WO1992018323A1 - Fabrication informatisee de macro-ensembles - Google Patents
Fabrication informatisee de macro-ensembles Download PDFInfo
- Publication number
- WO1992018323A1 WO1992018323A1 PCT/AU1992/000155 AU9200155W WO9218323A1 WO 1992018323 A1 WO1992018323 A1 WO 1992018323A1 AU 9200155 W AU9200155 W AU 9200155W WO 9218323 A1 WO9218323 A1 WO 9218323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- head
- shape
- excreted
- deposited
- walls
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 68
- 239000002245 particle Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 29
- 230000029142 excretion Effects 0.000 claims description 13
- 239000007788 liquid Substances 0.000 claims description 9
- 239000004593 Epoxy Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 6
- 239000012815 thermoplastic material Substances 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 238000001465 metallisation Methods 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims 2
- 239000000853 adhesive Substances 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000010891 electric arc Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 238000005476 soldering Methods 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 238000003860 storage Methods 0.000 claims 1
- 241000238631 Hexapoda Species 0.000 abstract description 2
- 239000004615 ingredient Substances 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 5
- 239000004927 clay Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000005495 investment casting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 241000257303 Hymenoptera Species 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- 241000256602 Isoptera Species 0.000 description 1
- -1 Polypropylene Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000010137 moulding (plastic) Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
- G05B19/4099—Surface or curve machining, making 3D objects, e.g. desktop manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B17/00—Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/20—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0002—Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49015—Wire, strang laying, deposit fluid, welding, adhesive, hardening, solidification, fuse
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present invention relates to a manufacturing method where, items are made similarly the way a variety of insects build up their habitats.
- Machines which allow this kind of manufacture of matter consists generally of either: a) robot arms with at least 5 axis of freedom of movement, b) light framed numerically controlled machine which would have a head or a number of heads which would have 3 to 5 axis of freedom of movement.
- Each head or robot arm have specially designed head allowing excretion or projection of particles or fibres of matter on a small to microscopic scale in such a controlled fashion so as to allow buildup of the material and retention of shape.
- Material needs to solidify sufficiently straight after deposition (pre-cure) and then full curing could be induced consequently.
- additional layers could be applied in similar fashion or by any other means, like laminating thin layers consisting of carbon fibres & epoxy.
- F1g. 1(a) Is a perspective view of a computer numerically controlled (CNC) machine with a ceramic material excretion (CME) head mounted thereon,
- Fig. Kb 1s a detailed side view of the CME head as seen In F1g. Kb),
- Fig. 2 1s a cross sectional view of a thermoplastic material excretion head for use with the machine as Illustrated in F1g. Ka), Fig. 3(a) 1s a perspective view of a 3D shaped object, Fig. 3(b) Is a bottom view of the object of Fig. 3(a), Fig. 3(c) 1s a top view of the object of Fig. 3(b), Fig. 3(d) 1s a detailed view of a typical basic cell, Fig. 4(a) 1s an example of an aircraft wing using the manufacturing method of the present invention,
- Fig. 4(b) 1s an example of a mast of a yacht using the manufacturing method of the present Invention
- Page 8 1 s a sample of numerical data
- Page 9 1s a sample algorithm for a simple cell macrostructure.
- CM-AM Computerised Macro-Assembly Manufacture 1s not the robot or NE machine alone which allows computer programmed movements, but 1s this unique usage of CNC machines or robots in combination with: a) special heads designed for material deposition b) a particular type of material with suitable properties, c) computer software which allows various methods of bulldlng-up walls of objects by having defined cell macrostructure.
- CM-AM was first tried with type of head where material deposited was clay. Schematic of this 1s shown 1n F1g. 1 and actual example of shape created 1s shown in F1g. 3. Its wall macrostructure 1s shown and this can be represented by a simple algorithm as shown 1n Page 9. Next trial was with thermoplastic material as made by the container as shown in Fig. 2. There are many types of materials with suitable designed heads possible for this type of manufacture, some of which are listed below with brief description of applications.
- WME Head (Wax Material Excretion) for CM-AM b) CME Head (Ceramic Material Excretion) for CM-AM c) PME Head (Polymerising Material Excretion) for CM-AM d) EME head (Epoxy Material Excretion) for CM-AM e) MME Head (Metal Material Excretion) for CM-AM f) TME Head (Thermoplastic material Excretion) for CM-AM Brief .description with applications of each is given below. WME Head for CM-AM
- Wax material is the first material when one looks at analogies of this method of manufacture in nature. Bees are making their beehives in this fashion.
- This material has also wide application in engineering, for example in modeling of 3D components, but particularly in manufacture of strong metal components by method of "investment casting".
- a model of the component is made out of wax, by standard machining methods, then this component is covered with slurry of ceramic material which eventually dries into a high temperature resisting shell. After melting away the wax core, a cavity remains into which molten metal is cast to a required shape. Shell is consequently broken away. Because of the low melting temperature of wax, it is relatively simple method of designing a head for excreting wax, under pressure, with controlled flow, and with such ambient conditions at the entrance nozzle so that the material solidifies soon after it leaves the nozzle. Variations in design of the head can be due to a particular application, from simple 3 axis head for making simple thin shell 3D models to 5 or more axis head where characteristics like surface texture or wall thickness could be controlled as well.
- Clay was first material to try CM-AM. Motorised syringe was mounted on the CNC machine as illustrated in Fig. 1. This was filled with clay of sufficient plasicity. The machine was programmed to produce shape as shown in Fig. 3. There are many software packages to simplify this kind of programming, so called CAM (Computer Aided Manufacturer). The particular CAM used in this case is Smartcam Advanced 3D. Sample (start and end) of the code generated is also shown in Page 8. Simple algorithm was also created to allow automatic generation of the cell structure as shown in Fig. 3. Essential aspects of this algorithm are shown in Page 9. With some infringements the type of head with appropriate material would allow making directly for example:
- CM-AM with this materials is the possibility of exotic shapes out of refractory, high temperature materials, without need for expensive machining of hard materials. Full utilisation of hi-tech, expensive materials without any wastage. Low tooling-up cost and fast flexible designs. PME Head for CM-AM
- the present invention differs completely, in that material being excreted from a nozzle of a special head and is illuminated by the focussed laser beam as it is leaving the nozzle, thus causing polymerisation and therefore solidification right after it was deposited onto already existing structure.
- SUBSTITUTESHEET complex shapes for deposited layers do not have to be in horizontal planes (given by the surface of fluid -in the existing method), but could be gradually assuming any orientation because only minute portion at the end of the excretion nozzle is in fluid form.
- filing and reinforcing materials could be added to improve the physical properties of finished components.
- glass or carbon fibres or particles For example glass or carbon fibres or particles.
- this could be used not only for 3D modelling, but for making finished products with desired strength variation of this head is where continuous fibre of, for example, glass or carbon is fed together with polymerising material which bonds fibres together. The process would become similar to weaving basket or cloth, or simply laying layer by layer first in one direction, and then if necessary in other direction. In this fashion it is possible to create strong, tnin shell structures, or of more complex wall (like honeycomb) structures.
- Epoxy. is mixed with catalyst prior to leaving the nozzle, and is further assisted in fast pre-cure by appropriate ambient conditions and further accelerated by, for example focused laser beam, full curing is achieved in given time. This can be accelerated by post-cure low temperature baking.
- Variant of this design is a composite head where two different types of materials are being deposited simultaneously. For example head creates tube with thin wall, middle of which is filled with low specific gravity material core. This tube is deposited layer by layer, with variable width or at an angle.
- Metal deposition with CM-AM is proposed to be used in two basic variations: a) Molten metal is deposited or sprayed or sputtered. b) Solid wire is fed from the head and at the some time it is welded to already existing structure, this also softens the wire allowing it to assume required shape more readily.
- Second or more layers can be deposited consequently at different angles to give the structure required strength in different directions, or a process similar to basket weaving could be used, where more intricate, multiple head design would be required.
- Composite head or a number of heads can be also used where a layer of metal is covered with another layer of different material, say of epoxy. This would give the structure for example imperviousness, protecting the core ⁇ .c_tal material from external elements.
- Thermoplastic material is the first material which we tried to produce practical and strong components by this method of manufacture. (Clay samples on page 3 above served purpose but were too brittle to be of any practical use.)
- thermoplastic materials for example Polypropylene at 200-300°C
- head for excreting this, under pressure, wit h controlled flow, and with such ambient conditions at the entrance nozzle so that the material solidifies soon after it leaves the nozzle.
- Fig. 2 shows typical head design. Variations in design of the head can be due to a particular application, from simple 3 axis head for making simple thin shell 3D models with simple 3 axis head for making simple thin shell 3D models with simple macrostructure to 5 or more axis head where head can be aligned with direction and inclination of the surface, and this way for example preheating of existing surface, each wall of individual cells from which walls are made.
- thermoplastic components for example prototypes of exotic shapes can be made without making expensive tooling for injection moulding. In many applications where small quantities and very exotic shapes are required this could be sufficient, and if required components could be finished by applying lamination on its external surfaces.
- SUBSTITUTESHEET Speed of manufacture can be substantially improved with multiple head machine design, in cases where additional complexity would be justified by increased rates of production.
- This method of manufacture would be ideal for manufacturing out in 5 space, because of special requirements and also because of the special conditions of zero gravity and vacuum. a) One universal lightweight machine could be used to manufac ⁇ ture any object. b) 100% utilisation of available resources of raw materials.
- Each facet represents external side of a cell as shown in Fig. 3(b) or Fig. 3(c).
- a triangle On each of these facets is constructed a triangle, with the two other sides of equal length, and where the height of this triangle represents the wall thickness.
- Corresponding internal cells are created by joining aspects of these triangles, length of these is therefore related to curvature of the shape.
- Walls can be build-up by having the same structure applied a number of times, if necessary of finer cell size then external smoothness of walls would call for.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
Abstract
On décrit un procédé de fabrication permettant de réaliser des articles d'une manière semblable à celle utilisée par les insectes pour construire leurs nids. Il s'agit d'assembler d'une manière ordonnée prédéterminée et à l'aide d'un liant de minuscules particules ou brins de matière pour créer un objet de la forme souhaitée. Selon l'invention cette opération est réalisée par un robot ou une machine à commande numérique qui commande la position d'une tête spécialement conçue et dont la fonction est de distribuer une matière spéciale. Ladite matière se solidifie rapidement et conserve ainsi sa forme programmée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4507594A JPH06509523A (ja) | 1991-04-09 | 1992-04-09 | コンピユータによるマクロ構体製造 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPK548891 | 1991-04-09 | ||
AUPK5488 | 1991-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992018323A1 true WO1992018323A1 (fr) | 1992-10-29 |
Family
ID=3775325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1992/000155 WO1992018323A1 (fr) | 1991-04-09 | 1992-04-09 | Fabrication informatisee de macro-ensembles |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH06509523A (fr) |
WO (1) | WO1992018323A1 (fr) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1008128A3 (nl) * | 1994-03-10 | 1996-01-23 | Materialise Nv | Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie. |
EP0715573A1 (fr) * | 1993-08-26 | 1996-06-12 | Solidscape, Inc. | Realisateur de modeles en trois dimensions |
WO1996012608A3 (fr) * | 1994-10-19 | 1996-07-07 | Bpm Tech Inc | Appareil et procedes de fabrication d'un article tridimensionnel |
EP0729824A1 (fr) * | 1995-03-03 | 1996-09-04 | General Motors Corporation | Procédé de fabrication rapide d'un prototype ou d'un moule en utilisant un modèle stéréolithigraphique |
US5555176A (en) * | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
US5572431A (en) * | 1994-10-19 | 1996-11-05 | Bpm Technology, Inc. | Apparatus and method for thermal normalization in three-dimensional article manufacturing |
GB2302836A (en) * | 1994-06-02 | 1997-02-05 | Stratasys Inc | Forming three dimensional objects with unsupported overhangs |
WO1997028955A3 (fr) * | 1996-02-09 | 1997-12-18 | Bpm Tech Inc | Appareil et procede comportant des detecteurs d'ecarts et des moyens de retablissement servant a fabriquer des articles tridimensionnels |
US5700406A (en) * | 1996-04-26 | 1997-12-23 | Bpm Technology, Inc. | Process of and apparatus for making a three-dimensional article |
US5717599A (en) * | 1994-10-19 | 1998-02-10 | Bpm Technology, Inc. | Apparatus and method for dispensing build material to make a three-dimensional article |
US5740051A (en) * | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
US5784279A (en) * | 1995-09-29 | 1998-07-21 | Bpm Technology, Inc. | Apparatus for making three-dimensional articles including moving build material reservoir and associated method |
EP0895850A1 (fr) * | 1997-08-03 | 1999-02-10 | Micromod R.P. Ltd. | Procédé rapide de fabrication de prototypes |
DE19963948A1 (de) * | 1999-12-31 | 2001-07-26 | Zsolt Herbak | Verfahren zum Modellbau |
WO2001085386A3 (fr) * | 2000-05-09 | 2002-05-16 | Optomec Design | Formation de structures a partir de modeles solides de conception assistee par ordinateur |
WO2002073325A3 (fr) * | 2001-03-13 | 2003-05-30 | Milling Systems And Concepts P | Procede et appareil de fabrication d'un prototype |
US6656409B1 (en) | 1999-07-07 | 2003-12-02 | Optomec Design Company | Manufacturable geometries for thermal management of complex three-dimensional shapes |
WO2004022319A1 (fr) * | 2002-09-06 | 2004-03-18 | The Boeing Company | Materiaux en nid d'abeilles ameliores destines a des applications aerospatiales |
US6811744B2 (en) | 1999-07-07 | 2004-11-02 | Optomec Design Company | Forming structures from CAD solid models |
DE102005022308A1 (de) * | 2005-05-13 | 2006-11-23 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial |
US7879394B1 (en) | 2006-06-02 | 2011-02-01 | Optomec, Inc. | Deep deposition head |
WO2013019876A3 (fr) * | 2011-08-02 | 2013-04-18 | The Aerospace Corporation | Systèmes et procédés de fabrication de blocs de poudre combustible pour moteur de fusée hybride |
CN103212689A (zh) * | 2013-04-22 | 2013-07-24 | 中国科学院力学研究所 | 金属构件移动微压铸成型方法 |
US8936601B2 (en) | 2000-03-17 | 2015-01-20 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US9607889B2 (en) | 2004-12-13 | 2017-03-28 | Optomec, Inc. | Forming structures using aerosol jet® deposition |
US10632746B2 (en) | 2017-11-13 | 2020-04-28 | Optomec, Inc. | Shuttering of aerosol streams |
US10994473B2 (en) | 2015-02-10 | 2021-05-04 | Optomec, Inc. | Fabrication of three dimensional structures by in-flight curing of aerosols |
US12172444B2 (en) | 2021-04-29 | 2024-12-24 | Optomec, Inc. | High reliability sheathed transport path for aerosol jet devices |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103722171B (zh) * | 2013-12-25 | 2016-06-01 | 合肥工业大学 | 一种用于选择性激光烧结的蜂窝式激光扫描方法 |
JP2016033365A (ja) * | 2014-07-31 | 2016-03-10 | 株式会社東芝 | ロータブレード及びロータブレードの製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE893526A (fr) * | 1982-06-15 | 1982-12-15 | Agip Nucleare Spa | Methode pour l'application automatique et programmee de couches de materiau, et equipement pour la realisation de cette methode |
JPS5870313A (ja) * | 1981-10-21 | 1983-04-26 | Daisan Giken Kogyo Kk | 自動彫刻装置システム |
JPS58211413A (ja) * | 1982-06-03 | 1983-12-08 | Agency Of Ind Science & Technol | 立体模型製造装置 |
-
1992
- 1992-04-09 JP JP4507594A patent/JPH06509523A/ja active Pending
- 1992-04-09 WO PCT/AU1992/000155 patent/WO1992018323A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5870313A (ja) * | 1981-10-21 | 1983-04-26 | Daisan Giken Kogyo Kk | 自動彫刻装置システム |
JPS58211413A (ja) * | 1982-06-03 | 1983-12-08 | Agency Of Ind Science & Technol | 立体模型製造装置 |
BE893526A (fr) * | 1982-06-15 | 1982-12-15 | Agip Nucleare Spa | Methode pour l'application automatique et programmee de couches de materiau, et equipement pour la realisation de cette methode |
Non-Patent Citations (3)
Title |
---|
DERWENT ABSTRACT, Accession No. 00007k/01, class X24; & BE,A,893 526 (AGIP NUCLEARE SPA), 15 December 1982. * |
PATENT ABSTRACTS OF JAPAN, M 284, page 14; & JP,A,58 211 413 (KOGYO GIJUTSUIN (JAPAN)), 8 December 1983. * |
PATENT ABSTRACTS OF JAPAN, P 210, page 163; & JP,A,58 070 313 (DAISAN GIKEN KOGYO K.K.), 26 April 1983. * |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5740051A (en) * | 1991-01-25 | 1998-04-14 | Sanders Prototypes, Inc. | 3-D model making |
EP0715573A1 (fr) * | 1993-08-26 | 1996-06-12 | Solidscape, Inc. | Realisateur de modeles en trois dimensions |
EP0715573A4 (fr) * | 1993-08-26 | 1997-05-07 | Sanders Prototypes Inc | Realisateur de modeles en trois dimensions |
BE1008128A3 (nl) * | 1994-03-10 | 1996-01-23 | Materialise Nv | Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie. |
US5595703A (en) * | 1994-03-10 | 1997-01-21 | Materialise, Naamloze Vennootschap | Method for supporting an object made by means of stereolithography or another rapid prototype production method |
GB2302836A (en) * | 1994-06-02 | 1997-02-05 | Stratasys Inc | Forming three dimensional objects with unsupported overhangs |
GB2302836B (en) * | 1994-06-02 | 1998-10-07 | Stratasys Inc | Process of support removal for three-dimensional modeling |
US5633021A (en) * | 1994-10-19 | 1997-05-27 | Bpm Technology, Inc. | Apparatus for making a three-dimensional article |
US5859775A (en) * | 1994-10-19 | 1999-01-12 | Bpm Technology, Inc. | Apparatus and method including deviation sensing and recovery features for making three-dimensional articles |
US5572431A (en) * | 1994-10-19 | 1996-11-05 | Bpm Technology, Inc. | Apparatus and method for thermal normalization in three-dimensional article manufacturing |
WO1996012608A3 (fr) * | 1994-10-19 | 1996-07-07 | Bpm Tech Inc | Appareil et procedes de fabrication d'un article tridimensionnel |
US5969971A (en) * | 1994-10-19 | 1999-10-19 | Bpm Technology, Inc. | Apparatus and method for thermal normalization in three-dimensional article manufacturing |
US5555176A (en) * | 1994-10-19 | 1996-09-10 | Bpm Technology, Inc. | Apparatus and method for making three-dimensional articles using bursts of droplets |
US5717599A (en) * | 1994-10-19 | 1998-02-10 | Bpm Technology, Inc. | Apparatus and method for dispensing build material to make a three-dimensional article |
EP0729824A1 (fr) * | 1995-03-03 | 1996-09-04 | General Motors Corporation | Procédé de fabrication rapide d'un prototype ou d'un moule en utilisant un modèle stéréolithigraphique |
US5616293A (en) * | 1995-03-03 | 1997-04-01 | General Motors Corporation | Rapid making of a prototype part or mold using stereolithography model |
US5784279A (en) * | 1995-09-29 | 1998-07-21 | Bpm Technology, Inc. | Apparatus for making three-dimensional articles including moving build material reservoir and associated method |
WO1997028955A3 (fr) * | 1996-02-09 | 1997-12-18 | Bpm Tech Inc | Appareil et procede comportant des detecteurs d'ecarts et des moyens de retablissement servant a fabriquer des articles tridimensionnels |
US5700406A (en) * | 1996-04-26 | 1997-12-23 | Bpm Technology, Inc. | Process of and apparatus for making a three-dimensional article |
EP0895850A1 (fr) * | 1997-08-03 | 1999-02-10 | Micromod R.P. Ltd. | Procédé rapide de fabrication de prototypes |
US6656409B1 (en) | 1999-07-07 | 2003-12-02 | Optomec Design Company | Manufacturable geometries for thermal management of complex three-dimensional shapes |
US6811744B2 (en) | 1999-07-07 | 2004-11-02 | Optomec Design Company | Forming structures from CAD solid models |
US6391251B1 (en) | 1999-07-07 | 2002-05-21 | Optomec Design Company | Forming structures from CAD solid models |
DE19963948A1 (de) * | 1999-12-31 | 2001-07-26 | Zsolt Herbak | Verfahren zum Modellbau |
US9393032B2 (en) | 2000-03-17 | 2016-07-19 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8961529B2 (en) | 2000-03-17 | 2015-02-24 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8936602B2 (en) | 2000-03-17 | 2015-01-20 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8936601B2 (en) | 2000-03-17 | 2015-01-20 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
WO2001085386A3 (fr) * | 2000-05-09 | 2002-05-16 | Optomec Design | Formation de structures a partir de modeles solides de conception assistee par ordinateur |
WO2002073325A3 (fr) * | 2001-03-13 | 2003-05-30 | Milling Systems And Concepts P | Procede et appareil de fabrication d'un prototype |
WO2004022319A1 (fr) * | 2002-09-06 | 2004-03-18 | The Boeing Company | Materiaux en nid d'abeilles ameliores destines a des applications aerospatiales |
US9607889B2 (en) | 2004-12-13 | 2017-03-28 | Optomec, Inc. | Forming structures using aerosol jet® deposition |
DE102005022308A1 (de) * | 2005-05-13 | 2006-11-23 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial |
US7850885B2 (en) | 2005-05-13 | 2010-12-14 | Eos Gmbh Optical Systems | Device and method for manufacturing a three-dimensional object with a heated recoater for a building material in powder form |
DE102005022308B4 (de) * | 2005-05-13 | 2007-03-22 | Eos Gmbh Electro Optical Systems | Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial |
US7879394B1 (en) | 2006-06-02 | 2011-02-01 | Optomec, Inc. | Deep deposition head |
WO2013019876A3 (fr) * | 2011-08-02 | 2013-04-18 | The Aerospace Corporation | Systèmes et procédés de fabrication de blocs de poudre combustible pour moteur de fusée hybride |
CN103212689A (zh) * | 2013-04-22 | 2013-07-24 | 中国科学院力学研究所 | 金属构件移动微压铸成型方法 |
CN103212689B (zh) * | 2013-04-22 | 2016-04-13 | 中国科学院力学研究所 | 金属构件移动微压铸成型方法 |
US10994473B2 (en) | 2015-02-10 | 2021-05-04 | Optomec, Inc. | Fabrication of three dimensional structures by in-flight curing of aerosols |
US10632746B2 (en) | 2017-11-13 | 2020-04-28 | Optomec, Inc. | Shuttering of aerosol streams |
US10850510B2 (en) | 2017-11-13 | 2020-12-01 | Optomec, Inc. | Shuttering of aerosol streams |
US12172444B2 (en) | 2021-04-29 | 2024-12-24 | Optomec, Inc. | High reliability sheathed transport path for aerosol jet devices |
Also Published As
Publication number | Publication date |
---|---|
JPH06509523A (ja) | 1994-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1992018323A1 (fr) | Fabrication informatisee de macro-ensembles | |
KR100291953B1 (ko) | 가변 용착 적층식 쾌속조형방법 및 쾌속조형장치 | |
US5136515A (en) | Method and means for constructing three-dimensional articles by particle deposition | |
US6076324A (en) | Truss structure design | |
KR100271208B1 (ko) | 선택적 용침공정을 이용한 쾌속조형방법및 쾌속조형장치 | |
EP0431924B1 (fr) | Techniques d'impression tri-dimensionnelle | |
US5590454A (en) | Method and apparatus for producing parts by layered subtractive machine tool techniques | |
US6471800B2 (en) | Layer-additive method and apparatus for freeform fabrication of 3-D objects | |
Dickens | Research developments in rapid prototyping | |
JP3699359B2 (ja) | 線形熱切断システムを用いた可変積層高速造形方法及び高速造形装置 | |
US5614075A (en) | Method of incremental object fabrication | |
US5622216A (en) | Method and apparatus for metal solid freeform fabrication utilizing partially solidified metal slurry | |
WO2002073325A2 (fr) | Procede et appareil de fabrication d'un prototype | |
US11667072B2 (en) | Liquid metal printing | |
EP3482914A1 (fr) | Procede de determination de l'inclinaison des axes d'une machine a cinq axes ou plus pour la production d'objets par fabrication additive, systeme de production d'objets par ce procede | |
CN106182772B (zh) | 多种材料快速原型成型装置及方法 | |
CN112805406A (zh) | 喷射成型的结构接头 | |
US20210354369A1 (en) | Shell and fill fabrication for three-dimensional (3d) printing | |
JP7207020B2 (ja) | 三次元的な構造を有する金属物品を製造する方法 | |
Pham et al. | Rapid prototyping processes | |
KR100383880B1 (ko) | 절삭과 충전 공정을 이용한 3차원 제품의 쾌속 제조방법및 제조장치 | |
KR100362738B1 (ko) | 초음파 장치를 이용한 용착 적층식 쾌속조형방법 및쾌속조형장치 | |
Velu et al. | Design and robotic fabrication of 3D printed moulds for composites | |
Weiss | Processes overview | |
McLean et al. | Moldless casting by laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |