from the discriminator into an information signal.
  • An optical disc device characterized by controlling at least one of the power level of the nores, the width of the nores, and at least one of the pulse intervals.
  • the power level control includes a control means for controlling the modulation of the optical beam by selecting a pulse width or a pulse interval from predetermined values. This can be achieved.
  • the comparison results reflect at least one factor selected from the width, length, or mark spacing of the recorded marks.
  • Testo from trial writing means 3. It is desirable that the turn is encoded by the encoder 4 in the same manner as the data before recording.
  • Pulses electrical signal waveforms without passing through waveform processing means 1 1 It is more desirable to have a switching switch 12 for input to the means 13 and to evaluate the reproduced signal of the test pattern without passing through the waveform processing means.
  • One unit of the optical pulse train that forms one of the recording marks includes, for example, a leading pulse and a trailing pulse train having a different time width from the leading pulse.
  • the subsequent pulse train is easy to control if at least one of the pulse widths or pulse intervals is equal.
  • one unit of the optical pulse train forming one of the recording marks has a pulse having a power level equal to or higher than P w, and the optical pulse train not forming the recording mark has a power level equal to or lower than P as At least one of the front and rear sides of the optical pulse train that forms the recording mark has a power level region of Pr or less.
  • a train of optical pulses forming one of the recording marks may be configured to have two or more power level pulses.
  • the power level of the first pulse may be different from the power level of the subsequent pulse.
  • the control means controls the number of pulses of one unit of the optical pulse train forming one of the recording marks, or changes at least one of the Pw, Pas, or Pr.
  • the control means may control the optical pulse based on at least one of a combination of an optical disk temperature, a recording linear velocity on the optical disk, and a recording mark based on an information signal to be recorded.
  • the edge position of the pulse constituting the train may be controlled. It may be configured to have a table for storing information for controlling the edge position.
  • the optical disk is preferably divided into a plurality of zones having different recording conditions in the radial direction, for example, and it is preferable that each zone has an area for recording the test pattern.
  • the optical disk is divided into multiple zones in the radial direction, and the linear recording densities are equal in the same zone, and the bun on the innermost circumference of the optical disk has the lowest linear recording density. It is also desirable to configure it.
  • an optical pulse with at least one of the pulse width and pulse interval changed according to the zone or the radial position of the disk It is advisable to record using a data train.
  • the recording clock is used to control at least one of the pulse width and / or the pulse interval of the pulses constituting the optical pulse train, and the detection formed by the recording clock is used. It is preferable to set the window width to a fraction of an integer or an integral multiple.
  • the light source driving means 7 includes a plurality of unit driving circuits each including a switch means and a current source in series with the switching means, and one constant current source is disposed in series with each unit driving circuit.
  • the light source 8 is connected in series with the current source and in parallel with the unit drive circuit, and the current sources of the plurality of unit drive circuits supply different values of current.
  • a current value for driving the light source 8 is controlled by operating the switch means with a control signal based on the code string. At least one of the current sources of the unit drive circuit is variable in current, and light pulse control can be performed.
  • the switching means is preferably an npn-type switching element.
  • the information recording / reproducing method of the present invention converts an information signal to be recorded into a code sequence, modulates a light beam into an optical pulse according to the code sequence, irradiates the optical pulse sequence to a recording medium, and A code sequence is recorded as a recording mark by heat action or heat interference, and light from a recording medium is photoelectrically converted to obtain an electric signal waveform.
  • Optical signal recording that converts a signal from the waveform processing means into a pulse signal, detects a code string recorded on a recording medium from the pulse signal, and decodes the detected code string into an information signal.
  • a light beam is modulated by a specific test signal to form a test pattern on a recording medium, and the test pattern is reproduced and compared with the test signal, and the optical signal is generated based on the comparison result.
  • the power of the pulses that make up the pulse train Bell, pulse width, Wakashi Ku is an optical information recording and reproducing method according to Toku ⁇ that you controlling one also least for the pulse interval.
  • test pattern includes the longest code and the shortest code.
  • FIG. 1 is a device block diagram for explaining an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating the operation of one embodiment.
  • FIGS. 3 (a), 3 (b) and 3 (c) are conceptual diagrams illustrating the relationship between the recording method and recorded marks according to an embodiment of the present invention.
  • FIGS. 4 (a) and 4 (b) FIG. 4 (c) is a conceptual diagram illustrating the relationship between a recording method according to another embodiment of the present invention and a recorded mark
  • FIG. 5 is an explanatory diagram of a test writing recording pattern according to the present invention.
  • Figure 7 is an explanatory diagram showing the relationship between the thermal time constant and the temperature error after thermal shutdown.
  • FIG. 8 is a diagram illustrating one embodiment of a recording waveform.
  • FIG. 9 is a diagram illustrating another embodiment of a recording waveform.
  • FIG. 10 is a diagram illustrating a recording signal waveform.
  • FIG. 11 shows the recording signal waveform
  • Fig. 12 is a schematic diagram showing the reproduction signal waveform and the recording magnetic domain shape.
  • Fig. 13 is a diagram showing the pattern dependence of the edge shift.
  • Fig. 14 is a diagram showing the recording signal waveform.
  • Figure 15 shows the recording signal waveform.
  • Fig. 16 is a schematic diagram showing the reproduction signal waveform and the recording magnetic domain shape.
  • Fig. 17 is a diagram showing the pattern dependence of the edge shift.
  • Fig. 18 (a) shows the recording signal waveform.
  • Fig. 19 (a), Fig. 19 (b), Fig. 19 (c), Fig. 19 (d) are diagrams illustrating an embodiment of the laser drive circuit.
  • Figure 20 is a flowchart of the test writing procedure.
  • Fig. 21 is a schematic diagram showing the cross-sectional structure of a magneto-optical disc.
  • Fig. 22 is a diagram showing the shape of the recording pulse waveform.
  • Figure 23 is a block diagram showing the configuration of the embodiment.
  • Figure 24 is a schematic diagram showing how the edge position shifts due to mature interference.
  • Figure 25 is a diagram for explaining how to use the edge shift amount information to adjust the position of each edge of the recording signal to suppress the effects of edge shift.
  • Figure 26 shows an example of the recording signal pattern for recording condition measurement.
  • Fig. 27 shows the means for separating and detecting the light beam intensity change during recording and the temperature change of the recording medium from the measurement results.
  • Fig. 28 shows the flow of the recording condition judgment mode.
  • Figure 29 shows an example of the configuration of the edge interval measurement circuit.
  • Figure 30 is a diagram for explaining the operation of the edge interval measurement circuit.
  • Fig. 31 shows a configuration example of the recording condition determination circuit.
  • Fig. 32 shows a configuration example of the edge position adjustment circuit and the edge position adjustment table.
  • Figure 33 shows an example of the configuration of the edge position adjustment table switching circuit.
  • Fig. 34 is a graph showing the relationship between the recording radius position and the linear density.
  • Fig. 35 is a graph showing the relationship between the recording radius and the capacity contribution.
  • Figure 36 is a graph showing the relationship between the recording radius and the shortest domain length.
  • Figure 37 shows the waveform of the test pattern.
  • Figure 38 is a schematic diagram showing the recording domain shape.
  • Figure 39 is a plan view of the optical disk of the present invention.
  • Figure 40 is a waveform diagram showing the minimum change length.
  • FIG. 1 shows an optical disk device according to an embodiment of the device configuration of the present invention. It comprises a recording medium 1 for storing information, an optical head 2 for realizing recording and reproduction, and a processing system for converting a reproduction signal obtained from the optical head 2 into information.
  • the recording medium 1 rotates at a speed of 109, and comprises a recording film 101 and a substrate 102 holding the recording film.
  • the optical head 2 has a built-in optical system for focusing the light emitted from the laser 8 onto the recording medium 1.
  • the input data bit sequence (information) is input to the encoder 4, the recording code sequence output from the encoder 4 is guided to the recording waveform generator 5, and the recording waveform generator 5
  • the recording waveform obtained as described above is input to the APC 6, and light having an intensity corresponding to the recording code string is output from the laser 8.
  • the light reflected from the recording medium 1 is guided to the light receiver 9 by an optical system and converted into an electric signal.
  • the signal is input to a reproduction amplifier 10 and output to a waveform processing circuit 11 such as a waveform equalizer and an input switch 12. Input off
  • the transformer 12 outputs either the reproduction amplifier 10 or the reproduction signal from the waveform equalizer 11 to the shaper i 3, and outputs a pulse signal representing the presence or absence of the signal. Is converted.
  • the pulse signal is guided to the discriminator 15 and the PLL 14.
  • the synchronization signal (signal synchronized with the basic period of the pulse signal) output from the PLL 14 is input to the discriminator 15.
  • the discriminator 15 generates a detection code string from the pulse signal and the synchronization signal, and the decoder 17 outputs a data bit string (information).
  • the detection code string of the discriminator 15 is output to the comparison discriminator 16.
  • the test writing data from the test writing device 3 operated by the test writing instruction signal is input to the encoder 4 and converted into a recording code string.
  • the recording code string of the test writing data is recorded on the recording medium 1 via the same path as the recording information.
  • the input switch i 2 operated by the test writing command signal switches the output of the reproduction amplifier 10 to output to the shaper 13.
  • the laser driver that drives the laser 8 so as to compare the recording code string from the encoder 4 with the reproduction code string from the discriminator 15 and cancel the difference between the reproduction code string and the recording code string. Outputs a control signal to control APC 6 to control 7.
  • the difference between the reproduced code string and the recorded code string is reduced to some extent, and after reaching an allowable range, a test write end signal is output and the test write is completed.
  • the input switcher 12 switches the output of the waveform equalizer 11 to output to the shaper 13 and starts the normal recording / reproducing operation.
  • the discriminator 16 is used to confirm that the difference between the reproduced code string and the recorded code string is within an acceptable range. Start the write operation, and when the trial write end signal is output, continue the normal recording operation again.
  • the output of the input switch ⁇ 2 was operated so as to output the signal of the reproduced amplifier 0. Is more accurate. In the above operation, the same operation can be realized without using the input switch 12. However, in order to accurately detect the difference between the reproduced code string and the recorded code string in the comparison discriminator 16, it is better to use a signal that does not pass through the waveform equalizer 11.
  • the equipment is operated by turning on the power of the equipment (2021).
  • a test write operation is performed to confirm the compatibility between the inserted recording medium and the device (20025). , 20 23).
  • the test writing is performed so as to minimize the fluctuation of the recording mark caused by the fluctuation of the recording sensitivity to the recording medium due to the fluctuation of the film thickness of the recording medium or the fluctuation of the environmental temperature. And control the recording pulse, etc., and reduce the fluctuation of the recording device.
  • FIG. 3 illustrates the relationship between an embodiment of a recording method for recording on a recording medium of the present invention and recorded marks.
  • Figure 3 (a) shows the recording pulse for controlling the laser power.
  • the recording code sequence 20 corresponds to the recording mark recorded on the medium, and the recording waveform generator 5 generates a recording pulse sequence 21 in the pulse portion of the recording code sequence 20.
  • the recording pulse train 21 has the first pulse and the second and subsequent pulses having different lengths, and the pulse length of the second and subsequent pulse trains has the minimum change length of the recording mark (multiple types).
  • At least one pulse corresponds to the minimum change in the length of the light pulse when forming a mark of length.
  • a recording pulse train in which the influence of heat from other pulses near the final falling position of the pulse of the recording mark is almost negligible, or a recording in which a constant heat inflow occurs. It consists of a 'pulse train'.
  • a recording auxiliary pulse 22a is generated in the gap part (pause period part other than the pulse part) of the recording code string 20.
  • the recording auxiliary pulse 22a has a final fall of the recording pulse train by providing a gear portion in which the laser power is reduced for a certain period from near the falling position of the recording code train 20. So that the heat from the position does not affect the temperature at the leading edge of the next recording pulse train.
  • Figure 3 (b) shows the recording of the laser power when the laser 1 is driven using the recording pulse train 21 and the recording auxiliary pulse 22a.
  • the horizontal axis' is the time on the horizontal axis, and the laser power is the vertical axis. It was expressed as-.
  • the minimum level of the laser power is playback ⁇ —pr during playback.
  • the highest level of laser power is recorded.
  • the middle level is the recording assist pulse 22 a of the recording assist pulse ⁇ -P as.
  • the length and width of the recording mark 23 on the recording medium are controlled with high accuracy using such a laser power waveform.
  • the width of the recording mark 23 is controlled within a certain range, so that the amplitude of the reproduction signal 24 becomes constant.
  • a reproduced code string 25 is generated.
  • the length of the pulse portion, the rising position or the rising edge of the pulse in the recording code string 20 in FIG. 3A and the reproduction code string 25 in FIG. 3C are shown. Evaluate by comparing the intervals such as the descent position. For example, when the recording power is too large, the pulse length of the reproduction code string 25 becomes longer than the pulse length of the recording code string 20. On the other hand, the pulse length of the reproduction code string 25 is shorter than the pulse length of the recording code string 20.
  • the detection method has already been described in detail in “Digital Signal Recording / Reproducing Apparatus” filed by the inventors of the present invention in Japanese Patent Application Laid-Open No. Hei 4-61028.
  • a new method that does not increase the size of the detection circuit.
  • a recording pattern used as a test pattern for example, a shortest recording mark and a longest recording mark determined from a recording modulation code as shown in FIG. 5 are alternately recorded. If 117 modulation is used as the modulation method, the length corresponding to 1.33T, 5.33 ⁇ where T is the bit period is good.
  • the reproduced waveform will be a fundamental wave without harmonic components. Generally, this playback waveform is affected by both the length and width of the mark because the shortest mark is smaller than the diameter of the playback spot.
  • the signal amplitude of the reproduced waveform of the longest mark is determined only by the effect of the width, and the signal rise and fall intervals are the mark length. It corresponds to.
  • the width of the longest recording mark and the shortest recording mark can be made almost equal, so the difference between the reproduction waveforms of the shortest mark and the longest mark is obtained. Can be regarded as a difference in length.
  • the so-called mark length recording in which information is given to both edges of the mark, is performed, and a direct slicing method is adopted as a binarization method for converting this into a data pulse.
  • Level must be determined accurately. This level has the same mark width, and if the shortest mark length is longer than half the optical spot diameter, it should be set to half the amplitude level of the longest mark length. I know it. In other words, if the mark length is longer than half of the optical spot diameter and there is an optical spot on the mark edge, the playback signal from this mark edge will be the edge of the adjacent mark.
  • the point of intersection with the reproduced waveform when slicing at the half value of the amplitude determined by the longest mark length corresponds to the edge of the mark because it is not affected by the mark.
  • the binarization circuit 610 binarizes the signal at the slice level where the playback waveform can be varied, and forms pulses.
  • the integration circuit is started at the rising edge of the pulse, charged, and discharged at the falling edge.
  • Sample hold comparator 603 samples and holds the value of the integrator at the next rising pulse, and slice controller 604 sets the slice level so that the sample hold value becomes zero.
  • a feed knock is applied to the binarization circuit 601 so that it changes, and when the slice level is determined, this slice level is analog-to-digital converted by the AZD converter 605. And stored in the memory circuit 606. This operation is determined in the same way for the shortest mark and the longest mark, and if the respective values are VI and V2, the recording conditions are changed so that the difference becomes zero.o
  • FIG. 4 shows another embodiment of a recording method for recording on a recording medium according to the present invention.
  • the recording code string 20 is converted into a pulse portion of the recording code string 20 by the recording waveform generator 5.
  • a recording pulse train 21 is generated.
  • the recording pulse train 21 has a different length from the first pulse and the second and subsequent pulses, and the pulse length of the second and subsequent pulse trains corresponds to at least one pulse within the minimum change length of the recording mark.
  • a recording pulse train in which the influence of heat from other pulse trains in the vicinity of the final falling position of the recording mark pulse can be almost neglected, or a recording pulse train in which a constant heat flow occurs. It is composed of
  • a recording auxiliary pulse 22b is generated in the gap of the recording code string 20 (corresponding to the interval between recording marks in the rest period other than the pulse).
  • the recording auxiliary pulse 22b is generated by providing a portion where the laser power is lowered for a predetermined period before the rising position of the recording code string 20 and from the falling position of the recording code string 20 for a predetermined period. The heat from the last falling position of the pulse train hardly changes the temperature at the first rising position of the next recording pulse train.
  • the horizontal axis indicates the time and the vertical axis indicates the change according to the recording code string of the laser power.
  • the minimum level of laser power is the playback level during playback. ⁇ — pr
  • the high level during recording is the recording power P w of the recording pulse train 21
  • the low level during recording is the recording power of the recording auxiliary pulse 22 a.
  • P-P as. Using a recording waveform like a graph, the length and width of the recording mark 23 on the recording medium are controlled with high precision.
  • the temperature on the recording Since the change in the width of the recording mark 23 is controlled within a certain range, the amplitude of the recording portion of the reproduction signal 24 becomes substantially constant. A discrimination at the center of the reproduction signal 24 or at a certain level generates a reproduction code string 25.
  • Tmax The maximum temperature reached by the recording pulse
  • K Pr the temperature rise due to the reproduction laser power
  • K ′ The environmental temperature of the apparatus
  • K ′ the temperature rise due to the recording laser power
  • f (t) be the function for time t, which represents the rate of temperature decrease after the recording pulse irradiation
  • g (t) the function, which represents the rate at which the temperature rises after the auxiliary pulse is irradiated.
  • the first term on the right side is the effect of the recording pulse of the previous mark
  • the second term is the effect of the recording auxiliary pulse.
  • To cut off the recording auxiliary pulse means to control the coefficient of the second term. If the recording auxiliary pulse is not cut off, this term will be constantly zero, and the recording will be performed in principle. The effect of the pulse cannot be eliminated. From Equation 6, it can be seen that to eliminate the effect of the recording pulse of the previous mark, E (2Tw) should not be in a temperature error where the shift of the mark edge has almost no effect. must not.
  • Equation 3 shows the relationship between the recording auxiliary pulse, the recording pulse, and the ambient temperature
  • Tmax Tr + KPr + KPas '+ K'P'
  • Equation 7 Equation 7 is obtained.
  • TmaX determines the mark width when the spot shape, linear velocity, and thermal conductivity of the medium are determined, and also determines the mark length when the above-mentioned recording pulse waveform is determined.
  • T max In order to keep the width and length constant, T max must be kept constant. The right side of 7 must be constant. Then, once the environmental temperature and regeneration level are determined, the sum of pw 'and Pas' must be constant.
  • the factors that determine K here are the spot shape, the linear velocity, and the heat transfer characteristics of the medium, and K 'is these and the recording pulse waveform.
  • Equation 6 in order to reduce the error, the function of f (t) and (t) is a function that expresses the rate of decrease and increase in temperature, so that only a value between 1 and 0 can be obtained.
  • KP as' and K 'P' to be almost equal because the tolerances for f (t) and g (t) become wider.
  • ⁇ (t) and g (t) are determined by the heat conduction characteristics of the medium, and as described above, f (t) can be related to the linear velocity and the heat conduction velocity.
  • G (t) is determined by the heat capacity and linear velocity of the film.
  • Equation 9 As described later, it is very convenient for the circuit realization that the recording waveform is synchronized with the recording clock. Then, the time t is expressed in the unit of the detection window width Tw of 17 modulation.KP as 'is 80 degrees, K'Pw' is 100 degrees, and the cutoff time. Assuming that the temperature error of Tw and T (2Tw) is within ⁇ 10 degrees, the combination of tau 1 and ta ⁇ 2 that satisfies this condition is as shown in Figure 7. This value is obtained by using a magneto-optical recording film and the medium described in JP-A-6-19004, and when the linear velocity is 9.4 m / s and Tw is 40 ns, the edge shift is Tw.
  • the square region indicates the region where the steady state is reached immediately because the rate of attenuation increase is fast.
  • the area where the heat is balanced by the cutoff is the shaded area, which is determined by the four combinations of Pw ', Pas', f (2Tw) and g (2T) described above. Area. Even if each element of the four combinations fluctuates, it is desirable to select a square region as the region in order to reduce the temperature error. In particular, if taul is set to 0.4 or less, the effect of K'Pw 'is greatly suppressed, and the allowable range for cutoff time and tau2 is expanded.
  • the absolute time of Tw changes depending on the radial position, but all the results so far can be satisfied if the cutoff time and time constant are standardized by Tw I do.
  • the recording pulse in order to record the shortest mark of 1 to 7 modulation in FIGS. 3 and 4, a combination of the first pulse of the time width Tw and one subsequent recording clock pulse is used.
  • the recording clock generally oscillates with a Tw period, and it is convenient to use this for the convenience of the circuit.
  • the shortest mark is recorded by a pulse with a recording power change W1 of length a.
  • the shortest mark having a desired width and a length of 1.33T can be recorded by a combination of the recording auxiliary pulse of the P as level and this recording pulse.
  • the recording power is recorded as the recording power variation W2 using the above-described recording clock.
  • the maximum temperature reached for each recording clock is made constant. In Fig. 8, the temperature at each point from timing t2 to t6 is determined.
  • the pulse width of a is created from a pulse width of 2 Tw using a delay line or the like.
  • the maximum attained temperature of each pulse can be made equal.
  • the drawback of this method is that, as is clear from Equation 10, even if one medium is determined, there are fluctuations in the recording pulse width a and d, and fluctuations in the recording device such as changes in the rise characteristics of the laser drive circuit. Since Q and R change, the temperature at each timing is different and cannot be corrected.
  • the recording clock is used as it is, and the power for recording the shortest mark and the power of the succeeding pulse are changed to W1 and W2, respectively, and the recording assistance pulse at the Ps level is used.
  • the power W 1 that forms the shortest mark with a length of 1.33 T with the two recording clocks is determined. Based on the timing t1 force, the temperature reached at t5, and the temperature at t2 and t3, W2 is calculated from
  • Equation 11 Equation 11 is obtained.
  • the effects of fluctuations in the recording device such as fluctuations in the recording pulse width and changes in the rise characteristics of the laser drive circuit, are caused by a uniform change in temperature at each timing.
  • the effect of this can be eliminated by the writing for the present invention because it is changed. That is, since the temperature change is constant regardless of the mark length, it can be corrected by changing the recording auxiliary pulse.
  • a You can set it to Tw.
  • Equation 7 explains the relationship between the test writing operation and various variables.
  • the change of the auxiliary light P as ′ is changed to keep T max constant.
  • the temperature of recording changes when the film thickness of the recording medium changes or the recording sensitivity changes, but it can be considered that the Tma force, the 'Tmax1 force', and the like change to Tmax2 effectively. Therefore, the variation of the auxiliary light, P as', is controlled to compensate for this variation.
  • the fluctuation of the recording power results in the change of PrP as' P w ', but also in this case, the change of the auxiliary light, P as', can keep T max constant. For this reason, KP as' must be about the same as K 'P w'. Variations in the recording characteristics due to the recording / reproducing device are variations in K and K ′, which can also be kept constant by changing the variation P as ′ of the auxiliary light.
  • FIG. 10 is a schematic diagram showing the shape of the recording pulse used.
  • the recording power is 6.5 mW at the innermost position of the disk where the rotation of the disk medium is 300 rpm, and the difference between the first and second lures of the recording area is 6.5 mW.
  • the noise of the third and subsequent pulses was 6 mW.
  • the power of the preheat is a few mW, and the pulse width and the gap interval are all 20 ns. This interval is set from the recording clock.
  • the disk medium of this embodiment is Although the case where the head pulse is increased is shown, this may be reduced depending on the structure of the recording medium. Recording was performed on the disk using the optical pulse in Fig. 10.
  • a low-power portion between the recording pulses was provided immediately after the recording pulse, and the period was set to 40 ns.
  • Fig. I 2 shows a schematic diagram of the reproduced signal waveform and recorded magnetic domain when the shortest 1.33T mark is recorded after the longest 5.33T mark using the RLL modulation method. Shown in Here, the formed magnetic domain width is 0.7 / m, and the magnetic domain length is 0.75 m at the shortest and 3.0 m at the longest. From this figure, neither the shortest domain nor the longest domain is affected by each other, the domain width is constant independent of the pattern length, and the shortest 1.33 T Is recorded after 5.33 T, all 1.33 T magnetic domains have the same length, indicating that the previous magnetic domain is not affected by heat. .
  • Figure 13 shows the difference between the pulse width of the recording signal and the width of the reproduction signal when recording various patterns based on (1,7) modulation. According to this figure, the edge shift at that time was 5% or less of the detection window width without depending on the formed magnetic domain length.
  • Toko furnace returns slow the record Z playback / erase, 5 X 1 0 even after the seventh surface repetition of Canon Li ⁇ level and changes in the Roh I Zureberu is has failed seen. Similar effects were obtained by using any of the pulse shapes shown in FIGS. 11 and 14 other than those shown in FIG. Here, the pulse and the gap interval were both set to 2 O ns.
  • the first pulse width is. For Turn I, 7.5 mW is appropriate and. For Turn ⁇ I, 6.7 mW was optimal. However, these values are selected depending on the thermal structure of the medium used.
  • the power of the first pulse is as low as 5.5 mW, and the power of the second and subsequent layers is low.
  • the shift could be suppressed to 2 nm or less.
  • FIG. 1 A schematic diagram showing the shape of the recording pulse used is shown in FIG.
  • the recording power was 6.7 mW at the innermost position at the rotation of the disk medium at 300 rpm, and the subsequent power was 6 mW.
  • the preheat power is 2.3 mW, the leading pulse width is 55 ns, and the subsequent pulse width and gap interval are both 20 ns.
  • the pulse was recorded on the disk using this pulse.
  • Figure 16 shows a schematic diagram of the reproduced signal waveform and the recorded magnetic domains when the shortest 1.33T is recorded after the longest 5.33T using the (1,7) RLL modulation method.
  • the formed magnetic domain width Is 0, the minimum domain length is 0.75 ⁇ m and the maximum is 3.0 ⁇ 1.
  • the domain width is constant independent of the pattern length, and the shortest is 1.33 mm. Even when three pieces of data are recorded after 5.33 ⁇ ⁇ , all the 1.33 1. magnetic domains have the same length, indicating that the previous magnetic domain has not been affected by heat.
  • Figure 17 shows the difference between the pulse width of the recording signal and the width of the reproduction signal when recording various patterns based on (1, 7) modulation. According to this figure, the edge shift at that time was 5% or less of the detection window width without depending on the formed magnetic domain length.
  • the magneto-optical recording medium has a structure that is easy to warm and easy to write, it is necessary to make the first pulse longer at the same time as the pre-heat at the same time as the pre-heat, so that the pulse width is longer than the subsequent pulse. is there.
  • the pulse width be an integral multiple of the recording clock or a fraction thereof.
  • FIG. 19 shows a specific configuration of a laser drive circuit for realizing test writing according to the present invention.
  • the driving circuit shown in FIG. I w 2, las, and Ir are set so that the laser light has a predetermined power in consideration of the current-to-light conversion efficiency of the laser and the efficiency of the light head. Since only Ias is controlled by trial writing, it should be variable.
  • this current switch circuit does not use the P np type to increase the response with + drive, but switches using the npn type. Therefore, it has a special drive circuit configuration.
  • the current source I shown in Fig. 19 (d) constantly supplies the maximum current, and the current source I on the current switch side is set by the current switch CS.
  • the configuration is such that the current flowing to the laser is reduced only by the current values of r, Iw1, Iw2, and Ias. Therefore, the pulses PrPw1 and Pw2Pas that control the current switch must have polarities inverted from those of the optical recording waveform.
  • the above-described recording pattern is recorded in one track by changing the size of the recording auxiliary pulse for each sector indicating a data break. If the number of sectors is 5.25 inches in diameter and the line density is about 0.56 micron / bit, there are 32 in the MCAV recording system even on the inner circumference.
  • the amount of change of the auxiliary light is changed in five steps. At first, it is changed by 5 steps. This is done the first time the disk is loaded and when the disk is replaced. Next, it is determined which change amount has changed greatly. Then, the interval is further divided and changed in 5 steps.
  • Figure 20 shows the test writing procedure.
  • the most severe condition for the frequency of trial writing is from when the device is turned on to when the temperature reaches a temperature at which the heat can be balanced. Although it depends on the heat generation conditions of the circuit, the temperature rises by about 10 ° C in 5 minutes at the maximum. If set at the beginning, it can be controlled well every 5 minutes.
  • a test write operation is performed when the optical disk is replaced, when the device is turned on, or at an appropriate time during the operation of the device (2001).
  • an area for trial writing on the medium is selected (2002).
  • a dedicated area (test writing track area) is set for the outer, inner, or middle track of the optical disc.
  • test writing test pattern is recorded on this track.
  • the test pattern is shown in, for example, FIG. 5, FIG. 25, and FIG. 3, FIG. 4, FIG. 8, FIG. 10, FIG. 11, FIG. 11, FIG. 14, FIG. What is recorded in the recording pulse train is used.
  • recording of one round of the track was performed by changing the power Pas of the recording assist pulse for each sector by using the pattern of FIG. 5 (2005-200). ).
  • the recorded test pattern is reproduced (210, 210) and evaluated. Evaluation is based on the test pattern This was performed by taking the difference ⁇ V between the center level V 1 of the reproduced waveform of the turn and the center level V 2 of the reproduced waveform of the least sparse pattern (201 2). The value of is taken in for each sector (20
  • the recorded test and turn are deleted (201-16).
  • the value of P as at the sector where ⁇ V was the minimum was determined as the optimum power of the recording auxiliary pulse (201). In this embodiment, this operation is performed on each of the outer circumference, inner circumference, and middle circumference of the optical disk (210-18). After the end, the normal data recording operation is started (201).
  • FIG. 21 is a schematic diagram showing the cross-sectional structure of the disk used in this example.
  • the recording medium was formed on a plastic or glass substrate having uneven guide grooves by a sputtering method.
  • continuous lamination was performed.
  • the reason why the continuous lamination is performed is to suppress formation of an impurity layer such as oxygen at a layer interface.
  • this laminated structure is only one example, and the effect of the present invention is not provided by the laminated structure.
  • minute magnetic domains can be stably formed, so that ultra-high density optical recording can be realized.
  • the magneto-optical disk having a four-layer structure is shown here, the effect of the present invention is not related to the number of the layer structures.
  • This disk has the pulse shape shown in Fig. 21. Recording was performed using the following waveforms.
  • the pulse width of the recording waveform is synchronized with the write clock of the disc device. This is advantageous not only in the ease of making a clock signal and in reducing the cost of the device, but also in that the accuracy of the clock is high.
  • the shortest 1.33 T bit in this modulation method was formed with a pulse width of 6 O ns and a laser power of P w 1. Thereafter, after passing through the 20 ns P ass level, a 2 T bit is formed at 20 ns P w 2, and by repeating this operation, 2.66 T to 5.33 T Pulse was formed.
  • the ratio of the laser width to the laser power varies depending on the structure of the disk and the material used, and is determined in consideration of the compatibility between the device and the disk. That is,
  • P 1 P w 2 P w l> P w 2 in some cases.
  • the magnetic domains recorded by the above method were reproduced (using the front and rear edge independent reproduction method).
  • the wind margin was 30% and the shift was less than ⁇ 2 ns.
  • the pattern used for the measurement is random.
  • SiNx is used as a material, but optical absorption is not required.
  • the dielectric material is an inorganic compound, at least one compound selected from the group consisting of silicon nitride, aluminum nitride, and silicon oxide should be used. Can be done.
  • Al 96 Ti 4 was used as a metal layer for controlling light reflection and heat flow, but a smaller number of metals selected from Au, Ag, Cu, Al, Pd, and Pt was used. At least one element is used, and in order to control thermal conductivity, in addition to the elements other than the above-mentioned parent elements, a small number of elements selected from Nb, Ti, Ta, and Cr are used. In each case, a film in which one element is added in an amount of 0.5 at% or more and 3 O at% or less can be used.
  • Figure 23 schematically shows how the edge position shifts due to thermal interference.
  • the horizontal direction represents the passage of time or the spatial coordinates on the recording medium where the optical spot moves.
  • the recording signal 201 modulates the recording information and shows the temporal transition of the intensity of the light spot irradiated on the recording medium
  • the recording mark 23 shows the recording signal 201 on the recording medium according to the recording signal 201. It shows the shape of the recording mark formed on the surface.
  • the reproduction signal 24 is read from the recording mark 23 and scanned by an optical spot having a light intensity of a level, and the reflected light from the recording medium at that time is received by a photodetector and photoelectric conversion is performed. And obtained.
  • Binary reproduction signal 2 Numeral 5 is obtained as a result of binarizing the reproduced signal 24 reflecting the recording mark shape according to whether the signal level is above or below a predetermined signal level.
  • FIG. 23 shows the first rising edge of the recording signal 201, the leftmost front edge position of the recording mark 23, and the first rising edge position of the binarized reproduction signal 25. They are displayed together.
  • L [i] and B [i] are the pulse intervals (from the rising edge to the falling edge) of the recording signal 201 and the gap interval (from the falling edge to the rising edge).
  • I) represents the serial number (0 initially) from the first recording pulse (binary reproduction pulse).
  • the heat given by the optical spot is generated during the cooling process.
  • the temperature around the optical slot rises. Therefore, in order to perform high-density recording, when the size of the recording mark and the interval between them are reduced, the pulse shape of the recording signal not only determines the corresponding recording mark shape, but also determines the surrounding recording mark shape. It also affects the recording mark shape. Conversely, the shape of each recording mark is not determined only by the corresponding recording pulse shape, but is affected by the temporally adjacent recording pulse shapes.
  • the recording mark is a temporally adjacent recording pulse
  • a deviation occurs between the pulse interval of the recording signal 201 and the edge position of the recording mark 23.
  • relative deviations e [i] and f [i] between each edge position of the recording signal and each edge position of the binarized reproduction signal 25 are generated.
  • e [i] is the amount of deviation between the falling edge of the recording signal 201 and the falling edge of the binarized reproduction signal 25
  • f [i] is the recording signal 20
  • the difference between the rising edge of 1 and the rising edge of the binarized reproduction signal 25 is shown.
  • i is a serial number (0 at the beginning) from the rising edge and the falling edge of the first recording pulse (binary reproduction pulse), and f [0] is zero.
  • the edge shift amounts e [i] and f [i] vary depending on the heat conduction characteristics and the recording density of the recording medium.
  • the most common as a magneto-optical recording medium is For a recording medium with a structure consisting of a TbFeCo magnetic film, a dielectric film, a protective film, and a reflective film, the recording linear velocity is about 10 to 20 m / s, and the shortest recording mark length as recording density is light.
  • the spot diameter is about half of the spot diameter, it can be expressed by the following equation using the pulse length L [i] of the recording signal and the gap length B [i].
  • S e () and S f () represent functions. That is, e [i] is the immediately preceding pulse interval L [i] Determined by the previous gap interval B [i-11], f [i] is determined by the immediately preceding gap interval B [i1-1] and the preceding pulse interval L [i1-1]. It will be decided.
  • the horizontal direction represents the passage of time or the spatial coordinates on the recording medium where the optical spot moves
  • the recording signal 301 is an electric signal that modulates the recording information
  • the signal 302 represents the temporal transition of the electric signal level in which the rising and falling edge positions of the recording signal 301 are shifted according to the recording pattern. Modulating spot intensity.
  • the recording mark 23 indicates the shape of the recording mark formed on the recording medium by the adjusted signal 302.
  • the reproduction signal 24 is obtained by reading the recording mark 23 and operating it with the light spot having the light intensity of the level, receiving the reflected light from the recording medium at that time with the photodetector, and performing photoelectric conversion. It is.
  • the binarized reproduction signal 25 is an electric signal reflecting the recording mark shape, which is above or below a predetermined signal level. The electrical signal obtained as a result of the binarization depending on the side.
  • the first rising edge of the recording signal 301, the leftmost front edge of the recording mark '23, and the first rising edge of the binarized reproduction signal 25 are defined as follows. It is written together.
  • L [i] and B [i] are the pulse intervals (from the rising edge to the falling edge) of the recording signal 301 and the gap interval (from the falling edge).
  • E [i] and F [i] are the recording signals 3101 related to the falling edge and rising edge of the adjusted signal 302, respectively. The deviation amount from each edge position is shown.
  • i represents the serial number (0 initially) from the first recording pulse (binary reproduction pulse).
  • the principle of adjusting the recording pulse edge position is as follows.
  • the edge of the recording mark 23 always deviates from the edge of the recording signal 301.
  • each of the binarized reproduction signals 25 is obtained.
  • the edge position deviates from the edge position of the recording signal 302, but coincides with the edge position of the original recording signal 301.
  • the amount of deviation of the edge position of the recording mark 23 from the edge position of the recording signal 301 is determined by referring to the recording pattern using the relational expression described above by referring to the recording pattern. Required. Therefore, the inverse function of this relational expression
  • the amount of shift of the edge position and the amount of shift of the binarized reproduction signal with respect to the recording signal can be determined so that the sign is reversed and the magnitude is the same. That is,
  • Equation 18 the functions C e () and C f () include the edge position shift amount. However, the shift amounts are E [0], F [1], E [1], F [2],
  • each edge position of this recording mark differs for each recording mark formed. Therefore, when the light beam intensity during recording changes, the deviation of the edge position of the recording mark that occurs is reduced by changing the edge adjustment amount for each recording pattern as described above.
  • it is necessary to change the edge adjustment function for each light beam intensity at the time of recording which requires a large-scale circuit system. Therefore, in order to prevent edge misalignment with a simpler system, if it is detected that the light beam intensity during recording has changed, the light beam intensity during recording is returned to the original value. Make the necessary adjustments.
  • the recording mark becomes smaller as a whole.
  • the position of the front edge of the recording mark is on the rear side and the position of the rear edge of the recording mark is on the rear side.
  • the position of the edge is shifted to the front.
  • This temperature fluctuation is Unless a temperature control mechanism is provided inside, it is not possible to directly control the temperature directly.
  • the edge position fluctuation characteristic of the recording mark due to the temperature fluctuation shows a tendency that is close to the case where the light beam intensity at the time of recording changes in a range where the fluctuation amount from the assumed temperature is small. Therefore, in this range, the change is made by changing the light beam intensity at the time of recording, and the function for adjusting the edge position at the time of recording is switched when the value greatly fluctuates from the set value.
  • a predetermined recording signal is recorded in a dedicated area on the recording medium at predetermined time intervals. Immediately after that, the signal is reproduced to detect the deviation amount of each edge position, and from the result, the change of the optical beam intensity during recording and the temperature change of the recording medium must not be separately detected.
  • FIG 25 shows an example of the recording signal pattern used at that time.
  • the recording signal 401 has a plurality of edge intervals within the range of the recording mark length that can be obtained during normal information recording, and a pulse width and a pulse interval immediately after the pulse width from the shorter or longer one. Arrange them so that they are equal, and use one that is repeated several times. The reason for using the repetition is to reduce the influence of noise components included in the detection result and improve the accuracy of the measurement result by the averaging process.
  • the recording signal is configured to be code-modulated by 2 to 7 RLLC (Run Length Limited Code) with respect to the recording information, and P w [1 ), P w [2],. Represents the edge interval of the recording signal pulse, Gw [1], Gw [2], and... Represent the edge interval of the recording signal gap.
  • T in the other edge interval of the recording signal 401 is the time length per bit of information.
  • the reproduction signal 402 represents the reproduction signal waveform after binarization when the recording mark written by this recording signal is read.
  • P r [1], P r [2], ... are the edge intervals of the playback signal pulse
  • G r [1], G r [2], ... are the playback signal pulses. Indicates the edge interval of the tip.
  • FIG. 26 shows a means for separating and detecting a change in the light beam intensity during recording and a change in the temperature of the recording medium from the relationship between the recording signal 401 and the reproduction signal 402.
  • the pulse interval Pw [i] of the recording signal 401 was subtracted, and on the vertical axis, the immediately following gap interval Gr [i] was subtracted from the pulse interval Pri of the reproduced signal 402.
  • the measurement points for each recording situation are plotted. If the entire measurement point is above the 0 level in this measurement result, the light beam intensity during recording has changed in a direction larger than the set value, or the temperature of the recording medium has exceeded the expected value. This is the case when it changes in a higher direction. Conversely, if the entire measurement point is below the 0 level, the light beam intensity during recording has changed in a direction larger than the set value, or the temperature of the recording medium has changed. This indicates that the value has changed in a direction higher than the expected value.
  • FIG. 27 is a block diagram showing the configuration of the embodiment.
  • the optical disk 1 is rotated at a constant angular velocity by the spindle motor 109, and the laser light for recording / reproducing by the optical pick-up 2 The light is focused on the recording film surface on step 1.
  • the optical pickup 2 can be moved in the disk radial direction in accordance with the information recording position.
  • the signal detected by the detector in the optical pickup 2 is amplified to a desired level by the amplifier 10 and then equalized by the equalizing circuit 11. Therefore, the resolution of the reproduced signal is secured. After that, this signal is converted to a reproduced binary signal 277 which is a digital signal by the binarization circuit 13, and is converted by the PLL (Phase 'Lock' Zolpe) circuit 14. The signal is separated into a clock signal and a data signal, and is reproduced by the demodulation circuit 17.
  • the reproduction signal processing system of the present invention detects changes in the optical beam intensity during recording and the temperature on the recording medium, and calculates and updates the pulse interval adjustment amount during recording and the recording power. It has a circuit system.
  • This circuit system includes an edge interval measuring circuit 270 and a recording condition judging circuit 271.
  • the reproduced binary signal 277 passes through the edge interval measuring circuit 270, and the pulse interval and the gap interval are measured.
  • the measurement result is input to the recording condition determination circuit 11, where the change in the light beam intensity during recording and the temperature change on the recording medium are separated and detected, and the result is used as the controller 27 2 Sent to.
  • This recording condition judging circuit operates in a recording condition judging mode instructed by the controller at predetermined time intervals other than during normal information recording / reproducing.
  • Figure 28 shows the flow of this recording condition judgment mode.
  • a predetermined time interval is monitored by the controller 272 in the system, and this mode is started at each time interval (2031) .
  • the system is set to a busy state at the beginning of this mode so that normal recording / reproducing operation is not accepted (2032), and if the work (recording, If there is (playback), wait for the processing to end (2033) o
  • the optical spot is moved to a dedicated area for recording and reproducing a predetermined recording signal for examining recording conditions (2034).
  • This area should be set at a plurality of locations with different turning radii per recording medium.
  • the light beam intensity at the time of recording changes to a value larger than the set value and that the amount of change exceeds the allowable amount
  • the light beam intensity at the time of recording is reduced by the increment ⁇ P Decrease.
  • the judgment result indicates that the light beam intensity at the time of recording changes to a value smaller than the set value and that the amount of change exceeds the allowable amount
  • the light beam intensity at the time of recording is reduced by the increment ⁇ ⁇ increase.
  • the light beam intensity during recording will be increased. Change in If it is within the range that can be handled, the light beam intensity during recording is reduced by the increment ⁇ ⁇ . If the light beam intensity during recording exceeds the range that can be handled, the The pulse interval adjustment amount at the time of recording is changed together with the decreasing operation of the step amount ⁇ P of the light beam intensity (20339).
  • the light beam intensity during recording If the change is within the range that can be dealt with, the light beam intensity during recording is increased by the increment ⁇ P. If the change in the light beam intensity during recording exceeds the range that can be handled, The pulse interval adjustment amount during recording is changed together with the increasing operation of the light beam intensity step size ⁇ P during recording (20339).
  • the time interval for generating the recording condition determination mode is determined by the change in the light beam intensity during recording and the time required for the temperature change on the recording medium to change. For example, in terms of the light beam intensity during recording, set the time within a time interval that does not change more than ⁇ P, which is the maximum change width. Must be kept.
  • the recording information is code-modulated by a modulation circuit 273 so as to match the characteristics of the optical information recording system.
  • the edge-position adjustment circuit 274 and the edge-position adjustment tables 275 and 276 adjust the respective edge positions of the code-modulated recording signal according to the edge interval information immediately before. Is done. Then, the recording signal after the adjustment is input to the laser driver circuit 7, and the laser intensity in the optical pickup 2 is modulated in accordance with the signal i, and information is recorded on the disk 1.
  • the edge position adjustment tables 275 and 276 are used when the recording condition determination mode determines that it is necessary to change the edge adjustment amount, and when the recording linear velocity changes. The contents are changed by the edge position adjustment table switching circuit 278.
  • the modulation circuit 273 and the laser driver circuit 7 may have the same configuration and function as those used in the conventional optical disk device, and detailed descriptions thereof will be omitted.
  • FIG. 29 is a diagram showing a configuration example of the edge interval measurement circuit 270 in FIG.
  • Regeneration binarization i-number 2 7 7 which is the output of binarization circuit 13 Is also input to the impulse signal generation circuit 70 1.
  • This impulse signal generation circuit 70 1 outputs an impulse-like signal waveform at each timing when the polarity of the input signal changes, and this output signal is a signal representing the polarity inversion timing. Then, it is inputted to the recording condition judgment circuit 271, and the AZD converter 72.
  • the reproduced binary signal 277 is also input to an integration circuit 703 composed of an amplifier.
  • this integration circuit 703 has an integration (VH + VL) Z2 level when the "H" level and the "L” level of the reproduced binary signal 7 are VH and VL, respectively.
  • the reference signal 704 is also input.
  • the integration circuit 703 outputs a signal representing the difference between the reproduced binary signal 277 and the integration reference signal, and inputs the signal to the A / D converter 702.
  • the signal power from the controller power is input to the flip-flop 709.
  • a signal indicating the polarity inversion timing is also input to the flip-flop 709 as a clock signal.
  • the output of the flip-flop 709 detects the rising edge of the first reproduced binary signal 277 from the start of the edge interval measurement, and the interval measurement period and analog switch 7 Switch 10 to operate the integration circuit 703.
  • the A / D converter 702 uses the signal representing the timing of the polarity inversion as the timing clock for performing the digital conversion operation, and uses the signal of the integration circuit 703 as a clock. Converts output signal to digital signal. The conversion result is output as a polarity inversion interval signal. And input to the recording condition judgment circuit 27 1.
  • the conversion accuracy of the AZD converter 702 ⁇ has sufficient accuracy as an output value of the pulse interval adjustment amount, and quantization accuracy and the number of bits so that overflow does not occur.
  • the reproduction binarization signal 2777 is an output signal of the binarization circuit 13 and takes "H” or level depending on the presence or absence of the recording mark at the irradiation light spot position on the recording film surface.
  • the reproduced binary signal 277 passes through an impulse signal generation circuit 701, and becomes a signal indicating a polarity inversion timing that generates an impulse waveform at a timing when its polarity changes. Used for trigger signal at 720.
  • the pulse interval of the reproduced binary signal 277 is calculated and output.
  • the integrator circuit 703 is used as the output signal Y (t).
  • Equation 20 is obtained. That is, the output signal Y (t) has its initial value (the output signal level at the time when the edge interval measurement circuit starts operating) Y (0) is 0 according to the operation of the analog switch 710 Therefore, the pulse intervals Pr [1] and Pr [2] of the reproduced signal 402 of FIG. 25 and the gap intervals Gr [1], Gr [2],... Using the integrating circuit The output signal level Vo of 703 is at the time when the polarity of the reproduced binary signal 7 is inverted from "L” to "H".
  • Vo A (-Pr [l] + Gr [l] -Pr [2] + Gr [2] + ...-Pr [i] + Gr [i])
  • Equation 21 shows that the polarity of the reproduced binary signal
  • Vo A (-Pr [1] + Gr [1] -Pr [2] + Gr [2] + ... -Pr [i])
  • a in the above equation is a constant determined by the amplification factor of the integrating circuit 703.
  • the output signal level at this time is obtained by integrating the pulse intervals when the "H" level is represented by a negative value and the "L" level is represented by a positive value for the pulse interval of the reproduced binary signal 277 The results are shown.
  • the AZD converter 702 converts the integrated signal level at that time into a digital value, and inputs the conversion result to the recording condition determination circuit 27 1. That is, the output is given by Eq. 21 and Eq.
  • FIG. 31 shows the recording condition determination circuit 7 11 1 in FIG. It is a structural example.
  • the latch circuits 90 1 and 90 2 and the subtraction circuit 90 3 use the edge interval data expressed by Equation 23 and Equation 24 sent from the edge interval measurement circuit 10 to calculate each B (Pr [i]-Gr [i]).
  • the latch surface 901 is input as a reproduction binary signal 277 7-triggering timing signal, and the edge interval data is sampled and held at the rising edge. ing. That is, at the time of the rise of the reproduced binary signal 277, the data represented by the expression 23 is held and output. In the latch circuit 902, the data is delayed by one trigger.
  • the subtraction circuit 903 subtracts the output of the latch circuit 901 from the output of the latch circuit 903 of the edge interval data, and outputs the result. Since the output of the latch circuit 902 and the output of the latch circuit are the result represented by the equation 23 shifted by one trigger timing, the output of the subtraction circuit 903
  • the addition circuit 904 and the shift register 905 calculate the sum of each B (Pr [i] -Gr [i]) in the repeated data.
  • Shift register 9 0 5 The number of stages is designed to be equal to the number of pulses in one cycle of the recording signal shown in Fig. 25, and an output line is output for each stage and sent to the controller.
  • the reproduction signal 402 is read to the end, the output result at each stage of the shift register is repeated for each i, and B (Pr [i]-G r [i])), the result is used to determine whether the light beam intensity during recording and the temperature of the recording medium have changed based on the criterion shown in Fig. 26. Is examining the power.
  • FIG. 32 is a configuration example of the edge position adjustment circuit 274 and the edge position adjustment table 275 in FIG.
  • the functions C f () and C e () in Equations 18 and 19 are referred to the contents of the edge position adjustment tables 15 and 16 composed of storage elements such as RAM. It is required in the form to do. That is, when obtaining F [i], the first and second parameters in the function C f () are obtained by the address signal line input to the edge position adjustment table 275. Edge which is the conversion result immediately before obtaining the pulse Z gap interval L [i-11], B [i-11], and F [i] of the recording signal 301, which are the elements of the evening. By inputting the amounts representing the position adjustment amounts F [i-l] and E [i-11], the data signal lines output them as their function values.
  • the first and second parameters in the function C e () are determined by the address signal line input to the edge position adjustment table 16.
  • the pulse of the recording signal 301, the Z-gap interval B [i 1), L [ ⁇ ], and an amount representing the edge position adjustment amounts E [i_l], F [i], which are the conversion results immediately before obtaining E [i] are input to the data signal line. Is output as the function value from.
  • the counter surfaces 1001 and 1002 are based on the modulation circuit 273, and the pulse / gear interval of the signal transmitted from the modulation circuit 273 depends on the number of basic clock intervals of the modulated signal. It is detected whether it is hit or not, and it is the address line of the edge position adjustment table.
  • the latch circuits 1003, 1004, 1005, and 1006 are the edge position adjustment table 275 and the timing of the input address signal lines.
  • the shift register circuits 107 and 108 are used to adjust the timing between the modulation signal and the edge position adjustment amount.
  • the selector circuit 100 '09 is a circuit that alternately switches the edge position adjustment amount between the rising side and the falling side, and the programmable delay line circuit 1009 is the edge position. This circuit delays the edge position by the amount of adjustment and adjusts the edge position. Therefore, this output signal is input to the laser driver circuit 7 as the adjusted signal 302.
  • FIG. 33 shows an example of the configuration of the edge position adjusting tape child switching circuit 18 in FIG.
  • This circuit switches the content of the edge position adjustment table according to the change in the recording linear velocity and the temperature of the recording medium, and changes the recording linear velocity and the temperature of the recording medium within the range of use. It is composed of a conversion table data buffer 1102 in which edge position adjustment data for each degree is stored, and a circuit for controlling the switching operation.
  • the table change instruction signal is input from the controller 27 to the counter circuit 1101, and the change of the contents of the edge position adjustment tables 275 and 276 is started.
  • the conversion table data buffer 1102. Is input to determine which edge position adjustment table in the conversion table data buffer 1102 is to be selected. Each edge adjustment amount is transmitted from the conversion table data buffer 1102 for each address number input from the counter circuit 111, and each conversion table is sent.
  • Is stored in the One of the output signals of the counter circuit is used as a table switching signal for selecting one of the edge adjustment amount tables 275 and 276.
  • the remaining signals are used as the conversion table data buffer 1102 and the address signals of the edge position adjustment circuits 275 and 276.
  • the dedicated area used for the recording condition measurement a plurality of locations including the inner circumference side, the outer circumference side, and a space therebetween are used, and the area may be specially provided or a general data recording area. In the latter case, if recorded data already exists in that area, use another free area or temporarily write the information written in that area to use that area. Evacuate to another location such as internal memory.
  • the present invention is a rewritable recording method using heat, the principle of which is any information recording method, and a method of controlling recording conditions such as a recording power and a recording pulse interval applicable to a recording medium.
  • the thermal diffusion effect is high, and it is sensitive to recording conditions, that is, a slight change in recording power, environmental temperature, recording medium configuration, and recording device characteristics, etc., appears as a difference in recording characteristics.
  • this is an indispensable technology for ensuring the reliability of recorded data.
  • this technology is needed to ensure practicality in magneto-optical discs, magneto-optical discs that can be overwritten using exchange coupling force, and optical discs that can use overwrites that can be overwritten. is important.
  • a signal for performing test recording, arithmetically processing the result, and controlling recording is provided.
  • the signal can be controlled to the desired position by the edge position adjustment circuit.
  • this signal recording / reproducing method it is possible to eliminate the variation in the edge position of the reproduced signal due to thermal interference. Also, in order to cope with changes in the light beam intensity during recording and the temperature of the recording medium, optimal recording conditions are always realized, and higher-density recording using mark-length recording. This can be easily achieved without strict adjustments during production, and greatly improves the reliability of recorded data.
  • the present embodiment is a method for realizing high-density recording by changing the recording density depending on the disk position and performing recording.
  • the phase jitter is a phase fluctuation caused by random noise such as noise, laser noise, and amplifier noise of the disk medium in the edge recording described above. And the difference due to the pattern of the recording domain length.
  • the edge shift can be broadly divided into two types: edge shift, where the edge position of the domain changes due to thermal interference during the evening. Due to the good thermal conductivity of a magneto-optical disk medium, it is necessary to use Due to the influence of the recorded pulse, a shift occurs in which the position of the information domain to be recorded next shifts, which is larger than the phase shift. This makes it impossible to reproduce information accurately.
  • the linear density of the magneto-optical disc when it is divided into multiple concentric tracks, ie, zones 1401, 1442, and 1403, is shown.
  • the linear recording density in each zone is the same.
  • Rmin is the radial position of the innermost zone of the magneto-optical disc
  • Ln is the linear density of the nth zone from the inside
  • Ni is the number of sectors at the innermost zone
  • B is the number of data bytes per section.
  • the track pitch is p
  • the number of tracks in the zone is M
  • the data utilization efficiency is 77
  • the capacity of the innermost zone is
  • Equation 27 the linear density can be controlled by the magnitude relationship between B and 27r xM xpx L n X 7 ?. That is, in the present invention Is to improve the line density on the outer circumference rather than on the inner circumference where phase shift occurs.
  • the number of tracks M and the track pitch p are selected so that Ln ⁇ B / (2 ⁇ xMxpX7?) (Equation 28).
  • each sector is increased by one sector / track, the track pitch is set to 1.6 micron, and the recording radius If the circumference is 67.9 mm and the number of innermost sectors is 52, it changes as shown in Fig. 36 depending on the value of M.
  • the shortest pit length of 2-7 modulation is used on the vertical axis. The smaller this is, the higher the line density.
  • the linear density at the recording radius position is increased such that the linear density increases at the outer circumference and decreases at the inner circumference.
  • the contribution of the storage capacity is as shown by the solid line 2100 in FIG. Figure 35 shows the capacity per track obtained by multiplying the linear length by the length of the circumference with respect to the radial position. Integrating this from the radius R i to R 0 gives the total storage capacity.
  • the dotted lines 1 2 0 0 and 2 2 0 0 indicate the case where the linear density is constant, and in comparison with this, as can be seen from FIG. Even if the linear density is reduced, the effect on the total storage capacity is small since the capacity contribution on the inner peripheral side is small.
  • the line density is changed for each of the zones 1401, 1402, and 1403 shown in Fig. 40. There is method power.
  • the amount of phase fluctuation representing the reliability of the data is substantially changed between the inner and outer circumferences. It is possible to reduce the storage capacity.
  • FIG. 1 a schematic diagram showing the cross-sectional structure of the manufactured disk is the same as in FIG.
  • the fabricated disk is made of polycarbonate substrate 5
  • the disks were prepared by the sputter method. Sputtering evening conditions at that time, 1 0 - After evacuated to below 7 Torr, firstly, on the disk substrate 5 0 poly Kabonei bets to form a nitrided Li co down film 5 1. Using pure Si as the target and Ar / N 2 mixed gas as the discharge gas, the input RF power density was 6.6 mWZ cm 2 and the discharge gas pressure was 10 raTorr.
  • a film having a thickness of 75 nm was formed. Subsequently, a TbFeCoNb magneto-optical recording film 52 was formed. RF power input using TbFeCoNb alloy as target and high-purity Ar gas as discharge gas Density: 4.4 mWZcm 2 , Discharge gas pressure: 5 mTorr. The film was formed to a thickness of 30 nm. Again, a silicon nitride film 53 was formed.
  • the input RF power density was 6.6 mW / cm 2 and the discharge gas pressure was 10 mTorr.
  • a film having a thickness of 0 nm was formed.
  • Ni was used in the evening, high-purity Ar gas was used as the discharge gas, and the input RF power density was 3.3 mW / cm 2 and the discharge gas pressure was 15 mTorr. The film was formed to a thickness of 30 nm. Finally, the A1 film 55 is formed. A1 was used as the target, and high-purity Ar gas was used as the discharge gas. The RF power density was 3.3 mW / cm 2 , and the discharge gas pressure was 15 mTorr. Was formed.
  • the film surface of the magneto-optical disk produced in this way is coated with an ultraviolet-curable resin, and two disks are bonded together with an adhesive to form a magneto-optical disk.
  • the structure of the disk used is an example, and the effect of the present invention does not depend on the structure of the disk.
  • this disc has a single-layered recording film, it is also effective for optical discs that can be overwritten using exchange coupling. Needless to say, the method is also effective for optical disk recording control using a phase change.
  • Figure 39 shows a plan view of the disc fabricated in this way.
  • the test pattern 21 shown in FIG. 37 is used to record data in the test track for recording control 1400 shown in FIG. Played the starter.
  • the user data was recorded in the recording area by controlling at least the laser power during recording, the pulse width of recording, or the shape of the recording pulse.
  • Figure 38 shows a schematic diagram of the shape of the recording domain obtained at that time. If recording is performed without control, a tear-shaped magnetic domain is formed, the width is increased because the magnetic domain width is not controlled, or the magnetic domain length is increased or shortened because the magnetic domain length is not controlled. Attempting to do so could result in an error. A major cause of these changes is fluctuations in the operating environment temperature. Therefore, when the disk drive is started or when the disk is inserted, the test pattern is used to record on the recording control test track 1400 and the information is reproduced. The problem was solved by detecting the operating environment temperature and feeding back the results to the setting of the recording conditions, and recording in consideration of the environmental conditions. As a result, the size of the domain recorded on Disk 1 was always constant even when the environmental temperature changed.
  • test drive and the turn stored in the disk drive to the test track provided in the present invention are recorded in advance. By replaying the recorded data overnight and measuring the resulting signal amplitude, we were able to absorb the effects of environmental temperature changes, including variations between disks.
  • control information was collected in detail using the test pattern when the disk drive was started and when the disk was inserted.
  • the recording area of the disk 1 is divided into a plurality of zones 1401, 1402, and 1403 in advance, and the recording is performed for each zone.
  • An area for collecting information for control is set up, and the recording pattern is played back using a test pattern, which results in environmental temperature and variations between media.
  • the recording pattern is played back using a test pattern, which results in environmental temperature and variations between media.
  • test recording has already been performed to prevent deterioration of the test track media, which allows more precise correction. Make sure that test recording is not duplicated in the same location as the previous one, or that test recording is not performed consecutively. However, it is effective to prevent bias in the number of test track rewrites.
  • the force, the first time, and the zones 1404, 1404 can be stored in the storage means, and the recording / reproducing characteristics of the disc in the zone where test recording is not performed can be excluded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

An optical disk apparatus for effecting recording/reproduction/erasure of digital signals of mark length recording system on an optical recording medium such as an optical disk, and provides means for eliminating fluctuation of an edge position due to thermal interference between pits and for reducing the fluctuation of the edge position resulting from the change of an external environmental condition. To this end, the present invention proposes means such as: 1) for controlling the shape of a recording pulse waveform; 2) for varying the recording density to the disk in accordance with a disk position; and 3) for conducting test recording prior to recording of user data. In this way, ultra-high density optical recording can be accomplished.

Description

明 細 光磁気ディ ス ク装置及び記録媒体  Description Magneto-optical disk device and recording medium
関連出願の相互参照 Cross-reference of related applications
本願は 1 9 9 1 年 6 月 2 5 日 に出願された米国特許出 願番号 0 Ί / Ί 2 0 7 0 6 の一部継続出願である。  This application is a continuation-in-part of U.S. patent application Ser. No. 0/206, filed on June 25, 1991.
上記米国特許出願の開示内容は引用によ り本願の開示 に編入される。  The disclosure of the above-mentioned US patent application is incorporated herein by reference.
(技術分野)  (Technical field)
本発明は高密度光記録を可能とする光磁気記録制御方 法とその装置に関する。  The present invention relates to a magneto-optical recording control method and an apparatus for enabling high-density optical recording.
(背景技術)  (Background technology)
近年の高度情報化社会の進展に と もない大容量で しか も高密度なフ ァ ィ ルメ モ リ 一へのニーズが高ま つ ている( これに応える もの と して光記録が注目 されてお り、 再生 専用型、 追記型、 そ して、 書換え型が順次製品化されて あ:り、 それぞれの持つ特徴を生か した用途に用い られて いる。 こ の中で、 特に、 最近では書換え可能な光磁気記 録が製品化された。 そ して、 現在では次世代の光磁気記 録の製品化を目指 して、 研究開発が多 く の研究機関で進 め られている。 製品化研究の中心の一つに、 超高密度記 録をあげる こ とができ る。 その手法と して、 ト ラ ッ ク ピ ツ チを詰める、 記録磁区間隔を短 く する、 波長の短い光 を用いる、 或いは記録磁区のエ ッ ジ部分に情報を もたせ る、 等の手法が提案されており、 これらを併用する こ と が有効と考えられている。 With the progress of the advanced information society in recent years, there is a growing need for large-capacity and high-density file memories (optical recording has been attracting attention in response to this. Reproduction only type, write-once type, and rewritable type have been commercialized sequentially, and are used for applications that take advantage of their respective characteristics. Possible magneto-optical recording has been commercialized, and research and development is now underway at many research institutions with the aim of commercializing next-generation magneto-optical recording. One of the main research topics is ultra-high-density recording, which involves reducing track pitch, shortening the recording domain interval, and using short-wavelength light. Use or add information to the edge of the recording domain Have been proposed, and it is considered effective to use them together.
ディ ジタル i 号を記録媒体上に記録する手段の 1 つと して光ディ スク装置がある。 光ディ スク はレーザ光をレ ンズによ り記録面上に集光し、 その強度を記録すべき情 報に対応して変化させ、 該レーザ光が当たっている領域 の記録膜の反射率、 あるいは光磁気記録の場合には磁化 方向を外部磁化等によ り変化させる こ とで情報の記録を 行う ものである。 記録された情報を再生する場合には、 記録の時よ り も弱い強度の レーザ光を照射し、 記録膜か らの反射光からその光量変化、 あるいは磁化方向の違い による偏光面回転を検出する こ とによ り行う。 記録密度 は主に記録面上に集光される レーザ光のスポッ 卜の大き さによ り決ま り、 その大き さが現在約 1 ^ m程度と小さ いため、 磁気ディ スクの約 1 0 倍程度の高密度記録が実 現できる。  One of the means for recording digital i on a recording medium is an optical disk device. The optical disk focuses laser light on a recording surface by a lens, changes its intensity in accordance with the information to be recorded, and adjusts the reflectance and reflectance of the recording film in the area where the laser light is irradiated. Alternatively, in the case of magneto-optical recording, information is recorded by changing the magnetization direction by external magnetization or the like. When reproducing recorded information, a laser beam with a lower intensity than that at the time of recording is irradiated, and changes in the amount of light from the reflected light from the recording film or rotation of the polarization plane due to a difference in the magnetization direction are detected. This is done. The recording density is mainly determined by the size of the spot of the laser beam focused on the recording surface, and its size is as small as about 1 ^ m at present, so it is about 10 times the size of a magnetic disk High-density recording can be realized.
また、 照射光パワーを変調して記録した記録マークの 前側、 および後側の位置で情報を表すマー ク長記録方式 は、 1 個の記録マーク に 2個以上のデータを記録するた め、 記録の高密度化を実現するのに有効な手段である。  In addition, the mark length recording method, in which information is recorded at positions before and after a recording mark recorded by modulating the irradiation light power, uses two or more data points per recording mark. This is an effective means for realizing high density.
このよ う に光ディ スク に情報を高密度に記録再生を行 うマーク長記録方式において、 情報の高信頼性を実現す Ϊ るためにデータの記録時、 および再生時にいろいろな信 号処理が行われている。  In this way, in the mark length recording method, which records and reproduces information on an optical disc at high density, various signal processings are performed during data recording and reproduction in order to achieve high information reliability. Is being done.
例えば、 一般に記録時の照射光パワーが小さいと形成 される記録マー ク形状が不安定にな り 易い。 また記録線 速度が異なれば、 単位面積当 り に加え られる熱量、 およ び熱分布が変わるため、 記録マー ク形状が異なる。 した がって、 実際には安定な記録マー ク形状を形成 して記録 再生を行う ため 「 P b T b S e 膜への ピ ッ トエ ッ ジ記録 の適用」 (電子通信学会創立 7 0 周年記念総合全国大会 講演論文集、 p 4 — 1 7 6 ) では、 記録照射光パルスは 大きめに設定し、 その線速度に応じてマー ク長が目的値 よ り長 く な らないよ う に記録時に レ ーザパルス長を短 く した り、 再生時に二値化後の信号においてパルスの長さ を削るな どの調整を行っている。 For example, it is generally formed when the irradiation light power during recording is small. The recorded mark shape is likely to be unstable. Also, if the recording linear velocity is different, the amount of heat applied per unit area and the distribution of heat are different, so that the recording mark shape is different. Therefore, in order to actually form a stable recording mark shape and perform recording / reproducing, “application of pit edge recording to PbTbSe film” (70th anniversary of IEICE) In the Commemorative National Convention Lecture Papers, p 4 — 1 7 6), the recording irradiation light pulse was set to be large, and the mark length was recorded so that it did not become longer than the target value according to the linear velocity. Adjustments are sometimes made to shorten the laser pulse length or to reduce the pulse length of the binarized signal during playback.
また、 一般に記録されたマー クの形状は主にその記録 媒体の記録感度、 熱伝導度、 および記録に用いる集光さ れた レーザ光の強度分布、 波面収差等に依存 し、 デイ ス ク装置と記録媒体の組合せが変わる とその特性が変化す る。 さ らに装置側の記録時照射光パワーの レ ベルは時間 と共に変化する。 こ の現象は レ ーザーパワ ー 自動制御機 構 ( A P C ) が設け られている場合でもある範囲の変動 分は避けられず、 こ の要因によ って も記録再生特性の変 動が起こ る。 こ の変動は記録時の記録マー ク長の変動、 そ して再生時の再生信号のパルス間隔変動につながる。  In general, the shape of a recorded mark mainly depends on the recording sensitivity and thermal conductivity of the recording medium, the intensity distribution of the focused laser beam used for recording, the wavefront aberration, and the like. The characteristics change when the combination of and the recording medium changes. Furthermore, the level of the irradiation light power at the time of recording on the device side changes with time. This phenomenon is unavoidable even in the case where the laser power automatic control mechanism (APC) is provided, and fluctuations in the recording / reproducing characteristics also occur due to this factor. This fluctuation leads to fluctuations in the recording mark length during recording and fluctuations in the pulse interval of the reproduced signal during reproduction.
そのため、 記録補正量、 記録光パワーが装置出荷時に あ らか じめ一定値に設定されている場合、 こ れらの設定 仕様は、 数多 く の記録媒体 と記録装置の組合せで記録再 生特性を測定 した上で決定する。 その と き、 組合せの違 いによる記録再生特性のばらつき範囲を考慮した上で、 あらゆる場合に検出時での信頼性を保証するため、 記録 密度に関して大きな余裕を持たせ、 記録密度を犠牲に し ている。 Therefore, if the recording correction amount and recording light power are set to constant values before shipment from the device, these setting specifications will be used for recording and playback with many combinations of recording media and recording devices. Determined after measuring characteristics. At that time, the combination In order to guarantee the reliability at the time of detection in all cases, taking into account the variation range of the recording / reproducing characteristics, a large margin is given to the recording density, and the recording density is sacrificed.
そこで、 こ の記録媒体と記録装置の組合せによる特性 のばらつき分を吸収し、 記録高密度化を図るため、 あ ら かじめ試験パター ンを記録してその再生信号によ り記録 条件調整用の情報を得る方法が提案されている。 例えば 特開昭 6 1 一 2 3 9 4 4 1 号記載の装置では記録時の一 定値である照射光パワー レベルを、 特開昭 6 1 一 7 4 1 7 8 号記載の装置では記録パルス幅に関する一定の調整 量を、 また特開昭 6 3 - 3 0 4 4 2 7号記載の装置では その両者、 および再生時の自動等化係数を同時に調整し ている。  Therefore, in order to absorb the variation in characteristics due to the combination of the recording medium and the recording device, and to increase the recording density, a test pattern is recorded in advance, and the reproduction signal is used to adjust recording conditions. Methods for obtaining information have been proposed. For example, in the device described in Japanese Patent Application Laid-Open No. 6-11,394, the irradiation light power level, which is a constant value during recording, is set, and in the device described in Japanese Patent Application Laid-Open No. In the apparatus described in Japanese Patent Application Laid-Open No. 63-304427, both of them and the automatic equalization coefficient during reproduction are simultaneously adjusted.
また、 光ディ スクは基本的に熱拡散を用いた記録方式 のため、 記録マークに対応する前後複数の記録パルスに よる熱分布が拡散する こ とで発生する記録マーク形状の 変化する現象 (以下、 熱干渉と呼ぶ) が存在する。 こ の 現象も再生時の再生信号のパルス間隔変動につながる。 したがって記録時に最適な捕正を行う ためにはこの熱干 渉の影響も考慮する必要がある。 こ の対策と して特開昭 In addition, since optical discs are basically a recording method that uses thermal diffusion, the phenomenon in which the shape of a recording mark changes due to the diffusion of heat distribution due to a plurality of recording pulses before and after the recording mark (hereinafter referred to as “the recording mark”). , Called thermal interference). This phenomenon also leads to variations in the pulse interval of the reproduced signal during reproduction. Therefore, it is necessary to consider the effect of this thermal interference in order to perform the optimal correction during recording. As a countermeasure against this,
6 3 - 4 8 6 1 7号記載の記録方式では各記録パルス幅 をその直前の記録パルスまでの間隔に応じて変化させて いる 6 3-4 8 6 17 In the recording method described in No. 7, each recording pulse width is changed according to the interval to the immediately preceding recording pulse.
従来の記録方式は、 特開平 3 — 2 2 2 2 3 号公報に記 載のよ う に、 記録マー ク の記録符号列をパル ス化して記 録符号列の長さ に対応する一連のパルス列を形成し、 パ ルス列の長さ、 振幅の記録符号列の直前にある記録符号 列の逆相の長さ に応じて制御 し、 パルス列を 3 つの部分 5 に分け、 各パルスのパルス幅を変化させて記録を行な う 方式となっていた。 The conventional recording method is described in Japanese Patent Application Laid-Open No. 3-222223. As described above, the recording code sequence of the recording mark is pulsed to form a series of pulse trains corresponding to the length of the recording code sequence, and the pulse sequence is recorded immediately before the recording code sequence of the pulse sequence length and amplitude. In this method, control is performed according to the length of the reverse phase of a certain recording code string, the pulse string is divided into three parts 5, and recording is performed by changing the pulse width of each pulse.
また、 半径方向の記録密度については、 円板上の ト ラ ッ ク を複数の ト ラ ッ クカ、らなる ゾー ン に分割 し、 該ゾー ンでは記録線密度が同一になる よ う に記録される光ディ 1 0 ス ク装置は追記膜の媒体では既に特願平 2 — 1 3 3 8 1 9 に詳述されている。 しか し、 こ こ では追記膜の記録再 生特性から円板上の各ゾー ンでの線密度を一定にする こ とができず、 円板内周のゾー ン内での記録線密度が外周 のゾー ン内での記録線密度よ り高 く な っている。  Regarding the recording density in the radial direction, the track on the disk is divided into a plurality of zones consisting of trackers, and the recording is performed so that the recording linear density is the same in the zone. The optical disk device has already been described in detail in Japanese Patent Application No. 2-1333819. However, in this case, the line density in each zone on the disk cannot be kept constant due to the recording / reproducing characteristics of the write-once film. It is higher than the recording linear density in the zone.
1 5 上記従来技術は、 記録媒体の膜厚変動や環境温度変動 による記録媒体に対する記録感度変動が発生する点につ いて考慮されてお らず、 高精度に記録マー ク を制御でき ないため記録容量の低下を引き起こす問題があ っ た。  15 The above conventional technology does not take into account the fact that the recording sensitivity of the recording medium fluctuates due to fluctuations in the film thickness of the recording medium or fluctuations in the environmental temperature, and it is not possible to control the recording mark with high accuracy. There was a problem that caused the capacity to drop.
その他、 上記従来技術の う ち、 直前の記録パルスまで 20 の間陽に応 じた次の記録パルス幅調整方法では、 以下の よ う な問題点がある。  In addition, in the following prior art, the following method of adjusting the recording pulse width in accordance with the sun for 20 times until the immediately preceding recording pulse has the following problems.
' すなわち、 記録マー ク形状、 および記録マー ク 同士の '' That is, the recording mark shape and the
It It
間隔が、 記録膜面上に集光 した レ ーザスポ ッ ト の大き さ と同 じ大き さ以下になる程度、 高密度記録を狙った場合、 25 光ディ ス ク の熟干渉が影響を及ぼす範囲は最短の記録マ —ク長よ り も大き く なる。 つま り、 ある記録マークのェ ッ ジ位置を決定する場合、 熱が拡散するために記録照射 光パルスの複数個の記録パルス間隔の長さが影響を与え、 その結果、 同 じ長さの記録パルスを照射しても、 時間的 に前に位置する記録パター ンの組合わせによ り、 エ ッ ジ 位置が変わって しま う。 特に、 レーザ光の強度に対する 記録感度が高く 、 低い レーザパワーでも記録できる よ う な記録媒体の場合、 一般に熱伝導度が大き く 、 こ の熱干 渉による影響を及ぼす範囲が大きい。 When the high-density recording is aimed at such that the interval is less than the size of the laser spot condensed on the recording film surface, the range affected by the mature interference of 25 optical disks Shortest record — Larger than the c-length. In other words, when determining the edge position of a recording mark, the length of the interval between multiple recording pulses of the recording irradiation light pulse has an effect due to the diffusion of heat, and as a result, the recording of the same length Even if a pulse is applied, the edge position will change depending on the combination of the recording patterns located earlier in time. In particular, in the case of a recording medium that has a high recording sensitivity with respect to the intensity of the laser beam and can perform recording with a low laser power, the thermal conductivity is generally large, and the range affected by the thermal interference is large.
さ らに、 この記録パルス間幅調整方法ではその調整量 に関するその時点での記録条件によ らず、 あ らかじめ設 定されている値を使甩するため、 記録特性の変動に関す る調整量変更ができず、 記録特性が設定時とずれている 分だけ、 調整に誤差と して現れ、 正確な調整にはな らな く なる。  In addition, this recording pulse width adjustment method uses a preset value irrespective of the recording condition at that time regarding the adjustment amount, so that the variation in the recording characteristics is affected. The adjustment amount cannot be changed, and as much as the recording characteristic deviates from the setting, it appears as an error in the adjustment, making accurate adjustment impossible.
一方、 前述の記録条件調整用の情報を得る方法では、 その記録照射光パワー、 あるいは記録パルス幅の単一量 の調整で行っており、 熱干渉による記録マーク長変動の 低減にはな らない。  On the other hand, in the method of obtaining the information for adjusting the recording conditions described above, the recording irradiation light power or the single amount of the recording pulse width is adjusted, and the fluctuation of the recording mark length due to thermal interference is not reduced. .
従来、 再生側で符号間干渉成分に対する対策と して通 信や磁気記録の分野では ト ラ ンスバーサル フ ィ ルタ等の 線形等化器が一般に用いられている。 これは信号再生系 の周波数帯域が狭いために再生信号パルスの裾が広がり、 近傍の波形に重畳して発生する線形な符号間干渉を低減 する ものである。 と こ ろが、 前述の熱拡散によ る影響は再生時には主に 波形の時間方向のずれ、 という形で現れる。 こ れは単純 に記録情報に応じた基本波形の線形な重ね合わせと して は表現できない、 非線形の符号間干渉成分である。 した がって、 こ のエ ッ ジ位置変動成分は線形等化器では対応 できず、 再生側の方で実時間でこ の干渉成分に対応する こ とは実際には非常に困難である。 Conventionally, a linear equalizer such as a transversal filter has been generally used in the field of communication and magnetic recording as a measure against intersymbol interference components on the reproducing side. This is to reduce the linear intersymbol interference generated by superimposing on the nearby waveform, because the frequency band of the signal reproduction system is narrow and the tail of the reproduction signal pulse is widened. However, the effect of the thermal diffusion described above mainly appears as a waveform shift in the time direction during reproduction. This is a nonlinear intersymbol interference component that cannot be simply expressed as a linear superposition of the basic waveforms according to the recorded information. Therefore, the edge position fluctuation component cannot be handled by the linear equalizer, and it is actually very difficult for the reproducing side to deal with the interference component in real time.
以上のよ う な理由で従来の方式では記録特性変動に関 して対応ができていて も、 熱干渉の影響によ る記録マ ー ク長の変動が全 く 低減できていないか、 あるいは熱干渉 の影響によ る記録マー ク長の変動に調整誤差が存在 し、 かつ記録特性変動には全 く 対応できない。 特に熱伝導が 大きい記録媒体を用いる光磁気記録でのマ ー ク長記録に おいては、 こ れ らの変動成分は大き く 、 その分の余裕を 設けるため、 記録密度を大き く 犠牲にせざるを得ない。  For the above reasons, even if the conventional method can cope with fluctuations in the recording characteristics, the fluctuation in the recording mark length due to the influence of thermal interference has not been reduced at all, There is an adjustment error in the fluctuation of the recording mark length due to the influence of interference, and it cannot cope with the fluctuation of the recording characteristics at all. Particularly in mark length recording in magneto-optical recording using a recording medium with high heat conduction, these fluctuation components are large, and the recording density must be sacrificed in order to provide a margin. Not get.
この他熱によ る影響と しては、 光磁気記録媒体を用い て情報を高密度で記録するために、 長円の ド メ イ ンの両 端に情報を持たせる ピ ッ トエ ッ ジ記録を採用 し、 さ らに 前述 した従来の技術の形態で記録 しょ う とする と、 光磁 気ディ ス ク の媒体の熱伝導性がよいこ とから線速度が遅 い内周では直前に記録 したパルスの熱の影響を受け、 次 に記録する情報 ドメ イ ンの位置がシフ トする。 これによ り正確に情報を再生する こ とができな く なる。  Other effects of heat include pit edge recording, in which information is stored at both ends of an elliptical domain in order to record information at a high density using a magneto-optical recording medium. In the case of recording using the conventional technology described above, the recording was performed immediately before the inner circumference where the linear velocity was slow due to the good thermal conductivity of the medium of the magneto-optical disk. The position of the next information domain to be recorded is shifted due to the influence of the pulse heat. This makes it impossible to reproduce information accurately.
(発明の開示)  (Disclosure of the Invention)
以上述べてきたよ う に、 光磁気記録において超高密度 光記録を実現するためには、 熱流を制御し、 所望の位置 に所望の大きさに精度良く 記録できなければな らない。 この課題は、 光磁気ディ スクが温度に対して非常に敏感 に反応するためである。 しかし、 光記録は一般に熱記録 である こ とから、 光磁気記録以外に、 枏変化形光記録、 追記形光記録などユーザーが記録でき るタイ プの光記録 全般にわた り解決しなければならない課題である。 As described above, ultra-high density in magneto-optical recording In order to realize optical recording, it is necessary to control the heat flow and accurately record at a desired position and a desired size. This is because magneto-optical discs are very sensitive to temperature. However, since optical recording is generally thermal recording, in addition to magneto-optical recording, it must be resolved for all types of optical recording that users can record, such as variable-type optical recording and write-once optical recording. It is an issue.
そこで、 本発明の目的は次に述べる とおりである。 まず第 1 の本発明の目的は記録磁区のサイズ、 特に磁 区長及び磁区幅を精密に制御するための記録制御方法を 提供する こ とによ り、 超高密度光記録に好適な光磁気記 録の記録制御方法を提供する こ とである。  The objects of the present invention are as follows. First, the first object of the present invention is to provide a recording control method for precisely controlling the size of a recording magnetic domain, in particular, a magnetic domain length and a magnetic domain width, thereby providing a magneto-optical recording suitable for ultra-high density optical recording. It is to provide a recording control method of the recording.
第 2 の本発明の目的は光磁気記録媒体を用いて高密度 に情報を記録する記録再生装置を提案する こ とにある。 特に、 ディ スクへの記録方法に関する有効な手法を提案 する こ とにある。  A second object of the present invention is to propose a recording / reproducing apparatus for recording information at a high density using a magneto-optical recording medium. In particular, it proposes an effective method for recording on a disc.
本発明の第 3 の目的は、 前記記録感度変動による記録 マー クの変動を極力抑制し、 高精度な記録マーク制御を する こ とにある。  A third object of the present invention is to suppress recording mark fluctuation due to the recording sensitivity fluctuation as much as possible and to perform highly accurate recording mark control.
本発明の第 4 の目的は、 記録再生装置と記録媒体との 相性を向上させる と と もに、 記録再生装置による記録感 度変動も抑圧する こ とにある。  A fourth object of the present invention is to improve compatibility between a recording / reproducing device and a recording medium and to suppress fluctuation in recording sensitivity due to the recording / reproducing device.
本発明の第 5 の目的は、 記録再生装置の信頼性及び記 億容量や情報の転送レー トを向上させる こ とにある。  A fifth object of the present invention is to improve the reliability, storage capacity, and information transfer rate of a recording / reproducing apparatus.
光磁気記録の超高密度化の実現にとっての課題の 1 つ は、 ト ラ ッ ク間及び記録磁区間共に詰ま っている こ とか ら、 熱的に も、 また、 電気信号的に も形成される記録磁 区が互いに干渉する こ とである。 そ こで、 光磁気記録の 超高密度化を実現するために、 磁区サイ ズを精密に制卸 しなければな らない。 One of the challenges for achieving ultra-high density magneto-optical recording The problem is that the recording magnetic domains formed both thermally and in the form of electric signals interfere with each other because the gaps between the tracks and the recording magnetic domains are clogged. Therefore, in order to achieve ultra-high density of magneto-optical recording, the magnetic domain size must be precisely controlled.
と こ ろで、 形成される磁区サイ ズに影響を及ぼす因子 と して、 環境温度、 記録媒体間のバラ ツキ、 レ ーザーパ ヮ一の変動、 等が考え られる。 記録や消去にあた り これ らの変動因子を検出 して適切にフ ィ 一 ドバッ クをかけて 記録や消去を行う こ とによ り、 形成された磁区が互いに 干渉する こ とな く 記録密度を上げる こ とができ る。  At this point, factors that affect the size of the magnetic domain to be formed include environmental temperature, variations between recording media, and variations in laser power. When recording or erasing, these fluctuation factors are detected, and appropriate feedback is applied for recording or erasing, so that the formed magnetic domains do not interfere with each other. Density can be increased.
通常、 光磁気記録では、 1 枚のディ ス ク におけるデ一 夕記録領域が半径方向及び ト ラ ッ ク方向に複数のゾー ン に分割され、 記録制御を行う のに必要な情報を得るため の領域を各ゾー ン ごとに設け、 こ の領域で少な く と も記 録 再生を行う こ とによ り記録条件は見出される。  Normally, in magneto-optical recording, the data recording area on one disk is divided into a plurality of zones in the radial and track directions to obtain information necessary for performing recording control. A recording condition can be found by providing an area for each zone and performing at least recording and reproduction in this area.
こ こ で、 ユーザー情報を記録する のに、 1 枚のディ ス ク におけるデータ記録領域が半径方向及び ト ラ ッ ク方向 に複数のゾー ン に分割されたいずれのゾー ンにおいて も 記録されるデータの密度が等し く なる よ う に記録する。 そ して、 用いる記録の方式と して、 記録 ドメ イ ンのエ ツ ジの部分に情報をもたせて記録するいわゆる ピ ッ トエ ツ ジ記録を行う こ とが最も好適である。  Here, in order to record user information, data recorded in any zone where the data recording area of one disc is divided into multiple zones in the radial direction and the track direction Record so that the densities are equal. As a recording method to be used, it is most preferable to perform so-called pit edge recording in which information is given to an edge portion of a recording domain.
と こ ろで、 記録制御を行う のに必要なデータを得るた めに、 あ らか じめ光磁気ディ ス ク駆動装置内に一定のパ ターンを記憶しておき、 これによ り記録/再生を行う こ とが考えられる。 このテス ト的に記録 Z再生を行う領域 と して、 1 枚のディ スク におけるデータ記録領域が半径 方向及び ト ラ ッ ク方向に複数のゾー ンに分割された光デ イ スク において、 各ゾー ンごとに少な く と も 1 セ ク タ内 の 1 ト ラ ッ ク も し く は 1 ト ラ ッ クの全周を記録制御を行 う ための諸データを採取するテス ト ト ラ ッ ク と して用い る こ とが望ま しい。 At this point, in order to obtain the data necessary for recording control, a certain amount of data is stored in the magneto-optical disk drive in advance. It is conceivable to memorize the turn and record / play it back. As an area for performing recording and Z reproduction in this test, in an optical disc in which the data recording area of one disc is divided into a plurality of zones in the radial and track directions, At least one test track in each sector, or a test track to collect various data for recording control over the entire circumference of one track. It is desirable to use it.
記録の制御を行うための情報の採取方法と して、 形成 された記録磁区の磁区幅、 磁区長、 或いは磁区同志の間 隔の内よ り選ばれる少な く と も 1 種類の情報を採取すれ ばよい。 そ して、 これらの情報をも とに して記録時の レ —ザ—ノ、》ヮ一、 記録パルスの幅、 或いは記録パルスの波 形を制御してユーザーのデータを記録する。  As a method of collecting information for controlling the recording, at least one type of information selected from the magnetic domain width, the magnetic domain length, and the interval between magnetic domains of the formed magnetic domains must be collected. I just need. Based on these information, the user's data is recorded by controlling the laser at the time of recording, the control of the recording pulse width, or the waveform of the recording pulse.
この記録制御のためのデーターの採取間陽と しては、 少な く と も光磁気ディ スク ドライブの起動時、 ディ ス ク 挿入時、 を細か く 、 その他の時は先の場合よ り粗く 制御 情報を採取すればよい。 これは、 こ こで得られる情報が 環境温度変化に関する情報が中心だからである。 この中 で、 ディ スク揷入時に得られる情報はこの他にディ スク の感度バラ ツキも含まれる。 これによ り、 媒体の互換性 を確保する こ とができる。  At least, during the data collection for recording control, when starting the magneto-optical disk drive and when inserting the disk, fine control is performed, and at other times, the control is coarser than the previous case. Information should be collected. This is because the information obtained here is mainly information on environmental temperature changes. Among them, the information obtained when a disc is inserted also includes variations in the sensitivity of the disc. This makes it possible to ensure compatibility of the medium.
各ゾーンごとに少な く と も 1 セク タ内の 1 ト ラ ッ ク も し く は 1 ト ラ ッ クの全周を記録制御を行う ための諸デー 夕を採取するテス ト トラ ッ クを設けるのは、 ディ ス ク 内 のバラ ツキ、 或いは回転数一定の も とで記録や消去を行 う場合にゾー ン毎に熱流が異なるため記録条件が異な る、 等のためこれ らの記録に及ぼす影響を取り 除 く ためであ る。 こ のテス ト ト ラ ッ ク を設ける位置は各ゾー ンの特性 を代表する部分な ら一つのゾー ンの中のいずれの位置で も よいが、 使い勝手を考慮する と、 各ゾー ンの最初の部 分か終わり の部分、 或いはゾー ンの中心部分が特に好ま しい。 For each zone, a test track shall be provided to collect various data for recording control of at least one track in one sector or the entire circumference of one track. Is in the disk In order to eliminate the effects on these recordings due to variations in the recording or erasing when the recording or erasing is performed under a constant rotation speed, the heat flow differs for each zone and the recording conditions differ. It is. This test track can be placed at any position within one zone, as long as it is representative of the characteristics of each zone.However, considering the usability, the first zone of each zone is considered. The part or end or the center of the zone is particularly preferred.
1 枚のディ ス ク におけるデータ記録領域が半径方向及 び ト ラ ッ ク方向に複数のゾー ン に分割され、 各ゾー ン ご とに少な く と も 1 セ ク タ内の 1 ト ラ ッ ク も し く は 1 ト ラ ッ クの全周を、 記録制御を行う ための諸デー タを採取す るテス ト ト ラ ッ ク と して設けた。 こ の ト ラ ッ ク において テス ト的に記録 Z消去を行う こ と に よ り 、 環境条件の変 化や記録媒体間のバラ ツキな どに と もな う 記録磁区形状 の変化が検出でき るので、 こ の情報をも とに記録を行う と常に同一形状及び同一サイ ズの記録磁区が得られる。 本発明の手法を用いる と微小記録磁区を外乱の影響を受 けずに形成でき るので、 安定な記録 Z再生を行う こ とが 可能となる。 その結果、 超高密度光磁気記録が実現でき た。  The data recording area on one disk is divided into multiple zones in the radial and track directions, and each zone has at least one track in one sector. Alternatively, the entire circumference of one track was provided as a test track for collecting various data for recording control. By performing test Z erasure on this track, it is possible to detect changes in the recording magnetic domain shape due to changes in environmental conditions and variations between recording media. Therefore, when recording is performed based on this information, a recorded magnetic domain having the same shape and the same size is always obtained. By using the method of the present invention, a minute recording magnetic domain can be formed without being affected by disturbance, so that stable recording and Z reproduction can be performed. As a result, ultra-high density magneto-optical recording was realized.
記録媒体と記録を行な う 装置との適合性を向上させる ために、 あ らか じめ記録媒体の所定の位置に試 し書き を 行い、 試し書き によ って得られる再生信号と試 し書きデ 一夕 とを比較し、 良好な結果を得られた後に正規の情報 の記録を開始する。 In order to improve the compatibility between the recording medium and the device that performs the recording, a trial writing is performed in advance at a predetermined position on the recording medium, and the reproduction signal obtained by the trial writing and the trial are used. Written and compared with the night, after obtaining good results, regular information Start recording.
また、 試し書きデータな らびに正規の情報の入力デー 夕 ビッ ト列を、 記録を行う装置の符号列にする と と もに、 前記符号列を記録媒体に記録するためのデータ列を生成 し、 レーザ光源を駆動して記録媒体に記録領域を形成す る こ とによって、 正確な記録を行なう ものである。 その 結果、 試し書きは記録媒体と記録を行なう装置との適合 性を向上させるために、 あ らかじめ記録媒体の所定の位 置に、 記録媒体の交換にと もなう記録媒体の膜厚変動等 や、 環境温度変動及び記録を行なう装置の特性変化によ る記録媒体に対する記録感度変動等を検知するために、 記録すべき記録マークのう ち条件の厳しい記録マー クを 正規の情報の記録を行なう前に記録媒体上に書き込む動 作をする。 さ らに、 記録した試し書きデータから得られ る再生信号と試し書きデータ とを比較し、 良好な結果を 得られる よ う に、 記録するための記録波形の光強度また はエネルギーを変化させて記録媒体と記録装置との適合 を図るよ う に動作する。 それによつて、 常に記録媒体に 対する最適な記録条件を得る こ とが出来るので、 上述し た記録感度変動にと もなう情報の記録誤動作がな く なる と と もに信頼性のある記録再生が出来る。  In addition, the test writing data and the input data bit sequence of the legitimate information are used as the code sequence of the recording device, and the data sequence for recording the code sequence on the recording medium is generated. By driving a laser light source to form a recording area on a recording medium, accurate recording is performed. As a result, the test writing is performed in advance at a predetermined position on the recording medium in order to improve the compatibility between the recording medium and the device that performs the recording. In order to detect fluctuations in the recording media, such as fluctuations in the recording temperature due to fluctuations in the environmental temperature and changes in the characteristics of the recording device, etc. Performs an operation of writing on a recording medium before recording. Furthermore, the reproduced signal obtained from the recorded test writing data is compared with the test writing data, and the light intensity or energy of the recording waveform for recording is changed so as to obtain a good result. Operates to match the recording medium with the recording device. As a result, the optimum recording conditions for the recording medium can be always obtained, so that the above-described information recording malfunction due to the fluctuation of the recording sensitivity is eliminated and the reliable recording / reproducing is performed. Can be done.
また、 正規の情報の記録直後またはある周期での記録 再生を行ない、 入力データ ビッ ト列と出力データ ビッ ト 列を比較し、 誤動作した場合、 上述した試し書きを行な う こ とによって信頼性のある記録再生が出来る。 さ らに、 正規の情報の記録直後ま たはある周期での記 録再生によ って行なわれる試 し書きを極力低減するため に、 記録マー ク に応 じた記録パルス列 と記録補助パルス を発生させ、 記録パルス列と記録補助パルスに対する 2 つの光強度または、 2 つのエネルギー レベルを用いて記 録媒体の温度をほぼ一定に して記録マー ク の長さや幅を 制御 した。 In addition, recording / reproducing is performed immediately after recording of regular information or at a certain period, the input data bit string is compared with the output data bit string, and if a malfunction occurs, the above-mentioned test writing is performed to improve reliability. Recording and playback with In addition, in order to minimize trial writing performed immediately after recording of regular information or by recording / reproducing at a certain period, a recording pulse train and a recording auxiliary pulse corresponding to the recording mark are used. The length and width of the recording mark were controlled by keeping the temperature of the recording medium almost constant using two light intensities or two energy levels for the recording pulse train and the recording auxiliary pulse.
さ らに、 試し書き によ る正確な記録状態の判別を行な う ために、 再生信号の振幅や周波数特性等の改善を実施 しない状態で、 記録条件の良否を判別する よ う に した も のである。  Furthermore, in order to accurately determine the recording state by trial writing, the quality of the recording conditions is determined without improving the amplitude and frequency characteristics of the reproduced signal. It is.
上記他の 目的を達成するために、 試 し書きデータな ら びに正規の情報の入力デー タ ビッ ト列の記録マー ク に応 じた記録パルス列と記録補助パルスを発生させ、 記録パ ルス列 と記録補助ノ、。ルスに対する 2 つの光強度ま たは、 2 つのエネルギー レベルを用いて記録媒体に記録 した も のである。  In order to achieve the above and other objectives, a recording pulse train and a recording auxiliary pulse corresponding to the recording mark of the trial data and the input data bit train of regular information are generated, and the recording pulse train and Recording assistance, It was recorded on a recording medium using two light intensities or two energy levels for the virus.
上記他の 目的を達成するために、 記録パルス列 と記録 補助パルスの光強度を変調する こ とによ って、 情報の重 ね書きを可能とする記録媒体において、 記録パワ ー と消 去パワーに適用 させた ものである。  To achieve the above and other objects, the recording power and the erasing power are reduced by modulating the light intensity of the recording pulse train and the recording auxiliary pulse in a recording medium on which information can be overwritten. It has been applied.
上記他の 目的を達成するために、 正規の情報の入力デ 一夕 ビッ ト列を記録した直後に再生を行ない、 入力デー タ ビッ ト列 と出力データ ビッ ト列を比較する ものである。  In order to achieve the above and other objects, reproduction is performed immediately after recording the input data bit sequence of regular information, and the input data bit sequence and the output data bit sequence are compared.
また、 あ らか じめ記録媒体の所定の位置に試し書きを 行い、 試し書きによって得られる再生信号と試し書きデ 一夕 とを比較し、 良好な結果を得られた後に正規の情報 の記録を開始するにあたって、 試し書きデータな らびに 正規の情報の入力データ ビッ ト列を、 記録を行う装置の 符号列にする と と もに、 前記符号列を記録媒体に記録す るためのデータ列を生成し、 レーザ光源を駆動して記録 媒体に記録領域を形成する記録波形において、 記録マー クに応じた記録パルス列と記録捕助パルスに対する光強 度またエネルギー レベルを制御する ものである。 Also, write a trial write in a predetermined location on the recording medium in advance. After comparing the playback signal obtained by the trial writing with the trial writing data, and starting recording the regular information after obtaining a good result, the trial writing data and the input data of the regular information The bit sequence is converted into a code sequence of a recording device, and a data sequence for recording the code sequence on a recording medium is generated, and a laser light source is driven to form a recording area on the recording medium. It controls the light intensity and energy level of the recording pulse train and recording assist pulse corresponding to the recording mark in the recording waveform to be recorded.
円扳状記録媒体に光学的に識別可能な形態で情報を同 心円状に ト ラ ッ クを形成し記録再生する装置であって、 円板上の ト ラ ッ クを複数の ト ラ ッ クからなる ゾーンに分 割し、 該ゾー ンでは記録線密度が同一になる よ う に記録 され、 円扳内周ではゾー ン内での記録線密度が外周のゾ ー ンでの線密度よ り低く する。  A device for recording and reproducing information concentrically on a disk-shaped recording medium in an optically identifiable form. The track on the disk is divided into a plurality of tracks. The recording is performed so that the recording linear density is the same in the zone, and in the inner circumference of the circle, the recording linear density in the zone is lower than the linear density in the outer zone. Lower.
内周側で線密度をゆるめる こ とができ、 熱の干渉があ つても情報が正確に読める よ う になる。 一方、 内周側の ト ラ ッ クのディ スク全体に納める こ とができる記憶容量 への寄与が大き く ないこ とから内周側で線密度をゆるめ ても、 ほとんどディ スク当た り の容量を減少される こ と な く 効率的に高密度化できる。  The line density can be reduced on the inner circumference side, so that information can be read accurately even if there is thermal interference. On the other hand, since the contribution to the storage capacity that can fit on the entire disc of the inner track is not large, even if the linear density is loosened on the inner track, almost all It is possible to efficiently increase the density without reducing the capacity.
本発明は熱干渉による記録マークのエツ ジ位置の変動 を、 記録パルスに対して前に位置する複数個からなる記 録パルスの組み合わせに応じて、 各エツ ジごとに時間的 に前側、 あるいは後ろ側にずらす調整を行い、 その調整 された記録パルス信号で レ ーザによ り記録を行う と共に、 所定の時間間隔おきに所定の記録信号を記録、 再生 して、 その結果から記録時の光ビーム強度や、 環境温度の変動 を検知 し、 その結果に したがって記録時の光 ビ一厶強度 や、 各エ ッ ジ位置の調整量を変更する こ とで、 あ らゆる 記録条件において も記録マ一 ク長の変動がない、 高精度 な情報記録が行われ、 マー ク長記録によ る高密度記録の ための、 よ り正確な記録マー ク のエ ッ ジ位置制御を実現 でき る。 According to the present invention, the fluctuation of the edge position of a recording mark due to thermal interference is temporally forward or rearward for each edge in accordance with a combination of a plurality of recording pulses positioned before the recording pulse. Side adjustment, and adjust In addition to recording by the laser with the recorded recording pulse signal, a predetermined recording signal is recorded and reproduced at predetermined time intervals, and the light beam intensity and environmental temperature fluctuation at the time of recording are determined based on the result. By detecting, and changing the light beam intensity during recording and the adjustment amount of each edge position according to the result, the recording mark length does not fluctuate under all recording conditions. Accurate information recording is performed, and more accurate recording mark edge position control for high-density recording by mark length recording can be realized.
熱干渉によ る記録マー ク のエ ッ ジ位置の変動を、 直前 の複数個か らなる記録パルスの組み合わせに応 じて各ェ ッ ジごとに時間的に前側、 あるいは後ろ側にずらす調整 を行い、 その調整された記録パルス信号でレーザによ り 記録を行う こ とで、 熱干渉の影響によ る記録パタ ー ン列 の違った場合の記録マー ク長のばらつきを吸収する こ と ができ る。  Adjustment to shift the edge position of the recording mark due to thermal interference temporally forward or backward for each edge according to the combination of the immediately preceding plural recording pulses. By performing recording with the laser using the adjusted recording pulse signal, it is possible to absorb the variation of the recording mark length when the recording pattern sequence differs due to the influence of thermal interference. it can.
また、 記録半径によ り記録線速度が異なる こ とに対応 して、 記録線速度に応 じて複数種類の調整量テーブルを 用意しておき、 記録時の線速度に合っ た調整量テーブル を用いる こ とによ り、 記録媒体の どの位置で も正確に記 録パルスの調整を行う こ とができ る。  Also, in response to the fact that the recording linear velocity differs depending on the recording radius, multiple types of adjustment amount tables are prepared according to the recording linear velocity, and the adjustment amount table that matches the linear velocity during recording is prepared. By using this, the recording pulse can be accurately adjusted at any position on the recording medium.
また、 装置使用を開始 した と き、 およ び記録媒体を交 換した と き、 および所定の時間間隔ごとに、 所定の記録 信号を用いて記録再生を行い、 その再生信号の記録マー ク部に当るパルス長と、 記録マー クでない部分に当 るギ ヤ ッ プ長とのデューティ を検出 し、 その情報から記録時 の光ビーム強度と、 記録媒体の温度の設定値からのずれ を抽出 し、 その結果に応じて、 記録時の光ビーム強度が 設定値からずれている場合には、 記録時の光ビーム強度 を変更し、 記録媒体の温度が設定値からずれている場合 には調整用テーブルの内容か、 も し く は記録時の光ビー ム強度の変更で調整可能であれば、 記録時の光.ビーム強 度を変更し、 経時的に記録条件が変動した場合でも正確 に記録パルスの調整を行う こ とができる。 Also, when the use of the apparatus is started, when the recording medium is replaced, and at predetermined time intervals, recording and reproduction are performed using a predetermined recording signal, and a recording mark section of the reproduction signal is performed. The pulse length that hits the The duty with the gap length is detected, and the light beam intensity during recording and the deviation from the set value of the recording medium temperature are extracted from the information, and the light beam intensity during recording is set according to the result. If the value deviates from the set value, change the light beam intensity at the time of recording.If the temperature of the recording medium deviates from the set value, check the contents of the adjustment table or the light beam at the time of recording. If the intensity can be adjusted by changing the intensity, the light beam intensity during recording can be changed, and the recording pulse can be adjusted accurately even if the recording conditions fluctuate over time.
以上によ り、 マー ク長記録による高密度記録での、 よ り正確な記録マークのエッ ジ位置制御が可能となる。  As described above, more accurate edge position control of a recording mark in high-density recording by mark length recording becomes possible.
これまで述べてきたよう に、 本発明は光磁気記録の高 密度化にと もない、 微小な磁区を熱干渉等な く 安定に形 成する (記録する) ための手法を提案する もので、 その ための手法と して 1 )記録パルスの波形による もの、 2)デ イ スク上への記録方式による もの、 3 )テス ト記録を行な い、 その結果を用いて記録制御情報を得る方式を提案し た。 光磁気ディ ズク装置と しては、 これらの方式の內の 少な く とも 1 つの手法を用いる こ とによ り記録容量の増 大を図る こ とができる。 そ して、 複数の手法を組合わせ て用いるこ とによ り、 さ らに高密度記録が可能になる。  As described above, the present invention proposes a method for stably forming (recording) minute magnetic domains without thermal interference or the like, as the density of magneto-optical recording increases. To achieve this, 1) a method using a recording pulse waveform, 2) a method using a recording method on a disk, and 3) a method in which test recording is performed and recording control information is obtained using the results. Was suggested. By using at least one of these methods as a magneto-optical disk device, the recording capacity can be increased. Further, by using a combination of a plurality of methods, higher-density recording becomes possible.
以上の知見に基づき、 本願発明は、 代表的には図 1 に 示すごと く 、 光ディ スク 1 に光ビームを照射する光源 8 、 記録すべき情報信号を符号列に変換する符号器 4 、 符号 列に従って光ビームを変調し光パルス列と して光デイ ス ク に照射 してその熱作用 も し く は熱干渉の少な く と も 1 つによ り符号列を記録マー ク と して記録する光源駆動手 段 7、 光ディ ス クからの光を光電変換 して電気 i 号波形 を得る検出器 9 、 電気信号波形を波形処理する波形処理 手段 1 1 、 該波形処理手段か らの信号をパルス信号とす るパルス化手段 1 3 、 ノ、。ルス信号から光ディ ス ク上に記 録された符号列を検出する弁別器 1 5 、 該弁別器か らの 符号列を情報信号に復号する復号器 1 7 を有する光ディ ス ク装置において、 特定のテス ト信号によ り光 ビームを 変調 して光ディ ス ク上にテス トパタ ー ンを形成する試 し 書き手段 3 、 テス トパター ンを再生 してテ ス ト信号と比 較する手段 1 6 、 比較結果に基づいて光ビー ム の変調を 制御する制御手段 6 を有 し、 制御手段は光パル ス列を構 成する ノ、。ノレス のパ ワ ー レ ベル、 パノレス幅、 若 し く はパル ス間隔の少な く と も 1 つを制御する こ とを特徴とする光 ディ ス ク装置。 Based on the above findings, the present invention typically includes, as shown in FIG. 1, a light source 8 for irradiating an optical disk 1 with a light beam, an encoder 4 for converting an information signal to be recorded into a code sequence, Modulates the light beam according to the train and converts it into a light pulse train. A light source driving means 7 for irradiating a laser beam and recording a code string as a recording mark by at least one of its thermal action and at least one of thermal interference, and photoelectrically radiates light from the optical disk. A detector 9 for converting and obtaining an electric signal i waveform; a waveform processing means 11 for waveform processing of the electric signal waveform; and a pulsing means 13 for converting the signal from the waveform processing means into a pulse signal. An optical disc device comprising: a discriminator 15 for detecting a code string recorded on an optical disc from a pulse signal; and a decoder 17 for decoding a code string from the discriminator into an information signal. A means for modulating an optical beam with a specific test signal to form a test pattern on an optical disk3, a means for reproducing a test pattern and comparing it with a test signal1 6. Control means 6 for controlling the modulation of the optical beam based on the comparison result, wherein the control means constitutes an optical pulse train. An optical disc device characterized by controlling at least one of the power level of the nores, the width of the nores, and at least one of the pulse intervals.
パ ワ ー レ ベルの制御は、 パル ス幅、 若 し く はパル ス間 隔を予め定めた値の中から選択する こ とによ り上記光 ビ ームの変調を制御する制御手段を有する こ とで実現でき る。  The power level control includes a control means for controlling the modulation of the optical beam by selecting a pulse width or a pulse interval from predetermined values. This can be achieved.
比較結果は記録マー ク の幅、 長さ、 あるいはマー ク 間 隔から選ばれる少な く と も 1 つの要素を反映 している。  The comparison results reflect at least one factor selected from the width, length, or mark spacing of the recorded marks.
試し書き手段 3 からのテス トノ、。タ ー ンは、 データ と同 様に符号器 4 で符号化してから記録する こ とが望ま しい。  Testo, from trial writing means 3. It is desirable that the turn is encoded by the encoder 4 in the same manner as the data before recording.
電気信号波形を波形処理手段 1 1 を通さずにパル ス化 手段 1 3 に入力するための切り替えスィ ッ チ 1 2を有し、 波形処理手段を通さずにテス トパターンの再生信号を評 価するこ とがよ り望ま しい。 Pulses electrical signal waveforms without passing through waveform processing means 1 1 It is more desirable to have a switching switch 12 for input to the means 13 and to evaluate the reproduced signal of the test pattern without passing through the waveform processing means.
記録マークの 1 つを形成する 1単位の光パルス列は、 例えば先頭パルスおよびこれと時間幅が異なる後続パル ス列からなる。 後続パルス列はパルスの時間幅若し く は パルス間隔の少な く と も 1 つが等しいパルス列である と 制御が容易となる。  One unit of the optical pulse train that forms one of the recording marks includes, for example, a leading pulse and a trailing pulse train having a different time width from the leading pulse. The subsequent pulse train is easy to control if at least one of the pulse widths or pulse intervals is equal.
本願発明の好ま しい態様では、 記録マーク の 1 つを形 成する 1 単位の光パルス列は、 P w以上のパワー レベル のパルスを有し、 記録マークを形成しない光パルス列は P a s以下のパワー レベルを有し、 記録マークを形成す る光パルス列の前側あるいは後側の少な く と も 1 つに P r以下のパワー レベルの領域を有する。  In a preferred embodiment of the present invention, one unit of the optical pulse train forming one of the recording marks has a pulse having a power level equal to or higher than P w, and the optical pulse train not forming the recording mark has a power level equal to or lower than P as At least one of the front and rear sides of the optical pulse train that forms the recording mark has a power level region of Pr or less.
ただし P w > P a s > P r  Where P w> P a s> P r
あ 0  Oh 0
さ らに、 記録マー ク の 1 つを形成する 1 単位の光パル ス列は、 2つ以上のパワー レベルのパルスを有する よ う に構成しても良い。 また記録マークの 1 つを形成する 1 単位の光パルス列は、 先頭のパルスのパワー レベルと、 後続のパルスのパワー レベルが異なる こ と と しても よい。  In addition, a train of optical pulses forming one of the recording marks may be configured to have two or more power level pulses. In addition, in one unit of the optical pulse train forming one of the recording marks, the power level of the first pulse may be different from the power level of the subsequent pulse.
制御手段は、 前記記録マー ク の 1 つを形成する 1 単位 の光パルス列のパルスの個数を制御し、 あるいは、 前記 の P w、 P a s、 または P rの少な く と も 1 つを変化さ せる。 また制御手段は、 光ディ ス ク の温度、 光ディ ス クへの 記録線速度、 記録すべき情報信号に基づいた記録マー ク の組合せの少な く と も 1 つに基づいて、 前記光パル ス列 を構成するパルス のエ ツ ジ位置を制御する こ と と して も よい。 このエ ッ ジ位置を制御するための情報を記億する テーブルを有する よ う に構成する こ と もでき る。 The control means controls the number of pulses of one unit of the optical pulse train forming one of the recording marks, or changes at least one of the Pw, Pas, or Pr. Let Further, the control means may control the optical pulse based on at least one of a combination of an optical disk temperature, a recording linear velocity on the optical disk, and a recording mark based on an information signal to be recorded. The edge position of the pulse constituting the train may be controlled. It may be configured to have a table for storing information for controlling the edge position.
光ディ ス ク は例えば半径方向に記録条件の異な る複数 のゾー ンに分割され、 各ゾー ン ごとに前記テス トパター ンを記録するための領域を有する こ とが望ま しい。  The optical disk is preferably divided into a plurality of zones having different recording conditions in the radial direction, for example, and it is preferable that each zone has an area for recording the test pattern.
また光ディ ス ク は半径方向に複数のゾー ン に分割され、 同一のゾー ン内では線記録密度が等 し く 、 光ディ ス ク最 内周のブー ンが最も線記録密度が小さいよ う に構成する こ と も望ま しい。 線記録密度を等 し く するために、 ゾー ン毎に も し く はディ ス ク の半径位置に応じてパル ス幅及 びパルス間隔の う ち少な く と も 1 つを変化させた光パル ス列を用いて記録を行う と良い。  The optical disk is divided into multiple zones in the radial direction, and the linear recording densities are equal in the same zone, and the bun on the innermost circumference of the optical disk has the lowest linear recording density. It is also desirable to configure it. In order to equalize the linear recording density, an optical pulse with at least one of the pulse width and pulse interval changed according to the zone or the radial position of the disk It is advisable to record using a data train.
光パルス列を構成するパルスのパルス幅、 若 し く はパ ルス間隔の少な く と も 1 つを制御するために記録ク 口 ッ ク を用い、 該記録ク ロ ッ ク によ り形成される検出窓幅の 整数分の 1 或いは整数倍とする こ とが好適である。  The recording clock is used to control at least one of the pulse width and / or the pulse interval of the pulses constituting the optical pulse train, and the detection formed by the recording clock is used. It is preferable to set the window width to a fraction of an integer or an integral multiple.
光源駆動手段 7 は、 ス ィ ッ チ手段及びこれに直列な電 流源からなる単位駆動回路が複数並列に配置され、 1 つ の定電流源がそれぞれの単位駆動回路と直列に配置され、 定電流源と直列かつ単位駆動回路 と並列に光源 8 が接続 され、 複数の単位駆動回路の電流源は異なる値の電流を 流す様構成され、 スィ ッチ手段を前記符号列に基づいた 制御信号で作動させる こ とによ り、 光源 8 を駆動する電 流値を制御する。 単位駆動回路の電流源の少な く と も 1 つは電流可変と し、 光パルスの制御を可能とする こ とが できる。 The light source driving means 7 includes a plurality of unit driving circuits each including a switch means and a current source in series with the switching means, and one constant current source is disposed in series with each unit driving circuit. The light source 8 is connected in series with the current source and in parallel with the unit drive circuit, and the current sources of the plurality of unit drive circuits supply different values of current. A current value for driving the light source 8 is controlled by operating the switch means with a control signal based on the code string. At least one of the current sources of the unit drive circuit is variable in current, and light pulse control can be performed.
スィ ツチ手段は n p n タイプでスィ ツチングする素子 をもちいるのが良い。  The switching means is preferably an npn-type switching element.
また本願発明の情報記録再生方法は記録すべき情報信 号を符号列に変換し、 符号列に従って光ビームを光パル スに変調し、 該光パルス列を記録媒体に照射し、 光パル ス列の熱作用若し く は熱干渉の少な く と も ί つによ り符 号列を記録マーク と して記録し、 記録媒体からの光を光 電変換して電気信号波形を得、 電気信号波形を波形処理 し、 波形処理手段からの信号をパルス信号に変換し、 パ ルス信号から記録媒体上に記録された符号列を検出 し、 検出された符号列を情報信号に復号する光学的情報記録 再生方法において、 特定のテス ト信号によ り光ビームを 変調して記録媒体上にテス トパター ンを形成し、 該テス トパター ンを再生してテス ト信号と比較し、 比較結果に 基づいて光パルス列を構成するパルスのパワー レベル、 パルス幅、 若し く はパルス間隔の少な く と も 1 つを制御 する こ とを特徵とする光学的情報記録再生方法である。  Further, the information recording / reproducing method of the present invention converts an information signal to be recorded into a code sequence, modulates a light beam into an optical pulse according to the code sequence, irradiates the optical pulse sequence to a recording medium, and A code sequence is recorded as a recording mark by heat action or heat interference, and light from a recording medium is photoelectrically converted to obtain an electric signal waveform. Optical signal recording that converts a signal from the waveform processing means into a pulse signal, detects a code string recorded on a recording medium from the pulse signal, and decodes the detected code string into an information signal. In the reproducing method, a light beam is modulated by a specific test signal to form a test pattern on a recording medium, and the test pattern is reproduced and compared with the test signal, and the optical signal is generated based on the comparison result. The power of the pulses that make up the pulse train Bell, pulse width, Wakashi Ku is an optical information recording and reproducing method according to Toku徵 that you controlling one also least for the pulse interval.
テス トパター ンは最長符号と最短符号を含むこ とが望 ま しい。  It is desirable that the test pattern includes the longest code and the shortest code.
(図面の簡単な説明) 図 1 は本発明の一実施例を説明するための装置プロ ッ ク図 (Brief description of drawings) FIG. 1 is a device block diagram for explaining an embodiment of the present invention.
図 2 は一実施例の動作を説明する流れ図  FIG. 2 is a flowchart illustrating the operation of one embodiment.
図 3 (a) 、 図 3 (b) 、 図 3 (c) は本発明の一実施例の 記録方式と記録された記録マー ク の関係の説明概念図 図 4 (a) 、 図 4 (b) 、 図 4 (c) は本発明の他の実施例 の記録方式と記録された記録マー ク の関係の説明概念図 図 5 は本発明の試し書きの記録パター ンの説明図 図 6 は本発明の試し書きの制御信号検出回路プロ ッ ク 図  FIGS. 3 (a), 3 (b) and 3 (c) are conceptual diagrams illustrating the relationship between the recording method and recorded marks according to an embodiment of the present invention. FIGS. 4 (a) and 4 (b) FIG. 4 (c) is a conceptual diagram illustrating the relationship between a recording method according to another embodiment of the present invention and a recorded mark, and FIG. 5 is an explanatory diagram of a test writing recording pattern according to the present invention. Inventive test writing control signal detection circuit block diagram
図 7 は熱時定数と熱遮断後の温度誤差の関係を表す説 明図  Figure 7 is an explanatory diagram showing the relationship between the thermal time constant and the temperature error after thermal shutdown.
図 8 は記録波形の一つの実施例を説明する図  FIG. 8 is a diagram illustrating one embodiment of a recording waveform.
図 9 は記録波形の も う一つの実施例を説明する図 図 1 0 は記録信号波形を示す図  FIG. 9 is a diagram illustrating another embodiment of a recording waveform. FIG. 10 is a diagram illustrating a recording signal waveform.
図 1 1 は記録信号波形を示す図  Figure 11 shows the recording signal waveform
図 1 2 は再生信号波形と記録磁区形状を示す模式図 図 1 3 はエ ッ ジシ フ ト のパタ ー ン依存性を示す図 図 1 4 は記録信号波形を示す図  Fig. 12 is a schematic diagram showing the reproduction signal waveform and the recording magnetic domain shape. Fig. 13 is a diagram showing the pattern dependence of the edge shift. Fig. 14 is a diagram showing the recording signal waveform.
図 1 5 は記録信号波形を示す図  Figure 15 shows the recording signal waveform.
図 1 6 は再生信号波形と記録磁区形状を示す模式図 図 1 7 はエ ッ ジシフ トのパター ン依存性を示す図 図 1 8 (a) 、 図 に 8 (b) は記録信号波形を示す図 図 1 9 (a) 、 図 1 9 (b) 、 図 1 9 (c) 、 図 1 9 (d) は レーザ駆動回路の実施例を説明する図 図 2 0 は試し書きの手順のフ ローチヤ一 ト図 Fig. 16 is a schematic diagram showing the reproduction signal waveform and the recording magnetic domain shape. Fig. 17 is a diagram showing the pattern dependence of the edge shift. Fig. 18 (a) shows the recording signal waveform. Fig. 19 (a), Fig. 19 (b), Fig. 19 (c), Fig. 19 (d) are diagrams illustrating an embodiment of the laser drive circuit. Figure 20 is a flowchart of the test writing procedure.
図 2 1 は光磁気ディ スクの断面構造を示す模式図 図 2 2 は記録パルス波形の形伏を示す図  Fig. 21 is a schematic diagram showing the cross-sectional structure of a magneto-optical disc. Fig. 22 is a diagram showing the shape of the recording pulse waveform.
図 2 3 は実施例の構成を示すプロ ッ ク図  Figure 23 is a block diagram showing the configuration of the embodiment.
図 2 4 は熟干渉によ りエ ッ ジ位置がシフ 卜する様子を 表す模式図  Figure 24 is a schematic diagram showing how the edge position shifts due to mature interference.
図 2 5 はエッ ジシフ ト量の情報を用いて、 記録信号の 各エツ ジ位置を調整してエツ ジシフ トの影響を抑圧する 様子を説明するための図  Figure 25 is a diagram for explaining how to use the edge shift amount information to adjust the position of each edge of the recording signal to suppress the effects of edge shift.
図 2 6 は記録条件測定用の記録信号パター ンの一例を 表した図  Figure 26 shows an example of the recording signal pattern for recording condition measurement.
図 2 7 は測定結果から記録時の光ビーム強度変化、 お よび記録媒体の温度変化を分離検出する手段を説明する 図 2 8 は記録条件判定モー ドのフ ロー  Fig. 27 shows the means for separating and detecting the light beam intensity change during recording and the temperature change of the recording medium from the measurement results. Fig. 28 shows the flow of the recording condition judgment mode.
図 2 9 はエツ ジ間隔測定回路の一構成例を示した図 図 3 0 はエッ ジ間隔測定回路の動作を説明するための 図  Figure 29 shows an example of the configuration of the edge interval measurement circuit. Figure 30 is a diagram for explaining the operation of the edge interval measurement circuit.
図 3 1 は記録条件判定回路の一構成例を示した図 図 3 2 はエ ッ ジ位置調整回路、 およびエッ ジ位置調整 テーブルの一構成例を示した図  Fig. 31 shows a configuration example of the recording condition determination circuit. Fig. 32 shows a configuration example of the edge position adjustment circuit and the edge position adjustment table.
図 3 3 はェッ ジ位置調整テーブル切換回路の一構成例 を示した図  Figure 33 shows an example of the configuration of the edge position adjustment table switching circuit.
図 3 4 は記録半径位置と線密度の関係を表すグラ フ図 図 3 5 は記録半径と容量寄与度の関係を表すグラ フ図 図 3 6 は記録半径と最短 ド メ イ ン長さ の関係を表すグ ラ フ図 Fig. 34 is a graph showing the relationship between the recording radius position and the linear density. Fig. 35 is a graph showing the relationship between the recording radius and the capacity contribution. Figure 36 is a graph showing the relationship between the recording radius and the shortest domain length.
図 3 7 はテス トパタ ー ンの波形図  Figure 37 shows the waveform of the test pattern.
図 3 8 は記録磁区形状を示す模式図  Figure 38 is a schematic diagram showing the recording domain shape.
図 3 9 は本発明の光ディ ス ク の平面図  Figure 39 is a plan view of the optical disk of the present invention.
図 4 0 は最小変化長を示す波形図  Figure 40 is a waveform diagram showing the minimum change length.
(発明を実施するための最良の形態)  (Best mode for carrying out the invention)
〔実施例 1 〕 (Example 1)
図 1 は、 本発明の装置構成の一実施例の光ディ ス ク装 置を示す。 情報を記憶させるための記録媒体 1 と記録再 生を実現するための光へ ッ ド 2 と光へッ ド 2 か ら得られ た再生信号を情報に変換する処理系から構成される。 記 録媒体 1 はモ一夕 1 0 9 で回転し、 記録膜 】 0 1 とそれ を保持する基板 1 0 2 か ら構成される。  FIG. 1 shows an optical disk device according to an embodiment of the device configuration of the present invention. It comprises a recording medium 1 for storing information, an optical head 2 for realizing recording and reproduction, and a processing system for converting a reproduction signal obtained from the optical head 2 into information. The recording medium 1 rotates at a speed of 109, and comprises a recording film 101 and a substrate 102 holding the recording film.
光ヘッ ド 2 は、 レーザ 8 から出射される光を記録媒体 1 上に絞り込む光学系を内蔵 している。 情報の記録時は、 入力デー タ ビッ ト列 (情報) が、 符号器 4 に入力 され、 符号器 4 から出力 される記録符号列が記録波形生成器 5 に導かれ、 記録波形生成器 5 によ って得られる記録波形 が A P C 6 に入力 され、 記録符号列に応じた強度の光が レーザ 8 力、 ら出力される。  The optical head 2 has a built-in optical system for focusing the light emitted from the laser 8 onto the recording medium 1. When recording information, the input data bit sequence (information) is input to the encoder 4, the recording code sequence output from the encoder 4 is guided to the recording waveform generator 5, and the recording waveform generator 5 The recording waveform obtained as described above is input to the APC 6, and light having an intensity corresponding to the recording code string is output from the laser 8.
情報の再生時は、 記録媒体 1 から反射された光が光学 系によ り受光器 9 に導かれ電気信号に変換される。 該信 号は、 再生ア ンプ 1 0 に入力 され、 波形等化器な どの波 形処理回路 1 1 と入力切替器 1 2 に出力される。 入力切 替器 1 2 は試し書き措合信号に応じて、 再生ア ンプ 1 0 または波形等化器 1 1 のどち らかの再生信号を整形器 i 3 に出力し、 信号の有無を表すパルス信号に変換される。 該パルス信号は、 弁別器 1 5 と P L L 1 4 に導かれる。 P L L 1 4 から出力される同期信号 (パルス信号の基本 周期に同期した信号) は、 弁別器 1 5 に入力される。 弁 別器 1 5 は、 上記パルス信号と同期信号から検出符号列 を生成し、 復号器 1 7 によって、 データ ビッ ト列 (情 報) を出力す 。 また弁別器 1 5 の検出符号列は比較判 別器 1 6 に出力される。 When information is reproduced, the light reflected from the recording medium 1 is guided to the light receiver 9 by an optical system and converted into an electric signal. The signal is input to a reproduction amplifier 10 and output to a waveform processing circuit 11 such as a waveform equalizer and an input switch 12. Input off In response to the test write signal, the transformer 12 outputs either the reproduction amplifier 10 or the reproduction signal from the waveform equalizer 11 to the shaper i 3, and outputs a pulse signal representing the presence or absence of the signal. Is converted. The pulse signal is guided to the discriminator 15 and the PLL 14. The synchronization signal (signal synchronized with the basic period of the pulse signal) output from the PLL 14 is input to the discriminator 15. The discriminator 15 generates a detection code string from the pulse signal and the synchronization signal, and the decoder 17 outputs a data bit string (information). The detection code string of the discriminator 15 is output to the comparison discriminator 16.
次に試し書き動作について説明する。 試し書き指合信 号によって動作する試し書き器 3 からの試し書きデータ が符号器 4 に入力され、 記録符号列に変換される。 この 試し書きデータの記録符号列は記録情報と同様の経路を 経て記録媒体 1 上に記録される。 試し書きデータ の評価 においては、 試し書き指令信号によって動作する入力切 り替え器 i 2 は、 再生アンプ 1 0 の出力を整形器 1 3 に 出力する よ う に切り替える。 か く して符号器 4 からの記 録符号列と弁別器 1 5 からの再生符号列を比較し、 記録 符号列からの再生符号列の差異を打ち消すよ う にレーザ 8 を駆動する レーザ駆動器 7 を制御する A P C 6 を制御 する制御信号を出力する。 こ の様な制御の結果記録符号 列からの再生符号列の差異がある程度小さ く なつて、 許 容できる範囲となつてから試し書き終了信号を出力 して 試し書きを終了する。 試し書き終了信号が出力 されてから、 入力切 り替え器 1 2 は、 波形等化器 1 1 の出力を整形器 1 3 に出力する よ う に切り替え、 正規の記録再生動作を開始する。 正規 の記録動作を開始 した後 も、 比較判別器 1 6 で記録符号 列からの再生符号列の差異が許容でき る範囲である こ と を確認する よ う に し、 許容できない場合は上述 した試 し 書き動作を開始させ、 試 し書き終了信号が出力 じた ら、 再度正規の記録動作を続ける。 ま た、 比較判別器 1 6 で 記録符号列からの再生符号列の差異を確認する場合、 入 力切り替え器 〗 2 の出力が再生ア ン プ 】 0 の信号を出力 する よ う に動作させた方が精度良 く 検出でき る。 上記動 作において、 入力切り替え器 1 2 を用いな く て も同様な 動作を実現でき る。 しか し比較判別器 1 6 での記録符号 列からの再生符号列の差異を精度良 く 検出するためには、 波形等化器 1 1 を通過 しない信号を用いた方がよい。 Next, the test writing operation will be described. The test writing data from the test writing device 3 operated by the test writing instruction signal is input to the encoder 4 and converted into a recording code string. The recording code string of the test writing data is recorded on the recording medium 1 via the same path as the recording information. In the evaluation of the test writing data, the input switch i 2 operated by the test writing command signal switches the output of the reproduction amplifier 10 to output to the shaper 13. Thus, the laser driver that drives the laser 8 so as to compare the recording code string from the encoder 4 with the reproduction code string from the discriminator 15 and cancel the difference between the reproduction code string and the recording code string. Outputs a control signal to control APC 6 to control 7. As a result of such control, the difference between the reproduced code string and the recorded code string is reduced to some extent, and after reaching an allowable range, a test write end signal is output and the test write is completed. After the test write end signal is output, the input switcher 12 switches the output of the waveform equalizer 11 to output to the shaper 13 and starts the normal recording / reproducing operation. Even after the normal recording operation is started, the discriminator 16 is used to confirm that the difference between the reproduced code string and the recorded code string is within an acceptable range. Start the write operation, and when the trial write end signal is output, continue the normal recording operation again. When the difference between the recorded code sequence and the reproduced code sequence was confirmed by the comparison discriminator 16, the output of the input switch〗 2 was operated so as to output the signal of the reproduced amplifier 0. Is more accurate. In the above operation, the same operation can be realized without using the input switch 12. However, in order to accurately detect the difference between the reproduced code string and the recorded code string in the comparison discriminator 16, it is better to use a signal that does not pass through the waveform equalizer 11.
次に、 図 2 を用いて本発明の装置の一動作例を説明す る。 装置の電源等を投入する こ とで装置を稼働させる ( 2 0 2 1 ) 。 まず、 記録媒体が装置に投入されている かを判断し ( 2 0 2 2 ) 、 記録媒体がなければそのま ま 待機状態とする。 記録媒体が装置にセ ッ 卜 されたな らば ( 2 0 2 4 ) 、 投入された記録媒体と装置の適合性を確 認するために、 試し書きの動作を行な う ( 2 0 2 5 , 2 0 2 3 ) 。 試し書きは、 記録媒体の膜厚変動や環境温度 変動によ る記録媒体に対する記録感度変動によ つて発生 する記録マー クの変動を極力低減する よ う に記録パワ ー や記録パルス等を制御し、 また、 記録を行なう装置の変 動を低減する よう に し、 記録信号と再生信号の比較判別 を行ない記録信号と再生信号の差異を装置が正常に動作 する範囲に抑圧し、 試し書き終了信号を出力 し ( 2 0 2 8 ) 装置の正規の動作 (情報の記録再生) を開始させる ( 2 0 2 9 ) 。 また、 記録信号と再生信号の比較判別を 行ない ( 2 0 2 6 ) 記録 i 号と再生信号の差異が大きい 場合は、 レーザーパワ ーを制御 ( 2 0 2 7 ) し、 再度試 し書きを正常に動作する まで行なう。 また、 記録媒体交 換時 ( 2 0 2 4 ) も上述した試し書きを実施する。 さ ら に、 装置の正常動作時も、 記録信号と再生信号を比較す る こ とで常に高精度な記録マークを記録するこ とが可能 となる。 Next, an operation example of the device of the present invention will be described with reference to FIG. The equipment is operated by turning on the power of the equipment (2021). First, it is determined whether or not a recording medium has been inserted into the apparatus (2022), and if there is no recording medium, the apparatus is kept in a standby state. When the recording medium is set in the device (2024), a test write operation is performed to confirm the compatibility between the inserted recording medium and the device (20025). , 20 23). The test writing is performed so as to minimize the fluctuation of the recording mark caused by the fluctuation of the recording sensitivity to the recording medium due to the fluctuation of the film thickness of the recording medium or the fluctuation of the environmental temperature. And control the recording pulse, etc., and reduce the fluctuation of the recording device. Compare the recording signal and the reproduction signal to determine the difference between the recording signal and the reproduction signal within the range where the device can operate normally. Suppression is performed, and a test writing end signal is output (20028), and normal operation (recording and reproduction of information) of the device is started (20029). Also, compare and discriminate the recorded signal and the reproduced signal. (200) If the difference between the recorded signal and the reproduced signal is large, control the laser power (200) and try and write again normally. Repeat until it operates. Also, when the recording medium is replaced (2024), the above-described test writing is performed. Furthermore, even during normal operation of the device, it is possible to always record a highly accurate recording mark by comparing the recording signal with the reproduction signal.
図 3 は、 本発明の記録媒体上に記録する記録方式の一 実施例と記録された記録マークの関係について説明する。 図 3 (a) に レーザパワーを制御する記録パルスを示す。 図 1 で説明した符号器 4 からの出力が E録符号列 2 0 で ある。 記録符号列 2 0 は媒体上に記録される記録マー ク に対応し、 記録波形生成器 5 によって記録符号列 2 0 の パルス部に記録パルス列 2 1 を発生させる。 記録パルス 列 2 1 は例えば第 4 0 図に示すよう に先頭パルスと 2 番 目以降のパルスの長さが異な り、 2番目以降のパルス列 のパルス長が記録マー クの最小変化長 (複数種の長さの マークを形成する際の光パルスの長さの最小変化) の中 に少な く ても 1 つのパルスが対応する様になつている。 さ らに記録マー クのパル スの最終の立ち下げ位置近傍へ の他のパルスからの熱の影響がほぼ無視でき る よ う な記 録パルス列または、 一定の熱の流入 となる よ う な記録パ ルス列'から構成されている。 FIG. 3 illustrates the relationship between an embodiment of a recording method for recording on a recording medium of the present invention and recorded marks. Figure 3 (a) shows the recording pulse for controlling the laser power. The output from the encoder 4 described with reference to FIG. The recording code sequence 20 corresponds to the recording mark recorded on the medium, and the recording waveform generator 5 generates a recording pulse sequence 21 in the pulse portion of the recording code sequence 20. For example, as shown in Fig. 40, the recording pulse train 21 has the first pulse and the second and subsequent pulses having different lengths, and the pulse length of the second and subsequent pulse trains has the minimum change length of the recording mark (multiple types). At least one pulse corresponds to the minimum change in the length of the light pulse when forming a mark of length. Furthermore, a recording pulse train in which the influence of heat from other pulses near the final falling position of the pulse of the recording mark is almost negligible, or a recording in which a constant heat inflow occurs. It consists of a 'pulse train'.
記録符号列 2 0 のギャ ッ プ部 (パルス部以外の休止期 間部) に記録補助パルス 2 2 a を発生させる。 記録補助 パルス 2 2 a は、 記録符号列 2 0 の立ち下が り 位置近傍 からある程度の期間 レーザパワーを低下させたギヤ ッ プ 部を設ける こ とによ って、 記録パルス列の最終立ち下が り位置からの熱が次の記録パルス列の先頭立ち上がり 位 置の温度に影響を与えないよ う にする。  A recording auxiliary pulse 22a is generated in the gap part (pause period part other than the pulse part) of the recording code string 20. The recording auxiliary pulse 22a has a final fall of the recording pulse train by providing a gear portion in which the laser power is reduced for a certain period from near the falling position of the recording code train 20. So that the heat from the position does not affect the temperature at the leading edge of the next recording pulse train.
図 3 ( b ) に記録パルス列 2 1 と記録補助パルス 2 2 a を用いて レーザ 1 を駆動 した場合の レ ーザパワ ーの記録 符号列に応じた変化を横軸'を時間、 縦軸を レ ーザパワ ー と して表 した。 レーザパワーの最低 レベルが再生時の再 生 ヮ— p r である。 レーザパワ ーの最高 レベルが記録 パルス列 2 1 の記録パワー P w。 中間の レべルが記録補 助パルス 2 2 a の記録 ヮ ー P a s であ る。 図 3 ( c ) に 示す様にこ のよ う な レーザパワー波形を用いて、 記録媒 体に記録マー ク 2 3 の長さ と幅を高精度に制御する。 ま た、 記録媒体上の温度が一定に保たれる こ とか ら記録マ ー ク 2 3 の幅が一定のある範囲以内で制御されるので、 再生信号 2 4 の振幅が一定になる。 再生信号 2 4 の中心 を検出 した り またはある レベルの しきい値を用いて判別 する こ とによ って、 再生符号列 2 5 が生成される。 比較判別器 1 6 の一動作例と して、 図 3 (a ) の記録符 号列 2 0 と図 3 (c) の再生符号列 2 5 のパルス部の長さ やパルスの立上り位置または立ち下がり位置等の間隔を 比較し、 評価する。 例えば、 記録パワーが大き過ぎる場 合は、 再生符号列 2 5 のパルスの長さが記録符号列 2 0 のパルスの長さ よ り長く なる。 また、 記録パワーが小さ い場合は、 逆に再生符号列 2 5 のパルスの長さが記録符 号列 2 0 のパルスの長さ よ り短く なる。 Figure 3 (b) shows the recording of the laser power when the laser 1 is driven using the recording pulse train 21 and the recording auxiliary pulse 22a.The horizontal axis' is the time on the horizontal axis, and the laser power is the vertical axis. It was expressed as-. The minimum level of the laser power is playback ヮ —pr during playback. The highest level of laser power is recorded. Recording power P w of pulse train 21. The middle level is the recording assist pulse 22 a of the recording assist pulse ヮ -P as. As shown in FIG. 3 (c), the length and width of the recording mark 23 on the recording medium are controlled with high accuracy using such a laser power waveform. In addition, since the temperature on the recording medium is kept constant, the width of the recording mark 23 is controlled within a certain range, so that the amplitude of the reproduction signal 24 becomes constant. By detecting the center of the reproduced signal 24 or making a determination using a certain level of threshold value, a reproduced code string 25 is generated. As an example of the operation of the comparison discriminator 16, the length of the pulse portion, the rising position or the rising edge of the pulse in the recording code string 20 in FIG. 3A and the reproduction code string 25 in FIG. 3C are shown. Evaluate by comparing the intervals such as the descent position. For example, when the recording power is too large, the pulse length of the reproduction code string 25 becomes longer than the pulse length of the recording code string 20. On the other hand, when the recording power is low, the pulse length of the reproduction code string 25 is shorter than the pulse length of the recording code string 20.
検出方法と しては既に、 発明者の 2名の出願した 『デ ィ ジタル信号記録再生装置』 、 特開平 4 — 6 1 0 2 8 に 詳述されている。 こ こではさ らに検出のための回路が大 き く ならない新たな方式を提案する。 テス トパターン と して用いる記録パターンと しては例えば図 5 に示すよ う な記録変調コ ー ドから決ま'る最短の記録マーク と最長の 記録マークを交互に記録する。 変調方式と して 1 一 7変 調を用いる と、 ビッ ト周期を Tと して 1. 3 3 T、 5. 3 3 Τに対応する長さが良い。 ビッ ト密度を 0. 5 6 ミ ク ロ ン /ビッ ト、 使用 した レーザ波長を 7 8 0 nm、 レ ンズの N Aを 0. 5 5 とする と最短マークの長さは 0, 7 5 ミ ク ロ ン となり、 これからの再生波形は光学.系の分解能からみて、 高調波成分は含まれず基本波のみとなる。 一般的にこ の 再生波形は、 最短マークが再生スポッ トの径よ り も小さ いのでマークの長さ と、 幅の両方の影響を受ける。  The detection method has already been described in detail in “Digital Signal Recording / Reproducing Apparatus” filed by the inventors of the present invention in Japanese Patent Application Laid-Open No. Hei 4-61028. Here, we propose a new method that does not increase the size of the detection circuit. As a recording pattern used as a test pattern, for example, a shortest recording mark and a longest recording mark determined from a recording modulation code as shown in FIG. 5 are alternately recorded. If 117 modulation is used as the modulation method, the length corresponding to 1.33T, 5.33Τ where T is the bit period is good. If the bit density is 0.56 micron / bit, the laser wavelength used is 780 nm, and the NA of the lens is 0.55, the shortest mark length is 0.75 micron. From the viewpoint of the resolution of the optical system, the reproduced waveform will be a fundamental wave without harmonic components. Generally, this playback waveform is affected by both the length and width of the mark because the shortest mark is smaller than the diameter of the playback spot.
—方、 最長マークの再生波形の信号振幅は幅の影響の みで決ま り、 信号の立上り立ち下がり間隔はマーク長さ に対応している。 第 3 図に示 した本発明のよ う な記録波 形を用いる と最長記録マー ク と最短記録マー ク の幅はほ ぼ等し く でき るので最短マー ク と最長マー ク の再生波形 の違いは長さの違いとみなせる。 On the other hand, the signal amplitude of the reproduced waveform of the longest mark is determined only by the effect of the width, and the signal rise and fall intervals are the mark length. It corresponds to. When a recording waveform such as the present invention shown in FIG. 3 is used, the width of the longest recording mark and the shortest recording mark can be made almost equal, so the difference between the reproduction waveforms of the shortest mark and the longest mark is obtained. Can be regarded as a difference in length.
マー ク の両エ ッ ジに情報を もたせる、 所謂マー ク長記 録を行い、 これをデータパルスに変換する 2 値化の方法 と して直接スラ イ スする方法を採用する とス ラ イ スの レ ベルを正確に決める必要がある。 こ の レベルはマー ク の 幅が等し く 、 最短マー ク長が光スポッ ト径の半分よ り長 いとき には最長マー ク長の振幅 レベルの半分の値に設定 すれば良いこ とが分かっている。 すなわち、 マー ク長が 光スポ ッ ト径の半分よ り も長い とマー クエ ッ ジに光スポ ッ トがある とき に、 こ のマー クエ ッ ジからの再生信号は 隣接マー ク のエ ッ ジからの影響を受けないので、 最長マ — ク長で決ま る振幅の半値でスラ イ ス した と き の再生波 形との交点がマー ク のエ ッ ジに対応する。  The so-called mark length recording, in which information is given to both edges of the mark, is performed, and a direct slicing method is adopted as a binarization method for converting this into a data pulse. Level must be determined accurately. This level has the same mark width, and if the shortest mark length is longer than half the optical spot diameter, it should be set to half the amplitude level of the longest mark length. I know it. In other words, if the mark length is longer than half of the optical spot diameter and there is an optical spot on the mark edge, the playback signal from this mark edge will be the edge of the adjacent mark. The point of intersection with the reproduced waveform when slicing at the half value of the amplitude determined by the longest mark length corresponds to the edge of the mark because it is not affected by the mark.
以上の理由によ り試し書き された信号波形からマー ク 長さ を検出するためにはまず、 ス ラ イ スの基準レ ベルを 設定する必要がある。 そのために最長マー クの繰返 しノ、。 ター ンの再生波形から基準 レベルを求める。 こ の方法と して、 最長マー ク の振幅の半値を求めるために、 マー ク からの再生信号の上包絡線と下包絡線を示す信号をェン ベロープ検出回路から作成し、 こ れ らの平均値を求めて 基準レベル とする方法が知 られている (特開昭 5 9 - 2 0 3 2 4 4 ) また、 スライス レベル設定の他の方法を以下に示す。 最長マークの繰返しパターンではマーク長とマークギヤ ッ プの長さが等し く なる よ う に記録されているが、 記録 条件がずれてマーク長とマ — クギヤ ッ プの長さのノ ラ ン スが多少ずれても最長マー ク の繰返しパター ンでは平均 値はほ とんど前述の方法で求めた値と等し く なる。 これ を求める方法と して図 6 に示すよ う な回路を用いる。 2 値化回路 6 0 1 で再生波形を可変できるスライス レベル で 2値化し、 パルスを形成する。 充放電回路 6 0 2では パルスの立上りで積分回路を起動し、 充電を行い、 立ち 下がりで放電する。 サンプルホール ド比較器 6 0 3 で次 のバルスの立上りのタイ ミ ングで積分器の値をサンプル ホール ドし、 スライス制御部 6 0 4 でサンプルホール ド 値がゼロになる よ う にスライスレベルを変化する よ う に 2値化回路 6 0 1 にフ ィ ー ドノ ッ クをかけ、 スライス レ ベルが決定した時点でこ のスラ イス レベルを A Z D変換 器 6 0 5 にてアナロ グデジタル変換してメモ リ 回路 6 0 6 に取り込み記億する。 こ の動作を最短マーク と最長マ —クについて同 じよ う に求め、 それぞれの値を V I と V 2 とする とこの差がゼロ となるよ う に記録条件を変化す る o For the above reasons, to detect the mark length from the test-written signal waveform, it is necessary to first set the slice reference level. Therefore, the longest mark is repeated. Find the reference level from the turn waveform. In this method, in order to obtain the half value of the amplitude of the longest mark, a signal indicating the upper envelope and the lower envelope of the reproduction signal from the mark is created from an envelope detection circuit, and these A method is known in which an average value is determined and used as a reference level (Japanese Patent Laid-Open No. 59-203324) Other methods for setting the slice level are described below. In the repetition pattern of the longest mark, the mark length and the mark gap length are recorded so as to be equal. However, the recording conditions are shifted and the mark length and the mark gap length are shifted. Even if there is some deviation, the average value is almost equal to the value obtained by the above-mentioned method in the longest mark repetition pattern. A circuit as shown in Fig. 6 is used to find this. The binarization circuit 610 binarizes the signal at the slice level where the playback waveform can be varied, and forms pulses. In the charge / discharge circuit 602, the integration circuit is started at the rising edge of the pulse, charged, and discharged at the falling edge. Sample hold comparator 603 samples and holds the value of the integrator at the next rising pulse, and slice controller 604 sets the slice level so that the sample hold value becomes zero. A feed knock is applied to the binarization circuit 601 so that it changes, and when the slice level is determined, this slice level is analog-to-digital converted by the AZD converter 605. And stored in the memory circuit 606. This operation is determined in the same way for the shortest mark and the longest mark, and if the respective values are VI and V2, the recording conditions are changed so that the difference becomes zero.o
〔実施例 2 〕  (Example 2)
図 4 に、 本発明の記録媒体上に記録する記録方式の他 の実施例を示す。 図 1 に示すよう に、 記録符号列 2 0 は、 記録波形生成器 5 によって、 記録符号列 2 0 のパルス部 に記録パルス列 2 1 を発生させる。 記録パルス列 2 1 は 先頭パルス と 2 番目以降のパルスの長さが異な り、 2 番 目以降のパルス列のパルス長が記録マー ク の最小変化長 の中に少な く て も 1 つのパルスが対応し、 記録マー ク の パルスの最終の立ち下げ位置近傍への他のパル ス列から の熱の影響がほぼ無視でき る よ う な記録パルス列または、 一定の熱の流入となる よ う な記録パルス列か ら構成され ている。 FIG. 4 shows another embodiment of a recording method for recording on a recording medium according to the present invention. As shown in FIG. 1, the recording code string 20 is converted into a pulse portion of the recording code string 20 by the recording waveform generator 5. , A recording pulse train 21 is generated. The recording pulse train 21 has a different length from the first pulse and the second and subsequent pulses, and the pulse length of the second and subsequent pulse trains corresponds to at least one pulse within the minimum change length of the recording mark. A recording pulse train in which the influence of heat from other pulse trains in the vicinity of the final falling position of the recording mark pulse can be almost neglected, or a recording pulse train in which a constant heat flow occurs. It is composed of
図 4 (a ) で記録符号列 2 0 のギャ ッ プ部 (パルス部以 外の休止期間部で記録マー ク の間隔に相当) に記録補助 パルス 2 2 b を発生させる。 記録補助パルス 2 2 b は、 記録符号列 2 0 の立上り位置よ り以前と記録符号列 2 0 の立ち下がり位置から所定の期間 レ ーザパワ ーを下げる 部分を設ける こ とによ って、 記録パル ス列の最終立ち下 がり位置からの熱が次の記録パルス列の先頭立ち上がり 位置の温度をほ とんど変化させないよ う にする。  In Fig. 4 (a), a recording auxiliary pulse 22b is generated in the gap of the recording code string 20 (corresponding to the interval between recording marks in the rest period other than the pulse). The recording auxiliary pulse 22b is generated by providing a portion where the laser power is lowered for a predetermined period before the rising position of the recording code string 20 and from the falling position of the recording code string 20 for a predetermined period. The heat from the last falling position of the pulse train hardly changes the temperature at the first rising position of the next recording pulse train.
図 4 ( b ) に記録パルス列 2 1 と記録補助パル ス 2 2 b を用いて レーザ 1 を駆動 し.た場合の レ ーザパワ ーの記録 符号列に応じた変化を横軸を時間、 縦軸を レ ーザパワ ー と して表 した。 レーザパワーの最低 レベルが再生時の再 生ノ、。ヮ— p r 、 記録時の高い レベルが記録パル ス列 2 1 の記録パワー P w、 記録時の低い レベルが記録補助パル ス 2 2 a の記録ノ、。ヮー P a s である。 グラ フのよ う な記 録波形を用いて、 記録媒体に記録マー ク 2 3 の長さ と幅 を高精度に制御する。 また、 記録媒体上の温度が一定に 保たれる こ と力、 ら、 記録マーク 2 3の幅の変化が一定の ある範囲以内で制御されるので、 再生信号 2 4の記録部 の振幅がほぼ一定になる。 再生信号 2 4の中心またはあ る レベルで判別する こ とによ って、 再生符号列 2 5が生 成される。 In Fig. 4 (b), when the laser 1 is driven by using the recording pulse train 21 and the recording auxiliary pulse 22b, the horizontal axis indicates the time and the vertical axis indicates the change according to the recording code string of the laser power. Expressed as laser power. The minimum level of laser power is the playback level during playback.ヮ — pr, the high level during recording is the recording power P w of the recording pulse train 21, and the low level during recording is the recording power of the recording auxiliary pulse 22 a. P-P as. Using a recording waveform like a graph, the length and width of the recording mark 23 on the recording medium are controlled with high precision. In addition, the temperature on the recording Since the change in the width of the recording mark 23 is controlled within a certain range, the amplitude of the recording portion of the reproduction signal 24 becomes substantially constant. A discrimination at the center of the reproduction signal 24 or at a certain level generates a reproduction code string 25.
以上の記録波形で制御されるディ スク面上での温度分 布を考察してみる。 記録パルスによって到達する最高到 達温度を Tm a xと し、 再生レーザパワーによる温度上 昇を特定係数 Kを用いて、 K P r と表す。 装置の環境温 度 T r と し、 記録レーザパワーによる温度上昇を特定係 数 K' を用いて K' ( P - P a s ) と表す。 さ らに、 記録パルスの照射が終了した後の温度の低下割合を表す 時間 t に対する関数を f ( t ) と し、 補助パルスが照射 されてから温度が立ち上がる割合を表す関数を g ( t ) とする と、 時間 tの原点を記録パルスの終了時点と して、 温度 T ( t ) は次のよう に表せる。  Let us consider the temperature distribution on the disk surface controlled by the above recording waveform. The maximum temperature reached by the recording pulse is represented by Tmax, and the temperature rise due to the reproduction laser power is represented by K Pr using a specific coefficient K. The environmental temperature of the apparatus is defined as T r, and the temperature rise due to the recording laser power is represented as K ′ (P−P a s) using a specific coefficient K ′. Furthermore, let f (t) be the function for time t, which represents the rate of temperature decrease after the recording pulse irradiation, and g (t) the function, which represents the rate at which the temperature rises after the auxiliary pulse is irradiated. Then, with the origin of the time t as the end point of the recording pulse, the temperature T (t) can be expressed as follows.
(Tm a - T r - K P r ) f ( t ) + T r + K P r  (Tm a-T r-K P r) f (t) + T r + K P r
+ K C P a s - P r ) g ( t ) = T ( t ) (式 1 ) 1 一 7変調での検出窓幅を Twとする と、 最短マー ク 長と最短ギャ ッ プはいずれも 2 T wとなる。 前述の熱の バラ ンスを考察するのに一番厳しい条件はマークギヤ ッ プが最短の場合である。 従ってマークギャ ッ プが終了 し て次のマーク部が始ま る までの最短時間は tが 2 T wの ときであ り、 最長時間は 8 T wとなる。 前のマークを記 録したときの熱の影響が次のマーク のパターンによ らず 影響をおよぼさないためには T ( t ) は t の 2 T wか ら 8 Twの間で一定値 Cを と る こ とが望まれる。 しか もす ベてのマー ク の幅が等し く なるためには、 こ の一定値 C と して'は次のマー ク の記録パルスによ る温度上昇 K ' X ( P w - P a s ) が加算された結果と して到達する最高 到達温度が前のマー クで到達 した最高到達温度 T m a x に一致する こ とが必要な条件となる。 また一定値 C と し て、 少な く と も t の 2 T wから 8 T wの間で熱のノくラ ン スがとれた結果と して最終的に到達する温度である こ と が後続するマー ク に前のマー クが影響をおよぼさないた めに必要である。 こ の温度は式 1 において + KCP as-P r) g (t) = T (t) (Equation 1) Assuming that the detection window width at 17 modulation is Tw, the shortest mark length and the shortest gap are both 2 T w Becomes The most severe condition for considering the above-mentioned thermal balance is when the mark gear is the shortest. Therefore, the shortest time from the end of the mark gap to the start of the next mark portion is when t is 2 Tw, and the longest time is 8 Tw. The effect of heat when recording the previous mark is independent of the pattern of the next mark In order to have no effect, it is desirable that T (t) take a constant value C between 2 Tw and 8 Tw of t. However, in order for the widths of all marks to be equal, as this constant value C, 'the temperature rise due to the recording pulse of the next mark K' X (Pw-P as ) Is the required condition that the maximum temperature reached as a result of addition of the maximum temperature matches the maximum temperature Tmax reached in the previous mark. In addition, as the constant value C, the temperature that finally reaches as a result of attaining the heat balance at least between 2 Tw and 8 Tw of t This is necessary so that the previous mark does not affect the existing mark. This temperature is
f ( t ) → 0 g ( t ) → 1 (式 2 ) 式 2 の極限と して求め られる。 結局 Cは  f (t) → 0 g (t) → 1 (Equation 2) It is obtained as the limit of Eq. After all C
C = T m a x - K ' ( P w— P a s )  C = T max-K '(P w— P a s)
= T r + K P r + K ( P a s - P r ) (式 3 ) となる。  = Tr + K Pr + K (Pas-Pr) (Equation 3).
T ( t ) と C との誤差を Ε ( t ) とする と  If the error between T (t) and C is Ε (t)
E ( 2 T w ) = K ' ( P w— P a s ) f ( 2 T w ) - ( l - f ( 2 Tw) - g ( 2 T w) ) X  E (2 T w) = K '(P w — P a s) f (2 T w)-(l-f (2 Tw)-g (2 T w)) X
K ( P a s - P r ) (式 4 ) 熱の流れを決める要素と しては熱源の変化量を考えた 方が判 り易いこ とから、 記録パルスのパワ ー変化を P w ' 、 記録補助パルスのパワ ー変化を P a s ' とする と  K (P as -P r) (Equation 4) Since it is easier to understand the amount of change in the heat source as an element that determines the heat flow, the power change of the recording pulse is represented by P w ' If the power change of the auxiliary pulse is P as'
P w' = P w - P a s P a s ' = P a s - P r (式 5 ) と書き替えられる。 する と式 4 は P w '= P w-P as Rewritten as P as' = P as-P r (Equation 5). Then Equation 4 becomes
E ( 2 T w) = K ' P w' f ( 2 T ) 一 ( 1 - f ( 2 T ) - g ( 2 T ) ) Κ Ρ a s ' (式 6 ) のよ う になる。 この式をみる と、 右辺の第 1 項は前のマ ークの記録パルスによる影響であ り、 第 2項が記録補助 パルスによる影響である。 記録補助パルスを遮断する こ とは第 2項の係数を制御する こ とであ り、 記録補助パル スの遮断がなければ、 こ の項は定常的にゼロ とな り、 原 理的に記録パルスの影響を無く すこ とはできない。 式 6 から分かる こ とは前のマークの記録パルスの影響を無く すために E ( 2 T w) がマークエ ッ ジのシフ ト にほ とん ど影響がないような温度誤差の中にな く てはな らない。 これを満足させるためには P w' 、 P a s ' 、 f ( 2 T w) 、 g ( 2 T w) の組合せを考えな く てはな らない。 —方、 P w' 、 P a s ' の組合せは別の観点から決めら れてしま う。 記録補助パルスと記録パルス と環境温度の 定常時の関係を示す式 3から  E (2 T w) = K 'P w' f (2 T) one (1-f (2 T)-g (2 T)) Κ Ρ a s' (Equation 6). According to this equation, the first term on the right side is the effect of the recording pulse of the previous mark, and the second term is the effect of the recording auxiliary pulse. To cut off the recording auxiliary pulse means to control the coefficient of the second term.If the recording auxiliary pulse is not cut off, this term will be constantly zero, and the recording will be performed in principle. The effect of the pulse cannot be eliminated. From Equation 6, it can be seen that to eliminate the effect of the recording pulse of the previous mark, E (2Tw) should not be in a temperature error where the shift of the mark edge has almost no effect. must not. In order to satisfy this, we must consider the combination of Pw ', Pass', f (2Tw), and g (2Tw). —On the other hand, the combination of P w 'and P a s' is determined from another point of view. Equation 3 shows the relationship between the recording auxiliary pulse, the recording pulse, and the ambient temperature
Tm a x = T r + K P r +K P a s ' + K ' P '  Tmax = Tr + KPr + KPas '+ K'P'
(式 7 ) 式 7が求められる。 こ こで T m a Xはスポッ 卜形状と線 速度と媒体の熱伝導特性がきまる とマークの幅が決ま り、 さ らに前述の記録パルス波形が決まる とマーク長さが決 まるため、 マークの幅と長さを一定に制御するためには T m a Xを一定に抑えな く てはな らない、 すなわち、 式 7 の右辺が一定でな く てはな らない。 する と環境温度、 再生ノ ヮ一が決ま る と p w ' 、 P a s ' の和は一定でな く てはな らない。 こ こ で Kを決める要因はスポ ッ ト形状 と線速度と媒体の熱伝導特性であ り、 K ' はそれら と記 録パルス波形である。 式 6 から誤差を小さ く するために は、 f ( t ) と ( t ) の関数が温度の減少、 増加の割 合を表す関数である こ とから 1 と 0 の間の値 しかと らな いこ とを考慮する と K P a s ' と K ' P ' はほぼ等 し い方が f ( t ) と g ( t ) に対する許容幅が広 く なつて 都合が良い。 ί ( t ) と g ( t ) は媒体の熱の伝導特性 によ って決ま り、 前述のごと く f ( t ) は線速度と熱の 伝導速度の関係でき ま る。 また g ( t ) は膜の熱容量と 線速度で決ま る。 今仮に、 温度の減少、 増加の割合が時 間 t の指数関数と し、 時定数をそれぞれ t a u l , t a u 2、 補助光遮断時間を t 0 とする。 f ( t ) = e x p i - X / \ a u \ ) (式 8 ) g ( t ) = 1 - e x p (一 ( t - t 0 ) / t a u 2 ) t ≥ t 0 ; g ( t ) = 0 t < t 0 (Equation 7) Equation 7 is obtained. Here, TmaX determines the mark width when the spot shape, linear velocity, and thermal conductivity of the medium are determined, and also determines the mark length when the above-mentioned recording pulse waveform is determined. In order to keep the width and length constant, T max must be kept constant. The right side of 7 must be constant. Then, once the environmental temperature and regeneration level are determined, the sum of pw 'and Pas' must be constant. The factors that determine K here are the spot shape, the linear velocity, and the heat transfer characteristics of the medium, and K 'is these and the recording pulse waveform. From Equation 6, in order to reduce the error, the function of f (t) and (t) is a function that expresses the rate of decrease and increase in temperature, so that only a value between 1 and 0 can be obtained. Considering the fact, it is convenient for KP as' and K 'P' to be almost equal because the tolerances for f (t) and g (t) become wider. ί (t) and g (t) are determined by the heat conduction characteristics of the medium, and as described above, f (t) can be related to the linear velocity and the heat conduction velocity. G (t) is determined by the heat capacity and linear velocity of the film. Suppose that the rate of temperature decrease and increase is an exponential function of time t, the time constants are taul and tau2, and the auxiliary light cutoff time is t0. f (t) = expi-X / \ au \) (Equation 8) g (t) = 1-exp (one (t-t 0) / tau 2) t ≥ t 0; g (t) = 0 t < t 0
(式 9 ) 後述する よ う に記録波形は記録ク ロ ッ ク に同期 している こ とが回路の実現上非常に都合が良い。 そ こ で時間 t を 1 一 7変調の検出窓幅 Twを単位に して表すこ とにする K P a s ' を 8 0度、 K ' P w ' を 1 0 0度、 遮断時間 を Tw、 T ( 2 T w) の温度誤差を ± 1 0度以内とする と、 この条件を満足する t a u 1 と t a υ 2の組合せは 図 7のよ う になる。 この数値は光磁気記録膜、 特開昭 6 1 一 9 0 3 4 8 に述べた媒体を用い、 線速度 9. 4 m/s 、 T wが 4 0 nsの時にエッ ジシフ トが T wの 1 0 %以内に なる条件である。 四角の領域は減衰増加の割合が早いの ですぐに定常状態に達する領域を表している。 遮断によ り熱のバラ ンスがとれているのが斜線の領域であ り、 前 述の P w' 、 P a s ' 、 f ( 2 T w) . g ( 2 T ) の 4つの組合せによって決まる領域である。 4つの組合せ のそれぞれの要素が変動しても温度誤差を小さ く するた めには領域と して四角の領域を選択する こ とが望ま しい。 その中でも t a u l を 0. 4以下にする と K' P w' の影 響が大幅に抑えられるので遮断時間と t a u 2に対する 許容範囲が広がって来る。 記録方式と してマーク長記録 を用い、 M C AV記録を行う と半径位置によって Twの 絶対時間は変化するが、 遮断時間、 時定数を Twで規格 化してお く とこれまでの結果はすべて成立する。 (Equation 9) As described later, it is very convenient for the circuit realization that the recording waveform is synchronized with the recording clock. Then, the time t is expressed in the unit of the detection window width Tw of 17 modulation.KP as 'is 80 degrees, K'Pw' is 100 degrees, and the cutoff time. Assuming that the temperature error of Tw and T (2Tw) is within ± 10 degrees, the combination of tau 1 and ta υ 2 that satisfies this condition is as shown in Figure 7. This value is obtained by using a magneto-optical recording film and the medium described in JP-A-6-19004, and when the linear velocity is 9.4 m / s and Tw is 40 ns, the edge shift is Tw. This condition is within 10%. The square region indicates the region where the steady state is reached immediately because the rate of attenuation increase is fast. The area where the heat is balanced by the cutoff is the shaded area, which is determined by the four combinations of Pw ', Pas', f (2Tw) and g (2T) described above. Area. Even if each element of the four combinations fluctuates, it is desirable to select a square region as the region in order to reduce the temperature error. In particular, if taul is set to 0.4 or less, the effect of K'Pw 'is greatly suppressed, and the allowable range for cutoff time and tau2 is expanded. When the mark length recording is used as the recording method and the MC AV recording is performed, the absolute time of Tw changes depending on the radial position, but all the results so far can be satisfied if the cutoff time and time constant are standardized by Tw I do.
〔実施例 3〕  (Example 3)
次に記録パルスの別の実施例について述べる。 これま での実施例では図 3、 4において 1 — 7変調の最短マー クを記録するために、 時間幅 T wの先頭パルス と後続す る記録ク ロ ッ クバルス 1つの組合せを使用 している。 こ こで記録ク ロ ッ クは一般的には T w周期の ものが発振さ れるのでこれを使用するのが回路の都合上便利である。 実際に も転送 レ ー 卜が 4 M B Z s 近 く になる と倍周期の ク ロ ッ クを作成する こ とは困難となる。 し力、 し、 記録パ ルスに対応した ヮ ー レベル力く 1 つでこ の ルスの組合 せをも ちいて最短マー ク を記録 し、 かつ後に続 く 記録ク ロ ッ クパルス 1 つ毎にマー ク長さ を T wづっ増加させる ためには、 記録媒体の熱特性が限 られる。 前述の時定数 でいう とかな り大きな値の場合である。 Next, another embodiment of the recording pulse will be described. In the embodiments so far, in order to record the shortest mark of 1 to 7 modulation in FIGS. 3 and 4, a combination of the first pulse of the time width Tw and one subsequent recording clock pulse is used. . Here, the recording clock generally oscillates with a Tw period, and it is convenient to use this for the convenience of the circuit. Actually, when the transfer rate is close to 4 MBZ s, it is difficult to create a clock with a double period.ヮ し た ル 1 ヮ ヮ ヮ ヮ ヮ ヮ ヮ ヮ ヮ ヮ ヮ ヮ ル ヮ ル ル ル ル ル ル ル ル ル ル ル ル 短 短 短 短In order to increase the length of the recording medium by Tw, the thermal characteristics of the recording medium are limited. This is a case where the time constant is a relatively large value.
種々 の熱特性の媒体でも対応でき る波形と しては図 8 のよ う に最短マー ク を長さ a の記録パワー変化量 W 1 の パルスで記録する。 P a s の レベルの記録補助パルス と こ の記録パルスの組合せで所望の幅と、 1. 3 3 Tの長さ を持った最短マー ク を記録でき る。 次に T w毎に続 く マ — ク を記録する と き には前述の記録ク ロ ッ ク を用いて、 記録パワー変化量 W 2 と して記録する。 マー ク の幅をマ ー ク長さ によ らず一定にするために、 各記録ク ロ ッ ク ご との最高到達温度を一定にする。 図 8 においてタ イ ミ ン グ t 2 から t 6 までの各点における温度を求めてみる。 パルス照射によ り熱の増加を表す関数と して h ( t ) パルス停止によ り熱の減少を表す関数を 1 ( t ) とする と記録パルスによる熱の増加は各タ イ ミ ン グごとに図 9 に示す関係 となる。 簡単化のために P Q , R と置換 し、 t 2 と t 3 での温度が等 し く なる よ う に W 2 の条件を求 める と、 図 9 に示す関係 となる。  As a waveform that can be used with media with various thermal characteristics, as shown in Fig. 8, the shortest mark is recorded by a pulse with a recording power change W1 of length a. The shortest mark having a desired width and a length of 1.33T can be recorded by a combination of the recording auxiliary pulse of the P as level and this recording pulse. Next, when recording the mark that follows every Tw, the recording power is recorded as the recording power variation W2 using the above-described recording clock. In order to make the mark width constant regardless of the mark length, the maximum temperature reached for each recording clock is made constant. In Fig. 8, the temperature at each point from timing t2 to t6 is determined. Assuming that the function representing the increase in heat due to the pulse irradiation is h (t) and the function representing the decrease in heat due to the stop of the pulse is 1 (t), the increase in heat due to the recording pulse is The relationship shown in Fig. 9 for each case. For simplicity, substitution with PQ and R and the condition of W2 so that the temperatures at t2 and t3 become equal give the relationship shown in FIG.
W 2 = R ( 1 - P ) W 1 / Q (式 1 0 ) このよ う にする と t 4 から t 6 の温度もほ とんど等 し く なる。 W 2 = R (1-P) W 1 / Q (Equation 10) In this way, the temperatures from t 4 to t 6 are almost equal. Become.
a のパルス幅は 2 T wのパルス幅から遅延線等を用い て作成する。 2つの記録パルスのパワー レベルを用いる こ とによ り各パルスごとの最高到達温度を等し く でき る。 ただし、 この方法の欠点は式 1 0 から明らかなよ う に 1 つの媒体が決まっても記録パルス幅 a , d の変動、 およ びレーザ駆動回路の立上り特性の変化等記録装置の変動 がある Q と Rが変化するため各タイ ミ ングごとの温度が 異なってしまい、 修正する こ とができない。 しかし、 図 9 のよう に記録ク ロ ッ クをそのま ま使用 し、 最短マーク を記録するパワーと後続パルスのパワーをそれぞれ W 1 、 W 2 と変えて、 P a s レベルの記録捕助パルス と 2 つの 記録ク ロ ッ クで 1. 3 3 Tの長さの最短マークを形成する パワー W 1 を求める。 こ こ-でタイ ミ ング t 1 力、ら t 5 で の到達温度をも とめて、 t 2 と t 3 での温度を等し く す る条件から W 2 を求める と、  The pulse width of a is created from a pulse width of 2 Tw using a delay line or the like. By using the power levels of the two recording pulses, the maximum attained temperature of each pulse can be made equal. However, the drawback of this method is that, as is clear from Equation 10, even if one medium is determined, there are fluctuations in the recording pulse width a and d, and fluctuations in the recording device such as changes in the rise characteristics of the laser drive circuit. Since Q and R change, the temperature at each timing is different and cannot be corrected. However, as shown in Fig. 9, the recording clock is used as it is, and the power for recording the shortest mark and the power of the succeeding pulse are changed to W1 and W2, respectively, and the recording assistance pulse at the Ps level is used. The power W 1 that forms the shortest mark with a length of 1.33 T with the two recording clocks is determined. Based on the timing t1 force, the temperature reached at t5, and the temperature at t2 and t3, W2 is calculated from
W 2 = ( 1 - P P ) W 1 (式 1 1 ) 式 1 1 のよ う になる。 この場合には媒体の特性が変わら なければ、 記録パルス幅の変動、 およびレーザ駆動回路 の立上り特性の変化等記録装置の変動による影響は各タ ィ ミ ングでの温度変化を一様な割合で変化させるため、 本発明のため し書きによ り これの影響をな く すこ とがで きる。 すなわち、 マーク長によ らず一定の温度変化であ るため記録補助パルスを変える こ とによって補正可能で ある。 図 8 で記録ク ロ ッ クに同期させるためには a と し ては T wに設定すれば良い。 ただ し、 こ の時には幅と長 さを合わせる と幅の方を制御する こ とが難 し く なる。 試し書き動作と各種変動要因の関係を式 7 を用いて説 明する。 環境温度変動は T r 1 か ら T r 2 に変化した と き、 補助光の変化 P a s ' を変化させて T max を一定に 保つよ う にする。 記録媒体の膜厚変動や記録感度変動に ついては記録の温度が変化する こ とになるが、 実効的に T ma 力、' T max 1 力、ら T max 2 に変化する と考えて も良 いので補助光の変化 P a s ' を変化させてこ の変化量を 補う よ う に制御する こ とになる。 記録パワ ー変動は P r P a s ' P w ' が変化する こ とになるがこ れ も補助光の 変化 P a s ' を変化させて T max を一定にでき る。 こ の ために も K P a s ' は K ' P w ' と同 じ程度の値でな く てはな らない。 記録再生装置によ る記録特性変動は K 及び K ' の変動になるがこれ も補助光の変化 P a s ' を 変化させる こ とによ り T max を一定にでき る。 W 2 = (1-PP) W 1 (Equation 11) Equation 11 is obtained. In this case, if the characteristics of the medium do not change, the effects of fluctuations in the recording device, such as fluctuations in the recording pulse width and changes in the rise characteristics of the laser drive circuit, are caused by a uniform change in temperature at each timing. The effect of this can be eliminated by the writing for the present invention because it is changed. That is, since the temperature change is constant regardless of the mark length, it can be corrected by changing the recording auxiliary pulse. In Fig. 8, to synchronize with the recording clock, a You can set it to Tw. However, in this case, if the width and length are matched, it becomes more difficult to control the width. Equation 7 explains the relationship between the test writing operation and various variables. When the environmental temperature changes from Tr 1 to Tr 2, the change of the auxiliary light P as ′ is changed to keep T max constant. The temperature of recording changes when the film thickness of the recording medium changes or the recording sensitivity changes, but it can be considered that the Tma force, the 'Tmax1 force', and the like change to Tmax2 effectively. Therefore, the variation of the auxiliary light, P as', is controlled to compensate for this variation. The fluctuation of the recording power results in the change of PrP as' P w ', but also in this case, the change of the auxiliary light, P as', can keep T max constant. For this reason, KP as' must be about the same as K 'P w'. Variations in the recording characteristics due to the recording / reproducing device are variations in K and K ′, which can also be kept constant by changing the variation P as ′ of the auxiliary light.
〔実施例 4 〕  (Example 4)
さ らに別の実施例を示す。 用いた記録パルスの形状を 示す模式図を図 1 0 に示す。 記録パワ ーはディ ス ク媒体 の回転が 3 0 0 0 rpm のディ ス ク最内周位置で記録領域 の先頭の ルス と 2 番目の ルスの ヮ一を 6. 5 mWと し、 そ して 3 番目以降のパルスのノ ヮ 一を 6 mWと した。 ま た、 プ リ ヒー ト のパヮ 一は 2, 3 mW、 パルス幅及びギヤ ッ プ間 隔はいずれ も 2 0 n sである。 こ の間隔は、 記録ク ロ ッ ク から設定される。 また、 本実施例のディ ス ク媒体には先 頭パルスを高く した場合を示したが、 これは記録媒体の 構造によ り、 低く する場合もある。 図 1 0 の光パルスを 用いてディ スク に記録を行った。 そ して、 記録パルス と 記録パルスの間のパワーの低い部分を記録パルスの直後 に設け、 その期間は 4 0 nsと した。 これらの値は光磁気 ディ スクの媒体構造によって決ま る ものであ り、 試験的 に記録する こ とによ りパラ メ ータを決定するなどして媒 体間の互換性を確保できる。 Another embodiment will be described. FIG. 10 is a schematic diagram showing the shape of the recording pulse used. The recording power is 6.5 mW at the innermost position of the disk where the rotation of the disk medium is 300 rpm, and the difference between the first and second lures of the recording area is 6.5 mW. The noise of the third and subsequent pulses was 6 mW. The power of the preheat is a few mW, and the pulse width and the gap interval are all 20 ns. This interval is set from the recording clock. In addition, the disk medium of this embodiment is Although the case where the head pulse is increased is shown, this may be reduced depending on the structure of the recording medium. Recording was performed on the disk using the optical pulse in Fig. 10. Then, a low-power portion between the recording pulses was provided immediately after the recording pulse, and the period was set to 40 ns. These values are determined by the medium structure of the magneto-optical disc, and the compatibility between the media can be secured by determining the parameters by performing a trial recording.
( 1, 7 ) R L L変調方式を用いて最長の 5· 3 3 Tのマ ーク後に最短の 1. 3 3 Tのマークを記録したときの再生 信号波形と記録磁区の模式図を図 I 2 に示す。 こ こで、 形成した磁区幅は 0. 7 / m 、 磁区長は最短で 0. 7 5 m 、 最長で 3. 0 m である。 こ の図よ り最短磁区も最長の磁 区も互いに影響を受ける こ とな く 、 磁区幅はパター ンの 長さに依存せず一定であ り、 また長さ も最短の 1. 3 3 T を 5. 3 3 Tの後に 3個記録した場合でも、 いずれの 1 . 3 3 Tの磁区も同一の長さである こ とから、 前の磁区から 熱の影響を受けていないこ とがわかる。  (1, 7) Fig. I 2 shows a schematic diagram of the reproduced signal waveform and recorded magnetic domain when the shortest 1.33T mark is recorded after the longest 5.33T mark using the RLL modulation method. Shown in Here, the formed magnetic domain width is 0.7 / m, and the magnetic domain length is 0.75 m at the shortest and 3.0 m at the longest. From this figure, neither the shortest domain nor the longest domain is affected by each other, the domain width is constant independent of the pattern length, and the shortest 1.33 T Is recorded after 5.33 T, all 1.33 T magnetic domains have the same length, indicating that the previous magnetic domain is not affected by heat. .
( 1 , 7 ) 変調に基づく 各種のパター ンを記録したと きの記録信号のパルス幅と再生信号の幅の差を図 1 3 に 示す。 この図よ り、 形成された磁区長に依存しないで、 その時のエ ツ ジシフ トは検出窓幅の 5 %以下であった。  Figure 13 shows the difference between the pulse width of the recording signal and the width of the reproduction signal when recording various patterns based on (1,7) modulation. According to this figure, the edge shift at that time was 5% or less of the detection window width without depending on the formed magnetic domain length.
また、 記録 Z再生/消去を緩返したとこ ろ、 5 X 1 0 7 面の繰返し後でもキヤ リ ァ レベル及びノ ィ ズレベルの変 化は見られなかつた。 パルス形状と して図 1 0 以外に も図 1 1 と図 1 4 に示 すいずれの形状の波形を用いて も同様の効果が得られた。 こ こ で、 'ルス及びそのギャ ッ プ間隔はいずれ も 2 O ns と した。 先頭のパルス幅は、 。ター ン I では 7. 5 mWが適 当であ り、 また、 。ター ン ί Iでは 6. 7 mWが最適であ っ た。 しか し、 これらの値は用いる媒体の熱構造によ って選ば れる ものである。 In addition, Toko furnace returns slow the record Z playback / erase, 5 X 1 0 even after the seventh surface repetition of Canon Li § level and changes in the Roh I Zureberu is has failed seen. Similar effects were obtained by using any of the pulse shapes shown in FIGS. 11 and 14 other than those shown in FIG. Here, the pulse and the gap interval were both set to 2 O ns. The first pulse width is. For Turn I, 7.5 mW is appropriate and. For Turn ί I, 6.7 mW was optimal. However, these values are selected depending on the thermal structure of the medium used.
ディ ス ク構造と してあたたま り易い、 P C基板 Z SiNx ( 7 5 nm) TbFeCoNb ( 2 5 nm) / SiNx ( 2 0 nm) /  PC substrate Z SiNx (75 nm) TbFeCoNb (25 nm) / SiNx (20 nm) /
AI97T13 ( 5 0 nm) なる 4 層構造のディ ス ク の場合は、 逆に先頭パルスのパワ ーが 5. 5 mWと低 く 、 2 番目以降の 、。ヮ一が 5. 9 5 mWと高 く 設定する こ とによ り、 シ フ ト を 土 2 nm以下に抑制する こ とができた。  On the other hand, in the case of a disk with a four-layer structure of AI97T13 (50 nm), the power of the first pulse is as low as 5.5 mW, and the power of the second and subsequent layers is low. By setting as high as 5.95 mW, the shift could be suppressed to 2 nm or less.
〔実施例 5 〕  (Example 5)
さ らに別の実施例を示す。 用いた記録パルスの形状を 示す模式図を図 1 5 に示す。 記録パワ ーはディ ス ク媒体 の回転 3 0 0 0 rpm の時その最内周位置で先頭パ几 スの ヮ一は 6. 7 mWと してその後のパワーは 6 mWと した。 ま た、 プ リ ヒ ー ト のパヮ一は 2. 3 mW、 先頭のパ儿ス幅は 5 5 n sと して、 その後のパルス幅及びギャ ッ プ間隔はいず れも 2 0 nsである。 こ のパルスを用いてディ ス ク に記録 ilつた  Another embodiment will be described. A schematic diagram showing the shape of the recording pulse used is shown in FIG. The recording power was 6.7 mW at the innermost position at the rotation of the disk medium at 300 rpm, and the subsequent power was 6 mW. The preheat power is 2.3 mW, the leading pulse width is 55 ns, and the subsequent pulse width and gap interval are both 20 ns. The pulse was recorded on the disk using this pulse.
( 1, 7 ) R L L変調方式を用いて最長の 5. 3 3 Tの後 に最短の 1. 3 3 Tを記録 した と きの再生信号波形 と記録 磁区の模式図を図 1 6 に示す。 こ こ で、 形成 した磁区幅 は 0. 、 磁区長は最短で 0. 7 5 〃m 、 最長で 3. 0 Π1 である。 こ の図よ り最短磁区も最長の磁区も互いに 影響を受ける こ とな く 、 磁区幅はパター ンの長さ に依存 せず一定であ り、 また長さ も最短の 1. 3 3 Τを 5. 3 3 Τ の後に 3個記録した場合でも、 いずれの 1. 3 3 Τの磁区 も同一の長さである こ とから、 前の磁区から熱の影響を 受けていないこ とがわかる。 Figure 16 shows a schematic diagram of the reproduced signal waveform and the recorded magnetic domains when the shortest 1.33T is recorded after the longest 5.33T using the (1,7) RLL modulation method. Here, the formed magnetic domain width Is 0, the minimum domain length is 0.75 〃m and the maximum is 3.0 Π1. From this figure, neither the shortest domain nor the longest domain is affected by each other, the domain width is constant independent of the pattern length, and the shortest is 1.33 mm. Even when three pieces of data are recorded after 5.33 か ら, all the 1.33 1. magnetic domains have the same length, indicating that the previous magnetic domain has not been affected by heat.
( 1, 7 ) 変調に基づく 各種のパターンを記録したとき の記録信号のパルス幅と再生信号の幅の差を図 1 7 に示 す。 この図よ り、 形成された磁区長に依存しないで、 そ の時のエッ ジシフ トは検出窓幅の 5 %以下であった。  Figure 17 shows the difference between the pulse width of the recording signal and the width of the reproduction signal when recording various patterns based on (1, 7) modulation. According to this figure, the edge shift at that time was 5% or less of the detection window width without depending on the formed magnetic domain length.
また、 記録 再生 Ζ消去を繰返したとこ ろ、 5 X 1 07 回の籙返し後でもキヤ リ ァ レベル及びノ ィズレベルの変 化は見られなかった。 In addition, Toko filtrate was repeated recording and reproducing Ζ erasing, 5 X 1 0 7 times of籙返and even after Canon changes in the Li § level and Roh Izureberu was observed.
パルス形状と して図 1 5以外にも図 1 8 に示すいずれ の形状の波形を用いても同様の効果が得られる。 光磁気 記録媒体があたたま り易 く 、 さめ易い構造の場合、 先頭 パルスをプリ ヒー ト と同時に記録と両方の性質をもたせ るために、 後続のパルスよ りパルス幅を長 く する必要が ある。 こ こで、 パルス幅は、 記録ク ロ ッ クの整数倍も し く は整数分の一とする こ とが望ま しい。  Similar effects can be obtained by using any of the waveforms shown in FIG. 18 in addition to FIG. 15 as the pulse shape. If the magneto-optical recording medium has a structure that is easy to warm and easy to write, it is necessary to make the first pulse longer at the same time as the pre-heat at the same time as the pre-heat, so that the pulse width is longer than the subsequent pulse. is there. Here, it is desirable that the pulse width be an integral multiple of the recording clock or a fraction thereof.
本発明の試し書きを実現するための レーザ駆動回路の 具体的な構成を図 1 9 に示す。 図 1 9 (a) に示す各記録 波形のパワー P w l, P 2 , P a s , P r に対して図 1 9 (b) に示す駆動回路でそれぞれ電流源、 I w l , I w 2 , l a s , I r を レ ーザの電流光変換効率、 光へ ッ ドの効率を考慮して レーザ光が所定のパワーになる よ う に設定してお く 。 こ こ で I a s だけは試 し書き によ り 制御するので可変でき る様に してお く 。 FIG. 19 shows a specific configuration of a laser drive circuit for realizing test writing according to the present invention. For the powers P wl, P 2, P as, and P r of the recording waveforms shown in FIG. 19 (a), the driving circuit shown in FIG. I w 2, las, and Ir are set so that the laser light has a predetermined power in consideration of the current-to-light conversion efficiency of the laser and the efficiency of the light head. Since only Ias is controlled by trial writing, it should be variable.
各電流を レ ーザに流すか流さないかをカ レ ン ト スイ ツ チ C S に よ っ て各記録 'ルスに よ っ て制御する。 図 1 9 ( c ) に示すよ う にこ のカ レ ン ト スィ ッ チ回路では +駆動 で応答性をあげるために P n p タイ プを使用せず、 n p n タイ プでスィ ツ チ ン グするため特殊な駆動回路構成と なっている。 すなわち、 図 1 9 ( d ) に示す電流源 I は最 大電流を定常的に流しておき、 カ レ ン ト スィ ッ チ C S に よ ってカ レ ン ト スィ ッ チ側にある電流源 I r , I w 1 , I w 2 , I a s の電流値分のみ レーザに流れる電流を減 少させる構成とな っている。 従って、 カ レ ン ト ス ィ ッ チ を制御する ルス P r P w 1 , P w 2 P a s は光記 録波形とは極性が反転した も のでな く てはな らない。 本 発明の試し書きではデータの区切れ目 を示すセ ク タ ごと に前述の記録パター ンを記録補助パルスの大き さ を変化 させて 1 ト ラ ッ ク記録する。 セ ク タ数は 5. 2 5 イ ン チの 径で線密度が 0. 5 6 ミ ク ロ ン /ビッ ト程度とする と M C A V記録方式では内周でも 3 2 個はある。 例えば一回の 試し書きでは補助光の変化量を 5 段階変化させる。 初め には大き く 5 段階変化させる。 これは最初にディ ス ク を ローデイ ン グした時、 及びディ ス クが替え られた と き に 行う。 次に大き く 変化 した どの変化量の間にあるかを判 定して、 その間をさ らに分割して 5 段階に変化させる。 試し書きの手順を図 2 0 に示す。 試し書きの頻度と し ては一番厳しい条件は装置の電源を入れたときから熱の バラ ンスがとれる温度に達する までである。 回路の発熱 条件等にもよるが最大でも 5 分間で 1 0 °C程度の温度上 昇になっている。 初期に設定すれば、 5 分間ごとでも十 分に制御できる。 - 図 2 0 において、 光ディ スクを交換した時、 装置の電 源を入れたとき、 あるいは装置動作中の適宜の時点にお いて試し書き動作を行う ( 2 0 0 1 ) 。 次に媒体上の試 し書きを行う領域を選択する ( 2 0 0 2 ) 。 試し書き領 域は、 例えば光ディ スクの外周、 内周、 または中周の ト ラ ッ ク に専甩領域 (試し書き ト ラ ッ ク領域) を設定する。 既に、 テス ト領域に試し書きなどなんらかの記録がして ある場合に備えて、 テス ト領域の 1 ト ラ ッ クを消去する ( 2 0 0 4 ) 。 ついで、 こ の ト ラ ッ ク に試し書きテス ト パターンを記録する。 テス トパター ンは例えば図 5 、 図 2 5 〖こ示すパター ンを、 図 3 、 図 4 、 図 8 、 図 1 0 、 図 1 1 、 図 1 4 、 図 1 5、 または図 1 8 等に示す記録パル ス列で記録する ものが用いられる。 この実施例では図 5 のパターンを用いて、 セク タごとに記録捕助パルスのパ ヮー P a s を変えて ト ラ ッ ク 1 周分の記録を行った ( 2 0 0 5〜 2 0 0 9 ) 。 Whether each current flows to the laser or not is controlled by the current switch CS by each recording pulse. As shown in Fig. 19 (c), this current switch circuit does not use the P np type to increase the response with + drive, but switches using the npn type. Therefore, it has a special drive circuit configuration. In other words, the current source I shown in Fig. 19 (d) constantly supplies the maximum current, and the current source I on the current switch side is set by the current switch CS. The configuration is such that the current flowing to the laser is reduced only by the current values of r, Iw1, Iw2, and Ias. Therefore, the pulses PrPw1 and Pw2Pas that control the current switch must have polarities inverted from those of the optical recording waveform. In the test writing of the present invention, the above-described recording pattern is recorded in one track by changing the size of the recording auxiliary pulse for each sector indicating a data break. If the number of sectors is 5.25 inches in diameter and the line density is about 0.56 micron / bit, there are 32 in the MCAV recording system even on the inner circumference. For example, in one trial writing, the amount of change of the auxiliary light is changed in five steps. At first, it is changed by 5 steps. This is done the first time the disk is loaded and when the disk is replaced. Next, it is determined which change amount has changed greatly. Then, the interval is further divided and changed in 5 steps. Figure 20 shows the test writing procedure. The most severe condition for the frequency of trial writing is from when the device is turned on to when the temperature reaches a temperature at which the heat can be balanced. Although it depends on the heat generation conditions of the circuit, the temperature rises by about 10 ° C in 5 minutes at the maximum. If set at the beginning, it can be controlled well every 5 minutes. -In Fig. 20, a test write operation is performed when the optical disk is replaced, when the device is turned on, or at an appropriate time during the operation of the device (2001). Next, an area for trial writing on the medium is selected (2002). For the test writing area, for example, a dedicated area (test writing track area) is set for the outer, inner, or middle track of the optical disc. One track in the test area is erased (2004) in case some kind of recording such as trial writing has already been made in the test area. Next, a test writing test pattern is recorded on this track. The test pattern is shown in, for example, FIG. 5, FIG. 25, and FIG. 3, FIG. 4, FIG. 8, FIG. 10, FIG. 11, FIG. 11, FIG. 14, FIG. What is recorded in the recording pulse train is used. In this embodiment, recording of one round of the track was performed by changing the power Pas of the recording assist pulse for each sector by using the pattern of FIG. 5 (2005-200). ).
次に、 記録したテス トパターンを再生し ( 2 0 1 0、 2 0 1 1 ) 、 評価する。 評価はテス トパター ンの最密パ タ ー ンの再生波形の中心 レ ベル V 1 と、 最疎ノ タ ー ンの 再生波形の中心レベル V 2 の差 Δ Vを取る こ とで行っ た ( 2 0 1 2 ) 。 の値を各セ ク タ毎に取 り込む ( 2 0Next, the recorded test pattern is reproduced (210, 210) and evaluated. Evaluation is based on the test pattern This was performed by taking the difference ΔV between the center level V 1 of the reproduced waveform of the turn and the center level V 2 of the reproduced waveform of the least sparse pattern (201 2). The value of is taken in for each sector (20
1 3〜 2 0 1 5 ) 。 その後記録済のテス トノ、'タ ー ン を消 去する ( 2 0 1 6 ) 。 そ して、 Δ Vが最小のセ ク タでの P a s の値を最適な記録補助パルスのパワー と した ( 2 0 1 7 ) 。 本実施例ではこ の動作を光ディ ス ク の外周、 内周、 中周それぞれにおいて行う ( 2 0 1 8 ) 。 終了後、 通常のデータ記録動作に入る ( 2 0 1 9 ) 。 13 to 20 15). After that, the recorded test and turn are deleted (201-16). Then, the value of P as at the sector where ΔV was the minimum was determined as the optimum power of the recording auxiliary pulse (201). In this embodiment, this operation is performed on each of the outer circumference, inner circumference, and middle circumference of the optical disk (210-18). After the end, the normal data recording operation is started (201).
4  Four
5  Five
〔実施例 6 〕  (Example 6)
本実施例において用いたディ ス ク の断面構造を示す模 式図を図 2 1 に示す。 ディ ス ク は凹凸の案内溝を有する プラスチ ッ ク も し く はガラ ス基板上にスパ ッ 夕法によ り 記録媒体を形成した。 媒体は、 SiNx膜を 8 0 nm、 垂直磁 気異方性を有する TbFeCoNb膜を 2 5 nm、 SiNx膜を 2 0 nm、 そ して Al 9 6Ti4 膜を 5 0 nm、 途中真空を破る こ とな く 、 連続積層 した。 こ こ で、 連続積層を行う のは、 層界面に 酸素等、 不純物層が形成されるのを抑制するためである。 また、 こ の積層構造は、 ほんの 1 例であ って、 積層構造 によ り本発明の効果がそ こ なわれる こ とはない。 逆に本 発明によ り、 微小な磁区を安定に形成でき るので、 超高 密度光記録が実現でき る。 ま た、 こ こ で示 したのは 4 層 構造の光磁気ディ ス クであるが、 本発明の効果は層構造 の数に関係ない。 FIG. 21 is a schematic diagram showing the cross-sectional structure of the disk used in this example. The recording medium was formed on a plastic or glass substrate having uneven guide grooves by a sputtering method. Medium, SiNx film 8 0 nm, TbFeCoNb membrane 2 5 nm with perpendicular magnetic anisotropy, SiNx membrane 2 0 nm, its to Al 9 6 Ti 4 film 5 0 nm, breaking the middle vacuum In particular, continuous lamination was performed. Here, the reason why the continuous lamination is performed is to suppress formation of an impurity layer such as oxygen at a layer interface. Further, this laminated structure is only one example, and the effect of the present invention is not provided by the laminated structure. Conversely, according to the present invention, minute magnetic domains can be stably formed, so that ultra-high density optical recording can be realized. Although the magneto-optical disk having a four-layer structure is shown here, the effect of the present invention is not related to the number of the layer structures.
こ のディ ス ク に対し、 図 2 1 に示すパルス形状を有す る波形を用いて記録を行なった。 記録波形のパルス幅は、 ディ スク装置のライ ト ク ロ ッ クに同期している。 これは、 クロ ッ ク信号の作り易さ及び装置の口一コス ト化にとつ て有利であるばかりでな く、 ク ロ ッ クの精度も高いとい う特徵を有する。 記録波形は 4つのパワー レベルからな る。 第 1 の レベルは、 リ ー ド (再生) レベルで P r = 1. 5 mWである。 第 2の レベルは、 アシス ト (補助) レべ儿 で、 P a s .= 2. 7 mftr、 第 3 の レベルは、 第 1 記録レベル で P w 1 = 5. 1 miVである。 そ して第 4 の レベルは第 2記 録レベルで、 P w 2 =5. 9 mWである。 信号の変調方式と して ( 1 , 7 ) R L L変調方式を用い、 記録した。 パル ス幅は、 本変調方式で最短の 1. 3 3 Tの ビッ トを 6 O ns のパルス幅及び P w 1 のレーザーパワーにて形成した。 それ以降、 2 0 nsの P a s レベルを経て、 2 0 nsの P w 2にて 2 Tの ビッ トを形成し、 以下こ の繰返しによ り、 2. 6 6 T〜 5. 3 3 Tのパルスを形成した。 こ こで、 ル ス幅ゃレーザーパワーは、 ディ スクの構造や用いる材料 によ り可変する ものであ り、 装置とディ ス ク との整合性 を検討する中から決定される ものである。 すなわち、 This disk has the pulse shape shown in Fig. 21. Recording was performed using the following waveforms. The pulse width of the recording waveform is synchronized with the write clock of the disc device. This is advantageous not only in the ease of making a clock signal and in reducing the cost of the device, but also in that the accuracy of the clock is high. The recording waveform consists of four power levels. The first level is the read (playback) level with Pr = 1.5 mW. The second level is the assist level, P as. = 2.7 mft r , and the third level is the first recording level, P w1 = 5.1 miV. The fourth level is the second recording level, P w 2 = 5.9 mW. Recording was performed using the (1,7) RLL modulation method as the signal modulation method. For the pulse width, the shortest 1.33 T bit in this modulation method was formed with a pulse width of 6 O ns and a laser power of P w 1. Thereafter, after passing through the 20 ns P ass level, a 2 T bit is formed at 20 ns P w 2, and by repeating this operation, 2.66 T to 5.33 T Pulse was formed. Here, the ratio of the laser width to the laser power varies depending on the structure of the disk and the material used, and is determined in consideration of the compatibility between the device and the disk. That is,
P 1 = P w 2 P w l > P w 2の場合もある。  P 1 = P w 2 P w l> P w 2 in some cases.
上記の手法によ り記録した磁区を (前後エ ッ ジ独立再 生方式を用いて) 再生した。 ウ ィ ン ドマージ ンは 3 0 % , シフ トは ± 2 ns以下であった。 こ こで、 測定に用いたパ ターンはラ ンダムである。  The magnetic domains recorded by the above method were reproduced (using the front and rear edge independent reproduction method). The wind margin was 30% and the shift was less than ± 2 ns. Here, the pattern used for the measurement is random.
本実施例では SiNxを材料と したが、 光学的に吸収のな い無機化合物の誘電体材料であれば、 窒化シ リ コ ン の他、 窒化ア ル ミ ニ ウ ム、 酸化シ リ コ ン の内か ら選ばれる少な く と も 1 種類の化合物を用いる こ とができ る。 In the present embodiment, SiNx is used as a material, but optical absorption is not required. If the dielectric material is an inorganic compound, at least one compound selected from the group consisting of silicon nitride, aluminum nitride, and silicon oxide should be used. Can be done.
さ らに光の反射と熱流の制御を行う ための金属層 と し て本実施例では Al 96Ti4 を用いたが、 Au、 Ag、 Cu、 Al、 Pd、 Ptの内よ り選ばれる少な く と も 1 種類の元素を用い、 さ らに熱伝導率の制御のために、 先にあげた母元素以外 の元素に加えて、 Nb、 Ti、 Ta、 Crの内か ら選ばれる少な く と も 1 種類の元素を 0. 5 at%以上 3 O at%以下、 添加 した膜を用いる こ と もでき る。 Further, in this embodiment, Al 96 Ti 4 was used as a metal layer for controlling light reflection and heat flow, but a smaller number of metals selected from Au, Ag, Cu, Al, Pd, and Pt was used. At least one element is used, and in order to control thermal conductivity, in addition to the elements other than the above-mentioned parent elements, a small number of elements selected from Nb, Ti, Ta, and Cr are used. In each case, a film in which one element is added in an amount of 0.5 at% or more and 3 O at% or less can be used.
〔実施例 7 〕  (Example 7)
次に本発明の他の実施例を図面と と も に説明する。  Next, another embodiment of the present invention will be described with reference to the drawings.
まず、 エ ッ ジ位置がシフ トする過程と、 その抑圧原理 について説明する。  First, the process of shifting the edge position and the principle of its suppression will be described.
図 2 3 に熱干渉によ り エ ッ ジ位置がシ フ 卜する様子を 模式的に表す。  Figure 23 schematically shows how the edge position shifts due to thermal interference.
図 2 3 で横方向は時間の経過、 ま たは光スポ ッ 卜が移 動する記録媒体上の空間的な座標を表 している。 記録信 号 2 0 1 は記録情報を変調 して、 記録媒体上に照射され る光スポッ ト強度の時間的推移を、 記録マー ク 2 3 は記 録信号 2 0 1 によ って記録媒体上に形成された記録マ ー クの形状を表 している。 また、 再生信号 2 4 は記録マ ー ク 2 3 上を読み出 し レベルの光強度を有する光スポ ッ ト で走査し、 その ときの記録媒体からの反射光を光検出器 で受光、 光電変換を行って得られる。 二値化再生信号 2 5 は記録マーク形状を反映した再生信号 2 4 を、 信号レ ベルの所定レベルよ り上側か、 下側かによつて二値化を 行った結果得られる。 In Fig. 23, the horizontal direction represents the passage of time or the spatial coordinates on the recording medium where the optical spot moves. The recording signal 201 modulates the recording information and shows the temporal transition of the intensity of the light spot irradiated on the recording medium, and the recording mark 23 shows the recording signal 201 on the recording medium according to the recording signal 201. It shows the shape of the recording mark formed on the surface. The reproduction signal 24 is read from the recording mark 23 and scanned by an optical spot having a light intensity of a level, and the reflected light from the recording medium at that time is received by a photodetector and photoelectric conversion is performed. And obtained. Binary reproduction signal 2 Numeral 5 is obtained as a result of binarizing the reproduced signal 24 reflecting the recording mark shape according to whether the signal level is above or below a predetermined signal level.
なお、 図 2 3 は記録信号 2 0 1 の最初の立上りエ ッ ジ と、 記録マーク 2 3 の最左側の前側のエッ ジ位置と、 二 値化再生信号 2 5 の最初の立ち上がりエツ ジ位置を合わ せて表示している。 また、 L 〔 i 〕 、 B 〔 i 〕 は記録信 号 2 0 1 の各パルス間隔 (立ち上りエ ッ ジから立ち下が りエッ ジまで) 、 およびギャ ッ プ間隔 (立ち下がりェッ ジから立上りエッ ジまで) の長さを表し、 i は最初の記 録パルス (二値化再生パルス) からの通し番号 (最初は 0 ) を表している。  FIG. 23 shows the first rising edge of the recording signal 201, the leftmost front edge position of the recording mark 23, and the first rising edge position of the binarized reproduction signal 25. They are displayed together. L [i] and B [i] are the pulse intervals (from the rising edge to the falling edge) of the recording signal 201 and the gap interval (from the falling edge to the rising edge). I) represents the serial number (0 initially) from the first recording pulse (binary reproduction pulse).
情報記録メカニズムと して、 基本的に光スポッ トによ り与えられる熱によ り記録マークを形成させている光情 報記録方法では、 光スポッ トによ り与えられた熱が冷却 過程において記録媒体中を拡散してい く こ とによ り、 光 スボッ ト周囲の温度が上昇する。 従って、 高密度な記録 を行うべく 、 記録マークの大き さ、 及びその間陽を小さ く した場合、 記録信号の個々 のパルス形状は、 対応する 各々 の記録マーク形状を決めるだけでな く 、 周囲の記録 マーク形状にも影響を与える。 逆にいえば、 各記録マ ー クの形状はそれに対応する記録パルス形状のみで決定さ れるのではな く 、 時間的に隣接する記録パルス形状の影 響を受ける。  As an information recording mechanism, in an optical information recording method in which a recording mark is formed basically by the heat given by the optical spot, the heat given by the optical spot is generated during the cooling process. By diffusing in the recording medium, the temperature around the optical slot rises. Therefore, in order to perform high-density recording, when the size of the recording mark and the interval between them are reduced, the pulse shape of the recording signal not only determines the corresponding recording mark shape, but also determines the surrounding recording mark shape. It also affects the recording mark shape. Conversely, the shape of each recording mark is not determined only by the corresponding recording pulse shape, but is affected by the temporally adjacent recording pulse shapes.
この様に、 記録マーク は時間的に隣接する記録パルス の影響を受ける結果、 記録信号 2 0 1 のパル ス間隔 と記 録マー ク 2 3のエ ッ ジ位置との間にずれが生 じる よ う に なる。 その結果、 記録信号の各エ ッ ジ位置と二値化再生 信号 2 5の各エ ッ ジ位置との相対的なずれ e 〔 i 〕 、 f 〔 i 〕 を生 じる。 こ こ で、 e 〔 i 〕 は記録信号 2 0 1 の 立ち下がりエ ツ ジ とニ値化再生信号 2 5 の立ち下が り ェ ッ ジのずれ量を、 f 〔 i 〕 は記録信号 2 0 1 の立ち上が りエ ツ ジ とニ値化再生信号 2 5 の立ち上がり エ ツ ジのず れ量を表 している。 また、 i は最初の記録パルス (二値 化再生パルス) の立ち上 りエ ッ ジ、 立ち下がり エ ッ ジか らの通し番号 (最初は 0 ) で、 f 〔 0〕 は零とする。 In this way, the recording mark is a temporally adjacent recording pulse As a result, a deviation occurs between the pulse interval of the recording signal 201 and the edge position of the recording mark 23. As a result, relative deviations e [i] and f [i] between each edge position of the recording signal and each edge position of the binarized reproduction signal 25 are generated. Here, e [i] is the amount of deviation between the falling edge of the recording signal 201 and the falling edge of the binarized reproduction signal 25, and f [i] is the recording signal 20 The difference between the rising edge of 1 and the rising edge of the binarized reproduction signal 25 is shown. In addition, i is a serial number (0 at the beginning) from the rising edge and the falling edge of the first recording pulse (binary reproduction pulse), and f [0] is zero.
こ の と き、 エ ッ ジずれ量 e 〔 i 〕 、 f 〔 i 〕 は記録媒 体の熱伝導特性、 及び記録密度によ り変わるが、 例えば 光磁気記録媒体と して最も一般的な、 TbFeCo磁性膜と誘 電体膜、 保護膜、 反射膜からなる構造の記録媒体に対 し、 記録線速度 1 0〜 2 0 m/s 程度で、 記録密度と して最短 記録マー ク長が光スポッ ト径の半分程度の場合、 記録信 号のパルス長 L 〔 i 〕 、 およびギャ ッ プ長 B 〔 i 〕 を用 いて次のよ う な式で表すこ とができ る。  At this time, the edge shift amounts e [i] and f [i] vary depending on the heat conduction characteristics and the recording density of the recording medium. For example, the most common as a magneto-optical recording medium is For a recording medium with a structure consisting of a TbFeCo magnetic film, a dielectric film, a protective film, and a reflective film, the recording linear velocity is about 10 to 20 m / s, and the shortest recording mark length as recording density is light. When the spot diameter is about half of the spot diameter, it can be expressed by the following equation using the pulse length L [i] of the recording signal and the gap length B [i].
e 〔 i 〕 = S e ( B 〔 i - l 〕 , L 〔 i — l 〕 )  e [i] = S e (B [i-l], L [i — l])
• . · 式 1 2 f 〔 i 〕 = S f ( L 〔 i - l 〕 , B 〔 i - 1 〕 )  · Equation 1 2 f [i] = S f (L [i-l], B [i-1])
. · · 式 1 3 こ こ で、 S e ( ) 、 およ び S f ( ) は関数を表す。 す なわち、 e 〔 i 〕 は直前のパルス間隔 L 〔 i 〕 と、 その 前のギャ ッ プ間隔 B 〔 i 一 1 〕 によ って決ま り、 f 〔 i 〕 は直前のギャ ップ間隔 B 〔 i 一 1 〕 と、 その前 のパルス間隔 L 〔 i 一 1 〕 によ っ て決ま る。 ... Equation 13 Here, S e () and S f () represent functions. That is, e [i] is the immediately preceding pulse interval L [i] Determined by the previous gap interval B [i-11], f [i] is determined by the immediately preceding gap interval B [i1-1] and the preceding pulse interval L [i1-1]. It will be decided.
なお、 e C i ) に関して、 パルス間隔 L 〔 i 一 1 〕 以 前とギャ ッ プ間隔 B 〔 i 〕 以降の影響、 及び f 〔 i 〕 に 関して、 ギャ ッ プ間隔 B 〔 i 一 2〕 以前とパルス間隔 L 〔 i 〕 以降の影響は小さ く 、 考慮しな く ても差し支えな い。  Regarding e C i), the effect before pulse interval L [i 11] and the effect after gap interval B [i], and for f [i], gap interval B [i 11] The effect before and after the pulse interval L [i] is small and may not be considered.
次に、 上述のエッ ジシフ ト量の情報を用いて、 記録信 号の各エッ ジ位置を調整してエッ ジシフ 卜の影響を抑圧 する様子を図 2 4 を用いて説明する。 図 2 4 で、 横方向 は時間の経過、 または光スポッ 卜が移動する記録媒体上 の空間的な座標を表しており、 記録信号 3 0 1 は記録情 報を変調した電気信号を、 調整後信号 3 0 2 は記録信号 3 0 1 の各立ち上がり、 立ち下がりのエッ ジ位置を記録 パター ンに応じてずら した電気信号レベルの時間的推移 を表し、 この信号で記録媒体上に照射される光スポッ ト 強度を変調 している。  Next, the manner in which the edge position of the recording signal is adjusted using the above-described information on the edge shift amount to suppress the effect of the edge shift will be described with reference to FIG. In Fig. 24, the horizontal direction represents the passage of time or the spatial coordinates on the recording medium where the optical spot moves, and the recording signal 301 is an electric signal that modulates the recording information, The signal 302 represents the temporal transition of the electric signal level in which the rising and falling edge positions of the recording signal 301 are shifted according to the recording pattern. Modulating spot intensity.
また、 記録マーク 2 3 は調整後信号 3 0 2 によ って記 録媒体上に形成された記録マー クの形状を表している。 再生信号 2 4 は記録マーク 2 3 を読み出 し レベルの光強 度を有する光スポッ トで操作させ、 そのときの記録媒体 からの反射光を光検出器で受光、 光電変換を行って得ら れる。 二値化再生信号 2 5 は、 記録マーク形状を反映し た電気信号を、 信号レベルの所定レベルよ り上側か、 下 側かによ って二値化を行っ た結果得られる電気信号を表 してレ、る。 The recording mark 23 indicates the shape of the recording mark formed on the recording medium by the adjusted signal 302. The reproduction signal 24 is obtained by reading the recording mark 23 and operating it with the light spot having the light intensity of the level, receiving the reflected light from the recording medium at that time with the photodetector, and performing photoelectric conversion. It is. The binarized reproduction signal 25 is an electric signal reflecting the recording mark shape, which is above or below a predetermined signal level. The electrical signal obtained as a result of the binarization depending on the side.
なお、 記録信号 3 0 1 の最初の立上りエ ッ ジ と、 記録 マー ク' 2 3 の最左側の前側のエ ッ ジ位置と、 二値化再生 信号 2 5 の最初の立ち上がりエ ッ ジ位置を合わせて表記 している。 また、 L 〔 i 〕 、 B 〔 i 〕 は記録信号 3 0 1 の各パルス間隔 (立ち上りエ ッ ジか ら立ち下がり エ ッ ジ まで) 、 およびギャ ッ プ間隔 (立ち下がり エ ッ ジか ら立 上りエ ッ ジまで) の長さを表 し、 E 〔 i 〕 、 F 〔 i 〕 は 調整後信号 3 0 2 の各立ち下が り エ ッ ジ、 立ち上がり ェ ッ ジに関する、 記録信号 3 0 1 の各エ ッ ジ位置からのず ら し量を表 している。 さ らに、 i は最初の記録パルス (二値化再生パルス) からの通 し番号 (最初は 0 ) を表 している。  Note that the first rising edge of the recording signal 301, the leftmost front edge of the recording mark '23, and the first rising edge of the binarized reproduction signal 25 are defined as follows. It is written together. In addition, L [i] and B [i] are the pulse intervals (from the rising edge to the falling edge) of the recording signal 301 and the gap interval (from the falling edge). E [i] and F [i] are the recording signals 3101 related to the falling edge and rising edge of the adjusted signal 302, respectively. The deviation amount from each edge position is shown. In addition, i represents the serial number (0 initially) from the first recording pulse (binary reproduction pulse).
こ の記録パルスエ ッ ジ位置の調整原理は次のよ う な も のである。 記録信号 3 0 1 のエ ッ ジ位置に対 して記録マ ー ク 2 3 のエ ッ ジ位置に必ずずれが発生する。 しか し、 逆に元の記録信号 3 0 1 の各エ ッ ジ位置をあ らか じめず ら して調整後記録信号 3 0 2 とする こ とで、 二値化再生 信号 2 5 の各エ ッ ジ位置は記録信号 3 0 2 のエ ッ ジ位置 に対してはずれるが、 元の記録信号 3 0 1 のエ ッ ジ位置 とは一致する ものである。 記録信号 3 0 1 のエ ッ ジ位置 に対する記録マー ク 2 3 のエ ッ ジ位置のずれ量がどの程 度になるかは、 記録パタ ー ンを参照する こ とで上述の関 係式を用いて求められる。 そ こ で、 こ の関係式の逆関数 を用いてエッ ジ位置をずらす量と、 記録信号に対する二 値化再生信号のずれ量とが符号が逆で大き さが同 じ量と なる よ う に求める こ とができる。 すなわち、 The principle of adjusting the recording pulse edge position is as follows. The edge of the recording mark 23 always deviates from the edge of the recording signal 301. However, conversely, by making each edge position of the original recording signal 301 in advance to be the adjusted recording signal 302, each of the binarized reproduction signals 25 is obtained. The edge position deviates from the edge position of the recording signal 302, but coincides with the edge position of the original recording signal 301. The amount of deviation of the edge position of the recording mark 23 from the edge position of the recording signal 301 is determined by referring to the recording pattern using the relational expression described above by referring to the recording pattern. Required. Therefore, the inverse function of this relational expression The amount of shift of the edge position and the amount of shift of the binarized reproduction signal with respect to the recording signal can be determined so that the sign is reversed and the magnitude is the same. That is,
r = S f C , β ) + β · · · 式 1 4 に対して  r = S f C, β) + β
β = C ΐ a , r ) · · · 式 1 5 r = S e ( α , β ) + β · ■ · 式 1 6 に対して  β = C ΐ a, r) ··· Formula 15 r = S e (α, β) + β · · ·
^ = C e ( , ? · ' ■ 式 1 7 のよ う に、 それぞれ逆関数 C f (: ) 、 C e ( ) をおいて、 F[i]=B[i-l]+E[i-l]  ^ = C e (,? · '■ ■ As shown in Equation 17, put the inverse functions C f (:) and C e (), respectively, and F [i] = B [i-l] + E [i-l]
-Cf (L[i-1]+F[i-1]-B[i-1], B[i-1]+E[i-1])  -Cf (L [i-1] + F [i-1] -B [i-1], B [i-1] + E [i-1])
. · · 式 1 8 Formula 1 8
E[i]=L[i]+F[i]-Ce(B[i-l]+E[i-l]-F[i], L[i]+F[i]) ■ · · 式 1 9 という形で : B 〔 i 〕 、 F 〔 i 〕 を求める こ とができる。 式 1 8 、 式 1 9 において、 関数 C e ( ) 、 C f ( ) 内に エッ ジ位置ずら し量が含まれている。 しか し、 こ のずら し量は E 〔 0 〕 、 F 〔 1 〕 、 E 〔 1 〕 、 F 〔 2 〕 、 E [i] = L [i] + F [i] -Ce (B [il] + E [il] -F [i], L [i] + F [i]) Then: B [i] and F [i] can be obtained. In Equations 18 and 19, the functions C e () and C f () include the edge position shift amount. However, the shift amounts are E [0], F [1], E [1], F [2],
E 〔 2 〕 、 . . , の順で逐次求めていけば、 例えば E [2],..,
F 〔 i 〕 を求める際には式 1 8 において E 〔 i 一 1 〕 、 および F 〔 i 一 1 〕 はその前の時点で算出され、  When calculating F [i], E [i1-1] and F [i-11] in Equation 18 are calculated at the time before that,
E 〔 i 〕 を求める際には式 1 9 において F 〔 i 〕 、 およ び E 〔 i 一 1 〕 はその前の時点で算出されるので、 式 1 8 、 式 1 9 によ りそれぞれ F 〔 i 〕 、 e 〔 i 〕 を算出す る こ とができ る。 When calculating E [i], since F [i] and E [i-11] in equation 19 are calculated at the time before that, F [i] and E [i11] are calculated by equations 18 and 19, respectively. Calculate [i] and e [i] I can do it.
次に、 記録時の光ビーム強度の変化、 および記録媒体 の温度変化を検出 し、 その変化に対して対応する方法に ついて、 その原理を説明する。  Next, the principle of a method for detecting a change in light beam intensity during recording and a change in temperature of a recording medium and responding to the change will be described.
記録時の光 ビーム強度が変化 した り、 記録媒体の温度 が変化した場合に も、 記録信号の各エ ッ ジ位置と記録マ ー クのエ ッ ジ位置との間にずれを生 じる。 例えば、 記録 時の光 ビーム強度が小さ く な つ た場合には、 記録マー ク は総じて小さ く な り、 記録マー クの前エ ッ ジの位置は後 ろ側に、 記録マー ク の後ろエ ッ ジの位置は前側にそれぞ れずれる。  Even if the light beam intensity at the time of recording changes or the temperature of the recording medium changes, a deviation occurs between each edge position of the recording signal and the edge position of the recording mark. For example, if the light beam intensity during recording decreases, the recording mark will generally decrease, and the position of the front edge of the recording mark will be on the rear side and the position of the edge behind the recording mark will be on the rear. The position of the edge is shifted to the front.
こ の記録マー ク の各エ ツ ジ位置がずれる量は形成され る記録マー ク ごとに異なる。 そのため、 記録時の光ビ一 厶強度が変化した場合に、 発生する記録マー ク のエ ッ ジ 位置のずれを、 上述のよ う な記録パター ン ごとのエ ッ ジ 調整量を変える方法で低減を計るためには、 記録時の各 光 ビーム強度ごとに上記のエ ツ ジ調整用の関数を変える 必要があ り、 回路系が大規模 となる。 したがって、 よ り 簡単な系でエ ッ ジの位置ずれを防 ぐため、 記録時の光 ビ ーム強度が変化したこ とが検出された場合、 記録時の光 ビーム強度を元の値に戻すよ う調整を行う。  The amount by which each edge position of this recording mark is shifted differs for each recording mark formed. Therefore, when the light beam intensity during recording changes, the deviation of the edge position of the recording mark that occurs is reduced by changing the edge adjustment amount for each recording pattern as described above. In order to measure the power, it is necessary to change the edge adjustment function for each light beam intensity at the time of recording, which requires a large-scale circuit system. Therefore, in order to prevent edge misalignment with a simpler system, if it is detected that the light beam intensity during recording has changed, the light beam intensity during recording is returned to the original value. Make the necessary adjustments.
一方、 記録媒体の温度が低下した場合に も、 記録マ ー ク は総じて小さ く な り、 こ の場合に も記録マー ク の前ェ ッ ジの位置は後ろ側に、 記録マー ク の後ろエ ッ ジの位置 は前側にそれぞれずれる。 こ の温度変動に対しては装置 内に温度調節機構を設けない限り、 直接温度を一定に制 御する こ とはできない。 こ こで、 この温度変動に伴う記 録マークのエッ ジ位置変動特性は、 想定温度からの変動 量が小さい範囲では、 記録時の光ビーム強度が変化した 場合とかなり近い傾向を示す。 したがって、 この範囲で は記録時の光ビーム強度の変更で対応し、 設定値に対し 大き く 変動した時点で記録時のエツ ジ位置調整用の関数 を切り換えて対応する。 On the other hand, even when the temperature of the recording medium decreases, the recording mark becomes smaller as a whole. In this case as well, the position of the front edge of the recording mark is on the rear side and the position of the rear edge of the recording mark is on the rear side. The position of the edge is shifted to the front. This temperature fluctuation is Unless a temperature control mechanism is provided inside, it is not possible to directly control the temperature directly. Here, the edge position fluctuation characteristic of the recording mark due to the temperature fluctuation shows a tendency that is close to the case where the light beam intensity at the time of recording changes in a range where the fluctuation amount from the assumed temperature is small. Therefore, in this range, the change is made by changing the light beam intensity at the time of recording, and the function for adjusting the edge position at the time of recording is switched when the value greatly fluctuates from the set value.
以上の変化を検出するために、 所定の時間間隔おきに 記録媒体上の専用領域において所定の記録信号を記録す る。 そ して、 その直後にその信号を再生してその各エツ ジ位置のずれ量を検出 し、 その結果から記録時の光ビー ム強度の変化、 および記録媒体の温度変化を分離検出す な o  In order to detect the above change, a predetermined recording signal is recorded in a dedicated area on the recording medium at predetermined time intervals. Immediately after that, the signal is reproduced to detect the deviation amount of each edge position, and from the result, the change of the optical beam intensity during recording and the temperature change of the recording medium must not be separately detected.
図 2 5 にその とき使用する記録信号パター ンの一例を 示す。 この記録信号 4 0 1 には通常の情報記録時にと り 得る記録マーク長の範囲中の複数個のエッ ジ間隔を、 短 い方あるいは長い方からパルス幅とその直後のパ儿ス間 隔が等し く なる よ う に並べ、 これを複数回繰り返したも のを使用する。 繰り返した ものを使用するのは平均化処 理によ り、 検出結果に含まれる ノ イズ成分の影響を低減 して測定結果の精度を上げるためである。 こ こでは記録 情報に対して 2 — 7 R L L C ( Run Leng t h L i mi t t ed Code) で符号変調されている ものと して記録信号を構成 している例を示しており、 P w 〔 1 〕 、 P w 〔 2〕 、 . . . は こ の記録信号パルスのエ ッ ジ間隔を、 G w 〔 1 〕 、 G w 〔 2 〕 、 . . . は記録信号ギャ ッ プのエ ッ ジ間隔を 表している。 なお、 記録信号 4 0 1 の も う一方のエ ッ ジ 間隔表記中にある Tは情報 1 ビッ ト当 り の時間長である。 Figure 25 shows an example of the recording signal pattern used at that time. The recording signal 401 has a plurality of edge intervals within the range of the recording mark length that can be obtained during normal information recording, and a pulse width and a pulse interval immediately after the pulse width from the shorter or longer one. Arrange them so that they are equal, and use one that is repeated several times. The reason for using the repetition is to reduce the influence of noise components included in the detection result and improve the accuracy of the measurement result by the averaging process. Here, an example is shown in which the recording signal is configured to be code-modulated by 2 to 7 RLLC (Run Length Limited Code) with respect to the recording information, and P w [1 ), P w [2],. Represents the edge interval of the recording signal pulse, Gw [1], Gw [2], and... Represent the edge interval of the recording signal gap. Note that T in the other edge interval of the recording signal 401 is the time length per bit of information.
再生信号 4 0 2 は こ の記録信号で書かれた記録マー ク を読み出 した と きの、 二値化後の再生信号波形を表 して いる。 また、 P r 〔 1 〕 、 P r 〔 2 〕 、 · · ' は こ の再 生信号パルスのエ ッ ジ間隔を、 G r 〔 1 〕 、 G r 〔 2 〕 、 • · ' は再生信号ギャ ッ プのエ ッ ジ間隔を表 している。 図 2 6 には記録信号 4 0 1 と、 再生信号 4 0 2 の関係 から記録時の光 ビーム強度変化、 およ び記録媒体の温度 変化を分離検出する手段を示す。 横軸に記録信号 4 0 1 のパルス間隔 P w 〔 i 〕 を、 そ して縦軸に再生信号 4 0 2 のパルス間隔 P r i か ら直後のギヤ ッ プ間隔 G r 〔 i 〕 を引いた ものをと り、 各記録状況での測定点をプ ロ ッ ト している。 こ の測定結果で測定点全体が 0 レべル よ り上側にあれば、 記録時の光 ビーム強度が設定値よ り 大きい方向に変化したか、 も し く は記録媒体の温度が想 定値よ り も高い方向に変化した場合である。 ま た、 逆に 測定点全体が 0 レべルよ り下側にあれば、 記録時の光 ビ ーム強度が設定値よ り大きい方向に変化 したか、 も し く は記録媒体の温度が想定値よ り も高い方向に変化 したこ とを表 している。  The reproduction signal 402 represents the reproduction signal waveform after binarization when the recording mark written by this recording signal is read. P r [1], P r [2], ... are the edge intervals of the playback signal pulse, and G r [1], G r [2], ... are the playback signal pulses. Indicates the edge interval of the tip. FIG. 26 shows a means for separating and detecting a change in the light beam intensity during recording and a change in the temperature of the recording medium from the relationship between the recording signal 401 and the reproduction signal 402. On the horizontal axis, the pulse interval Pw [i] of the recording signal 401 was subtracted, and on the vertical axis, the immediately following gap interval Gr [i] was subtracted from the pulse interval Pri of the reproduced signal 402. The measurement points for each recording situation are plotted. If the entire measurement point is above the 0 level in this measurement result, the light beam intensity during recording has changed in a direction larger than the set value, or the temperature of the recording medium has exceeded the expected value. This is the case when it changes in a higher direction. Conversely, if the entire measurement point is below the 0 level, the light beam intensity during recording has changed in a direction larger than the set value, or the temperature of the recording medium has changed. This indicates that the value has changed in a direction higher than the expected value.
記録時の光ビーム強度が変化した場合、 決ま っ た曲線 群中の一曲線上に測定点が く る。 したがって、 こ の記録 時の光ビーム強度が変化した場合に、 測定点が描く 曲線 群をあ らかじめ調べておき、 装置内にその情報を記億し てお く こ とによって、 そのう ちの一本の曲線上に全ての 測定点がのっているか否かで、 記録時の光ビーム強度の 変更で対応可能かどうか判定できる。 一本の曲線上に全 ての測定点がのっていない場合には、 曲線に対し、 右下 がり にずれているか、 それと も左下がり にずれているか を検出 し、 その結果から記録媒体の温度が上昇したか、 下降したかを判定し、 それに従って記録時のエッ ジ位置 調整テーブルを変更する。 If the light beam intensity during recording changes, a measurement point will appear on one of the determined curve groups. Therefore, this record When the intensity of the light beam changes, the group of curves drawn by the measurement points is checked in advance, and that information is recorded in the device, so that one of the curves can be displayed. It can be determined whether or not all the measurement points are on the surface by changing the light beam intensity during recording. If not all the measurement points are on one curve, it is detected whether the curve is shifted to the lower right or to the lower left with respect to the curve. Judge whether the temperature rises or falls, and change the edge position adjustment table during recording accordingly.
次に、 以上のエッ ジ位置の調整、 および記録条件の判 定原理を含む実施例について説明する。  Next, an embodiment including the above-described adjustment of the edge position and the principle of determining the recording condition will be described.
図 2 7 は実施例の構成を示すブロ ッ ク図である。  FIG. 27 is a block diagram showing the configuration of the embodiment.
図 2 7 において光デイ ス-ク 1 はス ピン ドルモータ 1 0 9 によ り一定角速度で回転しており、 光ピッ クア ッ プ 2 によ り記録再生用の レーザ光が絞り込みレ ンズでデイ ス ク 1 上の記録膜面に集光される。 光ピッ クア ッ プ 2 は情 報の記録位置に対応してディ スク半径方向に移動でき る よ う になっている。  In Fig. 27, the optical disk 1 is rotated at a constant angular velocity by the spindle motor 109, and the laser light for recording / reproducing by the optical pick-up 2 The light is focused on the recording film surface on step 1. The optical pickup 2 can be moved in the disk radial direction in accordance with the information recording position.
光ピッ クア ップ 2中の検出器によ り検出された信号は、 増幅器 1 0 によ り所望の レベルに増幅された後、 等化回 路 1 1 によ り、 波形の等化が行われ、 再生信号の分解能 が確保される。 この後、 この信号は二値化回路 1 3 によ りディ ジタル信号である再生二値化信号 2 7 7 に変換さ れ、 P L L (フ ェーズ ' ロ ッ ク ' ゾレープ) 回路 1 4 によ り データ信号と ク ロ ッ ク信号とに分離され、 復調回路 1 7 によ り再生データ となる。 The signal detected by the detector in the optical pickup 2 is amplified to a desired level by the amplifier 10 and then equalized by the equalizing circuit 11. Therefore, the resolution of the reproduced signal is secured. After that, this signal is converted to a reproduced binary signal 277 which is a digital signal by the binarization circuit 13, and is converted by the PLL (Phase 'Lock' Zolpe) circuit 14. The signal is separated into a clock signal and a data signal, and is reproduced by the demodulation circuit 17.
以上の部分が通常のマ ー ク長記録方式を採用 している 光ディ ス ク システムのデータ再生信号処理系である。 本 発明の再生信号処理系ではこれ以外に、 記録時の光 ビー ム強度、 および記録媒体上の温度の変化を検出 して記録 時のパルス間隔調整量、 および記録パワーを算出 し更新 するための回路系を有する。  The above is the data reproduction signal processing system of the optical disk system that uses the normal mark length recording method. In addition, the reproduction signal processing system of the present invention detects changes in the optical beam intensity during recording and the temperature on the recording medium, and calculates and updates the pulse interval adjustment amount during recording and the recording power. It has a circuit system.
こ の回路系はエ ツ ジ間隔測定回路 2 7 0 、 およ び記録 条件判定回路 2 7 1 からなる。 まず、 再生二値化信号 2 7 7 がェ ッ ジ間隔測定回路 2 7 0 を経て、 その各パルス 間隔、 およびギャ ッ プ間隔が測定される。 その測定結果 が記録条件判定回路 1 1 に入力 され、 記録時の光 ビーム 強度の変化量と記録媒体上の温度変化量とが分離検出さ れ、 その結果がコ ン ト ロ ー ラ 2 7 2 に送信される。  This circuit system includes an edge interval measuring circuit 270 and a recording condition judging circuit 271. First, the reproduced binary signal 277 passes through the edge interval measuring circuit 270, and the pulse interval and the gap interval are measured. The measurement result is input to the recording condition determination circuit 11, where the change in the light beam intensity during recording and the temperature change on the recording medium are separated and detected, and the result is used as the controller 27 2 Sent to.
こ の記録条件判定回路は通常の情報記録再生時以外の、 所定の時問間隔おき にコ ン ト ロー ラから指合される記録 条件判定モー ド時に動作する。 こ の記録条件判定モー ド のフ ロ ーを図 2 8 に示す。  This recording condition judging circuit operates in a recording condition judging mode instructed by the controller at predetermined time intervals other than during normal information recording / reproducing. Figure 28 shows the flow of this recording condition judgment mode.
本システム稼働中において、 本システム内のコ ン ト 口 ーラ 2 7 2 によ り、 所定の時間間隔が監視され、 その時 間間隔おき に こ のモー ドが開始される ( 2 0 3 1 ) 。 ま ず、 こ のモー ドの初めに本システムを ビジー状態に して 通常の記録再生動作を受け付けない状態に し ( 2 0 3 2 ) 、 も し現在本システムで処理 している作業 (記録、 再生) があれば、 その処理が終了するのを待つ ( 2 0 3 3 ) o During the operation of the system, a predetermined time interval is monitored by the controller 272 in the system, and this mode is started at each time interval (2031) . First, the system is set to a busy state at the beginning of this mode so that normal recording / reproducing operation is not accepted (2032), and if the work (recording, If there is (playback), wait for the processing to end (2033) o
つぎに、 記録条件を調べるための所定の記録信号を記 録、 再生する専用領域に光スポッ トを移動する ( 2 0 3 4 ) 。 こ の領域は記録媒体一枚につき、 回転半径が違う 複数箇所に設定してお く 。  Next, the optical spot is moved to a dedicated area for recording and reproducing a predetermined recording signal for examining recording conditions (2034). This area should be set at a plurality of locations with different turning radii per recording medium.
移動が完了したら記録条件を調べるための所定の記録 信号を用いて、 記録媒体上に記録を行う。 そ して、 次に その記録マークを再生する ( 2 0 3 5 ) 。 この時点でコ ン ト ローラから指令を受けてェッ ジ間隔測定回路 2 7 0、 および記録条件判定回路 2 7 1 が動作する。 その判定結 果 ( 2 0 3 6, 2 0 3 8 ) はコ ン ト ローラ 2 7 2 に送信 され、 コ ン ト ローラ側で判定結果に応じて記録時の光ビ ー厶強度の変更 ( 2 0 3 7, 2 0 4 1 ) や、 記録時のパ ルス間隔調整量の変更動作 ( 2 0 4 0 ) を行う。  When the movement is completed, recording is performed on a recording medium using a predetermined recording signal for checking recording conditions. Then, the record mark is reproduced (20035). At this point, the edge interval measuring circuit 270 and the recording condition judging circuit 271 operate in response to a command from the controller. The judgment result (20036, 238) is transmitted to the controller 272, and the controller changes the optical beam intensity at the time of recording according to the judgment result. 0 3 7, 2 4 1) and the operation of changing the pulse interval adjustment amount during recording (2 0 4 0).
例えば、 判定結果で記録時の光ビーム強度が設定値よ り も大きい方に変化し、 その変化量が許容量を越えたと 判断された場合には、 記録時の光ビーム強度を刻み量 Δ P減少させる。 同様に判定結果で記録時の光ビーム強度 が設定値よ り も小さい方に変化し、 その変化量が許容量 を越えたと判断された場合には、 記録時の光 ビーム強度 を刻み量 Δ Ρ増加させる。  For example, if the judgment result indicates that the light beam intensity at the time of recording changes to a value larger than the set value and that the amount of change exceeds the allowable amount, the light beam intensity at the time of recording is reduced by the increment ΔP Decrease. Similarly, if the judgment result indicates that the light beam intensity at the time of recording changes to a value smaller than the set value and that the amount of change exceeds the allowable amount, the light beam intensity at the time of recording is reduced by the increment Δ Ρ increase.
また、 判定結果で記録媒体上の温度が想定値よ り も高 い方に変化し、 その変化量が許容範囲を越えた と判断さ れた場合には、 も し、 記録時の光ビーム強度の変更で対 応が可能な範囲であれば、 記録時の光ビーム強度を刻み 量 Δ Ρ減少させ、 も し、 記録時の光 ビーム強度の変更で 対応が可能な範囲を越えた場合には、 記録時の光 ビーム 強度の刻み量 Δ P分の減少動作と と もに、 記録時のパル ス間隔調整量を変更する ( 2 0 3 9 ) 。 同様に、 判定結 果で記録媒体上の温度が想定値よ り も低い方に変化 し、 その変化量が許容範囲を越えた と判断された場合には、 も し、 記録時の光 ビーム強度の変更で対応が可能な範囲 であれば、 記録時の光ビーム強度を刻み量 Δ P増加させ、 も し、 記録時の光 ビーム強度の変更で対応が可能な範囲 を越えた場合には、 記録時の光 ビーム強度の刻み量 Δ P 分の増加動作と と もに、 記録時のパルス間隔調整量を変 更する ( 2 0 3 9 ) 。 If the judgment result indicates that the temperature on the recording medium has changed to a value higher than the expected value and that the change amount has exceeded the allowable range, the light beam intensity during recording will be increased. Change in If it is within the range that can be handled, the light beam intensity during recording is reduced by the increment Δ Δ.If the light beam intensity during recording exceeds the range that can be handled, the The pulse interval adjustment amount at the time of recording is changed together with the decreasing operation of the step amount ΔP of the light beam intensity (20339). Similarly, if the result of the determination indicates that the temperature on the recording medium has changed to a value lower than the expected value and that the amount of change has exceeded the allowable range, the light beam intensity during recording If the change is within the range that can be dealt with, the light beam intensity during recording is increased by the increment ΔP.If the change in the light beam intensity during recording exceeds the range that can be handled, The pulse interval adjustment amount during recording is changed together with the increasing operation of the light beam intensity step size ΔP during recording (20339).
なお、 判定結果で各変化量が許容範囲を越えていない と判定された場合には、 記録条件に関する何の変更 も行 わない。  If it is determined in the determination result that each variation does not exceed the allowable range, no change in the recording condition is performed.
そ して、 以上のよ う な判定結果を受けた対応動作を行 う と と も に、 こ の専用記録領域内の信号の消去を行い、 本システムの ビジー状態を解除 して、 通常の情報記録再 生モー ドに戻る。  Then, in response to the above judgment result, the corresponding operation is performed, the signal in the dedicated recording area is erased, the busy state of the system is released, and the normal information is released. Return to record playback mode.
なお、 こ の記録条件判定モー ドを発生させる時間間隔 は記録時の光 ビーム強度変化、 および記録媒体上の温度 変化がどの程度の時間で変動するかによ り決定する。 例 えば記録時の光 ビーム強度に関 して言えば、 最大でも変 更刻み幅である Δ P以上変化 しない時間間隔内に設定し てお く 必要がある。 The time interval for generating the recording condition determination mode is determined by the change in the light beam intensity during recording and the time required for the temperature change on the recording medium to change. For example, in terms of the light beam intensity during recording, set the time within a time interval that does not change more than ΔP, which is the maximum change width. Must be kept.
再び図 2 7 に戻り、 本実施例構成中の信号記録系に関 して説明する。 情報を記録する際に、 記録情報は変調回 路 2 7 3 で光情報記録系の特性に合う よ う、 符号変調が 行われる。 この符号変調された記録信号に対し、 エ ッ ジ 位置調整回路 2 7 4、 およびエッ ジ位置調整テーブル 2 7 5 , 2 7 6 において、 各エッ ジ位置がその直前までの エッ ジ間隔情報に従って調整される。 そ して、 こ の調整 後の記録信号がレーザ ドライバ回路 7 に入力され、 i 号 に応じて光ピッ クア ップ 2 内の レーザ強度を変調させ、 ディ スク 1 上に情報が記録される。 なお、 エ ッ ジ位置調 整テーブル 2 7 5 , 2 7 6 は記録条件判定モー ドの結果、 エッ ジ調整量を変更する必要がある と判定された場合、 および記録線速度が変化した場合にエッ ジ位置調整テ一 ブル切換回路 2 7 8 によ り、 その内容が変更される。  Returning to FIG. 27 again, the signal recording system in this embodiment will be described. When information is recorded, the recording information is code-modulated by a modulation circuit 273 so as to match the characteristics of the optical information recording system. The edge-position adjustment circuit 274 and the edge-position adjustment tables 275 and 276 adjust the respective edge positions of the code-modulated recording signal according to the edge interval information immediately before. Is done. Then, the recording signal after the adjustment is input to the laser driver circuit 7, and the laser intensity in the optical pickup 2 is modulated in accordance with the signal i, and information is recorded on the disk 1. The edge position adjustment tables 275 and 276 are used when the recording condition determination mode determines that it is necessary to change the edge adjustment amount, and when the recording linear velocity changes. The contents are changed by the edge position adjustment table switching circuit 278.
図 2 7 において、 光ディ スク 1 、 ス ピン ドルモータ 1 0 9 、 光ビッ クア ッ プ 2 、 増幅器 1 0 、 等化回路 1 1 、 二値化回路 1 3、 P L L回路 1 4、 復調回路 1 7、 変調 回路 2 7 3 、 レーザ ドライバ回路 7 については従来の光 ディ スク装置に用いられている構成、 機能の もので良 く 、 その詳細説明は省略する。  In Figure 27, optical disk 1, spindle motor 109, optical bit-up 2, amplifier 10, equalizing circuit 11, binarizing circuit 13, PLL circuit 14, demodulating circuit 17 The modulation circuit 273 and the laser driver circuit 7 may have the same configuration and function as those used in the conventional optical disk device, and detailed descriptions thereof will be omitted.
以下、 その他の構成要素について説明する。  Hereinafter, other components will be described.
図 2 9 は図 2 7 におけるエ ッ ジ間隔測定回路 2 7 0 の —構成例を示した図である。  FIG. 29 is a diagram showing a configuration example of the edge interval measurement circuit 270 in FIG.
二値化回路 1 3 の出力である、 再生二値化 i 号 2 7 7 はイ ンパルス信号発生回路 7 0 1 に も入力 される。 こ の イ ンパルス信号発生回路 7 0 1 は入力信号の極性が変わ る タイ ミ ン グごとにィ ンパルス状の信号波形を出力 し、 こ の出力信号が極性反転タ イ ミ ン グを表す信号と して記 録条件判定回路 2 7 1 、 およ び A Z D変換器 7 0 2 に入 力される。 Regeneration binarization i-number 2 7 7 which is the output of binarization circuit 13 Is also input to the impulse signal generation circuit 70 1. This impulse signal generation circuit 70 1 outputs an impulse-like signal waveform at each timing when the polarity of the input signal changes, and this output signal is a signal representing the polarity inversion timing. Then, it is inputted to the recording condition judgment circuit 271, and the AZD converter 72.
一方、 再生二値化信号 2 7 7 は増幅器で構成される積 分回路 7 0 3 に も入力される。 また、 こ の積分回路 7 0 3 には再生二値化信号 7 での " H " レベルを V H、 " L " レベルを V L と した と き 一 ( V H + V L ) Z 2 の レベルを表 した積分基準信号 7 0 4 も入力 される。 そ し て、 こ の積分回路 7 0 3 からは再生二値化信号 2 7 7 と の積分基準信号の差の信号が出力され、 A / D変換器 7 0 2 に入力 される。  On the other hand, the reproduced binary signal 277 is also input to an integration circuit 703 composed of an amplifier. In addition, this integration circuit 703 has an integration (VH + VL) Z2 level when the "H" level and the "L" level of the reproduced binary signal 7 are VH and VL, respectively. The reference signal 704 is also input. The integration circuit 703 outputs a signal representing the difference between the reproduced binary signal 277 and the integration reference signal, and inputs the signal to the A / D converter 702.
また、 コ ン ト ロー ラ力ヽ らの信号力 フ リ ッ プフ ロ ッ プ 7 0 9 に入力される。 こ の フ リ ッ プフ ロ ッ プ 7 0 9 には極 性反転のタイ ミ ン グを表す信号も ク ロ ッ ク信号と して入 力される。 フ リ ッ プフ ロ ッ プ 7 0 9 の出力はエ ッ ジ間隔 測定開始から最初の再生二値化信号 2 7 7 の立ち上が り を検知 して、 間隔測定期間、 アナ ロ グスィ ッ チ 7 1 0 を 切り替え、 積分回路 7 0 3 を動作させる。  Also, the signal power from the controller power is input to the flip-flop 709. A signal indicating the polarity inversion timing is also input to the flip-flop 709 as a clock signal. The output of the flip-flop 709 detects the rising edge of the first reproduced binary signal 277 from the start of the edge interval measurement, and the interval measurement period and analog switch 7 Switch 10 to operate the integration circuit 703.
Aノ D変換器 7 0 2 は極性反転のタイ ミ ン グを表す信 号をディ ジタル変換動作を行う タ イ ミ ン グ用 ク ロ ッ ク と して使用 して、 積分回路 7 0 3 の出力信号をディ ジタ ル 信号に変換する。 変換結果は極性反転間隔信号と して出 力され、 記録条件判定回路 2 7 1 に入力される。 AZD 変換器 7 0 2 ·の変換精度はその出力値がパルス間隔調整 量と して十分な精度を有し、 かつオーバーフ ローが起こ らないよ う な量子化精度、 およびビッ ト数を有する。 次に、 図 2 9 のエッ ジ間隔測定回路 2 7 0 の動作を図 3 0を用いて説明する。 再生二値化信号 2 7 7 は二値化 回路 1 3の出力信号であ り、 記録膜面上の照射光スポッ ト位置に記録マー クの有無によ り、 "H" または レベルをとる。 この再生二値化信号 2 7 7 はイ ンパルス 信号発生回路 7 0 1 を通って、 その極性が変わるタイ ミ ングでイ ンパルス波形を発生する極性反転のタイ ミ ング を表す信号となり、 AZD変換器 7 0 2での ト リ ガ信号 に使用される。 The A / D converter 702 uses the signal representing the timing of the polarity inversion as the timing clock for performing the digital conversion operation, and uses the signal of the integration circuit 703 as a clock. Converts output signal to digital signal. The conversion result is output as a polarity inversion interval signal. And input to the recording condition judgment circuit 27 1. The conversion accuracy of the AZD converter 702 ··· has sufficient accuracy as an output value of the pulse interval adjustment amount, and quantization accuracy and the number of bits so that overflow does not occur. Next, the operation of the edge interval measuring circuit 270 of FIG. 29 will be described with reference to FIG. The reproduction binarization signal 2777 is an output signal of the binarization circuit 13 and takes "H" or level depending on the presence or absence of the recording mark at the irradiation light spot position on the recording film surface. The reproduced binary signal 277 passes through an impulse signal generation circuit 701, and becomes a signal indicating a polarity inversion timing that generates an impulse waveform at a timing when its polarity changes. Used for trigger signal at 720.
積分 0路 7 0 3では再生二値化信号 2 7 7のパルス間 陽が演算され、 出力される。 この積分回路 7 0 3 は一般 にその入力信号を X ( t ) と した場合、 出力信号 Y ( t ) と して  In the integration 0 path 703, the pulse interval of the reproduced binary signal 277 is calculated and output. Generally, when the input signal is X (t), the integrator circuit 703 is used as the output signal Y (t).
Y ( t ) = / X ( r ) d r + Y ( 0 ) Y (t) = / X (r) d r + Y (0)
. · ■ 式 2 0 が得られる。 すなわち、 出力信号 Y ( t ) はその初期値 (エ ッ ジ間隔測定回路が動作を開始する時点での出力信 号レベル) Y ( 0 ) はアナロ グスィ ッチ 7 1 0 の動作に よ り 0 となるから、 図 2 5 の再生信号 4 0 2 のパルス間 隔 P r 〔 1 〕 、 P r 〔 2〕 およびギャ ッ プ間 隔 G r 〔 1 〕 、 G r 〔 2〕 、 . . . を用いて、 積分回路 7 0 3 の出力信号レベル V o は、 再生二値化信号 7 の極 性が "L " から "H " に反転する時点では ··· Equation 20 is obtained. That is, the output signal Y (t) has its initial value (the output signal level at the time when the edge interval measurement circuit starts operating) Y (0) is 0 according to the operation of the analog switch 710 Therefore, the pulse intervals Pr [1] and Pr [2] of the reproduced signal 402 of FIG. 25 and the gap intervals Gr [1], Gr [2],... Using the integrating circuit The output signal level Vo of 703 is at the time when the polarity of the reproduced binary signal 7 is inverted from "L" to "H".
Vo = A(-Pr[l]+Gr[l]-Pr [2]+Gr [2]+... - Pr [ i ] +Gr [ i ] )  Vo = A (-Pr [l] + Gr [l] -Pr [2] + Gr [2] + ...-Pr [i] + Gr [i])
. · · 式 2 1 であ り、 再生二値化信号 2 7 7 の極性が " H " から  Equation 21 shows that the polarity of the reproduced binary signal
"L " に反転する時点では  At the time of inversion to "L"
Vo=A(-Pr [1]+Gr [1]-Pr [2]+Gr [2]+... -Pr[i])  Vo = A (-Pr [1] + Gr [1] -Pr [2] + Gr [2] + ... -Pr [i])
. . · 式 2 2 となる。 こ こ で、 上式中の Aは積分回路 7 0 3 の増幅率 で決ま る定数である。 すなわち、 こ の時点での出力信号 レベルは再生二値化信号 2 7 7 のパルス間隔について "H " レベルを負の値、 " L " レベルを正の値で表 した ときのパルス間隔を積算 した結果を表 している。  .. · Equation 2 2 Here, A in the above equation is a constant determined by the amplification factor of the integrating circuit 703. In other words, the output signal level at this time is obtained by integrating the pulse intervals when the "H" level is represented by a negative value and the "L" level is represented by a positive value for the pulse interval of the reproduced binary signal 277 The results are shown.
AZD変換器 7 0 2ではその時点の積分信号 レベルを ディ ジタル値に変換し、 その変換結果を記録条件判定回 路 2 7 1 に入力 している。 つま り、 その出力は式 2 1 、 式 2 2 に伴って、  The AZD converter 702 converts the integrated signal level at that time into a digital value, and inputs the conversion result to the recording condition determination circuit 27 1. That is, the output is given by Eq. 21 and Eq.
B(-Pr[l]+Gr[l]-Pr[2]+Gr [2]+... -Pr[i]+Gr[i])  B (-Pr [l] + Gr [l] -Pr [2] + Gr [2] + ... -Pr [i] + Gr [i])
. . ' 式 2 3 も し く は、  'Equation 23 or
B(-Pr[l]+Gr[l]-Pr[2]+Gr [2]+... -Pr[i]) B (-Pr [l] + Gr [l] -Pr [2] + Gr [2] + ... -Pr [i])
. . · 式 2 4 · Equation 2 4
( Bは定数) で与え られる。 (Where B is a constant).
図 3 1 は図 2 7 における記録条件判定回路 7 1 1 の 構成例である。 FIG. 31 shows the recording condition determination circuit 7 11 1 in FIG. It is a structural example.
この回路では図 2 6における各 P r 〔 i 〕 一 G r C i〕 の計算、 およびその繰り返し信号に対して総和をと る計算を行い、 その各計算結果をコ ン ト ローラ 2 7 2に 送信する ものであ.る。  In this circuit, the calculation of each Pr [i] -GrCi] in Fig. 26 and the calculation of the sum of the repetition signals are performed, and the calculation results are sent to the controller 272. It is something to send.
ラ ッチ回路 9 0 1, 9 0 2 と減算回路 9 0 3ではエツ ジ間隔測定回路 1 0から送られてきた式 2 3、 および式 2 4で表されるエッ ジ間隔データから、 各 B ( P r 〔 i 〕 - G r 〔 i〕 ) の値を求めている部分である。 ラ ッ チ面路 9 0 1 には再生二値化信号 2 7 7力 ト リ ガタイ ミ ング用の信号と して入力されていて、 その立ち上がり エッ ジでエツ ジ間隔データをサンプル · ホール ドしてい る。 すなわち、 この再生二値化信号 2 7 7の立ち上がり 時には式 2 3で表されるデータがホール ドされ、 出力さ れている。 また、 ラ ッチ回路 9 0 2ではデータを 1 ト リ ガ分だけ遅らせている。  The latch circuits 90 1 and 90 2 and the subtraction circuit 90 3 use the edge interval data expressed by Equation 23 and Equation 24 sent from the edge interval measurement circuit 10 to calculate each B (Pr [i]-Gr [i]). The latch surface 901 is input as a reproduction binary signal 277 7-triggering timing signal, and the edge interval data is sampled and held at the rising edge. ing. That is, at the time of the rise of the reproduced binary signal 277, the data represented by the expression 23 is held and output. In the latch circuit 902, the data is delayed by one trigger.
減算回路 9 0 3ではエッ ジ間隔データのラ ッ チ回路 9 0 3の出力からラ ッ チ回路 9 0 1 の出力を減算し、 その 結果を出力 している。 ラ ッ チ回路 9 0 2の出力 とラ ッ チ 回路の出力は 1 ト リ ガタイ ミ ング分だけずれた式 2 3で 表される結果であるから、 減算回路 9 0 3の出力で  The subtraction circuit 903 subtracts the output of the latch circuit 901 from the output of the latch circuit 903 of the edge interval data, and outputs the result. Since the output of the latch circuit 902 and the output of the latch circuit are the result represented by the equation 23 shifted by one trigger timing, the output of the subtraction circuit 903
B (P r 〔 i〕 一 G r 〔 i 〕 ) が求められている。 B (Pr [i] -Gr [i]) is required.
加算回路 9 0 4、 およびシフ ト レジスタ 9 0 5では繰 り返しデータでの各 B (P r 〔 i〕 一 G r 〔 i 〕 ) ごと に、 その総和を計算している。 シフ ト レ ジスタ 9 0 5 の 段数は図 2 5 に示す記録信号の 1 周期中のパルス数と等 し く 設計されてお り、 その各段ごとに出力線が出て、 コ ン ト ローラの方に送られている。 再生信号 4 0 2が最後 まで読み出された時点で、 シ フ ト レ ジスタの各段での出 力結果は各 i ごとに繰 り返 しデー タでの B ( P r 〔 i 〕 - G r 〔 i 〕 ) の総和とな っているので、 この結果を用 いて、 図 2 6 に示す判定基準に基づいて記録時の光 ビ一 ム強度、 および記録媒体の温度が変化しているかどう 力、 を調べている。 The addition circuit 904 and the shift register 905 calculate the sum of each B (Pr [i] -Gr [i]) in the repeated data. Shift register 9 0 5 The number of stages is designed to be equal to the number of pulses in one cycle of the recording signal shown in Fig. 25, and an output line is output for each stage and sent to the controller. When the reproduction signal 402 is read to the end, the output result at each stage of the shift register is repeated for each i, and B (Pr [i]-G r [i])), the result is used to determine whether the light beam intensity during recording and the temperature of the recording medium have changed based on the criterion shown in Fig. 26. Is examining the power.
図 3 2は図 2 7におけるエ ッ ジ位置調整回路 2 7 4、 およびエ ッ ジ位置調整テーブル 2 7 5 の一構成例である。  FIG. 32 is a configuration example of the edge position adjustment circuit 274 and the edge position adjustment table 275 in FIG.
こ の回路では式 1 8、 および式 1 9 中の関数 C f ( ) 、 C e ( ) を R AM等の記憶素子で構成されるエ ッ ジ位置 調整テーブル 1 5, 1 6 の内容を参照する形で求めてい る。 すなわち、 F 〔 i 〕 を求める際には、 エ ッ ジ位置調 整テーブル 2 7 5 に入力 されるァ ド レ ス信号線によ り、 関数 C f ( ) 内の第 1 、 第 2パラ メ 一夕の要素である、 記録信号 3 0 1 のパルス Zギャ ッ プ間隔 L 〔 i 一 1 〕 、 B 〔 i 一 1 〕 と、 F 〔 i 〕 を求める直前の変換結果であ るエ ッ ジ位置調整量 F 〔 i — l 〕 、 E 〔 i 一 1 〕 を表す 量を入力する こ とで、 データ信号線からその関数値と し て出力される。 同様に、 E 〔 i 〕 を求める際には、 エ ツ ジ位置調整テーブル 1 6 に入力 されるア ド レス信号線に よ り関数 C e ( ) 内の第 1 、 第 2パラ メ 一夕の要素であ る、 記録信号 3 0 1 のパルス Zギヤ ッ プ間隔 B 〔 i 一 1 〕 、 L 〔 ί 〕 と、 E 〔 i 〕 を求める直前の変換結果で あるエッ ジ位置調整量 E 〔 i _ l 〕 、 F 〔 i 〕 を表す量 を入力する こ とで、 データ信号線からその関数値と して 出力される。 In this circuit, the functions C f () and C e () in Equations 18 and 19 are referred to the contents of the edge position adjustment tables 15 and 16 composed of storage elements such as RAM. It is required in the form to do. That is, when obtaining F [i], the first and second parameters in the function C f () are obtained by the address signal line input to the edge position adjustment table 275. Edge which is the conversion result immediately before obtaining the pulse Z gap interval L [i-11], B [i-11], and F [i] of the recording signal 301, which are the elements of the evening. By inputting the amounts representing the position adjustment amounts F [i-l] and E [i-11], the data signal lines output them as their function values. Similarly, when calculating E [i], the first and second parameters in the function C e () are determined by the address signal line input to the edge position adjustment table 16. Element, the pulse of the recording signal 301, the Z-gap interval B [i 1), L [ί], and an amount representing the edge position adjustment amounts E [i_l], F [i], which are the conversion results immediately before obtaining E [i], are input to the data signal line. Is output as the function value from.
カウ ンタ面路 1 0 0 1 , 1 0 0 2 は変調回路 2 7 3力、 ら送信されてきた信号のパルス/ギヤ ッ ブ間隔が変調信 号の基本ク ロ ッ ク間隔何個分に栢当するかを検出 して、 エッ ジ位置調整テーブルのア ドレス線となっている。 ま た、 ラ ッ チ回路 1 0 0 3, 1 0 0 4 , 1 0 0 5 , 1 0 0 6 はエッ ジ位置調整テーブル 2 7 5、 および入力される 各ア ド レス信号線のタイ ミ ングを調整するために、 シフ ト レジス夕回路 1 0 0 7, 1 0 0 8 は変調信号とエ ッ ジ 位置調整量とのタイ ミ ングを調整するために用いられて いる。 セ レ ク タ回路 1 0 0 '9 は立ち上がり側と立ち下力 り側のエッ ジ位置調整量を交互に切り変える回路であ り、 プログラマブルディ レイ ライ ン回路 1 0 0 9 はエッ ジ位 置調整量分だけ、 エッ ジ位置をディ レイ させ、 エッ ジ位 置の調整を行う 回路である。 従って、 この出力信号が調 整後信号 3 0 2 と してレーザ ドライバ回路 7 に入力され る。  The counter surfaces 1001 and 1002 are based on the modulation circuit 273, and the pulse / gear interval of the signal transmitted from the modulation circuit 273 depends on the number of basic clock intervals of the modulated signal. It is detected whether it is hit or not, and it is the address line of the edge position adjustment table. The latch circuits 1003, 1004, 1005, and 1006 are the edge position adjustment table 275 and the timing of the input address signal lines. The shift register circuits 107 and 108 are used to adjust the timing between the modulation signal and the edge position adjustment amount. The selector circuit 100 '09 is a circuit that alternately switches the edge position adjustment amount between the rising side and the falling side, and the programmable delay line circuit 1009 is the edge position. This circuit delays the edge position by the amount of adjustment and adjusts the edge position. Therefore, this output signal is input to the laser driver circuit 7 as the adjusted signal 302.
図 3 3 は図 2 7におけるエッ ジ位置調整テープ儿切換 回路 1 8 の一構成例である。  FIG. 33 shows an example of the configuration of the edge position adjusting tape child switching circuit 18 in FIG.
この回路は記録線速度、 記録媒体の温度変化に したが つて、 エッ ジ位置調整テーブルの内容を切り変え動作を 行い、 使用範囲内の各記録線速度、 および記録媒体の温 度ごとのエ ツ ジ位置調整量のデータが格納されている変 換テーブル用デ一タ ノ ' ッ フ ァ 1 1 0 2 と、 その切り換え 動作を制御する回路から構成される。 This circuit switches the content of the edge position adjustment table according to the change in the recording linear velocity and the temperature of the recording medium, and changes the recording linear velocity and the temperature of the recording medium within the range of use. It is composed of a conversion table data buffer 1102 in which edge position adjustment data for each degree is stored, and a circuit for controlling the switching operation.
記録条件判定モー ドでの検出結果、 エ ッ ジ位置調整テ 一ブルの内容を変更する必要がある と判定された場合、 および光スポ ッ 卜が移動 して線速度が変化した場合にコ ン ト ロ ーラ 2 7 2 からテーブル変更指合信号がカ ウ ン タ 回路 1 1 0 1 に入力され、 エ ッ ジ位置調整テーブル 2 7 5 , 2 7 6 の内容変更が開始される。 こ の内容変更動作 では、 まず、 変換テーブル用データノくッ フ ァ 1 1 0 2 に 光スポッ 卜 の記録媒体上での移動速度、 およ び記録条件 判定モー ドで検出された記録媒体の温度が入力 されて、 変換テーブル用データバッ フ ァ 1 1 0 2 内にある、 どの エ ッ ジ位置調整テーブルが選択されるかを決定する。 そ して、 カ ウ ンタ回路 1 1 0 1 か ら入力 されるア ド レ ス番 号ごとに変換テーブル用データバ ッ フ ァ 1 1 0 2 から各 エ ッ ジ調整量が送信され、 各変換テーブルに格納されて い く 。 なお、 カ ウ ンタ回路の出力信号の う ち、 1 本はェ ッ ジ調整量テーブル 2 7 5 , 2 7 6 のう ち どち らかを選 択するためのテーブル切 り変え信号と して使用 され、 残 り の信号は変換テーブル用データノくッ フ ァ 1 1 0 2 、 お よびエ ッ ジ位置調整回路 2 7 5 , 2 7 6 のァ ド レ ス信号 と して使用 されている。  If the result of the detection in the recording condition judgment mode determines that the contents of the edge position adjustment table need to be changed, or if the optical spot moves and the linear velocity changes, The table change instruction signal is input from the controller 27 to the counter circuit 1101, and the change of the contents of the edge position adjustment tables 275 and 276 is started. In this content changing operation, first, the moving speed of the optical spot on the recording medium and the temperature of the recording medium detected in the recording condition judgment mode are stored in the conversion table data buffer 1102. Is input to determine which edge position adjustment table in the conversion table data buffer 1102 is to be selected. Each edge adjustment amount is transmitted from the conversion table data buffer 1102 for each address number input from the counter circuit 111, and each conversion table is sent. Is stored in the One of the output signals of the counter circuit is used as a table switching signal for selecting one of the edge adjustment amount tables 275 and 276. The remaining signals are used as the conversion table data buffer 1102 and the address signals of the edge position adjustment circuits 275 and 276.
以上が本発明の一実施例についての説明である。 こ の 記録パルスエ ッ ジ調整量算出方式を用いる こ とで、 同一 記録パルスにおいてその前の記録パター ンが違う ために 発生する熱干渉による再生波形でのエツ ジ位置の変動分 をな く すこ とができる。 The above is the description of the embodiment of the present invention. The same method is used by using this recording pulse edge adjustment amount calculation method. It is possible to eliminate the fluctuation of the edge position in the reproduced waveform due to the thermal interference generated due to the difference in the previous recording pattern in the recording pulse.
この記録条件測定に用いる専用領域はディ ス ク の内周 側、 外周側、 およびその間からなる複数箇所を用いるが、 その領域は特別に設けても、 あるいは一般のデータ記録 領域でも構わない。 後者の場合ですでにその領域に記録 データが存在する ときには、 他の空き領域を利用するか、 も し く はその領域を使用するために該領域に書かれてい る情報を一時コ ン ト ローラ内のメモ リ など、 別の場所に 退避させる処理を行う。  As the dedicated area used for the recording condition measurement, a plurality of locations including the inner circumference side, the outer circumference side, and a space therebetween are used, and the area may be specially provided or a general data recording area. In the latter case, if recorded data already exists in that area, use another free area or temporarily write the information written in that area to use that area. Evacuate to another location such as internal memory.
本発明は書換えが可能であ り、 その原理が熱を用いた 記録方法である、 あ らゆる情報記録方式、 および記録媒 体にあてはまる記録パワーや記録パルス間隔という記録 条件の制御方式である。 特に熱拡散効果が高 く 、 かつ記 録条件に敏感、 すなわち記録パワーや環境温度、 記録媒 体の構成、 および記録装置の特性等のわずかな変化で記 録特性の差と して現れる様な記録方式、 および記録媒体 の場合、 記録データの信頼性を確保する上で必要不可欠 な技術である。 例えば光磁気ディ スク、 および交換結合 力を利用 した、 重ね書きが可能な光磁気ディ スク、 重ね 書きが可能な栢変化を利用 した光ディ スクなどにおいて 実用性を確保する上で、 この技術が重要である。  The present invention is a rewritable recording method using heat, the principle of which is any information recording method, and a method of controlling recording conditions such as a recording power and a recording pulse interval applicable to a recording medium. In particular, the thermal diffusion effect is high, and it is sensitive to recording conditions, that is, a slight change in recording power, environmental temperature, recording medium configuration, and recording device characteristics, etc., appears as a difference in recording characteristics. In the case of recording methods and recording media, this is an indispensable technology for ensuring the reliability of recorded data. For example, this technology is needed to ensure practicality in magneto-optical discs, magneto-optical discs that can be overwritten using exchange coupling force, and optical discs that can use overwrites that can be overwritten. is important.
以上、 説明してきたよ う に、 本発明は、 テス ト記録を 行ない、 その結果を演算処理して記録制御するための信 号を得、 それを も とにエ ッ ジ位置調整回路によ り所望の 位置に制御でき る。 As described above, according to the present invention, a signal for performing test recording, arithmetically processing the result, and controlling recording is provided. The signal can be controlled to the desired position by the edge position adjustment circuit.
この信号記録再生方法によれば、 熱干渉によ る再生信 号のエ ツ ジ位置に関する変動分をな く すこ とができ る。 また記録時の光 ビーム強度や、 記録媒体の温度が変化し た場合に も対応するため、 常に最適な記録条件を実現 し てお り、 マー ク長記録を用いた、 よ り 高密度な記録が製 作時の厳密な調整な しに容易に実現でき、 しか も記録デ —夕に関する信頼性を大幅に向上させる。  According to this signal recording / reproducing method, it is possible to eliminate the variation in the edge position of the reproduced signal due to thermal interference. Also, in order to cope with changes in the light beam intensity during recording and the temperature of the recording medium, optimal recording conditions are always realized, and higher-density recording using mark-length recording. This can be easily achieved without strict adjustments during production, and greatly improves the reliability of recorded data.
〔実施例 8 〕  (Example 8)
本実施例は、 記録密度をディ ス ク位置によ り 変化させ て、 記録する こ とによ り、 高密度記録を実現する手法で め 0。  The present embodiment is a method for realizing high-density recording by changing the recording density depending on the disk position and performing recording.
円盤状記録媒体の回転数を一定に して、 記録半径位置 が変化する に連れ、 線速度が変化しながら記録する M C A Vのよ う な記録方式において、 容量を確保 しつつ、 信 頼性良 く データを記録再生する ためには、 ディ ス ク内外 周に渡って位相ジ ッ 夕の大き さが等しいこ とが望まれる。  Reliable while securing the capacity of a recording method such as MCAV, in which the linear velocity changes as the recording radius position changes while keeping the rotation speed of the disc-shaped recording medium constant. In order to record and reproduce data, it is desirable that the magnitude of the phase jitter be equal over the inner and outer circumferences of the disk.
位相ジ ッ 夕 は前述のエ ツ ジ記録ではディ ス ク媒体のノ ィズ、 レーザノ イ ズ、 ア ンプノ イ ズな どのよ う なラ ンダ ム性ノ イ ズによ って発生する位相揺ら ぎと、 記録 ドメ ィ ン長さのパタ ー ンによ る違い、 、。夕 一 ン間の熱干渉によ つて ドメ イ ンのエ ッ ジ位置が変化するエ ッ ジ シ フ 卜 の 2 つに大き く 分け られる。 光磁気ディ ス ク の媒体では熱伝 導性がよいこ とから、 特に線速度が遅い内周では直前に 記録したパルスの熟の影響を受け、 次に記録する情報 ド メイ ンの位置がシフ トする位栢シフ トが発生し、 位相摇 らぎよ り大き く なる。 これによ り正確に情報を再生する こ とができな く なる。 The phase jitter is a phase fluctuation caused by random noise such as noise, laser noise, and amplifier noise of the disk medium in the edge recording described above. And the difference due to the pattern of the recording domain length. The edge shift can be broadly divided into two types: edge shift, where the edge position of the domain changes due to thermal interference during the evening. Due to the good thermal conductivity of a magneto-optical disk medium, it is necessary to use Due to the influence of the recorded pulse, a shift occurs in which the position of the information domain to be recorded next shifts, which is larger than the phase shift. This makes it impossible to reproduce information accurately.
図 4 0 の様に光磁気ディ スクの略同心円状 ト ラ ッ クを 複数 トラ ッ ク力、らなる ゾーン 1 4 0 1 , 1 4 0 2, 1 4 0 3 に分割した場合の線密度の決定方法について考察す る。 各ゾー ン内の線記録密度は同一である。 光磁気ディ スク最内周ゾーン半径位置を Rmin 、 内側から n番目の ゾー ンの線密度を L n、 最内周のセク タ数を N i 、 セク 夕あた りのデータバイ ト数を B、 ト ラ ッ ク ピッ チを p、 ゾーン内の ト ラ ッ ク本数を M、 データの利用効率を 77 と する と、 最内周ゾーンの容量は  As shown in Fig. 40, the linear density of the magneto-optical disc when it is divided into multiple concentric tracks, ie, zones 1401, 1442, and 1403, is shown. Consider the decision method. The linear recording density in each zone is the same. Rmin is the radial position of the innermost zone of the magneto-optical disc, Ln is the linear density of the nth zone from the inside, Ni is the number of sectors at the innermost zone, and B is the number of data bytes per section. Assuming that the track pitch is p, the number of tracks in the zone is M, and the data utilization efficiency is 77, the capacity of the innermost zone is
2 ^- x R niin x L i 7? = N i x B (式 2 5 ) n番目のゾー ンでは  2 ^-x R niin x L i 7? = N i x B (Equation 25) In the nth zone
2 π ( R min + n x M x p ) x L n x 7?  2 π (R min + n x M x p) x L n x 7?
= (N i + n ) x B (式 2 6 ) n番目のゾー ンの線密度と n + 1 番目のゾー ン の線密度 の差は  = (N i + n) x B (Equation 26) The difference between the linear density of the nth zone and the linear density of the n + 1 zone is
L n f 1 - L n =  L n f 1-L n =
n ( B - 2 ^ xMx p x L n X 7? ) /  n (B-2 ^ xMx p x L n X 7?) /
2 π ( R min + M x p ) x 7?  2 π (R min + M x p) x 7?
(式 2 7 ) 従って、 B と 2 7r xM x p x L n X 7?の大小関係によ り線密度を制御する こ とができる。 すなわち、 本発明で は位相シフ 卜の発生の大きい内周側よ り も外周側で線密 度を向上させたいので (Equation 27) Accordingly, the linear density can be controlled by the magnitude relationship between B and 27r xM xpx L n X 7 ?. That is, in the present invention Is to improve the line density on the outer circumference rather than on the inner circumference where phase shift occurs.
L n < B / ( 2 ^ x M x p X 7? ) (式 2 8 ) となる よ う に ト ラ ッ ク本数 M と ト ラ ッ ク ピ ッ チ p を選 ぶ。  The number of tracks M and the track pitch p are selected so that Ln <B / (2 ^ xMxpX7?) (Equation 28).
例えば 2 — 7 変調を用いてゾー ン ごとに 1 セ ク タ / ト ラ ッ ク増加する よ う に して、 ト ラ ッ ク ピッ チを 1. 6 ミ ク ロ ン と し、 記録半径最内周を 6 7. 9 mm、 最内周セ ク タ数 を 5 2 とする と Mの値によ って図 3 6 のよ う に変化する。 こ こ では縦軸に線密度の代わ り に 2 — 7 変調の最短 ピ ッ ト長さをと つた。 これが小さ いほ ど線密度が高いこ とに なる。  For example, by using 2-7 modulation, each sector is increased by one sector / track, the track pitch is set to 1.6 micron, and the recording radius If the circumference is 67.9 mm and the number of innermost sectors is 52, it changes as shown in Fig. 36 depending on the value of M. Here, instead of linear density, the shortest pit length of 2-7 modulation is used on the vertical axis. The smaller this is, the higher the line density.
以上の検討結果を記録容量の観点か らみる と、 図 3 4 の実線 1 1 0 0 のよ う に外周で線密度を上げ、 内周で線 密度を下げる よ う に記録半径位置における線密度を制御 する と、 記憶容量の寄与度は図 3 5 の実線 2 1 0 0 のよ う になる。 図 3 5 では半径位置に対する円周の長さ に線 密度をかけた 1 ト ラ ッ ク あた り の容量を表 している。 こ れを半径 R i から R 0 まで積分する と全記憶容量となる。 図 3 4 及び 3 5 で点線 1 2 0 0 , 2 2 0 0 はいずれ も線 密度を一定に した場合であ り、 これと比較する と図 3 5 によ り判る よ う に内周側で線密度を下げて も、 内周側の 容量寄与度が小さいこ とか ら全記憶容量に与える影響が 少ないこ とがわかる。 具体的には図 4 0 に示すゾ一ン 1 4 0 1 , 1 4 0 2 , 1 4 0 3 ごとに線密度を変化させる 方法力 ある。 Looking at the above results from the viewpoint of recording capacity, as shown by the solid line 1100 in Fig. 34, the linear density at the recording radius position is increased such that the linear density increases at the outer circumference and decreases at the inner circumference. Is controlled, the contribution of the storage capacity is as shown by the solid line 2100 in FIG. Figure 35 shows the capacity per track obtained by multiplying the linear length by the length of the circumference with respect to the radial position. Integrating this from the radius R i to R 0 gives the total storage capacity. In FIGS. 34 and 35, the dotted lines 1 2 0 0 and 2 2 0 0 indicate the case where the linear density is constant, and in comparison with this, as can be seen from FIG. Even if the linear density is reduced, the effect on the total storage capacity is small since the capacity contribution on the inner peripheral side is small. Specifically, the line density is changed for each of the zones 1401, 1402, and 1403 shown in Fig. 40. There is method power.
本発明によ り光磁気ディ ス ク の媒体をもちいたエ ツ ジ 記録と M C A V方式を組み合わせて記憶容量の大きな装 置を実現するにあたり、 データの信頼性を表す位相変動 量を内外周でほぼ等し く でき、 かつ記憶容量の減少を抑 える こ とができる。  According to the present invention, when a device having a large storage capacity is realized by combining the edge recording using the magneto-optical disk medium and the MCAV method, the amount of phase fluctuation representing the reliability of the data is substantially changed between the inner and outer circumferences. It is possible to reduce the storage capacity.
〔実施例 9 〕 - 本実施例は、 記録制御を行う際に必要とする制御パラ メータを得るためにテス ト記録を行う領域をディ スク中 に設ける こ とに関する ものである。  [Embodiment 9]-This embodiment relates to providing a test recording area in a disc in order to obtain control parameters required for performing recording control.
本発明の詳細を一実施例を用いて説明する。 まず、 作 製したディ スクの断面構造を示す模式図は図 2 1 と同様 である。 作製したディ スク は、 ポリ カーボネー ト基板 5 The details of the present invention will be described using an embodiment. First, a schematic diagram showing the cross-sectional structure of the manufactured disk is the same as in FIG. The fabricated disk is made of polycarbonate substrate 5
0上に SiNx C 7 5 nm) 5 1 、 TbFeCoNb ( 3 0 nm) 5 2、 SiNx ( 2 0 nm) 5 3 . Ni ( 3 0 nm) 5 4、 AI ( 3 0 nm)0 on SiNx C 75 nm) 51, TbFeCoNb (30 nm) 52, SiNx (20 nm) 53 .Ni (30 nm) 54, AI (30 nm)
5 5 、 を順次積層 した 5 層構造である。 ディ ス クの作製 は、 スパッ タ法によ り行った。 その時のスパッ 夕の条件 は、 1 0 — 7Torr以下まで真空排気した後に、 まず、 ポリ カーボネィ トのディ スク基板 5 0上に窒化シ リ コ ン膜 5 1 を形成した。 ターゲッ トに純 Siを、 放電ガスに Ar/N2 混合ガスをそれぞれ用い、 投入 R F電力密度 : 6. 6 mWZ cm2 、 放電ガス圧力 : 1 0 raTorr にてスパッ 夕を行ない、This is a five-layer structure in which 55 and are sequentially laminated. The disks were prepared by the sputter method. Sputtering evening conditions at that time, 1 0 - After evacuated to below 7 Torr, firstly, on the disk substrate 5 0 poly Kabonei bets to form a nitrided Li co down film 5 1. Using pure Si as the target and Ar / N 2 mixed gas as the discharge gas, the input RF power density was 6.6 mWZ cm 2 and the discharge gas pressure was 10 raTorr.
7 5 nmの膜厚の膜を形成した。 つづいて、 TbFeCoNb光磁 気記録膜 5 2 を形成した。 ターゲッ トに TbFeCoNb合金を、 放電ガスに高純度 Arガスをそれぞれ用い、 投入 R F電力 密度 : 4. 4 mWZcm2 、 放電ガス圧力 : 5 mTorr にてスノ、。 ッ 夕を行ない、 3 0 nmの膜厚に形成 した。 再び、 窒化シ リ コ ン膜 5 3 を形成した。 A film having a thickness of 75 nm was formed. Subsequently, a TbFeCoNb magneto-optical recording film 52 was formed. RF power input using TbFeCoNb alloy as target and high-purity Ar gas as discharge gas Density: 4.4 mWZcm 2 , Discharge gas pressure: 5 mTorr. The film was formed to a thickness of 30 nm. Again, a silicon nitride film 53 was formed.
ターゲッ 卜 に純 Siを、 放電ガスに ArZN2混合ガスをそ れぞれ用い、 投入 R F電力密度 : 6. 6 mW/cm2 、 放電ガ ス圧力 : 1 0 mTorr にてスパッ 夕を行ない、 2 0 nmの膜 厚の膜を形成した。 Using pure Si as the target and ArZN 2 mixed gas as the discharge gas, the input RF power density was 6.6 mW / cm 2 and the discharge gas pressure was 10 mTorr. A film having a thickness of 0 nm was formed.
つぎは、 N i膜 5 4 の形成である。 夕 ーゲ ッ ト に N iを、 放電ガスに高純度 Arガスをそれぞれ用い、 投入 R F電力 密度 : 3. 3 mW/ cm2 、 放電ガス圧力 : 1 5 mTorr にてス ノ、。ッ 夕を行ない、 3 0 nmの膜厚に形成した。 そ して、 最 後は A1膜 5 5 の形成である。 ターゲ ッ 卜 に A1を、 放電ガ スに高純度 Arガスをそれぞれ用い、 投入 R F電力密度 : 3. 3 mW/ cm2 、 放電ガス圧力 : 1 5 mTorr にてスパ ッ 夕 を行ない、 3 0 nmの膜厚に形成した。 Next is the formation of the Ni film 54. Ni was used in the evening, high-purity Ar gas was used as the discharge gas, and the input RF power density was 3.3 mW / cm 2 and the discharge gas pressure was 15 mTorr. The film was formed to a thickness of 30 nm. Finally, the A1 film 55 is formed. A1 was used as the target, and high-purity Ar gas was used as the discharge gas. The RF power density was 3.3 mW / cm 2 , and the discharge gas pressure was 15 mTorr. Was formed.
このよ う に して作製した光磁気ディ ス ク の膜表面を紫 外線硬化型樹脂にてコー ト を行い、 さ らに 2 枚のディ ス クを接着剤で貼り合わせ、 光磁気ディ ス ク と した。 こ こ で、 用いたディ ス ク の構造は一例であ り、 本発明の効果 はディ ス ク の構造によ り左右される ものではない。 こ の ディ ス ク は、 記録膜が 1 層よ り なる ものであるが、 交換 結合作用を用いたオー バ ーラ イ ト可能な光ディ ス ク に対 して も有効であ り、 さ らには相変化を利用 した光デイ ス クの記録制御に対 して も有効である こ とは言う までもな い。 このよ う に して作製したディ スクの平面図を図 3 9 に 示す。 これに対して、 ディ スク ドライブ起動時に、 図 3 7 に示すテス トパター ン 2 1 によ り、 図 3 9 に示す記録 制御用テス ト ト ラ ッ ク 1 4 0 0 に記録を行い、 そのデ一 ターを再生した。 そ して、 再生信号の信号 幅の変化を 測定する こ とによ り、 外部要因によ り形成される磁区形 状の変動を検出 した。 この結果をも とに、 ユーザーデー 夕を記録領域に少な く と も記録時の レーザーパワー、 記 録のパルス幅、 或いは記録パルスの形状を制御して行つ た。 The film surface of the magneto-optical disk produced in this way is coated with an ultraviolet-curable resin, and two disks are bonded together with an adhesive to form a magneto-optical disk. And Here, the structure of the disk used is an example, and the effect of the present invention does not depend on the structure of the disk. Although this disc has a single-layered recording film, it is also effective for optical discs that can be overwritten using exchange coupling. Needless to say, the method is also effective for optical disk recording control using a phase change. Figure 39 shows a plan view of the disc fabricated in this way. On the other hand, when the disk drive is started, the test pattern 21 shown in FIG. 37 is used to record data in the test track for recording control 1400 shown in FIG. Played the starter. Then, by measuring the change in the signal width of the reproduced signal, fluctuations in the magnetic domain shape formed by external factors were detected. Based on this result, the user data was recorded in the recording area by controlling at least the laser power during recording, the pulse width of recording, or the shape of the recording pulse.
その時に得られた記録磁区の形状の模式図を図 3 8 に 示す。 制御しないで記録を行う と涙型の磁区が形成され たり、 磁区幅が制御されないために幅が広く なつたり、 磁区長が無制御のために長く なったり短く なった り し、 ピッ トエッ ジ記録を行おう とする とエラーを生じる場合 があった。 これらの変化が生じる大きな原因は使用環境 温度の変動である。 そこで、 ディ スク ドライブ起動時.或 いはディ スク揷入時に、 テス トパター ンを用いて記録制 御用テス ト トラ ッ ク 1 4 0 0 に記録を行い、 その情報を 再生を行う こ とによ り使用環境温度の検出を行い、 その 結果を記録条件の設定へフ ィ ー ドバッ クをかけ環境条件 を考慮した記録を行う こ とによ り解決した。 その結果、 環境温度が変化してもディ スク 1 に記録される ドメイ ン のサイズは常に一定であった。  Figure 38 shows a schematic diagram of the shape of the recording domain obtained at that time. If recording is performed without control, a tear-shaped magnetic domain is formed, the width is increased because the magnetic domain width is not controlled, or the magnetic domain length is increased or shortened because the magnetic domain length is not controlled. Attempting to do so could result in an error. A major cause of these changes is fluctuations in the operating environment temperature. Therefore, when the disk drive is started or when the disk is inserted, the test pattern is used to record on the recording control test track 1400 and the information is reproduced. The problem was solved by detecting the operating environment temperature and feeding back the results to the setting of the recording conditions, and recording in consideration of the environmental conditions. As a result, the size of the domain recorded on Disk 1 was always constant even when the environmental temperature changed.
これによ り、 高密度記録が可能である。 また、 媒体間 に記録感度な どバラ ツキがあ る と、 デ ィ ス ク ご と に形成 さ れる ド メ イ ンのサイ ズが異な る ため、 エラ ーを生 じ る 場合があ る。 本発明を用い る と、 あ らか じめ本発明で提 供 した'テス ト ト ラ ッ ク へディ ス ク ドラ イ ブが記憶 してい る テス トノ、'タ ー ンを記録 しておき、 こ の記録 したデ一 夕 一を再生 し、 得 られる信号振幅を測定する こ と に よ り 、 ディ ス ク 間のバラ ツキをは じめ、 環境温度変化に よ る影 響まで吸収でき た。 こ こ で、 テス ト パタ ー ン に よ る制御 用の情報の採取はディ ス ク ドラ イ ブの起動時及びディ ス ク挿入時に細か く 採取 した。 This enables high-density recording. Also, between media If there is a variation in the recording sensitivity or the like, an error may occur because the size of the domain formed for each disk is different. When the present invention is used, the test drive and the turn stored in the disk drive to the test track provided in the present invention are recorded in advance. By replaying the recorded data overnight and measuring the resulting signal amplitude, we were able to absorb the effects of environmental temperature changes, including variations between disks. Here, control information was collected in detail using the test pattern when the disk drive was started and when the disk was inserted.
本実施例に よれば、 デ ィ ス ク 1 の記録領域をあ らか じ め複数のゾー ン 1 4 0 1 , 1 4 0 2 , 1 4 0 3 に分割 し、 各ゾー ン ご と に記録制御を行 う ための情報を採取する領 域 1 4 0 0 を設けそ こ でテス ト パタ ー ン に よ り 記録 Z再 生する こ と に よ り 、 環境温度や媒体間のバラ ツキな どに よ り 生 じる記録磁区サイ ズの違いを補正する こ とができ る。 こ れは、 デ ィ ス ク位置に よ り その変動量が異な る の で.、 少な く と も各ゾー ン 1 4 0 1 , 1 4 0 2 , 1 4 0 3 毎にテス ト ト ラ ッ ク を設ける こ と に よ り 、 こ の問題を解 決する こ とができ た。 こ れに よ り 、 超高密度光記録が実 現でき た。 ま た、 各 ト ラ ッ ク ご と にテス ト領域を設けれ ば、 よ り 精密な補正が行なえ る テス ト ト ラ ッ ク の媒体の 劣化を防 ぐ ために、 すでにテス ト記録を行な っ た箇所 と 同一の箇所に重複 してテス ト記録が行なわれないよ う に し、 あ る いは連続 してテス ト記録が行なわれないよ う に し、 テス ト ト ラ ッ クの書換え回数に偏りが生じないよ う にする こ とが有効である。 According to this embodiment, the recording area of the disk 1 is divided into a plurality of zones 1401, 1402, and 1403 in advance, and the recording is performed for each zone. An area for collecting information for control is set up, and the recording pattern is played back using a test pattern, which results in environmental temperature and variations between media. Thus, it is possible to correct the difference in the size of the recorded magnetic domain caused by the above. This is because the amount of variation differs depending on the disk position, and at least test test is performed for each of the zones 141, 1402, and 1403. This problem was solved by establishing a network. As a result, ultrahigh-density optical recording was realized. In addition, if a test area is provided for each track, test recording has already been performed to prevent deterioration of the test track media, which allows more precise correction. Make sure that test recording is not duplicated in the same location as the previous one, or that test recording is not performed consecutively. However, it is effective to prevent bias in the number of test track rewrites.
また、 上記の様にディ ス ク の内周、 中周、 外周のテス ト トラ ッ ク 1 4 0 0 においてテス ト記録を行う際あ ら力、 じめ、 各ゾーン 1 4 0 1 , 1 4 0 2 , 1 4 0 3 における 記録再生特性を記憶手段に保存しておき、 テス ト記録を 行なっていないゾー ンのディ スクの記録再生特性を外そ うする こ とができる。  Also, as described above, when performing test recording in the test track 1400 on the inner, middle, and outer circumferences of the disk, the force, the first time, and the zones 1404, 1404 The recording / reproducing characteristics at 0 2 and 1403 can be stored in the storage means, and the recording / reproducing characteristics of the disc in the zone where test recording is not performed can be excluded.

Claims

1 . 光ディ ス ク ( 1 ) に光 ビームを照射する光源 ( 8 ) 、 記録すべき情報信号を符号列に変換する符号器 ( 4 ) 、 該符号列に従って上記光 ビームを変調 し光パル ス列と して光ディ ス ク に照射してその熱作用 も し く は熱 干渉の少な く と も 1 つによ り符号列を記録マー ク と して 記録する光源駆動手段 ( 7 ) 、 上記光ディ ス ク か らの光 求 1. A light source (8) for irradiating the optical disk (1) with a light beam, an encoder (4) for converting an information signal to be recorded into a code string, and modulating the light beam according to the code string to generate an optical pulse The light source driving means (7) for irradiating the optical disk as a sequence and recording the code sequence as a recording mark by at least one of its thermal action and thermal interference (7); Light demand from optical disk
を光電変換 して電気信号波形を得る検出器 ( 9 ) 、 上記 の  A detector (9) that obtains an electric signal waveform by photoelectrically converting
電気信号波形を波形処理する波形処理手段 ( 1 1 ) 、 該 w  Waveform processing means (11) for processing the electric signal waveform
波形処理手段か らの信号をパルス信号とするパル ス化手 段 ( 1 3 ) 、 該パルス信号から上記光ディ ス ク上に記録 された符号列を検出する弁別器 ( 1 5 ) 、 該弁別器か ら の符号列を情報信号に復号する復号器 ( 1 7 ) を有する 光ディ ス ク装置において、 特定のテ ス ト信号に よ り上記 光 ビームを変調 して上記光ディ ス ク上にテス ト パ タ ー ン を形成する試 し書き手段 ( 3 ) 、 該テス トパタ ー ンを再 生 して上記テ ス ト信号と比較する手段 ( 1 6 ) 、 該比較 結果に基づいて上記光 ビームの変調を制御する制御手段 ( 6 ) を有し、 該制御手段は上記光パルス列を構成する 0ルス の ヮ ー レ ベル、 パルス幅、 若し く は ル ス間隔 の少な く と も 1 つを制御する こ とを特徴とする光デイ ス ク装置。  A pulsing means (13) for converting a signal from the waveform processing means into a pulse signal, a discriminator (15) for detecting a code string recorded on the optical disk from the pulse signal, In an optical disk device having a decoder (17) for decoding a code string from a decoder into an information signal, the optical beam is modulated by a specific test signal to be placed on the optical disk. Means (3) for writing a test pattern, means (16) for reproducing the test pattern and comparing it with the test signal, and based on the result of the comparison, the light beam Control means (6) for controlling at least one of a zero level, a pulse width and a pulse interval constituting the optical pulse train. An optical disk device characterized by being controlled.
2. 前記パ ワ ー レ ベル 、 パル ス幅、 若 し く はパル ス間 隔を予め定めた値の中から選択する こ とによ り上記光 ビ ームの変調を制御する制御手段を有する請求項 1 記載の 光ディ スク装置。 2. By selecting the power level, pulse width, or pulse interval from predetermined values, 2. The optical disc device according to claim 1, further comprising control means for controlling modulation of the beam.
3. 前記試し書き手段 ( 3 ) からのテス トパターンを 符号器 ( 4 ) で符号化して記録する請求項 1 記載の光デ イ スク装置。  3. The optical disk device according to claim 1, wherein the test pattern from the test writing means (3) is encoded by an encoder (4) and recorded.
4. 前記電気信号波形を前記波形処理手段 ( 1 1 ) を 通さずにパルス化手段 ( 1 3 ) に入力するための切り替 えスィ ッ チ ( 1 2 ) を有する請求項 1 記載の光ディ スク  4. The optical disc according to claim 1, further comprising a switching switch (12) for inputting the electric signal waveform to the pulsing means (13) without passing through the waveform processing means (11).
5. 前記記録マークの 1 つを形成する 1 単位の光パル ス列は、 先頭パルスおよびこれと時間幅が異なる後続パ ルス列からなる請求項 1 記載の光ディ スク装置。 5. The optical disc device according to claim 1, wherein one unit of the optical pulse train forming one of the recording marks comprises a head pulse and a subsequent pulse train having a different time width from the head pulse.
6. 前記後続パルス列はパルスの時間幅若し く はパル ス間隔の少な く と も 1 つが等しいパルス列である請求項 5記載の光ディ スク装置。  6. The optical disc device according to claim 5, wherein the subsequent pulse train is a pulse train in which at least one of a pulse width and a pulse interval is equal.
7. 前記記録マークの 1 つを形成する 1 単位の光パル ス列は、 P w以上のパワー レベルのパルスを有し、 記録 マークを形成しない光パルス列は P a s以下のパワー レ ベルを有し、 前記記録マーク を形成する光パルス列の前 側あるいは後側の少な く と も 1 つに P r以下のパワー レ ベルの領域を有する請求項 1 記載の光ディ スク装置。  7. One unit of the optical pulse train forming one of the recording marks has a pulse with a power level equal to or higher than P w, and the optical pulse train without forming a recording mark has a power level equal to or lower than P as 2. The optical disc device according to claim 1, wherein at least one of the front side and the rear side of the optical pulse train forming the recording mark has a power level region of Pr or less.
ただし P w > P a s > P r  Where P w> P a s> P r
8. 前記記録マークの 1 つを形成する 1単位の光パル ス列は、 2つ以上のパワー レベルのパルスを有する請求 項 1 記載の光ディ スク装置。 8. The optical disc device according to claim 1, wherein one unit of the optical pulse train forming one of the recording marks has two or more power level pulses.
9. 前記記録マー ク の 1 つを形成する 1 単位の光パル ス列は、 先頭のパルスのノ、。ワ ー レベル と、 後続のパルス のパワー レベルが異なる請求項 8 記載の光ディ ス ク装置。 9. One unit of the optical pulse train, which forms one of the recording marks, is the first pulse. 9. The optical disc device according to claim 8, wherein the power level of the lower pulse is different from the power level of the subsequent pulse.
10. 前記制御手段は、 前記記録マー ク の 1 つを形成す る 1 単位の光パルス列のパル スの個数を制御する請求項 10. The control means controls the number of pulses in one unit of the optical pulse train forming one of the recording marks.
1 記載の光ディ ス ク装置。 The optical disc device according to 1.
11. 前記制御手段は、 前記 P w、 P a s , ま たは P r の少な く と も 1 つを変化させる請求項 7 記載の光ディ ス ク装置。  11. The optical disc device according to claim 7, wherein the control means changes at least one of Pw, Pass, and Pr.
12. 前記光 ^ィ ス ク の温度、 光ディ ス クへの記録線速 度、 前記記録すべき情報信号に基づいた記録マー ク の組 合せの少な く と も 1 つに基づいて、 前記光パルス列を構 成するパルスのエ ッ ジ位置を制御する手段 ( 2 7 0 , 2 7 1 , 2 7 2 ) を有する こ とを特徴とする請求項 1 記載 の光ディ ス ク装置。  12. The optical disk based on at least one of a combination of a temperature of the optical disk, a recording linear velocity on the optical disk, and a recording mark based on the information signal to be recorded. 2. The optical disk device according to claim 1, further comprising means (270, 271, 272) for controlling an edge position of a pulse constituting the pulse train.
13. 前記エ ッ ジ位置を制御するための情報を記憶する テーブル ( 2 7 5 , 2 7 6 ) を有する こ とを特徴とする 請求項 1 2 記載の光ディ ス ク装置。  13. The optical disk device according to claim 12, further comprising a table (275, 276) for storing information for controlling the edge position.
14. 前記光ディ ス ク ( 1 ) は半径方向に記録条件の異 なる複数のゾー ン ( 1 4 0 1 , 1 4 0 2 , 1 4 0 3 ) に 分割され、 各ゾー ン ごとに前記テス トパタ ー ンを記録す るための領域 ( 1 4 0 0 ) を有する請求項 1 記載の光デ イ ス ク装置。  14. The optical disk (1) is divided into a plurality of zones (1441, 1442, 1403) having different recording conditions in the radial direction, and the test is performed for each zone. 2. The optical disk device according to claim 1, further comprising an area (140) for recording a top pattern.
15. 前記光ディ ス ク ( 1 ) は半径方向に複数のゾー ン ( 1 4 0 1 , 1 4 0 2 , 1 4 0 3 ) に分割され、 同一の ゾーン内では線記録密度が等し く 、 光ディ ス ク最内周の ゾーン ( i 4 0 1 ) が最も線記録密度が小さい請求項 1 記載の光ディ スク装置。 15. The optical disk (1) is divided radially into a plurality of zones (1401, 1442, 1403), and 2. The optical disc device according to claim 1, wherein the linear recording densities are equal in the zones, and the zone (i401) at the innermost circumference of the optical disc has the lowest linear recording density.
1 6. 前記光ディ スク ( 1 ) は線記録密度を等し く する ために、 ゾーン毎にも し く はディ スクの半径位置に応じ てパルス幅及びパルス間隔のう ち少な く と も 1 つを変化 させた光パルス列を用いる請求項 1 5記載の光ディ スク  1 6. In order to equalize the linear recording density, the optical disk (1) should have at least one of a pulse width and a pulse interval according to each zone or the radial position of the disk. 16. The optical disc according to claim 15, wherein the optical pulse train uses different pulse trains.
17. 前記比較結果は記録マークの幅、 長さ、 あるいは マーク間隔から選ばれる少な く と も 1 つの要素を反映し ている請求項 1 記載の光ディ スク装置。 17. The optical disc device according to claim 1, wherein the comparison result reflects at least one element selected from the width, length, or mark interval of the recording mark.
18. 前記光パルス列を構成するパルスのパルス幅、 若 し く はパルス間隔の少な く と も 1 つを制御するために記 録ク ロ ッ クを用い、 該記録ク ロ ッ ク によ り形成される検 出窓幅の整数分の 1 或いは整数倍と した請求項 1 記載の 光ディ スク装置。  18. A recording clock is used to control at least one of the pulse width and / or pulse interval of the pulses constituting the optical pulse train, and is formed by the recording clock. 2. The optical disc device according to claim 1, wherein the width of the detection window is 1 / integer or an integral multiple of the detection window width.
1 9. 前記光源駆動手段 ( 7 ) は、 スィ ッ チ手段及びこ れに直列な電流源からなる単位駆動回路が複数並列に配 置され、 1 つの定電流源がそれぞれの単位駆動回路と直 列に配置され、 上記定電流源と直列かつ上記単位駆動回 路と並列に光源 ( 8 ) が接続され、 上記複数の単位駆動 回路の電流源は異なる値の電流を流す様構成され、 上記 スイ ツチ手段を前記符号列に基づいた制御信号で作動さ せる こ とによ り、 上記光源 ( 8 ) を駆動する電流値を制 御する請求項 1 記載の光ディ スク装置。 1 9. In the light source driving means (7), a plurality of unit driving circuits each comprising a switching means and a current source in series therewith are arranged in parallel, and one constant current source is directly connected to each unit driving circuit. A light source (8) is connected in series with the constant current source and in parallel with the unit drive circuit. The current sources of the plurality of unit drive circuits are configured to flow currents of different values. 2. The optical disc device according to claim 1, wherein a current value for driving said light source (8) is controlled by operating a touch means with a control signal based on said code string.
20. 前記単位駆動回路の電流源の少な く と も 1 つが電 流可変である請求項 1 9 記載の光ディ ス ク装置。 20. The optical disc device according to claim 19, wherein at least one of the current sources of the unit drive circuit has a variable current.
21 . 前記スィ ツ チ手段は n p n タ イ プでスィ ツ チ ン グ する素子である請求項 1 9 記載の光ディ ス ク装置。  21. The optical disc device according to claim 19, wherein the switch means is an element that switches in an npn type.
22. 記録すべき情報信号を符号列 ( 2 0 ) に変換 し、 該符号列 ( 2 0 ) に従って光 ビー ムを光パルス に変調 し、 該光パルス列を記録媒体 ( 1 ) に照射し、 上記.光パルス 列の熱作用若し く は熱干渉の少な く と も 1 つによ り符号 列 ( 2 0 ) を記録マー ク と して記録 し、 上記記録媒体 ( 1 ) からの光を光電変換 して電気信号波形を得、 上記 電気信号波形を波形処理 し、 該波形処理手段か らの信号 をパルス信号に変換し、 該パルス信号から上記記録媒体 上に記録された符号列を検出 し、 該検出された符号列を 情報信号に復号する光学的情報記録再生方法において、 特定のテス ト信号によ り上記光 ビー ムを変調 して上記記 録媒体上にテ ス ト パタ ー ンを形成 し、 該テ ス ト パ タ ー ン を再生 して上記テス ト信号と比較 し、 該比較結果に基づ いて上記光パルス列を構成するパルス のノ、。ワー レベル、 パルス幅、 若 し く はパルス間隔の少な く と も 1 つを制御 する こ とを特徴とする光学的情報記録再生方法。  22. The information signal to be recorded is converted into a code string (20), the light beam is modulated into light pulses according to the code string (20), and the light pulse string is irradiated on the recording medium (1). The code train (20) is recorded as a recording mark by at least one of the thermal action and thermal interference of the optical pulse train, and the light from the recording medium (1) is photoelectrically converted. The electric signal waveform is obtained by the conversion, the electric signal waveform is subjected to waveform processing, the signal from the waveform processing means is converted into a pulse signal, and a code string recorded on the recording medium is detected from the pulse signal. In an optical information recording / reproducing method for decoding the detected code string into an information signal, the optical beam is modulated by a specific test signal to form a test pattern on the recording medium. Forming the test pattern, reproducing the test pattern and comparing the reproduced test pattern with the test signal. Based on the comparison result, the pulses constituting the optical pulse train. An optical information recording / reproducing method characterized by controlling at least one of a power level, a pulse width, and / or a pulse interval.
23. 前記記録媒体を交換する毎に前記特定のテ ス ト 信 号によ り上記光 ビームを変調 して上記記録媒体上にテス トパター ンを形成 し、 該テス トノ、。ター ンを再生 して上記 テス ト信号と比較 し、 該比較結果に基づいて上記光パル ス列を構成する ノ、。ルス のパ ワ ー レ ベル、 パルス幅、 苦 し く はパルス間隔の少な く と も 1 つを制御する こ とを特徵 とする請求項 2 2記載の光学的情報記録再生方法。 23. Each time the recording medium is exchanged, the light beam is modulated by the specific test signal to form a test pattern on the recording medium. The turn signal is reproduced, compared with the test signal, and the optical pulse train is formed based on the comparison result. Lus power level, pulse width, suffering 22. The optical information recording / reproducing method according to claim 22, wherein at least one of the pulse intervals is controlled.
24. 前記記録マー ク の 1 つを形成する 1 単位の光パル ス列は、 P w以上のノ、。ワ ー レベルのノ、。ルスを有し、 記録 マークを形成しない光パルス列は P a s 以下のノ、'ワー レ ベルを有し、 前記記録マークを形成する光パルス列の前 側あるいは後側の少な く と も 1 つに P r 以下のノ、'ワー レ ベルの領域を有する請求項 2 2記載の光学的情報記録再 生方法。  24. One unit of optical pulse train that forms one of the recording marks is greater than Pw. Low level ,. An optical pulse train that has a pulse and does not form a recording mark has a power level less than or equal to P as, and has at least one P at the front or rear side of the optical pulse train that forms the recording mark. 23. The optical information recording / reproducing method according to claim 22, wherein the optical information recording / reproducing method has a region of the following level.
ただし P w > P a s > P r  Where P w> P a s> P r
25. 前記テス トパタ ンは最長符号と最短符号を含むこ とを特徵とする請求項 2 2記載の光学的情報記録再生方 0  25. The optical information recording / reproducing method according to claim 22, wherein the test pattern includes a longest code and a shortest code.
26. レーザ光を照射する こ とによる熱作用によ り記録 領域を形成して情報を記録するための光ディ ス ク ( 1 ) であって、 該光ディ スク は半径方向に記録条件の異なる 同心円上の複数のゾー ン ( 1 4 0 1 , 1 4 0 2 , 1 4 0 3 ) に分割され、 各ゾーンごとに前記テス トパター ンを 記録するための領域 ( 1 4 0 0 ) を有する請求項 1 記載 の光ディ スク。  26. An optical disk (1) for recording information by forming a recording area by the thermal action of irradiating a laser beam, wherein the optical disk has different recording conditions in the radial direction. A plurality of zones on a concentric circle are divided into a plurality of zones (1401, 1402, 1403), and each zone has an area (140,000) for recording the test pattern. Optical disc according to item 1.
27. 前記光ディ スク ( 1 ) の同一のゾー ン内では線記 録密度が等し く 、 光ディ スク最内周のゾーン ( 1 4 0 1 ) が最も線記録密度が小さい請求項 2 6 記載の光ディ ス ク。  27. The linear recording density is equal in the same zone of the optical disc (1), and the linear recording density is lowest in the innermost zone (1401) of the optical disc. Optical disk as described.
28. 前記光ディ スク は、 基板、 光学的に吸収の無い無 機化合物の第 1 誘電体層、 垂直磁気異方性を有する記録 層、 光学的に吸収の無い無機化合物の第 2 誘電体層、 光 の反射と熱流の制御を行う ための制御層、 以上の各層の 保護と熱流の制御を行う ための保護層を順次積層 した も のである請求項 2 6 記載の光ディ ス ク。 28. The optical disc is a substrate which has no optical absorption A first dielectric layer of organic compound, a recording layer with perpendicular magnetic anisotropy, a second dielectric layer of inorganic compound with no optical absorption, a control layer for controlling light reflection and heat flow, 27. The optical disc according to claim 26, wherein protective layers for protecting each layer and controlling heat flow are sequentially laminated.
29. 定速回転数で回転する光ディ ス ク上に レ ーザ光を 照射する こ とによ る熱作用によ り記録領域を形成 して情 報を記録する光学的情報記録方法であって、 上記光ディ ス ク を半径方向に記録条件の異なる同心円上の複数のゾ ー ン ( 1 4 0 1 , 1 4 0 2 , 1 4 0 3 ) に分割 し、 同一 のゾー ン内では線記録密度が等 し く 、 光ディ ス ク最内周 のゾー ン ( 1 4 0 1 ) が最も線記録密度が小さ く 、 光デ イ ス ク最內周のゾー ン ( 1 4 0 3 ) が最も線記録密度が 大き く なる よ う に上記記録.領域を形成する光学的情報記 録方法。  29. An optical information recording method in which information is recorded by forming a recording area by the thermal action of irradiating a laser beam onto an optical disk rotating at a constant speed. Then, the optical disk is divided into a plurality of zones (1441, 1442, 1403) on concentric circles having different recording conditions in the radial direction, and a line is formed in the same zone. The recording density is equal, the zone at the innermost circumference of the optical disk (1401) has the lowest linear recording density, and the zone at the innermost circumference of the optical disk (1441) is the lowest. An optical information recording method for forming the above recording area so that the linear recording density is maximized.
30. スィ ッ チ手段及びこ れに直列な電流源からなる単 位駆動回路が複数並列に配置され、 1 つの定電流源がそ れぞれの単位駆動回路 と直列に配置され、 上記定電流源 と直列かつ上記単位駆動回路 と並列に半導体 レ ーザが接 続され、 上記複数の単位駆動回路の電流源は異なる値の 電流を流す様構成され、 上記スィ ッ チ手段を制御信号で 作動させる こ と に よ り 、 上記半導体 レ ーザを駆動する電 流値を制御する レーザ駆動回路。  30. A plurality of unit drive circuits each comprising a switch means and a current source in series with the switch means are arranged in parallel, one constant current source is arranged in series with each unit drive circuit, and A semiconductor laser is connected in series with the power supply and in parallel with the unit drive circuit, and the current sources of the plurality of unit drive circuits are configured to flow currents of different values, and the switch means is operated by a control signal. A laser drive circuit for controlling a current value for driving the semiconductor laser.
3 1 . 前記単位駆動回路の電流源の少な く と も 1 つが電 流可変である請求項 3 0 記載の レ ーザ駆動回路。 31. The laser drive circuit according to claim 30, wherein at least one of the current sources of the unit drive circuit has a variable current.
32. 前記スィ ッチ手段は n P n タイプでスイ ッチング する素孑である請求項 3 0 記載の レーザ駆動回路。 32. The laser drive circuit according to claim 30, wherein said switch means is an nPn type switching moss.
PCT/JP1992/001460 1990-06-29 1992-11-10 Magnetooptical disk apparatus and recording medium WO1993010527A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE4293957A DE4293957C2 (en) 1991-11-11 1992-11-10 Magneto=optical disk appts. capable of ultra-high density recording
DE4293957T DE4293957T1 (en) 1991-11-11 1992-11-10 Magneto-optical disk storage and magneto-optical recording medium
US08/087,777 US5642343A (en) 1990-06-29 1992-11-10 Magnetooptic disc apparatus and recording medium

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US72070691A 1991-06-25 1991-06-25
JP3294145A JP3063314B2 (en) 1991-11-11 1991-11-11 Digital signal recording / reproducing method and apparatus
JP3/294145 1991-11-11
JP4/26511 1992-02-13
JP2650992 1992-02-13
JP4/26508 1992-02-13
JP2650892 1992-02-13
JP2651192 1992-02-13
JP4/26509 1992-02-13
JP4100897A JPH05298737A (en) 1992-04-21 1992-04-21 Recording and reproducing control method of information
JP4/100897 1992-04-21

Publications (1)

Publication Number Publication Date
WO1993010527A1 true WO1993010527A1 (en) 1993-05-27

Family

ID=27549295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001460 WO1993010527A1 (en) 1990-06-29 1992-11-10 Magnetooptical disk apparatus and recording medium

Country Status (1)

Country Link
WO (1) WO1993010527A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006530A1 (en) 1995-08-09 1997-02-20 Hitachi, Ltd. Optical disk device
WO2000028535A1 (en) * 1998-11-06 2000-05-18 Matsushita Electric Industrial Co., Ltd. Method and device for finding conditions on recording pulse of optical disk
EP1058240A3 (en) * 1999-06-03 2002-01-23 Samsung Electronics Co., Ltd. Method of generating write pulse control signals for optical recording media, and recording apparatus adopting the same
CN110864711A (en) * 2018-08-27 2020-03-06 台达电子工业股份有限公司 Encoder and its position detection method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223955A (en) * 1983-05-20 1984-12-15 トムソン−セエスエフ Calibrator for power of light applied to optical disc for data recording
JPS6040570A (en) * 1983-08-12 1985-03-02 Hitachi Ltd Data recording and reproducing device
JPS63244330A (en) * 1987-03-30 1988-10-11 Nikon Corp Optical disk device
JPH027232A (en) * 1987-12-01 1990-01-11 Matsushita Electric Ind Co Ltd Optical information recording and reproducing device
JPH0261834A (en) * 1988-08-25 1990-03-01 Fujitsu Ltd optical disc device
JPH02252141A (en) * 1989-03-27 1990-10-09 Canon Inc Optical information recording and reproducing device
JPH03102656A (en) * 1989-09-14 1991-04-30 Asaka Co Ltd Multi-beam optical disk device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223955A (en) * 1983-05-20 1984-12-15 トムソン−セエスエフ Calibrator for power of light applied to optical disc for data recording
JPS6040570A (en) * 1983-08-12 1985-03-02 Hitachi Ltd Data recording and reproducing device
JPS63244330A (en) * 1987-03-30 1988-10-11 Nikon Corp Optical disk device
JPH027232A (en) * 1987-12-01 1990-01-11 Matsushita Electric Ind Co Ltd Optical information recording and reproducing device
JPH0261834A (en) * 1988-08-25 1990-03-01 Fujitsu Ltd optical disc device
JPH02252141A (en) * 1989-03-27 1990-10-09 Canon Inc Optical information recording and reproducing device
JPH03102656A (en) * 1989-09-14 1991-04-30 Asaka Co Ltd Multi-beam optical disk device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006530A1 (en) 1995-08-09 1997-02-20 Hitachi, Ltd. Optical disk device
EP0844609A4 (en) * 1995-08-09 2007-10-17 Hitachi Ltd OPTICAL DISK DEVICE
WO2000028535A1 (en) * 1998-11-06 2000-05-18 Matsushita Electric Industrial Co., Ltd. Method and device for finding conditions on recording pulse of optical disk
US6791926B1 (en) 1998-11-06 2004-09-14 Matsushita Electric Industrial Co., Ltd. Method and device for finding conditions on recording pulse of optical disk
US7236438B2 (en) 1998-11-06 2007-06-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for determining recording pulse parameters for an optical disc
US7248552B2 (en) 1998-11-06 2007-07-24 Matsushita Electric Industrial Co., Ltd. Method and apparatus for determining recording pulse parameters for an optical disc
EP1058240A3 (en) * 1999-06-03 2002-01-23 Samsung Electronics Co., Ltd. Method of generating write pulse control signals for optical recording media, and recording apparatus adopting the same
US6762986B1 (en) 1999-06-03 2004-07-13 Samsung Electronics Co., Ltd. Method of generating write pulse control signals for various types of optical recording media and recording apparatus adopting the same
CN110864711A (en) * 2018-08-27 2020-03-06 台达电子工业股份有限公司 Encoder and its position detection method
CN110864711B (en) * 2018-08-27 2022-03-11 台达电子工业股份有限公司 Encoder and position detection method thereof

Similar Documents

Publication Publication Date Title
US5642343A (en) Magnetooptic disc apparatus and recording medium
KR100477510B1 (en) Optical information recording method, optical information recording reproducing device, and optical information recording media
US20050078578A1 (en) Optical recording medium and recording device for this optical recording medium and recording method
JPH0831092A (en) Optical disk drive
JP3345932B2 (en) Optical disk device and optical information recording / reproducing method
WO2004006232A1 (en) Optical recording/reproduction device and focal point control method
JPH06302042A (en) Magneto-optical disk device
JP2006294243A (en) Method and device for recording and reproducing information
JPH10334534A (en) Magneto-optical recording and reproducing method, and magneto-optical recording and reproducing device
US6731578B1 (en) Optical disk recording and/or reproducing device, and focusing servomechanism
KR100570927B1 (en) store
US20090141615A1 (en) Optical recording medium
WO1993010527A1 (en) Magnetooptical disk apparatus and recording medium
WO2001059773A1 (en) Optical information recording medium, method for recording/reproducing the same, and optical pickup
JP2001184792A (en) Optical disk recording/reproducing device and optical disk
JP4105165B2 (en) Magneto-optical recording medium and magneto-optical storage device
KR20060105233A (en) Hybrid discs, recording and / or reproducing apparatus, and method
JPH06295439A (en) Optical recording method
US7706244B2 (en) Information recording media and playback power determining method for signal playback
JP3455658B2 (en) Super-resolution reproduction method and optical memory device in optical memory device
US7903519B2 (en) Recording mark formation method, information recording device, information recording method, and information recording medium
JP3556629B2 (en) Optical recording / reproducing method and optical recording / reproducing apparatus
WO2003028022A1 (en) Optical recording medium
JP5191198B2 (en) Optical recording medium, optical recording / reproducing system
JP2000036115A (en) Optical recording method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

WWE Wipo information: entry into national phase

Ref document number: 08087777

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1997 807891

Country of ref document: US

Date of ref document: 19970226

Kind code of ref document: A

RET De translation (de og part 6b)

Ref document number: 4293957

Country of ref document: DE

Date of ref document: 19970731

WWE Wipo information: entry into national phase

Ref document number: 4293957

Country of ref document: DE

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载