WO1993006625A1 - Transformateur hydraulique de deplacement pour l'organe piezoelectrique d'actionnement d'une soupape d'admission - Google Patents
Transformateur hydraulique de deplacement pour l'organe piezoelectrique d'actionnement d'une soupape d'admission Download PDFInfo
- Publication number
- WO1993006625A1 WO1993006625A1 PCT/EP1992/002206 EP9202206W WO9306625A1 WO 1993006625 A1 WO1993006625 A1 WO 1993006625A1 EP 9202206 W EP9202206 W EP 9202206W WO 9306625 A1 WO9306625 A1 WO 9306625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydraulic
- piston
- transformer according
- membrane
- cylinder
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 10
- 230000009466 transformation Effects 0.000 claims abstract description 14
- 239000000446 fuel Substances 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 230000007704 transition Effects 0.000 claims abstract 3
- 239000012528 membrane Substances 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 239000004809 Teflon Substances 0.000 claims description 3
- 229920006362 Teflon® Polymers 0.000 claims description 3
- 239000007788 liquid Substances 0.000 description 9
- 238000010276 construction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/0603—Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/02—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
- H02N2/04—Constructional details
- H02N2/043—Mechanical transmission means, e.g. for stroke amplification
Definitions
- Hydraulic displacement transformer for the piezoelectric act of an intake valve
- the present invention relates to a path transformer for the piezoelectric actuator of an intake valve, in particular a fuel injection valve in a motor vehicle engine.
- the throughput of an open valve is determined by its smallest flow cross-section.
- a small valve size i.e. H. with a small circumference of the, for example, cylindrical opening area
- the height of the surface line of the opening area must therefore be large. This height is defined by the needle of the valve.
- needle stroke 50 ... 200 / im.
- Piezoelectric actuators typically reach a deflection of 1000 ppm in length. With an actuator length of ⁇ 20 mm that is reasonable for reasons of response time and costs, the deflections necessary for such valves cannot be achieved. Therefore, a transformation from the deflection of the actuator to the necessary needle stroke must be carried out in such a way that the means must be such that a compact design is guaranteed. For this, linear levers or hydraulic chambers come into question, as they are known from textbooks.
- the present invention has for its object to provide a Wegtran ⁇ former of the type mentioned and according to the preamble of claim 1, which allows a compact design with small moving masses and high Transfor ations efficiency and its manufacturing costs are low.
- a further embodiment according to the invention is proposed to achieve the stated object in accordance with an independent claim.
- An optimal hydraulic transformation of the actuator deflection (10 to 20 / um) to the necessary needle stroke (50 to 200 / im) has no resilience due to construction and hydraulic fluid, and there are no reaction forces caused by pistons and / or membranes and / or membranes and / or flow resistances against the liquid flow.
- FIG. 1 shows a schematic representation of a hydraulic transformer according to the invention with two sealed pistons in an arrangement which has a transformation ratio of T-AT / A.
- FIG. 2 shows a schematic representation of a detail of a hydraulic chamber with a membrane with a circular soft membrane holder.
- FIG 3 shows a schematic representation of a detail of a hydraulic chamber with a piston-shaped diaphragm and with a circular spring plate on the underside of the membrane.
- Fig. 4 shows a schematic representation of a detail of a hydraulic chamber according to the arrangement according to FIG. 3, but with the arc direction of the circular spring plate reversed.
- FIG. 5 e ⁇ 'ne schemati ⁇ che view showing a detail of a hydraulic chamber corresponding to the arrangement according to FIG. 3, but with a construction in which the membrane is arranged below a circular spring plates.
- FIG. 6 shows a typical representation of a detail a hydraulic chamber in which an O-ring can be used instead of a mechanical bracket because of the small strokes in the respective application.
- FIG. 7 shows a schematic illustration of a piston seal according to the invention, an annular gap remaining between the piston and the cylinder wall and the hydraulic chamber being hermetically sealed only via a soft membrane.
- FIG. 8 shows a schematic representation of an arrangement according to the invention, in which the space above a membrane can be filled with a gas or a liquid under pressure, the pressure being able to be transferred to a lower chamber through the deformation of the membrane .
- FIG. 9 shows a schematic representation of an arrangement according to the invention, in which an upper chamber can be designed in such a way that it has an inflow which
- Gas or liquid to be metered in with the valve in question is supplied under pressure, this pressure also being transmitted via the membrane to a lower chamber.
- FIG. 10 shows a schematic representation of an arrangement according to the invention, in which a body which is pressed onto a white membrane increases the pressure in the hydraulic chamber, the body being shaped, for example, over a selected curvature such that the
- FIG. 11 shows a schematic representation of an arrangement according to the invention, in which pistons are either pushed back after each working stroke or, if the pressure of an upper chamber is used, the middle position of the pistons is to be defined, for this purpose.
- a piezo actuator 1 acts on a piston 3 with an area A 1 which is located within a hydraulic chamber 2.
- a second piston 4 with a surface A2 within the hydraulic chamber 2 is coupled to a valve pin of a valve to be actuated (not shown).
- the hydraulic chamber 2 must be filled gas-free due to the high degree of flexibility of gas and then sealed off.
- the pressure piston 3 and the lifting piston 4 are sealed in such a way that the tightness is guaranteed for 10 10 working cycles.
- the pistons are sealed in the following way
- an O-ring is applied to the piston in question.
- the cylinder has polished inner surfaces to ensure that the O-ring, which acts as a sealing ring, slides easily.
- an O-ring can be attached in the cylinder.
- the piston has a polished outer surface to ensure easy sliding of the sealing ring.
- one or both sealing surfaces can also be coated with plastics which reduce sliding friction (eg Teflon), or a corresponding plastic part can be installed.
- plastics which reduce sliding friction eg Teflon
- Easier sliding of the seals with the same sealability can also be achieved by using more than one sealing ring per sealing location.
- the sealing rings should only be squeezed by a small amount ( ⁇ 10%).
- Stroke pistons can the pressure piston or the lifting piston or both can be replaced by a hermetically sealed membrane with a low actuating force. This eliminates the need for more complex sealing measures for the small moving pistons. 7 to 9 show examples of this
- the compatibility of usable hydraulic fluids is 0.5 - 2.10 9 1 / Pa, so the chamber volume is chosen so that the change in volume ( ⁇ V) due to the actuator stroke becomes as large as possible in relation to the chamber volume:
- fine-grained particles (3 / im ⁇ particle size ⁇ 100 / im) can be added.
- the particles are made of a light material with a considerably lower compressibility than the liquid.
- materials for the particles come z. B. aluminum, glass, Kun ⁇ t ⁇ toffe or metal oxides in question.
- the mixture of "liquid particles” then has a compressibility which is improved in accordance with the mixing ratio.
- the gap between the piston and cylinder should be smaller than the particle size so that the piston is not jammed by the particles.
- the resilience of the chamber is kept structurally small.
- materials (high elasticity), wall thicknesses, construction geometry of pistons or membranes and chamber wall are to be selected in an optimized manner.
- the membranes in particular, it must be prevented that the region which is very flexible with respect to the movement also yields with respect to the pressure of the chamber. Constructions as shown in FIGS. 2 to 6 are used here.
- FIG. 2 shows a schematic representation of a detail of a hydraulic chamber 6 with a membrane 7 with a circular, soft membrane holder 8.
- FIG. 3 shows a schematic representation of a detail a hydraulic chamber 6 with a piston-shaped membrane 9 and with a circular spring plate 10 on the underside of the membrane 9.
- FIG. 4 shows a schematic illustration of a detail of a hydraulic chamber 6 corresponding to the arrangement according to FIG. 3, but with the arc direction of the circular spring plate 11 being reversed.
- FIG. 5 shows a schematic illustration of a detail of a hydraulic chamber 6 corresponding to the arrangement according to FIG. 3, but with a construction in which the membrane is arranged below the circular spring plate 11.
- FIG. 6 shows a schematic representation of a detail of a hydraulic chamber 6, in which an O-ring 12 can be used instead of a membrane holder because of the small strokes in the respective application in question.
- the geometric transformation ratio is determined by the ratio of the piston areas A ⁇ / A2.
- the force F to be exerted by the smaller piston is m, needle stroke s and stroke time t:
- the piston area A2 is dimensioned such that the pressure in the chamber required to achieve F is 4 ⁇ P ⁇ 400 bar, lower pressures (e.g. 4 ⁇ P ⁇ 70 bar) are preferable because of the flexibility of the liquid and chamber.
- Replacement sheet 1
- the piston can either be hermetically sealed like the pressure piston, or it has a small annular gap (0.1 ... 10 ⁇ m gap width) to the cylinder.
- a membrane which is soft in the deflection direction is hermetically sealed above the piston to the piston and to the cylinder housing.
- FIG. 7 shows a schematic representation of a piston seal according to the invention, an annular gap 15 remaining between a piston 13 and a cylinder wall of a cylinder housing 14 and the hydraulic chamber 16 being hermetically sealed only via a soft membrane 17 .
- the membrane 17 is made, for example, of soft, hard-wearing plastics or of rubber materials.
- the throughput dm / dt through the gap 15 between the piston 13 and the cylinder wall should be less than ( ⁇ V / 5 • ⁇ t), where ⁇ V is the volume change in the hydraulic chamber 16 caused by the actuator (not shown) and ⁇ t is the longest to be specified Valve opening time (not shown).
- the hydraulic chamber 16 which can be constructed, for example, as shown in FIG. 8, can be pressurized externally. This is done in that a static pressure of 0.5 ... 40 bar is exerted on the diaphragm 17 from the side facing away from the hydraulic chamber 16. Due to the flexibility of the membrane 17, this pressure is transmitted to the hydraulic fluid.
- the pressure can be exerted by
- a spring 19 presses a body 20 onto the membrane 17 so that the pressure in the chamber 16 assumes the selected value.
- the printed body 20 has such a shape that the membrane 17 retains its flexibility in the stroke direction, but does not escape into the chamber 16 because of the pressure.
- An upper and a lower piston can also be reset after each working cycle with their own spring 23/24.
- the spring constant C of these springs 23/24 should be chosen to be as low as possible so that a force independent of the path is exerted on the pistons 21/22. Possible values are: 1 ⁇ C ⁇ 50 N / mm.
- the force of one or both of the springs 23/24 is chosen so large that the mass of the piston 21/22 and possibly other masses attached (e.g. the needle 25 of the valve in question) in the time to be specified specifies the stroke. Depending on the specification, a spring force of 3 ... 150 N is required.
- the pressure on the hydraulic fluid can also be used to reset the reciprocating piston 22.
- the spring force can be significantly reduced to values of 0.2 ... 30 N.
- Tolerance compensation can be integrated in the hydraulic chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Un transformateur hydraulique de déplacement pour l'organe piézoélectrique d'actionnement d'une soupape d'admission, notamment de la soupape d'injection de carburant du moteur d'un véhicule, comprend une chambre hydraulique (2) remplie d'un milieu hydraulique et pourvue de deux cylindres dont la largeur diffère dans un rapport correspondant au rapport de transformation T requis et qui reçoivent respectivement un premier piston (3) couplé à l'organe d'actionnement (1), ayant une surface A1, et un deuxième piston (4) couplé à une aiguille (5) de soupape, ayant une surface A2. La chambre hydraulique (2) comprend une paroi intérieure conique dans une zone de transition entre le cylindre destiné au premier piston (3) et le cylindre destiné au deuxième piston (4).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91116584.3 | 1991-09-27 | ||
EP91116584 | 1991-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993006625A1 true WO1993006625A1 (fr) | 1993-04-01 |
Family
ID=8207212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1992/002206 WO1993006625A1 (fr) | 1991-09-27 | 1992-09-23 | Transformateur hydraulique de deplacement pour l'organe piezoelectrique d'actionnement d'une soupape d'admission |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1993006625A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4406522C1 (de) * | 1994-02-28 | 1995-07-13 | Siemens Ag | Elektrohydraulisches Antriebselement |
GB2296940A (en) * | 1995-01-12 | 1996-07-17 | Bosch Gmbh Robert | Metering valve actuation |
FR2765634A1 (fr) * | 1997-07-01 | 1999-01-08 | Siemens Ag | Element de compensation des variations de longueur d'un objet sous l'effet de la temperature |
US5884848A (en) * | 1997-05-09 | 1999-03-23 | Cummins Engine Company, Inc. | Fuel injector with piezoelectric and hydraulically actuated needle valve |
US5979803A (en) * | 1997-05-09 | 1999-11-09 | Cummins Engine Company | Fuel injector with pressure balanced needle valve |
WO2004030196A3 (fr) * | 2002-09-27 | 2004-10-21 | Univ Waterloo | Dispositif de micro-positionnement |
FR2863012A1 (fr) * | 2000-12-28 | 2005-06-03 | Denso Corp | Soupape de commande hydraulique et injecteur de carburant utilisant une telle soupape |
EP1538331A1 (fr) * | 2003-12-03 | 2005-06-08 | Robert Bosch Gmbh | Soupape d'injection de carburant |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3713697A1 (de) * | 1987-04-24 | 1988-11-10 | Licentia Gmbh | Ultraschnelles steuerventil |
EP0477400A1 (fr) * | 1990-09-25 | 1992-04-01 | Siemens Aktiengesellschaft | Dispositif compensateur de tolérance dans la direction de mouvement du transformateur de déplacement d'un dispositif d'actionnement piézoélectrique |
-
1992
- 1992-09-23 WO PCT/EP1992/002206 patent/WO1993006625A1/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3713697A1 (de) * | 1987-04-24 | 1988-11-10 | Licentia Gmbh | Ultraschnelles steuerventil |
EP0477400A1 (fr) * | 1990-09-25 | 1992-04-01 | Siemens Aktiengesellschaft | Dispositif compensateur de tolérance dans la direction de mouvement du transformateur de déplacement d'un dispositif d'actionnement piézoélectrique |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4406522C1 (de) * | 1994-02-28 | 1995-07-13 | Siemens Ag | Elektrohydraulisches Antriebselement |
GB2296940A (en) * | 1995-01-12 | 1996-07-17 | Bosch Gmbh Robert | Metering valve actuation |
GB2296940B (en) * | 1995-01-12 | 1997-04-02 | Bosch Gmbh Robert | Metering valve for metering liquids or gases |
US5884848A (en) * | 1997-05-09 | 1999-03-23 | Cummins Engine Company, Inc. | Fuel injector with piezoelectric and hydraulically actuated needle valve |
US5979803A (en) * | 1997-05-09 | 1999-11-09 | Cummins Engine Company | Fuel injector with pressure balanced needle valve |
FR2765634A1 (fr) * | 1997-07-01 | 1999-01-08 | Siemens Ag | Element de compensation des variations de longueur d'un objet sous l'effet de la temperature |
FR2863012A1 (fr) * | 2000-12-28 | 2005-06-03 | Denso Corp | Soupape de commande hydraulique et injecteur de carburant utilisant une telle soupape |
WO2004030196A3 (fr) * | 2002-09-27 | 2004-10-21 | Univ Waterloo | Dispositif de micro-positionnement |
US7218035B2 (en) | 2002-09-27 | 2007-05-15 | University Of Waterloo | Micro-positioning device |
EP1538331A1 (fr) * | 2003-12-03 | 2005-06-08 | Robert Bosch Gmbh | Soupape d'injection de carburant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0477400B1 (fr) | Dispositif compensateur de tolérance dans la direction de mouvement du transformateur de déplacement d'un dispositif d'actionnement piézoélectrique | |
EP1046809B1 (fr) | Dispositif de dosage d'un fluide | |
EP0535510B1 (fr) | Transducteur électromécanique | |
DE2609960C3 (de) | Vorrichtung zur Einstellung eines Fluiddurchflusses | |
DE3922155C2 (de) | Magnetventil | |
WO1994019597A1 (fr) | Dispositif de dosage de fluides | |
CH616220A5 (fr) | ||
EP1020936B1 (fr) | Organe de réglage comportant un actionneur à longueur réglable | |
DE112005003073T5 (de) | Druckregelventil | |
WO1993006625A1 (fr) | Transformateur hydraulique de deplacement pour l'organe piezoelectrique d'actionnement d'une soupape d'admission | |
DE19907869C2 (de) | Plungerkolbenpumpe | |
EP1049867A1 (fr) | Amortisseur de pression sous forme de tuyau plat servant a amortir les oscillations dues a la pression dans des liquides circulant dans des conduits | |
DE69720923T2 (de) | Schwingungsdämpfer mit Masse bewegbar durch Flüssigkeitsdruckänderung in einem Arbeitsraum | |
EP0941401A1 (fr) | Soupape de commande de liquides | |
WO1990004527A1 (fr) | Amortisseur | |
DE19715164A1 (de) | Membranventil | |
DE102020126241A1 (de) | Membrananordnung | |
DE19605664A1 (de) | Balg-Nockenscheibenpumpe | |
DE3643318A1 (de) | Druckentlastetes ventil | |
WO1986007400A1 (fr) | Sectionneur de tuyau | |
WO2001004584A1 (fr) | Dispositif de dosage pour liquides | |
DE4433106A1 (de) | Volumenkompensierte, hin- und hergehende Dichtungsvorrichtungen mit geringem Verschleiß | |
EP2589807A1 (fr) | Pompe à soufflet à plis | |
DE2815735C2 (fr) | ||
DE60318546T2 (de) | Dosiervorrichtung mit dynamischer Dichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |