WO1993003881A1 - Appareil et procede permettant de surveiller un traitement par faisceau laser - Google Patents
Appareil et procede permettant de surveiller un traitement par faisceau laser Download PDFInfo
- Publication number
- WO1993003881A1 WO1993003881A1 PCT/GB1992/001554 GB9201554W WO9303881A1 WO 1993003881 A1 WO1993003881 A1 WO 1993003881A1 GB 9201554 W GB9201554 W GB 9201554W WO 9303881 A1 WO9303881 A1 WO 9303881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiation
- parameters
- optical
- laser
- material processing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000012545 processing Methods 0.000 title claims abstract description 13
- 239000000463 material Substances 0.000 title claims abstract description 12
- 238000012544 monitoring process Methods 0.000 title claims description 10
- 238000001228 spectrum Methods 0.000 claims abstract description 14
- 230000005855 radiation Effects 0.000 claims description 34
- 230000003287 optical effect Effects 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 16
- 239000013307 optical fiber Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 claims 1
- 238000003466 welding Methods 0.000 description 11
- 230000035515 penetration Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000155 melt Substances 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000001953 sensory effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000004313 glare Effects 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000332 continued effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/034—Observing the temperature of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/123—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
Definitions
- DESCRIPTION APPARATUS AMD METHOD FOR MONITORING LASER MATERIAL PROCESSING The present invention relates to an apparatus and method for monitoring laser material processing.
- the workpiece surface is heated by the laser radiation to above its melting point, with some of the material being vapourised.
- the material vapour together with the surrounding gases, are ionized by the intensive heating from the laser beam, thereby forming a plasma plume in and above the melt pool.
- Enhanced beam absorption can be achieved through interaction of the plasma with the laser beam and energy transfer from the plasma workpiece. However, if the plasma density is too high, the beam absorption will be reduced.
- the beam absorption is not a constant. This causes variation in weld quality during processing. Also, when the operating parameters of the process are not kept stable or there is a fault on the workpiece, the weld quality can also be affected.
- melt pool temperature, vapour radiation intensity and plasma radiation intensity are three principal factors which reflect the process quality.
- monitoring only one of the latter parameters or the continued effect of any two of them is found to be insufficient for reliable process quality diagnosis.
- a method of obtaining an indication of the quality of a laser material processing operation wherein at least two of the parameters comprising melt pool temperature, vapour radiation intensity and plasma radiation intensity, are monitored separately but simultaneously.
- an apparatus for providing an indication of the quality of a laser material processing operation comprising means for separately but simultaneously monitoring at least two of the parameters comprising melt pool temperature, vapour radiation intensity and plasma radiation intensity.
- the aforementioned three parameters can be monitored by the detection simultaneously of the light radiation emitted by them separately so that the state of melt pool and key-hole can be monitored, which are directly related to the welding quality.
- the above-identified light radiations can be detected using photo-electric sensors with different response spectra corresponding to the principal radiation spectrum of two or three of the above parameters separately, or optical sensors which can identify the different light radiations.
- Still further embodiments can use broad band optical sensors with optical filters at different spectra corresponding to the relative light spectrum.
- An optical shield can be used to reduce the effect of other light sources.
- a further embodiment of the sensor arrangement can utilize optical beam splitters which can separate different optical radiation sources.
- the beam splitters can be placed between the laser generator and the workpiece and the light which has been split can be forwarded to the optical sensors.
- a further embodiment of the sensor arrangement can utilize a lens or mirror reflector placed between the laser generator and the workpiece to direct the radiated light waves to the sensor.
- optical fibres with a cut off spectrum for the laser beam wavelength can be used, either as a bundle or bifurcated or tri-furcated form, placed in the space between the laser generator and the workpiece for the collection of optical signals.
- the other ends of the optical fibre are connected to the photo-electric sensors so that the temperature of the sensor cannot be affected by the heat radiation from the melt pool or scattered laser beam.
- An optical shield can be used to protect the fibres and prevent the influence of unwanted light sources.
- Some of the above mentioned apparatuses can be made in the form of a cylindrical optical probe with protective covers and windows.
- Figs.la to le illustrate several ways of detecting different optical radiation sources from or near the laser generated melt pool.
- Fig.la illustrates a basic form of the device where two optical sensors 10,12 with different response spectra, say UV and IR, are placed in a metal shield tube 14 with or without a front window.
- the sensors 10,12 look directly at the vapour and plasma plume 16 at a distance from them. The distance can be as far as two feet depending on the sensitivity of the sensors 10,12.
- Fig.lb illustrates the use of a bifurcated optical fibre 18 with one input and two outputs for the sensory unit.
- the input end of the optical fibre is facing the melt pool at a distance from it and the other two connected to the optical sensors 10,12.
- an optical shield 14 can be used to prevent the influences of the unwanted light.
- Fig.lc shows the uses of a flat lens 20 which can transmit the laser beam but reflect the visible light.
- the light radiation from the vapour, plasma and melt pool can therefore be focused and collected using either the optical fibre system of Fig.1(b) or the basic form of Fig.1(a).
- Fig.Id uses a reflective mirror 22 with a hole 24 in the middle to let the laser beam pass.
- the mirror 22 is about 45° or other angle to the laser beam axis and will then reflect some of the light from the vapour and plasma plume to the fibre optic sensory unit of Fig.1(b) or the basic sensory unit of Fig.1(a) through a lens collector 24. If the mirror is curved to focus the collected light, the additional lens 24 is not necessary.
- Fig.le illustrates the collection of light radiation by the vapour and plasma plume or melt pool temperature radiation through an angled surface 26 in the nozzle.
- the optical fibre system is then connected to the nozzle through a coupling.
- Fig.2 illustrates the combination of the present invention with a known "see-through mirror 28, having a hole 30 in the middle of the mirror" for the monitoring of laser processing quality coaxial to the laser beam.
- Fig.3 illustrates a sensing arrangement for a welding monitoring experiment with two different sensors 32,34 (near IR and UV light sensors) looking down to the melt pool region during laser welding since, during laser welding of steel plates with an inert gas such Ar as the shroud gas, the plasma light is usually in the blue spectrum and the radiation of the vapour of melt pool is in the red spectrum.
- a signal smoothing circuit was used to reduce the fluctuating level of the signal.
- Fig.4 shows the differences between the smoothed and the un-smoothed signals.
- Fig.5a shows the sensor responses to a weld where there is lack of penetration (A:UV, B:IR);
- Fig.5b shows the sensor responses to a weld which has irregular hole cutting (A:UV, B:IR);
- Fig.5c shows the sensor responses to a weld which is over powered with craters on the surface (A:UV, B:IR);
- Fig.5d shows the sensor response to a weld which generates a glare type plasma where most of the energy was carried away (A:UV, B:IR).
- monitoring only one type of light radiation can not give a definite conclusion for weld diagnosis.
- the plasma light sensor when the plasma light sensor is low it can be for one of two possibilities; low penetration (or loss of key hole) or a cut.
- the vapour- molten material radiation sensor if at the same time the vapour- molten material radiation sensor is low, then it is definitely as a result of a low penetration (or loss of key hole if plasma sensor response is zero) . Otherwise it will be a cut. Therefore the logical combination of the two types of light radiation monitoring separately at the same time can give a reliable diagnosis.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Procédé et appareil grâce auxquels on obtient une indication concernant la qualité d'une opération de traitement par faisceau laser dans lesquels on surveille séparément mais toutefois simultanément au moins deux paramètres tels que la température du bain fondu, l'intensité de la vapeur et l'intensité du plasma. Des capteurs (10, 12) sensibles aux différentes zones du spectre électromagnétique, associées respectivement aux différents paramètres, sont disposés de manière à recevoir la lumière rayonnée provenant de la zone d'écho artificiel du plasma et de la vapeur.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9118315.2 | 1991-08-24 | ||
GB9118315A GB2260402A (en) | 1991-08-24 | 1991-08-24 | Monitoring laser material processing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993003881A1 true WO1993003881A1 (fr) | 1993-03-04 |
Family
ID=10700500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1992/001554 WO1993003881A1 (fr) | 1991-08-24 | 1992-08-24 | Appareil et procede permettant de surveiller un traitement par faisceau laser |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2467092A (fr) |
GB (1) | GB2260402A (fr) |
WO (1) | WO1993003881A1 (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0674965A1 (fr) * | 1994-03-28 | 1995-10-04 | Inpro Innovationsgesellschaft Für Fortgeschrittene Produktionssysteme In Der Fahrzeugindustrie Mbh | Procédé et dispositif de surveillance de la profondeur de soudage dans les pièces étant soudées au faisceau laser |
US5486677A (en) * | 1991-02-26 | 1996-01-23 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method of and apparatus for machining workpieces with a laser beam |
DE4434409C1 (de) * | 1994-09-26 | 1996-04-04 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Materialbearbeiten mit Plasma induzierender Laserstrahlung |
US5651903A (en) * | 1995-10-12 | 1997-07-29 | Trw Inc. | Method and apparatus for evaluating laser welding |
ES2121702A1 (es) * | 1997-02-17 | 1998-12-01 | Univ Malaga | Sensor para monitorizacion on-line y remota de procesos automatizados de soldadura con laser. |
US5850068A (en) * | 1996-06-07 | 1998-12-15 | Lumonics Ltd. | Focus control of lasers in material processing operations |
US5938953A (en) * | 1996-07-27 | 1999-08-17 | Jurca Optoelektronik Gmbh | Laser beam apparatus for machining a workpiece |
US5961859A (en) * | 1997-10-23 | 1999-10-05 | Trw Inc. | Method and apparatus for monitoring laser weld quality via plasma size measurements |
US6060685A (en) * | 1997-10-23 | 2000-05-09 | Trw Inc. | Method for monitoring laser weld quality via plasma light intensity measurements |
US8164022B2 (en) * | 2006-12-06 | 2012-04-24 | The Regents Of The University Of Michigan | Optical sensor for quality monitoring of a welding process |
US20120125899A1 (en) * | 2010-11-18 | 2012-05-24 | Kia Motors Corporation | Method and apparatus for the quality inspection of laser welding |
KR101440119B1 (ko) | 2013-10-08 | 2014-09-12 | 한국원자력연구원 | 광섬유를 이용한 플라즈마 확산 속도 측정 장치 및 방법 |
KR20160062978A (ko) * | 2014-11-26 | 2016-06-03 | 한국원자력연구원 | 레이저유도 플라즈마에서 방출된 이온에너지의 시공간적 특성 분석 장치 및 분석방법 |
WO2016172992A1 (fr) * | 2015-04-28 | 2016-11-03 | 东台精机股份有限公司 | Tête d'outil de placage au laser et son procédé de détection de surface à traiter |
CN109454342A (zh) * | 2018-11-19 | 2019-03-12 | 江苏金海创科技有限公司 | 平移式红光预览装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5728992A (en) * | 1996-02-29 | 1998-03-17 | Westinghouse Electric Corporation | Apparatus and method for real time evaluation of laser welds especially in confined spaces such as within heat exchanger tubing |
FR2843902A1 (fr) * | 2002-08-27 | 2004-03-05 | Usinor | Dispositif et procede de controle d'une operation de soudage, de rechargement ou d'usinage par faisceau laser d'une piece |
WO2005051586A1 (fr) * | 2003-11-24 | 2005-06-09 | Technische Universität Berlin | Procede et dispositif pour reguler un apport d'energie lors d'un processus d'assemblage |
CN102023614B (zh) * | 2010-10-08 | 2012-10-03 | 深圳市大族激光科技股份有限公司 | 激光焊接装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0112762A2 (fr) * | 1982-12-17 | 1984-07-04 | Commissariat A L'energie Atomique | Procédé et dispositif de contrôle en ligne de la profondeur d'une soudure par un faisceau d'impulsions |
EP0168605A2 (fr) * | 1984-06-11 | 1986-01-22 | Vanzetti Systems, Inc. | Détection sans contact de la liquéfaction de matières fusibles |
WO1990010520A1 (fr) * | 1989-03-14 | 1990-09-20 | Jurca Marius Christian | Procede de controle de la qualite en soudage et decoupage au laser |
DE3934640C1 (de) * | 1989-10-17 | 1991-02-28 | Messerschmitt Boelkow Blohm | Verfahren und Vorrichtung zur Temperaturregelung bei Laserbestrahlung |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484059A (en) * | 1982-04-26 | 1984-11-20 | General Electric Company | Infrared sensor for arc welding |
DE3344683A1 (de) * | 1983-12-10 | 1985-06-20 | Gustav Stähler GmbH & Co KG, 5909 Burbach | Verfahren und einrichtung zum ueberwachen oder steuern des schweissvorgangs beim verschweissen von werkstuecken im lichtbogenschweissverfahren |
IT1180008B (it) * | 1984-03-02 | 1987-09-23 | Fiat Ricerche | Metodo e dispositivo per il controllo dei processi di saldatura mediante l'analisi della luminosita generata durante il processo |
US5026979A (en) * | 1990-03-05 | 1991-06-25 | General Electric Company | Method and apparatus for optically monitoring laser materials processing |
-
1991
- 1991-08-24 GB GB9118315A patent/GB2260402A/en not_active Withdrawn
-
1992
- 1992-08-24 WO PCT/GB1992/001554 patent/WO1993003881A1/fr active Search and Examination
- 1992-08-24 AU AU24670/92A patent/AU2467092A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0112762A2 (fr) * | 1982-12-17 | 1984-07-04 | Commissariat A L'energie Atomique | Procédé et dispositif de contrôle en ligne de la profondeur d'une soudure par un faisceau d'impulsions |
EP0168605A2 (fr) * | 1984-06-11 | 1986-01-22 | Vanzetti Systems, Inc. | Détection sans contact de la liquéfaction de matières fusibles |
WO1990010520A1 (fr) * | 1989-03-14 | 1990-09-20 | Jurca Marius Christian | Procede de controle de la qualite en soudage et decoupage au laser |
DE3934640C1 (de) * | 1989-10-17 | 1991-02-28 | Messerschmitt Boelkow Blohm | Verfahren und Vorrichtung zur Temperaturregelung bei Laserbestrahlung |
Non-Patent Citations (2)
Title |
---|
LASER UND OPTOELEKTRONIK. vol. 21, no. 3, June 1989, STUTTGART DE pages 69 - 72 M. ALAVI ET AL. 'Lichtemission während des Laserschweissprozesses' * |
SOVIET JOURNAL OF QUANTUM ELECTRONICS. vol. 20, no. 6, June 1990, NEW YORK US pages 667 - 672 S.I. KUZNETSOV ET AL. 'Emission of charged particles from the surface of a moving target acted acted on by cw CO2 laser radiation' * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486677A (en) * | 1991-02-26 | 1996-01-23 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method of and apparatus for machining workpieces with a laser beam |
EP0674965A1 (fr) * | 1994-03-28 | 1995-10-04 | Inpro Innovationsgesellschaft Für Fortgeschrittene Produktionssysteme In Der Fahrzeugindustrie Mbh | Procédé et dispositif de surveillance de la profondeur de soudage dans les pièces étant soudées au faisceau laser |
DE4434409C1 (de) * | 1994-09-26 | 1996-04-04 | Fraunhofer Ges Forschung | Verfahren und Vorrichtung zum Materialbearbeiten mit Plasma induzierender Laserstrahlung |
US5651903A (en) * | 1995-10-12 | 1997-07-29 | Trw Inc. | Method and apparatus for evaluating laser welding |
US5850068A (en) * | 1996-06-07 | 1998-12-15 | Lumonics Ltd. | Focus control of lasers in material processing operations |
US5938953A (en) * | 1996-07-27 | 1999-08-17 | Jurca Optoelektronik Gmbh | Laser beam apparatus for machining a workpiece |
ES2121702A1 (es) * | 1997-02-17 | 1998-12-01 | Univ Malaga | Sensor para monitorizacion on-line y remota de procesos automatizados de soldadura con laser. |
US6060685A (en) * | 1997-10-23 | 2000-05-09 | Trw Inc. | Method for monitoring laser weld quality via plasma light intensity measurements |
US5961859A (en) * | 1997-10-23 | 1999-10-05 | Trw Inc. | Method and apparatus for monitoring laser weld quality via plasma size measurements |
US8164022B2 (en) * | 2006-12-06 | 2012-04-24 | The Regents Of The University Of Michigan | Optical sensor for quality monitoring of a welding process |
US20120125899A1 (en) * | 2010-11-18 | 2012-05-24 | Kia Motors Corporation | Method and apparatus for the quality inspection of laser welding |
US8653407B2 (en) * | 2010-11-18 | 2014-02-18 | Hyundai Motor Company | Method and apparatus for the quality inspection of laser welding |
KR101440119B1 (ko) | 2013-10-08 | 2014-09-12 | 한국원자력연구원 | 광섬유를 이용한 플라즈마 확산 속도 측정 장치 및 방법 |
KR20160062978A (ko) * | 2014-11-26 | 2016-06-03 | 한국원자력연구원 | 레이저유도 플라즈마에서 방출된 이온에너지의 시공간적 특성 분석 장치 및 분석방법 |
KR101648080B1 (ko) | 2014-11-26 | 2016-08-12 | 한국원자력연구원 | 레이저유도 플라즈마에서 방출된 이온에너지의 시공간적 특성 분석 장치 및 분석방법 |
WO2016172992A1 (fr) * | 2015-04-28 | 2016-11-03 | 东台精机股份有限公司 | Tête d'outil de placage au laser et son procédé de détection de surface à traiter |
CN109454342A (zh) * | 2018-11-19 | 2019-03-12 | 江苏金海创科技有限公司 | 平移式红光预览装置 |
Also Published As
Publication number | Publication date |
---|---|
AU2467092A (en) | 1993-03-16 |
GB9118315D0 (en) | 1991-10-09 |
GB2260402A (en) | 1993-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1993003881A1 (fr) | Appareil et procede permettant de surveiller un traitement par faisceau laser | |
JP4107833B2 (ja) | レーザ加工ヘッド | |
US4423726A (en) | Safety device for laser ray guide | |
EP0437226B1 (fr) | Méthode et système de contrôle pour soudage par rayon laser | |
US7863544B2 (en) | Arrangement and method for the on-line monitoring of the quality of a laser process exerted on a workpiece | |
EP3689530B1 (fr) | Système laser à fibre industriel haute puissance avec ensemble de surveillance optique | |
US4446354A (en) | Optoelectronic weld evaluation system | |
US20130258321A1 (en) | Method and monitoring device for the detection and monitoring of the contamination of an optical component in a device for laser material processing | |
JP5671873B2 (ja) | レーザ溶接モニタリング装置 | |
EP0956498A1 (fr) | Procede et appareil permettant de verifier l'etat d'un verre protecteur lors d'un usinage au laser | |
US4225771A (en) | Method and apparatus for monitoring arc welding | |
US4716288A (en) | Security device for detecting defects in transmitting fiber | |
JP6367194B2 (ja) | レーザビームを用いた被加工物の加工装置 | |
US4777341A (en) | Back reflection monitor and method | |
US5850068A (en) | Focus control of lasers in material processing operations | |
CN210359793U (zh) | 光强可调的激光焊接质量在线检测装置 | |
JP2001179470A (ja) | レーザ加工状態計測装置 | |
US5093553A (en) | Hydrogen concentration detection in weld arc plasma | |
JP2000135583A (ja) | レーザ光集光器 | |
EP3939737B1 (fr) | Dispositif de traitement au laser | |
Hand et al. | Nd: YAG laser welding process monitoring by non-intrusive optical detection in the fibre optic delivery system | |
EP3870385B1 (fr) | Dispositif de traitement laser et methode de traitement laser | |
EP0113104B1 (fr) | Dispositif de détection de fractures dans des fibres destinées au transport de l'énergie | |
KR20230025129A (ko) | 분광기를 이용한 레이저절단 모니터링 방법 및 장치 | |
Chen | In-process monitoring of the cutting front of CO 2 laser cutting with off-axis optical fibre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA FI JP NO US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: CA |