+

WO1993003881A1 - Appareil et procede permettant de surveiller un traitement par faisceau laser - Google Patents

Appareil et procede permettant de surveiller un traitement par faisceau laser Download PDF

Info

Publication number
WO1993003881A1
WO1993003881A1 PCT/GB1992/001554 GB9201554W WO9303881A1 WO 1993003881 A1 WO1993003881 A1 WO 1993003881A1 GB 9201554 W GB9201554 W GB 9201554W WO 9303881 A1 WO9303881 A1 WO 9303881A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
parameters
optical
laser
material processing
Prior art date
Application number
PCT/GB1992/001554
Other languages
English (en)
Inventor
William Michael Steen
David Justin Brookfield
Lin Li
Original Assignee
Cmb Foodcan Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cmb Foodcan Plc filed Critical Cmb Foodcan Plc
Publication of WO1993003881A1 publication Critical patent/WO1993003881A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding

Definitions

  • DESCRIPTION APPARATUS AMD METHOD FOR MONITORING LASER MATERIAL PROCESSING The present invention relates to an apparatus and method for monitoring laser material processing.
  • the workpiece surface is heated by the laser radiation to above its melting point, with some of the material being vapourised.
  • the material vapour together with the surrounding gases, are ionized by the intensive heating from the laser beam, thereby forming a plasma plume in and above the melt pool.
  • Enhanced beam absorption can be achieved through interaction of the plasma with the laser beam and energy transfer from the plasma workpiece. However, if the plasma density is too high, the beam absorption will be reduced.
  • the beam absorption is not a constant. This causes variation in weld quality during processing. Also, when the operating parameters of the process are not kept stable or there is a fault on the workpiece, the weld quality can also be affected.
  • melt pool temperature, vapour radiation intensity and plasma radiation intensity are three principal factors which reflect the process quality.
  • monitoring only one of the latter parameters or the continued effect of any two of them is found to be insufficient for reliable process quality diagnosis.
  • a method of obtaining an indication of the quality of a laser material processing operation wherein at least two of the parameters comprising melt pool temperature, vapour radiation intensity and plasma radiation intensity, are monitored separately but simultaneously.
  • an apparatus for providing an indication of the quality of a laser material processing operation comprising means for separately but simultaneously monitoring at least two of the parameters comprising melt pool temperature, vapour radiation intensity and plasma radiation intensity.
  • the aforementioned three parameters can be monitored by the detection simultaneously of the light radiation emitted by them separately so that the state of melt pool and key-hole can be monitored, which are directly related to the welding quality.
  • the above-identified light radiations can be detected using photo-electric sensors with different response spectra corresponding to the principal radiation spectrum of two or three of the above parameters separately, or optical sensors which can identify the different light radiations.
  • Still further embodiments can use broad band optical sensors with optical filters at different spectra corresponding to the relative light spectrum.
  • An optical shield can be used to reduce the effect of other light sources.
  • a further embodiment of the sensor arrangement can utilize optical beam splitters which can separate different optical radiation sources.
  • the beam splitters can be placed between the laser generator and the workpiece and the light which has been split can be forwarded to the optical sensors.
  • a further embodiment of the sensor arrangement can utilize a lens or mirror reflector placed between the laser generator and the workpiece to direct the radiated light waves to the sensor.
  • optical fibres with a cut off spectrum for the laser beam wavelength can be used, either as a bundle or bifurcated or tri-furcated form, placed in the space between the laser generator and the workpiece for the collection of optical signals.
  • the other ends of the optical fibre are connected to the photo-electric sensors so that the temperature of the sensor cannot be affected by the heat radiation from the melt pool or scattered laser beam.
  • An optical shield can be used to protect the fibres and prevent the influence of unwanted light sources.
  • Some of the above mentioned apparatuses can be made in the form of a cylindrical optical probe with protective covers and windows.
  • Figs.la to le illustrate several ways of detecting different optical radiation sources from or near the laser generated melt pool.
  • Fig.la illustrates a basic form of the device where two optical sensors 10,12 with different response spectra, say UV and IR, are placed in a metal shield tube 14 with or without a front window.
  • the sensors 10,12 look directly at the vapour and plasma plume 16 at a distance from them. The distance can be as far as two feet depending on the sensitivity of the sensors 10,12.
  • Fig.lb illustrates the use of a bifurcated optical fibre 18 with one input and two outputs for the sensory unit.
  • the input end of the optical fibre is facing the melt pool at a distance from it and the other two connected to the optical sensors 10,12.
  • an optical shield 14 can be used to prevent the influences of the unwanted light.
  • Fig.lc shows the uses of a flat lens 20 which can transmit the laser beam but reflect the visible light.
  • the light radiation from the vapour, plasma and melt pool can therefore be focused and collected using either the optical fibre system of Fig.1(b) or the basic form of Fig.1(a).
  • Fig.Id uses a reflective mirror 22 with a hole 24 in the middle to let the laser beam pass.
  • the mirror 22 is about 45° or other angle to the laser beam axis and will then reflect some of the light from the vapour and plasma plume to the fibre optic sensory unit of Fig.1(b) or the basic sensory unit of Fig.1(a) through a lens collector 24. If the mirror is curved to focus the collected light, the additional lens 24 is not necessary.
  • Fig.le illustrates the collection of light radiation by the vapour and plasma plume or melt pool temperature radiation through an angled surface 26 in the nozzle.
  • the optical fibre system is then connected to the nozzle through a coupling.
  • Fig.2 illustrates the combination of the present invention with a known "see-through mirror 28, having a hole 30 in the middle of the mirror" for the monitoring of laser processing quality coaxial to the laser beam.
  • Fig.3 illustrates a sensing arrangement for a welding monitoring experiment with two different sensors 32,34 (near IR and UV light sensors) looking down to the melt pool region during laser welding since, during laser welding of steel plates with an inert gas such Ar as the shroud gas, the plasma light is usually in the blue spectrum and the radiation of the vapour of melt pool is in the red spectrum.
  • a signal smoothing circuit was used to reduce the fluctuating level of the signal.
  • Fig.4 shows the differences between the smoothed and the un-smoothed signals.
  • Fig.5a shows the sensor responses to a weld where there is lack of penetration (A:UV, B:IR);
  • Fig.5b shows the sensor responses to a weld which has irregular hole cutting (A:UV, B:IR);
  • Fig.5c shows the sensor responses to a weld which is over powered with craters on the surface (A:UV, B:IR);
  • Fig.5d shows the sensor response to a weld which generates a glare type plasma where most of the energy was carried away (A:UV, B:IR).
  • monitoring only one type of light radiation can not give a definite conclusion for weld diagnosis.
  • the plasma light sensor when the plasma light sensor is low it can be for one of two possibilities; low penetration (or loss of key hole) or a cut.
  • the vapour- molten material radiation sensor if at the same time the vapour- molten material radiation sensor is low, then it is definitely as a result of a low penetration (or loss of key hole if plasma sensor response is zero) . Otherwise it will be a cut. Therefore the logical combination of the two types of light radiation monitoring separately at the same time can give a reliable diagnosis.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Procédé et appareil grâce auxquels on obtient une indication concernant la qualité d'une opération de traitement par faisceau laser dans lesquels on surveille séparément mais toutefois simultanément au moins deux paramètres tels que la température du bain fondu, l'intensité de la vapeur et l'intensité du plasma. Des capteurs (10, 12) sensibles aux différentes zones du spectre électromagnétique, associées respectivement aux différents paramètres, sont disposés de manière à recevoir la lumière rayonnée provenant de la zone d'écho artificiel du plasma et de la vapeur.
PCT/GB1992/001554 1991-08-24 1992-08-24 Appareil et procede permettant de surveiller un traitement par faisceau laser WO1993003881A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9118315.2 1991-08-24
GB9118315A GB2260402A (en) 1991-08-24 1991-08-24 Monitoring laser material processing

Publications (1)

Publication Number Publication Date
WO1993003881A1 true WO1993003881A1 (fr) 1993-03-04

Family

ID=10700500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1992/001554 WO1993003881A1 (fr) 1991-08-24 1992-08-24 Appareil et procede permettant de surveiller un traitement par faisceau laser

Country Status (3)

Country Link
AU (1) AU2467092A (fr)
GB (1) GB2260402A (fr)
WO (1) WO1993003881A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674965A1 (fr) * 1994-03-28 1995-10-04 Inpro Innovationsgesellschaft Für Fortgeschrittene Produktionssysteme In Der Fahrzeugindustrie Mbh Procédé et dispositif de surveillance de la profondeur de soudage dans les pièces étant soudées au faisceau laser
US5486677A (en) * 1991-02-26 1996-01-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of and apparatus for machining workpieces with a laser beam
DE4434409C1 (de) * 1994-09-26 1996-04-04 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Materialbearbeiten mit Plasma induzierender Laserstrahlung
US5651903A (en) * 1995-10-12 1997-07-29 Trw Inc. Method and apparatus for evaluating laser welding
ES2121702A1 (es) * 1997-02-17 1998-12-01 Univ Malaga Sensor para monitorizacion on-line y remota de procesos automatizados de soldadura con laser.
US5850068A (en) * 1996-06-07 1998-12-15 Lumonics Ltd. Focus control of lasers in material processing operations
US5938953A (en) * 1996-07-27 1999-08-17 Jurca Optoelektronik Gmbh Laser beam apparatus for machining a workpiece
US5961859A (en) * 1997-10-23 1999-10-05 Trw Inc. Method and apparatus for monitoring laser weld quality via plasma size measurements
US6060685A (en) * 1997-10-23 2000-05-09 Trw Inc. Method for monitoring laser weld quality via plasma light intensity measurements
US8164022B2 (en) * 2006-12-06 2012-04-24 The Regents Of The University Of Michigan Optical sensor for quality monitoring of a welding process
US20120125899A1 (en) * 2010-11-18 2012-05-24 Kia Motors Corporation Method and apparatus for the quality inspection of laser welding
KR101440119B1 (ko) 2013-10-08 2014-09-12 한국원자력연구원 광섬유를 이용한 플라즈마 확산 속도 측정 장치 및 방법
KR20160062978A (ko) * 2014-11-26 2016-06-03 한국원자력연구원 레이저유도 플라즈마에서 방출된 이온에너지의 시공간적 특성 분석 장치 및 분석방법
WO2016172992A1 (fr) * 2015-04-28 2016-11-03 东台精机股份有限公司 Tête d'outil de placage au laser et son procédé de détection de surface à traiter
CN109454342A (zh) * 2018-11-19 2019-03-12 江苏金海创科技有限公司 平移式红光预览装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728992A (en) * 1996-02-29 1998-03-17 Westinghouse Electric Corporation Apparatus and method for real time evaluation of laser welds especially in confined spaces such as within heat exchanger tubing
FR2843902A1 (fr) * 2002-08-27 2004-03-05 Usinor Dispositif et procede de controle d'une operation de soudage, de rechargement ou d'usinage par faisceau laser d'une piece
WO2005051586A1 (fr) * 2003-11-24 2005-06-09 Technische Universität Berlin Procede et dispositif pour reguler un apport d'energie lors d'un processus d'assemblage
CN102023614B (zh) * 2010-10-08 2012-10-03 深圳市大族激光科技股份有限公司 激光焊接装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112762A2 (fr) * 1982-12-17 1984-07-04 Commissariat A L'energie Atomique Procédé et dispositif de contrôle en ligne de la profondeur d'une soudure par un faisceau d'impulsions
EP0168605A2 (fr) * 1984-06-11 1986-01-22 Vanzetti Systems, Inc. Détection sans contact de la liquéfaction de matières fusibles
WO1990010520A1 (fr) * 1989-03-14 1990-09-20 Jurca Marius Christian Procede de controle de la qualite en soudage et decoupage au laser
DE3934640C1 (de) * 1989-10-17 1991-02-28 Messerschmitt Boelkow Blohm Verfahren und Vorrichtung zur Temperaturregelung bei Laserbestrahlung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484059A (en) * 1982-04-26 1984-11-20 General Electric Company Infrared sensor for arc welding
DE3344683A1 (de) * 1983-12-10 1985-06-20 Gustav Stähler GmbH & Co KG, 5909 Burbach Verfahren und einrichtung zum ueberwachen oder steuern des schweissvorgangs beim verschweissen von werkstuecken im lichtbogenschweissverfahren
IT1180008B (it) * 1984-03-02 1987-09-23 Fiat Ricerche Metodo e dispositivo per il controllo dei processi di saldatura mediante l'analisi della luminosita generata durante il processo
US5026979A (en) * 1990-03-05 1991-06-25 General Electric Company Method and apparatus for optically monitoring laser materials processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112762A2 (fr) * 1982-12-17 1984-07-04 Commissariat A L'energie Atomique Procédé et dispositif de contrôle en ligne de la profondeur d'une soudure par un faisceau d'impulsions
EP0168605A2 (fr) * 1984-06-11 1986-01-22 Vanzetti Systems, Inc. Détection sans contact de la liquéfaction de matières fusibles
WO1990010520A1 (fr) * 1989-03-14 1990-09-20 Jurca Marius Christian Procede de controle de la qualite en soudage et decoupage au laser
DE3934640C1 (de) * 1989-10-17 1991-02-28 Messerschmitt Boelkow Blohm Verfahren und Vorrichtung zur Temperaturregelung bei Laserbestrahlung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LASER UND OPTOELEKTRONIK. vol. 21, no. 3, June 1989, STUTTGART DE pages 69 - 72 M. ALAVI ET AL. 'Lichtemission während des Laserschweissprozesses' *
SOVIET JOURNAL OF QUANTUM ELECTRONICS. vol. 20, no. 6, June 1990, NEW YORK US pages 667 - 672 S.I. KUZNETSOV ET AL. 'Emission of charged particles from the surface of a moving target acted acted on by cw CO2 laser radiation' *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486677A (en) * 1991-02-26 1996-01-23 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Method of and apparatus for machining workpieces with a laser beam
EP0674965A1 (fr) * 1994-03-28 1995-10-04 Inpro Innovationsgesellschaft Für Fortgeschrittene Produktionssysteme In Der Fahrzeugindustrie Mbh Procédé et dispositif de surveillance de la profondeur de soudage dans les pièces étant soudées au faisceau laser
DE4434409C1 (de) * 1994-09-26 1996-04-04 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Materialbearbeiten mit Plasma induzierender Laserstrahlung
US5651903A (en) * 1995-10-12 1997-07-29 Trw Inc. Method and apparatus for evaluating laser welding
US5850068A (en) * 1996-06-07 1998-12-15 Lumonics Ltd. Focus control of lasers in material processing operations
US5938953A (en) * 1996-07-27 1999-08-17 Jurca Optoelektronik Gmbh Laser beam apparatus for machining a workpiece
ES2121702A1 (es) * 1997-02-17 1998-12-01 Univ Malaga Sensor para monitorizacion on-line y remota de procesos automatizados de soldadura con laser.
US6060685A (en) * 1997-10-23 2000-05-09 Trw Inc. Method for monitoring laser weld quality via plasma light intensity measurements
US5961859A (en) * 1997-10-23 1999-10-05 Trw Inc. Method and apparatus for monitoring laser weld quality via plasma size measurements
US8164022B2 (en) * 2006-12-06 2012-04-24 The Regents Of The University Of Michigan Optical sensor for quality monitoring of a welding process
US20120125899A1 (en) * 2010-11-18 2012-05-24 Kia Motors Corporation Method and apparatus for the quality inspection of laser welding
US8653407B2 (en) * 2010-11-18 2014-02-18 Hyundai Motor Company Method and apparatus for the quality inspection of laser welding
KR101440119B1 (ko) 2013-10-08 2014-09-12 한국원자력연구원 광섬유를 이용한 플라즈마 확산 속도 측정 장치 및 방법
KR20160062978A (ko) * 2014-11-26 2016-06-03 한국원자력연구원 레이저유도 플라즈마에서 방출된 이온에너지의 시공간적 특성 분석 장치 및 분석방법
KR101648080B1 (ko) 2014-11-26 2016-08-12 한국원자력연구원 레이저유도 플라즈마에서 방출된 이온에너지의 시공간적 특성 분석 장치 및 분석방법
WO2016172992A1 (fr) * 2015-04-28 2016-11-03 东台精机股份有限公司 Tête d'outil de placage au laser et son procédé de détection de surface à traiter
CN109454342A (zh) * 2018-11-19 2019-03-12 江苏金海创科技有限公司 平移式红光预览装置

Also Published As

Publication number Publication date
AU2467092A (en) 1993-03-16
GB9118315D0 (en) 1991-10-09
GB2260402A (en) 1993-04-14

Similar Documents

Publication Publication Date Title
WO1993003881A1 (fr) Appareil et procede permettant de surveiller un traitement par faisceau laser
JP4107833B2 (ja) レーザ加工ヘッド
US4423726A (en) Safety device for laser ray guide
EP0437226B1 (fr) Méthode et système de contrôle pour soudage par rayon laser
US7863544B2 (en) Arrangement and method for the on-line monitoring of the quality of a laser process exerted on a workpiece
EP3689530B1 (fr) Système laser à fibre industriel haute puissance avec ensemble de surveillance optique
US4446354A (en) Optoelectronic weld evaluation system
US20130258321A1 (en) Method and monitoring device for the detection and monitoring of the contamination of an optical component in a device for laser material processing
JP5671873B2 (ja) レーザ溶接モニタリング装置
EP0956498A1 (fr) Procede et appareil permettant de verifier l'etat d'un verre protecteur lors d'un usinage au laser
US4225771A (en) Method and apparatus for monitoring arc welding
US4716288A (en) Security device for detecting defects in transmitting fiber
JP6367194B2 (ja) レーザビームを用いた被加工物の加工装置
US4777341A (en) Back reflection monitor and method
US5850068A (en) Focus control of lasers in material processing operations
CN210359793U (zh) 光强可调的激光焊接质量在线检测装置
JP2001179470A (ja) レーザ加工状態計測装置
US5093553A (en) Hydrogen concentration detection in weld arc plasma
JP2000135583A (ja) レーザ光集光器
EP3939737B1 (fr) Dispositif de traitement au laser
Hand et al. Nd: YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system
EP3870385B1 (fr) Dispositif de traitement laser et methode de traitement laser
EP0113104B1 (fr) Dispositif de détection de fractures dans des fibres destinées au transport de l'énergie
KR20230025129A (ko) 분광기를 이용한 레이저절단 모니터링 방법 및 장치
Chen In-process monitoring of the cutting front of CO 2 laser cutting with off-axis optical fibre

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载