+

WO1993009081A1 - Procede pour la production de 1,1,1,2,2,4,4,4-octafluorobutane - Google Patents

Procede pour la production de 1,1,1,2,2,4,4,4-octafluorobutane Download PDF

Info

Publication number
WO1993009081A1
WO1993009081A1 PCT/JP1992/001399 JP9201399W WO9309081A1 WO 1993009081 A1 WO1993009081 A1 WO 1993009081A1 JP 9201399 W JP9201399 W JP 9201399W WO 9309081 A1 WO9309081 A1 WO 9309081A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
octafluorobutane
hydrogen
reduction
catalyst
Prior art date
Application number
PCT/JP1992/001399
Other languages
English (en)
Japanese (ja)
Inventor
Hirokazu Aoyama
Souichi Ueda
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO1993009081A1 publication Critical patent/WO1993009081A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation

Definitions

  • the present invention relates to a method for producing 1,1,1,2,2,4,4,4-octafluorobutane (HFC-338mfc).
  • HFC-338mic is expected to be used for foaming agents, refrigerants, cleaning agents, etc., just like conventional fluorocarbons, and has the advantage of not destroying stratospheric ozone at all because it does not contain chlorine. I have.
  • the present invention seeks to provide a method for industrially and economically producing HF C 338mic in high yield.
  • the inventor of the present invention has proposed a 3,3-dichloro-mouth or dibromo-monomer obtained by adding 1,1-dichlorotetrafluoroethane or 1,1-dibromotetrafluoroethane to tetrafluoroethylene.
  • the method of reduction in the present invention is a method of performing under light irradiation, using zinc. , A method using hydrogen in the presence of a catalyst, a method using potassium acetate and an alcohol, and the like.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and sec-butanol are preferably used as a proton source. More preferably, general alcohols such as isopropanol and sec-butanol are used.
  • the reaction proceeds smoothly by adding an alcohol into the reaction system to capture HCl or HBr generated as the reaction proceeds.
  • H C1 or H Br generated by heating may be driven out of the system.
  • the light source is not particularly limited as long as it generates light having a wavelength of 40 O nm or less.
  • a high-pressure mercury lamp and a low-pressure mercury lamp are preferable.
  • the reaction temperature in the reduction under light irradiation is usually in the range of 0 to 100 ° C, preferably in the range of 10 to 80 ° C, and the reaction pressure is not particularly limited, but is from atmospheric pressure to 2 KgZcm 2 G It is preferable to carry out within the range.
  • a solvent used when reducing with zinc a solvent that is a proton source for the reduction reaction is preferable, and alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and propylene glycol are preferably used. Powder or granular zinc is preferred as zinc, and zinc powder is most preferred.
  • the amount of zinc used should be at least equimolar to the chlorine or bromine to be reduced, that is, at least 2 molar equivalents to the starting material.
  • the reaction is usually carried out in a temperature range from room temperature to 120 ° C, preferably 40 to 100 ° C.
  • the reaction pressure is not particularly limited, either, from atmospheric pressure to 8 KgZcm 2 It is preferably carried out in a pressure range of G.
  • the reduction can be performed in either a gas phase or a liquid phase reaction system.
  • a noble metal catalyst such as platinum, palladium, rhodium and ruthenium, and a hydrogenation catalyst such as Raney nickel can be used, but a noble metal catalyst is particularly preferable.
  • the carrier of the reduction catalyst for example, alumina, activated carbon, and the like are suitably used.
  • a conventional method for preparing a noble metal catalyst can be applied. It is preferable to reduce the catalyst before use in order to obtain stable catalytic activity, but it is not always necessary.
  • the ratio of hydrogen to starting material can vary widely. Normally, stoichiometric amounts of hydrogen are used to hydrogenate chlorine or bromine atoms, but in order to increase the conversion of the starting material and the selectivity of the target compound, a considerably large amount, based on the number of moles of the starting material, For example, 4 times or more hydrogen may be used.
  • the reaction temperature is suitably from 80 to 350 ° C., particularly preferably from 100 to 200 ° C. in a gas phase reaction.
  • the contact time is from 0, 1 to 200 seconds, particularly preferably from 1 to 60 seconds. .
  • the reduction reaction When the reduction reaction is performed in the liquid phase, it is possible to use a solvent without solvent, but alcohols such as methanol, ethanol, and isopropanol; ethers such as tetrahydrofuran, dioxane, and ethylene glycol dimethyl ether; and solvents such as acetic acid and pyridine.
  • the reaction may be performed in the reaction.
  • the reaction system may contain an alkaline solvent, such as sodium hydroxide, potassium hydroxide, or calcium hydroxide.
  • the generated acid may be captured by adding water, soda glyme, ammonia water, or the like.
  • the reaction temperature in the liquid phase reaction is preferably room temperature to 150 ° C., and the reaction pressure is preferably atmospheric pressure to 50 cm 2 G.
  • a solvent used in the reduction with acetic acid and alcohol a solvent that is a proton source for the reduction reaction is preferable, and alcohols such as methanol, ethanol, isopropanol, ethylene glycol and propylene glycol are preferable, and isopropanol is preferable. Is particularly preferred.
  • the amount of potassium persulfate should be at least one equivalent to the chlorine or bromine atom to be reduced, that is, at least 2 molar equivalents to the starting material.
  • the reaction is usually carried out at a temperature in the range of room temperature to 120, preferably 40 to 100 ° C.
  • the reaction pressure is not particularly limited, it is preferable to carry out the reaction in a pressure range from atmospheric pressure to 8 kgZcm 2 G.
  • the present invention reduces 1,3,3-dichro- or jib-mouth 1,1,1,2,2,4,4,4 one-year-old kutafluorobutane to provide a high yield of 1 , 1,1,2,2,4,4,4 can produce otatafnoroleolobutane.
  • Example 2 3,3-dichloro-1,1,1,2,2,4,4 instead of 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane
  • the reaction was carried out in the same manner except that 15 g of 4-octafluorobutane was used.
  • the conversion of the raw material was 100%, and 1,1,1,2,2,4,4,4-octafuronole Lobutane was formed with a selectivity of 80%.
  • a reaction tube made of Hastelloy C with an inner diameter of 20 was filled with 40 ml of activated carbon-supported palladium catalyst (supporting rate: 0.5% by weight). After flowing hydrogen at 120 ° C at a flow rate of 8 OccZmin. For 2 hours, gasified at a reaction temperature of 120 ° C was 3,3-dichloro-1,1,1,2,2,4,4,4. —Octafluorobutane was passed through the reaction tube at a flow rate of 4 Occ min. And hydrogen at a flow rate of 10 OccZmin. After removing the acid content from the reactor outlet gas, it was collected in a cold trap at 178 ° C and analyzed by gas chromatography. The conversion of the raw material was 95%, and the target 1, 1, 1, 2 , 2,4,4,4 One-year-old kutafluorobutane was produced with a selectivity of 85%.
  • Example 6 instead of 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane, 3,3-dichloro-1,1,1,2,2,4 The reaction was carried out in the same manner except that 15 g of 1,4-octafluorobutane was used. The reaction mixture was cooled and analyzed by gas chromatography. The conversion of the raw materials was 100%. , 1, 2, 2, 4, 4, and 4-octafluorobutane were produced with a selectivity of 94%. -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention se rapporte à un procédé pour la production de 1,1,1,2,2,4,4,4-octafluorobutane selon un rendement élevé, par réduction de 3,3-dichloro- ou 3,3-dibromo-1,1,1,2,2,4,4,4-octafluorobutane.
PCT/JP1992/001399 1991-11-01 1992-10-29 Procede pour la production de 1,1,1,2,2,4,4,4-octafluorobutane WO1993009081A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/287494 1991-11-01
JP28749491A JPH05124987A (ja) 1991-11-01 1991-11-01 1,1,1,2,2,4,4,4−オクタフルオロブタンの製造方法

Publications (1)

Publication Number Publication Date
WO1993009081A1 true WO1993009081A1 (fr) 1993-05-13

Family

ID=17718071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001399 WO1993009081A1 (fr) 1991-11-01 1992-10-29 Procede pour la production de 1,1,1,2,2,4,4,4-octafluorobutane

Country Status (2)

Country Link
JP (1) JPH05124987A (fr)
WO (1) WO1993009081A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes
US6066768A (en) * 1993-12-14 2000-05-23 E. I. Du Pont De Nemours And Company Perhalofluorinated butanes and hexanes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134312B2 (ja) * 1992-02-28 2001-02-13 ダイキン工業株式会社 1,1,1,2,2,4,4,5,5,5‐デカフルオロペンタンの製造方法及びその製造用中間体
JP3500617B2 (ja) * 1993-08-27 2004-02-23 ダイキン工業株式会社 ヘキサフルオロシクロブタンの製造方法
JP7208542B2 (ja) * 2020-12-02 2023-01-19 ダイキン工業株式会社 フルオロアルカン化合物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129130A (ja) * 1988-11-08 1990-05-17 Asahi Glass Co Ltd R−134aの製造方法
JPH02204443A (ja) * 1989-02-03 1990-08-14 Asahi Glass Co Ltd ジフルオロメチレン基を有するプロパンの製造法
JPH02204435A (ja) * 1989-02-02 1990-08-14 Asahi Glass Co Ltd 含水素ジフルオロプロパン類の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129130A (ja) * 1988-11-08 1990-05-17 Asahi Glass Co Ltd R−134aの製造方法
JPH02204435A (ja) * 1989-02-02 1990-08-14 Asahi Glass Co Ltd 含水素ジフルオロプロパン類の製造法
JPH02204443A (ja) * 1989-02-03 1990-08-14 Asahi Glass Co Ltd ジフルオロメチレン基を有するプロパンの製造法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5488189A (en) * 1993-12-14 1996-01-30 E. I. Du Pont De Nemours And Company Process for fluorinated propanes and pentanes
US6066768A (en) * 1993-12-14 2000-05-23 E. I. Du Pont De Nemours And Company Perhalofluorinated butanes and hexanes
US6229058B1 (en) 1993-12-14 2001-05-08 E. I. Du Pont De Nemours And Company Preparation of fluorinated propanes and pentanes

Also Published As

Publication number Publication date
JPH05124987A (ja) 1993-05-21

Similar Documents

Publication Publication Date Title
JP3158440B2 (ja) 1,1,1,2,3−ペンタフルオロプロペンの製造方法及び1,1,1,2,3−ペンタフルオロプロパンの製造方法
JPH05221894A (ja) 1,1,1,2,3,3,3−ヘプタフルオロプロパン(r227)の製法
JP2008523092A (ja) Cf3−iの直接一段階合成
US5523501A (en) Catalytic hydrogenolysis
WO1993009081A1 (fr) Procede pour la production de 1,1,1,2,2,4,4,4-octafluorobutane
JP4538953B2 (ja) −ch2−chf−基を有する化合物の製造方法
JP3134312B2 (ja) 1,1,1,2,2,4,4,5,5,5‐デカフルオロペンタンの製造方法及びその製造用中間体
JP3994123B2 (ja) 多孔質フッ化カルシウムの製造方法、水素化反応用触媒及びトリハイドロフルオロカーボンの製造方法
WO2007094468A1 (fr) Catalyseur de synthese de methanol, procede de production d'un tel catalyseur et procede de production de methanol
JPH0967280A (ja) 1,1,1,3,3−ペンタフルオロプロペンの製造方法及び1,1,1,3,3−ペンタフルオロプロパンの製造方法
WO1994005612A1 (fr) Procede de production de 1,1,1,2,3-pentafluoropropane
JP2712476B2 (ja) ジフルオロメチレン基を有するプロパンの製造法
JPH02204442A (ja) ジフルオロメチレン基を有するプロパンの製造法
JP4306081B2 (ja) 1,1,2,2,3,3,4−ヘプタフルオロシクロペンタンの製造方法およびその製造装置
JPH05140009A (ja) 1,1,1,2,2,3,4,5,5,5−デカフルオロペンタンの製造方法
WO2018139654A1 (fr) Procédé de fabrication de 1,1,2,2-tétrafluoropropane
JP2001240567A (ja) ヘプタフルオロシクロペンタンの製造方法
JP2002114509A (ja) 一酸化炭素の製造方法
JPH02131437A (ja) クロロテトラフルオロプロパン類の製造方法
JP2004091368A (ja) 含ハロゲンアルコールおよびその製造方法
JPH11322644A (ja) ハイドロフルオロカーボンの製造方法
JPS63280035A (ja) トリフルオロメチルトルエンの製造法
JPH0987233A (ja) グリコール酸エステルの製造法
JPH10120605A (ja) アセトアルデヒドと酢酸の製造方法
WO2022126111A1 (fr) Procédé de production de trifluoroiodométhane (cf3i) à partir d'anhydride trifluoroacétique (tfaa)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 211837

Date of ref document: 19940613

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载