WO1993002994A1 - Procede de conversion d'hydrocarbures - Google Patents
Procede de conversion d'hydrocarbures Download PDFInfo
- Publication number
- WO1993002994A1 WO1993002994A1 PCT/GB1992/001325 GB9201325W WO9302994A1 WO 1993002994 A1 WO1993002994 A1 WO 1993002994A1 GB 9201325 W GB9201325 W GB 9201325W WO 9302994 A1 WO9302994 A1 WO 9302994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- feed
- catalyst
- acid
- conversion
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 40
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 15
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 15
- 239000010457 zeolite Substances 0.000 claims abstract description 77
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 76
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 72
- 239000003054 catalyst Substances 0.000 claims abstract description 49
- 239000002253 acid Substances 0.000 claims abstract description 22
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- 150000001336 alkenes Chemical class 0.000 claims description 24
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 15
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 11
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 10
- 229910001868 water Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 239000008187 granular material Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000010306 acid treatment Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000017 hydrogel Substances 0.000 description 3
- 150000002500 ions Chemical group 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010025 steaming Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 239000011260 aqueous acid Substances 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000004836 hexamethylene group Chemical class [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- -1 organic nitrogen cations Chemical class 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical class CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 101001125118 Homo sapiens cAMP-dependent protein kinase catalytic subunit PRKX Proteins 0.000 description 1
- 208000032005 Spinocerebellar ataxia with axonal neuropathy type 2 Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001399 aluminium compounds Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 208000033361 autosomal recessive with axonal neuropathy 2 spinocerebellar ataxia Diseases 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 102100029402 cAMP-dependent protein kinase catalytic subunit PRKX Human genes 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pent-2-ene Chemical class CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7042—TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/864—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/865—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an ether
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/86—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
- C07C2/862—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
- C07C2/867—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an aldehyde or a ketone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/16—After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/36—Steaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/37—Acid treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/18—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/65—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
Definitions
- This invention relates to a process for the conversion of hydrocarbons using a zeolite catalyst and to a method of regenerating the spent zeolite catalyst.
- EP-A-247802 discloses that zeolites Theta-1 and ZSM-23 can be used as catalysts in the restructuring of a C2-C10 olefinic feedstock.
- the feedstock rich in linear olefins, is converted into a product enriched in branched olefins.
- Zeolite Theta-1 is also known as Nu-10, ZSM-22, KZ-2 and ISI-1 and its systematic nomenclature is TON.
- EP-A-65400 discloses that zeolite Nu-10 can be used for the conversion of methanol to olefins, and for alkylation of alkylbenzenes.
- US Patent No. 4579993 discloses a process for the conversion of methanol to olefins using a zeolite catalyst wherein the catalyst is treated to both steaming and acid-extraction.
- the preferred catalyst is ZSM-5!
- US Patent No. 4658075 discloses a process for converting aromatic compounds using a crystalline zeolite which has been treated by contact with steam, followed by an aluminium compound followed by contact with an aqueous acid solution.
- zeolites which can deactivate rapidly due to their unidimensional structure can be activated using a steam/acid treatment process, and their use in hydrocarbon conversion processes results in surprisingly higher conversion values and little loss in conversion values with time.
- the present invention provides a process for the conversion of a hydrocarbon feed characterised in that the feed is contacted with a zeolite catalyst to produce a product, said zeolite having a framework structure which includes a 10- or 12-member channel that is not intersected by another 10- or
- the process of the present invention is suitably directed to the conversion of an olefin containing feed and to the production of a hydrocarbon which is suitably an olefin which is different to that of the feed.
- the preferred conversion reactions are the conversion of a linear olefin to a branched olefin; the alkylation of aromatics with olefins to produce alkyl benzene; dimerisation and/or oligomerisation of olefins; and the reaction of methanol, formaldehyde and/or dimethyl ether with an olefin to produce higher olefins.
- a particularly preferred process is the reaction of C3 and/or C4 olefins with methanol, formaldehyde and/or dimethylether, to produce higher olefins.
- the molar ratio of olefin to methanol, formaldehyde and/or dimethylether is preferably greater than 1 to 20 to 100 to 1, more preferably greater from 1:10 to 10:1, especially from 1 to 1 to 5 to 1.
- the reaction is preferably carried out at a temperature in excess of 200"C, preferably 250 to 600 ⁇ C and may be carried out at reduced, atmospheric or elevated pressure.
- the pressure is the total pressure of the reaction chamber.
- a pressure of from 10-10,000 KEa absolute, preferably 50-1000 KPa absolute may be used.
- the feedstock may be fed into the reaction chamber either with or without diluents, e.g. water, steam, alkanes or inert gas.
- diluents e.g. water, steam, alkanes or inert gas.
- the product of the process includes branched olefinic hydrocarbons, rich in isobutene and methylbutenes.
- a small amount of by-products, e.g. methane, ethane, ethene and linear olefins are also present.
- a further particularly preferred process is the conversion of a C -C_o > preferably 0 -0 , linear olefin to a branched olefin.
- the reaction is preferably carried out at a temperature in the range of from 200 to 550 ⁇ C, especially 300-550 c C.
- the feedstock is preferably diluted with a gas or gases inert under the reaction conditions, for example nitrogen or a alkane. When a diluent is present, it is preferably present in an amount of at least
- the reaction is preferably carried out at a pressure of from 50 to 1000 KPa, especially 100 to 300 KPa.
- Zeolites which may be used in the present invention include TON (Theta-1, Nu-10, ZSM-22, KZ-2, ISI-1), MTT (ZSM-23, EU-13, ISI-4, KZ-1), ZSM-48, FER (FU-9, Nu-23, ISI-6, ZSM-35), and EUO (EU-1, TPZ-3, ZSM-50), all of which contain a 10-membered channel that is not intersected by another 10- or 12-membered channel; and MTW (ZSM-12, CZH-5, Theta-3, TPZ-12) and MOR (mordenite), which contain a 12-membered channel that is not intersected by another 10- or
- a synthetic zeolite immediately after synthesis contains cations which, depending upon the precise synthesis method used, may be hydrogen, aluminium, alkali metals, organic nitrogen cations or any combination thereof.
- the zeolite treated by the treatment process may be in the hydrogen form.
- the hydrogen form may be achieved by, in the case of organic containing zeolite, calcination to remove the organics followed by either ammonium ion exchange or proton exchange with an acid solution or a combination of both.
- the hydrogen form could, if desired, be prepared by either direct ammonium ion exchange followed by calcination or proton exchange with acid solution or a combination of both. If the zeolite to be treated is not in the hydrogen form, the second step of the treatment process, the treatment with acid, will of course introduce protons into the zeolite.
- the zeolite may, if desired, be bound in a suitable binding material.
- the binder may suitably be one of the conventional alumina, silica, clay or aluminophosphate binders or a combination of binders.
- the zeolite used in the process of the present invention is treated with a two step treatment process.
- the treatment process may be applied to the zeolite at any desired point in the catalyst preparation; it may for example be applied to the zeolite in a powder form, in the form of an extrudate or in a bound form.
- the treatment method is particularly useful for improving the long-term performance of the catalyst.
- the first step of the zeolite treatment process is carried out at a temperature in the range of from 100 to 800°C, especially 400 to 600 ⁇ C.
- the steam partial pressure may be 100%, or other gases may be present as desired; for example, the steam may be in admixture with a diluent, such as nitrogen or air.
- the total pressure is not crucial; atmospheric pressure is convenient, but other pressures, for example in the range 10 to 10000 KPa may be used if desired.
- the subsequent step of contacting the zeolite with an acid is preferably carried out using a dilute aqueous acid.
- Acids for use in the treatment of the zeolite may be mineral acids. The preferred acids are nitric acid, hydrochloric acid or sulphuric acid.
- the strength of the acid may be suitably from 0.01 molar, preferably 0.05 to 10 molar.
- the contact with acid is preferably carried out at a temperature in the range of from 5 to 200 ⁇ C especially 80 to 120°C, for a period of suitably 0.1 to 10 hours, preferably 0.5 to 2 hours.
- the zeolite is preferably washed with water, dried and calcined before being used as a catalyst.
- a treatment process for a zeolite which comprises a first step of contacting the zeolite with steam and a subsequent step of contacting the zeolite with an acid wherein said zeolite is selected from the structure types TON, ZSM-48, FER, EUO and MTW.
- a particular benefit of the present invention is the ability of attaining high initial conversion rates and loss of conversion with time is less rapid than prior art processes.
- Theta-1 was synthesised using ammonia as the templating agent.
- Sodium aluminate (30 g, ex.BDH, 40 wt% AI2O3, 30 wt% Na2 ⁇ and 30 wt% H2O) and sodium hydroxide (15.6 g ex.BDH) were dissolved in distilled water (240 g).
- Ammonia solution (1400 g, SG 0.90 containing 25% NH3) was added with gentle mixing.
- 1200 g of silica gel sold under the Trade Mark Ludox AS40 (ex. Du Pont) which contained 40 wt% silica was added over fifteen minutes with stirring to maintain a homogeneous hydrogel.
- the molar composition of the hydrogel was:-
- Theta-1 which contained both Na ⁇ and NH4 + ions was directly ion exchanged in order to remove the Na + ions by mixing forl hour with an aqueous ammonium nitrate solution (IM, zeolite to solution weight ratio of I.10).
- IM aqueous ammonium nitrate solution
- the zeolite was filtered, washed and the ion exchange treatment repeated.
- the ammonium form of the zeolite was then dried at 100"C and calcined overnight in air at 550*C to convert it to the hydrogen form.
- the X-ray diffraction pattern of the zeolite product is shown in Table 1. TABLE 1; XRD OF PRODUCT OF EXAMPLE 1
- the H-form of the zeolite as prepared in Example 1 was pressed under 10 tonnes pressure into tablets which were broken into granules and these in turn were sieved to pass 600 micron but not 250 micron sieves.
- the granules were placed in a tubular reactor (60 mm ID) and heated to 550°C. There was a large preheating zone on which water was converted to steam before it came into contact with the catalyst granules. Distilled water and nitrogen were passed through the preheating zone over the catalyst at the rate of 30 grams/hour and 60 ml/minute respectively. After 2 hours with the reactor temperature at 550°C, the water flow was stopped and the catalyst was cooled to ambient.
- Example 3 Catalyst Preparation and Testing The zeolite powders as prepared in Example 2 and in Example 1 (comparative) were pressed into tablets under 10 tonnes pressure. The tablets were broken and sieved into granules to pass 600 micron but not 250 micron sieves.
- WHSV weight hourly space velocity which is the weight of the methanol and hydrocarbon fed per weight of the catalyst per hour
- the powder was examined by X-ray diffraction and found to be highly crystalline Theta-1 zeolite.
- zeolite Approximately 2.5 kg of the zeolite was spread in a tray to give a bed of four inches in depth and calcined in air at 580°C for 24 hours.
- the zeolite was ion exchanged by contacting with 1 equivalent/dm ⁇ ammonium nitrate solution (1 litre/0.1 kg zeolite) and mixing at ambient temperature for 16 hours.
- the zeolite was filtered, washed with de-ionised water and the ion exchange treatment was repeated twice more. The last ion exchange treatment was continued for 70 hours.
- the washed dried ion exchanged zeolite was calcined as above at 550°C for 24 hours.
- the zeolite was mixed with a commercially available silica/alumina material sold under the Trade Mark "Hymod Excelsior PKX1" and supplied by English China Clays and the mixture extruded to give extrudates whose zeolite content -was 82% by weight.
- a commercially available silica/alumina material sold under the Trade Mark "Hymod Excelsior PKX1" and supplied by English China Clays and the mixture extruded to give extrudates whose zeolite content -was 82% by weight.
- Example 5 Catalyst Steaming and Acid Washing
- the extrudates were placed in a tubular reactor (60 mm ID) and heated to 550°C. There was a large preheating zone on which water was converted to steam before it came into contact with the catalyst. Distilled water and nitrogen were passed over the catalyst at the rate of 30 grams/hour and 60 ml/minute respectively. After 2 hours the water flow was stopped and the catalyst was cooled to ambient. The catalyst was then refluxed in 1 equivalent/litre nitric acid (10 grams of catalyst/200 ml of acid solution) for 1 hour. The extrudates were filtered, washed with distilled water and refluxed as before twice more. Finally the catalyst was calcined at 550*C for 16 hours.
- the reaction pressure and temperature were 2 bars absolute and 500°C respectively.
- the volume of the catalyst was 5 ml and its weight was 2.02 grams.
- the weight of the feed in grams passed over 1 gram of catalyst per hour was fixed at 38-42.
- the comparative catalyst not treated according to the invention Example 4
- the levels of isobutene in the total product were 16.7 wt%, 14.0 wt% and 14.3 wt% respectively.
- the proportions of the converted linear butenes that were converted to isobutenes (selectivity) at these times were 74.4 wt%, 78.5 wt% and 81.5 wt% respectively.
- Example 5 when the catalyst according to the invention (Example 5) was tested after 24.5 and 49.5 hours on stream the levels of isobutene in the total product were 19.5 wt% and 19.7 wt% respectively. The proportions of the converted linear butenes that were converted to isobutenes (selectivity) at these times were 73.8 wt% and 83.2 wt% respectively.
- Example 7
- a batch of the hydrogen form of zeolite Theta-1 was prepared as described in Example 1 and steam and acid treated as described in Example 2.
- the zeolite was again pressed into tablets under 10 tonnes pressure, broken into granules and sieved to pass 600 micron but not 250 micron sieves.
- the granules were tested for the structural isomerisation of n-butene in the feed to produce isobutene in a fixed bed tubular reactor (12 mm ID) with a co-axial thermocouple well (2 ram OD) .
- the feed had the composition: Component wt% isobutane 11.59 n-butane 24.39 t-butene-2 7.28 1-butene 48.44 isobutene 0.81 c-butene-2 7.23 n-pentenes 0.09 hexenes 0.05 octenes 0.12
- the reaction pressure and temperature were 2 bars absolute and 500°C respectively.
- the volume of the catalyst was 5 ml and its weight was 1.83 grams.
- the weight of the feed in grams passed over 1 gram of catalyst per hour was fixed at 45-47. After 77 hours on stream the catalyst was regenerated in 10-20% air in nitrogen at 580°C for 48 hours and then in air for an additional 12 hours. Nitrogen was passed over the catalyst and the temperature was reduced to 500°C.
- the catalyst was tested again as described above using the same feed and at the same conditions.
- the weight of the feed in grams passed over 1 gram of catalyst per hour was fixed at 42-44. After 24.5 and 48.0 hours on stream the levels of isobutene in the total product was 20.6 wt% and 18.2 wt% respectively.
- the proportions of the converted linear butenes that were converted to isobutenes (selectivity) were 72.4 wt% and 80.3 wt% respectively. After 73 hours on stream the catalyst was regenerated as described before and testing was recommenced. After 24.0 and 48.0 hours on stream the levels of isobutene in the total product were 20.6 wt% and 18.2 wtX respectively. The proportions of the converted linear butenes that were converted to isobutenes (selectivity) were 74.1 wt% and 81.0 wt% respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Procédé de conversion d'une charge d'alimentation en hydrocarbure, selon lequel la charge est mise en contact avec un catalyseur à zéolithe pour former un produit, le zéolithe présentant une structure contenant un canal à 10 ou 12 membres qui n'est pas entrecoupé par un autre canal à 10 à 12 membres et ayant été traité selon un procédé qui consiste tout d'abord à mettre en contact le zéolithe avec de la vapeur, puis à le mettre en contact avec un acide.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92915912A EP0596930A1 (fr) | 1991-07-31 | 1992-07-20 | Procede de conversion d'hydrocarbures |
JP5503364A JPH06509352A (ja) | 1991-07-31 | 1992-07-20 | 炭化水素の転換方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB919116499A GB9116499D0 (en) | 1991-07-31 | 1991-07-31 | Treatment method for zeolites |
GB9116499.6 | 1991-07-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993002994A1 true WO1993002994A1 (fr) | 1993-02-18 |
Family
ID=10699268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1992/001325 WO1993002994A1 (fr) | 1991-07-31 | 1992-07-20 | Procede de conversion d'hydrocarbures |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0596930A1 (fr) |
JP (1) | JPH06509352A (fr) |
AU (1) | AU2329692A (fr) |
GB (1) | GB9116499D0 (fr) |
WO (1) | WO1993002994A1 (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0671212A4 (fr) * | 1993-09-30 | 1996-03-13 | Sanyo Petrochemical Co Ltd | Procede de desaluminisation partielle d'un catalyseur zeolitique. |
WO1998007513A1 (fr) * | 1996-08-20 | 1998-02-26 | Monsanto Company | Ameliorations apportees a la stabilite d'un catalyseur utilise lors d'une hydroxylation de benzene par traitement a l'acide |
FR2755958A1 (fr) * | 1996-11-19 | 1998-05-22 | Inst Francais Du Petrole | Zeolithe nu-86 desaluminee et son utilisation en conversion des hydrocarbures |
EP0855218A1 (fr) * | 1997-01-24 | 1998-07-29 | Institut Français du Pétrole | Zéolithe IM-5 désaluminée |
US5789331A (en) * | 1993-09-30 | 1998-08-04 | Sanyo Petrochemical Co., Ltd. | Method for partially dealuminating a zeolite catalyst |
FR2765207A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
FR2765209A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
FR2765208A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe nu-85, catalyseur et procede et pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
FR2765206A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
CN1052667C (zh) * | 1995-10-06 | 2000-05-24 | 中国石油化工总公司 | 贵金属负载型烷基芳烃异构化催化剂 |
US6156938A (en) * | 1997-04-03 | 2000-12-05 | Solutia, Inc. | Process for making phenol or phenol derivatives |
EP1167326B2 (fr) † | 2000-06-26 | 2007-11-14 | Saudi Basic Industries Corporation | Dimerisation d'isobutène |
US8049054B2 (en) * | 2006-05-19 | 2011-11-01 | Shell Oil Company | Process for the preparation of C5 and/or C6 olefin |
US8168842B2 (en) | 2006-05-19 | 2012-05-01 | Shell Oil Company | Process for the alkylation of a cycloalkene |
US8822749B2 (en) | 2007-11-19 | 2014-09-02 | Shell Oil Company | Process for the preparation of an olefinic product |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321194A (en) * | 1992-05-11 | 1994-06-14 | Mobil Oil Corporation | N-olefin skeletal isomerization process using dicarboxylic acid treated zeolites |
FR2915113B1 (fr) * | 2007-04-23 | 2009-06-26 | Inst Francais Du Petrole | Zeolithe eu-1 modifiee et son utilisation en isomerisation des composes c8 aromatiques. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4579993A (en) * | 1984-08-22 | 1986-04-01 | Mobil Oil Corporation | Catalyst for methanol conversion by a combination of steaming and acid-extraction |
US4658075A (en) * | 1983-01-17 | 1987-04-14 | Mobil Oil Corporation | Xylene isomerization with a reactivated zeolite |
EP0247802A1 (fr) * | 1986-05-27 | 1987-12-02 | The British Petroleum Company P.L.C. | Isomérisation d'oléfines |
-
1991
- 1991-07-31 GB GB919116499A patent/GB9116499D0/en active Pending
-
1992
- 1992-07-20 JP JP5503364A patent/JPH06509352A/ja active Pending
- 1992-07-20 WO PCT/GB1992/001325 patent/WO1993002994A1/fr not_active Application Discontinuation
- 1992-07-20 EP EP92915912A patent/EP0596930A1/fr not_active Withdrawn
- 1992-07-20 AU AU23296/92A patent/AU2329692A/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4658075A (en) * | 1983-01-17 | 1987-04-14 | Mobil Oil Corporation | Xylene isomerization with a reactivated zeolite |
US4579993A (en) * | 1984-08-22 | 1986-04-01 | Mobil Oil Corporation | Catalyst for methanol conversion by a combination of steaming and acid-extraction |
EP0247802A1 (fr) * | 1986-05-27 | 1987-12-02 | The British Petroleum Company P.L.C. | Isomérisation d'oléfines |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5789331A (en) * | 1993-09-30 | 1998-08-04 | Sanyo Petrochemical Co., Ltd. | Method for partially dealuminating a zeolite catalyst |
EP0671212A4 (fr) * | 1993-09-30 | 1996-03-13 | Sanyo Petrochemical Co Ltd | Procede de desaluminisation partielle d'un catalyseur zeolitique. |
CN1052667C (zh) * | 1995-10-06 | 2000-05-24 | 中国石油化工总公司 | 贵金属负载型烷基芳烃异构化催化剂 |
US5874647A (en) * | 1996-08-20 | 1999-02-23 | Solutia Inc. | Benzene hydroxylation catalyst stability by acid treatment |
WO1998007513A1 (fr) * | 1996-08-20 | 1998-02-26 | Monsanto Company | Ameliorations apportees a la stabilite d'un catalyseur utilise lors d'une hydroxylation de benzene par traitement a l'acide |
FR2755958A1 (fr) * | 1996-11-19 | 1998-05-22 | Inst Francais Du Petrole | Zeolithe nu-86 desaluminee et son utilisation en conversion des hydrocarbures |
WO1998022213A1 (fr) * | 1996-11-19 | 1998-05-28 | Institut Français Du Petrole | Zeolithe nu-86 desaluminee et son utilisation en conversion des hydrocarbures |
CN1110365C (zh) * | 1996-11-19 | 2003-06-04 | 法国石油公司 | 脱铝nu-86沸石及其在烃类转化中的用途 |
US6337428B1 (en) | 1996-11-19 | 2002-01-08 | Institut Francais Du Petrole | Conversion of hydrocarbons with a dealuminated NU-86 zeolite catalyst |
US6165439A (en) * | 1996-11-19 | 2000-12-26 | Institut Francais Du Petrole | Dealuminated NU-86 zeolite and its use for the conversion of hydrocarbons |
US5968475A (en) * | 1997-01-24 | 1999-10-19 | Institut Francais Du Petrole | Dealuminated IM-5 zeolite |
EP0855218A1 (fr) * | 1997-01-24 | 1998-07-29 | Institut Français du Pétrole | Zéolithe IM-5 désaluminée |
FR2758810A1 (fr) * | 1997-01-24 | 1998-07-31 | Inst Francais Du Petrole | Zeolithe im-5 desaluminee |
US6156938A (en) * | 1997-04-03 | 2000-12-05 | Solutia, Inc. | Process for making phenol or phenol derivatives |
US6153548A (en) * | 1997-06-25 | 2000-11-28 | Institut Francais Du Petrole | NU-85 zeolite catalyst and a process for improving the pour point of feeds containing paraffins |
FR2765206A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
FR2765207A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
FR2765209A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
US6350370B1 (en) | 1997-06-25 | 2002-02-26 | Institut Francais Du Petrole | NU-85 zeolite catalyst and a process for improving the pour point of feeds containing paraffins |
FR2765208A1 (fr) * | 1997-06-25 | 1998-12-31 | Inst Francais Du Petrole | Zeolithe nu-85, catalyseur et procede et pour l'amelioration du point d'ecoulement de charges contenant des paraffines |
US6733658B2 (en) | 1997-06-25 | 2004-05-11 | Institut Francais Du Petrole | EU-1 zeolite catalyst and a process for the reduction of the pour point of feeds containing paraffins |
EP1167326B2 (fr) † | 2000-06-26 | 2007-11-14 | Saudi Basic Industries Corporation | Dimerisation d'isobutène |
US8049054B2 (en) * | 2006-05-19 | 2011-11-01 | Shell Oil Company | Process for the preparation of C5 and/or C6 olefin |
US8168842B2 (en) | 2006-05-19 | 2012-05-01 | Shell Oil Company | Process for the alkylation of a cycloalkene |
US8822749B2 (en) | 2007-11-19 | 2014-09-02 | Shell Oil Company | Process for the preparation of an olefinic product |
Also Published As
Publication number | Publication date |
---|---|
AU2329692A (en) | 1993-03-02 |
JPH06509352A (ja) | 1994-10-20 |
GB9116499D0 (en) | 1991-09-11 |
EP0596930A1 (fr) | 1994-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5210364A (en) | Process for the preparation of branched olefins | |
US8822749B2 (en) | Process for the preparation of an olefinic product | |
EP2739393B1 (fr) | Procédé de fabrication d'un catalyseur comprenant une zéolite à phosphore modifié et utilisation de ladite zéolite | |
US7268268B2 (en) | Dimerization of olefins | |
EP2018359B1 (fr) | Procédé de préparation d'une oléfine | |
AU2008327923B2 (en) | Process for the preparation of an olefinic product | |
WO1993002994A1 (fr) | Procede de conversion d'hydrocarbures | |
US5503818A (en) | Aluminosilicate catalyst, a process for the manufacture thereof and a process for the skeletal isomerization of linear olefins | |
US5434328A (en) | Restructuring of olefins | |
US4548913A (en) | Catalyst, a process for its preparation and an isomerization process in the presence of this catalyst | |
WO1994012452A1 (fr) | Procede de production d'olefines ramifiees | |
CA2055107A1 (fr) | Procede d'obtention d'olefines ramifiees | |
US4724270A (en) | Catalytic conversion over dehydroxylated zeolite | |
CA2110904A1 (fr) | Procede pour la production d'olefines | |
US9643897B2 (en) | Enhanced propylene production in OTO process with modified zeolites | |
US9120078B2 (en) | Process for the preparation of an olefinic product, oxygenate conversion catalyst particles, and process for the manufacutre thereof | |
GB2114110A (en) | Process for synthesising ZSM-5 type zeolites having a low sodium content | |
WO1994015897A1 (fr) | Conversion d'hydrocarbures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1992915912 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1992915912 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1992915912 Country of ref document: EP |