WO1992013810A1 - Dielectric ceramic composition - Google Patents
Dielectric ceramic composition Download PDFInfo
- Publication number
- WO1992013810A1 WO1992013810A1 PCT/JP1992/000085 JP9200085W WO9213810A1 WO 1992013810 A1 WO1992013810 A1 WO 1992013810A1 JP 9200085 W JP9200085 W JP 9200085W WO 9213810 A1 WO9213810 A1 WO 9213810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- lead
- dielectric
- temperature
- dielectric constant
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1254—Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
- H01G4/1263—Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates containing also zirconium oxides or zirconates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
- C04B35/497—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
Definitions
- the present invention provides a dielectric porcelain composition, in particular, which can be sintered at a low temperature of around 1000 ° G, has a high dielectric constant, a small temperature change rate of the dielectric constant, a high insulation resistance at room and high temperatures, and a mechanical strength.
- TECHNICAL FIELD The present invention relates to a dielectric ceramic composition for a ceramic capacitor having a high sintering temperature, a low dependence of electrical characteristics on a sintering temperature, and a small sintered body particle size.
- a dielectric ceramic composition for a ceramic capacitor but porcelain composed mainly of titanate Barium (BaT i 0 3) has been widely put into practical use, as a main component barium titanate, usually 1
- the sintering temperature is as high as 1300-1400 ° C.
- materials that can withstand this sintering temperature such as platinum and palladium, are used as internal electrodes. They had to be used and had the disadvantage of high manufacturing costs.
- porcelain In order to make multilayer ceramic capacitors cheap, it is necessary to use porcelain that can be sintered at the lowest possible temperature, especially at 1000 ° C or lower, so that inexpensive metals, mainly silver and nickel, can be used for internal electrodes.
- the electrical properties of the dielectric ceramic composition are basically required to have a high dielectric constant, a small dielectric loss, and a high insulation resistance.
- dielectric ceramics that can be sintered at 1000 ° C or less and have high mechanical strength are required.
- multilayer ceramic capacitors have been required to have a small capacity change rate with respect to the operating temperature and to be small and large in order to use electronic components at high temperatures and stabilize circuit characteristics.
- rate of change in capacitance for example, there have been known some that satisfy the Y5U characteristic and Y5T characteristic of the EIA standard in a temperature range of -30 to 85, but all have a dielectric constant of It is as low as 8000-12000 for Y5U characteristics and 6000-8000 for Y5T characteristics. Therefore, in order to reduce the size and capacitance of the ferroelectric capacitor and improve its temperature characteristics, it is necessary to find a dielectric ceramic composition with a high dielectric constant and a small rate of change in capacitance with respect to the measurement temperature.
- Pb (g, / 2 W, / 2) 03-Pb for (g l / 3Nb 2/3 ) 03 -PfaTi0 3 system are disclosed in such as JP 55- 1 No. 16662, magnesium tungstate It is known that a dielectric porcelain composition containing a large amount of lead has excellent characteristics in which the temperature change of the child is small. However, on the other hand, it is also known that there is a problem that the electrical characteristics are highly dependent on the sintering temperature and it is difficult to obtain a sintered body having stable electrical characteristics. In addition, since the sintered ceramics had a large particle size and low mechanical strength, it was difficult to manufacture a multilayer chip capacitor having a thinner film thickness. In order to improve this, various methods of synthesizing the powder of the raw material powder have been studied, but all have the disadvantage of increasing the production cost.
- the present invention solves the above-mentioned problems, and at a low temperature range of 1000 ° G or less. Sinterable, high dielectric constant, low rate of temperature change of dielectric constant, low dielectric loss, high insulation resistance at room temperature and high temperature, high dielectric breakdown voltage, high mechanical strength, sintering temperature of electrical characteristics It is an object of the present invention to provide a dielectric ceramic composition having a low dependency and a small sintered body particle diameter.
- dielectric ceramic composition containing 4 mol% or less of manganese or a composite oxide containing manganese with respect to this composition.
- the dielectric porcelain composition of the present invention uses, as a starting material, a starting compound such as an oxide, a hydroxide, or a carbonate, which becomes an oxide at a temperature of 600 ° C. or higher.
- a starting compound such as an oxide, a hydroxide, or a carbonate
- a weighed starting compound is subjected to ball milling or the like.
- calcining is performed to obtain a raw material powder for the porcelain composition.
- the obtained raw material powder is molded, and then sintered at about 1000 ° C in the air. It can be manufactured.
- magnesium, nickel, tungsten, niobium, and other compounds are mixed and calcined to obtain magnesium niobate, nickel niobate, magnesium tungstate, etc.
- Complex oxides, mixtures thereof, and solid solutions of these complex oxides can also be used as starting materials.
- the calcining step is required twice or more, which increases the raw material cost, but increases the dielectric constant depending on the composition. It is advantageous as a material for high-performance ceramic capacitors.
- the dielectric constant is small, the electrical characteristics are highly dependent on the sintering temperature, and the particle size of the sintered porcelain composition is large. It is not practical because it has disadvantages such as reduced strength.
- a composition having a content of less than 0.05 has a drawback that the temperature change of the dielectric constant is large and the temperature characteristic of the dielectric constant is unsuitable as a material for a ceramic capacitor having a flat temperature characteristic.
- the porcelain composition of the present invention containing five components including lead zirconate as a main component, it is possible to suppress the temperature change of the dielectric constant, to reduce the sintering temperature dependence of the electrical characteristics, and to suppress the grain growth. It becomes possible to sinter.
- a composition containing more lead zirconate than the range of the present invention is not practical because the dielectric constant is small and the induced loss at room temperature is large.
- a composition having a small content of 0.05 has a drawback that the temperature change of the dielectric constant is large, grain growth cannot be suppressed, and the transverse rupture strength is low.
- Nickel 'lead niobate, magnesium' lead niobate, and a composition with a low lead titanate content of 0.05 are not practical because the dielectric constant is small.
- a composition in which the content of these components is larger than the range of the present invention has a disadvantage that the change in the dielectric constant with the measurement temperature is large.
- the temperature characteristics of the dielectric constant are suitable for practical ceramic capacitor materials. In order to achieve this, the content of lead zirconate must be increased, and the dielectric constant is greatly reduced, which is not preferable.
- a disk with a diameter of 10 mm and a thickness of 3 It was placed in a sheer sagger and fired in the atmosphere at 1000 ° C for 1 hour.
- the silver electrode was baked on the upper and lower surfaces of the sintered disk with a 600, and a 50V DC voltage was applied for 1 minute at room temperature with a super insulation resistance meter to measure the insulation resistance and calculate the specific resistance.
- the sample was placed in a thermostat and the capacitance and dielectric loss at 25 at a frequency of 1 kHz and a voltage of 1 Vrms were measured with a digital LCR meter to calculate the dielectric constant. The average value of the four samples was used as the representative value.
- the capacitance and the dielectric loss were measured in a temperature range of ⁇ 55 to +125, and the capacitance change rate based on the capacitance at 20 ° C. was calculated.
- Table 1 shows the compounding ratio of each main component, the type and amount of additives, the dielectric constant and dielectric loss at 25 ° C, the specific resistance at room temperature, and the values at ⁇ 30 and 85 with reference to 20 °. The values of Yongman change rate are shown.
- the main component, magnesium ⁇ Lead tungstate is denoted by P
- nickel 'lead niobate is denoted by PNN
- magnesium' lead niobate is denoted by PMN
- lead titanate is denoted by PT
- lead zirconate is denoted by ⁇ . ⁇ ', ⁇ ', ⁇ '
- Example 1 In the same manner as in Example 1, raw material powders of the ifi combination shown in Table 1 were prepared, and a sintered body was prepared at a sintering temperature of 1000, and the gas characteristics were measured. Table 1 summarizes the measured results. In addition, as a result of observing the fracture surface of the sintered body of Example 11 with a scanning electron microscope, the average particle size was 2 #m, which was a small and uniform microstructure.
- Raw material powders having the composition shown in Table 1 were prepared in the same manner as in Example 1, and sintered bodies were prepared by changing the sintering temperature to 950, 1000, and 1050 ° G, and the electrical characteristics were measured. Even when the sintering temperature was changed at 100, almost no change was observed in the electrical characteristics. Table 1 summarizes the measured results.
- Raw material powders having the composition shown in Table 1 were prepared in the same manner as in Example I, and sintered bodies were prepared at sintering temperatures of 1000 ° C and 1050 ° C, and the electrical characteristics were measured. The results of the measurement are summarized in Table 1.
- Powders having the main component mixing ratios shown in Table 2 were prepared in the same manner as in Example 1, and a sintered body of the porcelain composition was prepared at a sintering temperature of 1050, and the electrical characteristics were measured. The results shown in Table 2 were obtained. . Comparative examples 3 to 5
- Raw material powders having the main component mixing ratios shown in Table 2 were prepared in the same manner as in Example 1, and sintered bodies were prepared at sintering temperatures of 1050 and 1100, and the electrical characteristics were measured. Table 2 summarizes the measured results. Further, as a result of observing the fracture surface of the sintered body of Comparative Example 4 with a scanning electron microscope, the average particle size was as large as 5 to ⁇ / zm, and the particle size distribution was not uniform.
- a dielectric constant of 16000 is obtained with a dielectric constant of 6000 and a dielectric constant of 5 with characteristics of 5. Therefore, the porcelain composition of the present invention provides a small, large-sized ferromagnetic cell with a flat temperature characteristic of the dielectric constant. It can be said that it is extremely excellent as a material for lamic capacitors.
- the porcelain in the composition region according to the present invention has an extremely fine and uniform microstructure, so that the thickness of the ceramic layer is thinner. It can be said that it is suitable for manufacturing a capacitor.
- the grain size is large and the grain size distribution is not uniform. Therefore, when a ridged ceramic capacitor having a small thickness is manufactured, the dielectric breakdown voltage is reduced. Therefore, it was unsuitable as a practical material because its properties deteriorated.
- the porcelain composition of the present invention has a low sintering temperature, the price of the internal electrode of the multilayer capacitor can be reduced by using an inexpensive metal, and the obtained porcelain can be made electrically. Since it has excellent characteristics and can cope with thinning of the dielectric layer, it is possible to manufacture a small and large-capacity multilayer ceramic capacitor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
A dielectric ceramic composition of solid solution comprises lead manganotungstate [Pb(Mg1/2W1/2)O3], lead nickeloniobate [Pb(Ni1/3Nb2/3)O3], lead manganoniobate [Pb(Mg1/3Nb2/3)O3], lead titanate [PbTiO3], and lead zirconate [PbZrO3]. This composite material is expressed by the formula [Pb(Mg1/2W1/2)O3]X - [Pb(Ni1/3Nb2/3)O3]Y - [Pb (Mg1/3Nb2/3)O3]Z - [PbTiO3]U - [PbZrO3]W, where X + Y + Z + U + W = 1, and 0.05 « X « 0.3, 0.05 « Y « 0.5, 0.05 « Z « 0.75, 0.05 « U « 0.35, and 0.05 « W « 0.3. This dielectric ceramic composite material has excellent characteristics as a dielectric material for a monolithic ceramic capacitor.
Description
明 細 書 Specification
【発明の名称】 誘電体磁器組成物 [Title of the Invention] Dielectric ceramic composition
【技術分野】 【Technical field】
本発明は、 誘電体磁器組成物、 特に 1000°G前後の低温で焼結でき、 誘電率が高 く、 誘電率の温度変化率が小さく、 室温および高温における絶縁抵抗が高く、 機 械的強度が高く、 電気的特性の焼結温度依存性が低く、 焼結体粒径が小さいセラ ミックコンデンサー用の誘電体磁器組成物に関するものである。 INDUSTRIAL APPLICABILITY The present invention provides a dielectric porcelain composition, in particular, which can be sintered at a low temperature of around 1000 ° G, has a high dielectric constant, a small temperature change rate of the dielectric constant, a high insulation resistance at room and high temperatures, and a mechanical strength. TECHNICAL FIELD The present invention relates to a dielectric ceramic composition for a ceramic capacitor having a high sintering temperature, a low dependence of electrical characteristics on a sintering temperature, and a small sintered body particle size.
【背景技術】 [Background Art]
従来、 セラミックコンデンサー用の誘電体磁器組成物として、 チタン酸バリウ ム (BaT i 03 ) を主成分とする磁器が広く実用化されているが、 チタン酸バリウム を主成分とするものは、 通常 1 300〜1400°Cという高い焼結温度であり、 これを積 層セラミックコンデンサ一に利用する場合は、 内部電極としてこの焼結温度に耐 えうる材料、 例えば白金、 パラジウムなどの高価な貴金属を使用しなければなら ず、 製造コス卜が高くなるという欠点があった。 積層セラミックコンデンサーを 安く作るためには、 銀、 ニッケルなどを主成分とする安価な金属が内部電極に使 用できるような、 できるだけ低温、 特に 1000°C以下で焼結できる磁器が必要であ る。 また、 誘電体磁器組成物の電気的特性として、 誘電率が高く誘電損失が小さ く、 絶縁抵抗が高いことが基本的に要求される。 Conventionally, a dielectric ceramic composition for a ceramic capacitor, but porcelain composed mainly of titanate Barium (BaT i 0 3) has been widely put into practical use, as a main component barium titanate, usually 1 The sintering temperature is as high as 1300-1400 ° C. When this is used for multilayer ceramic capacitors, materials that can withstand this sintering temperature, such as platinum and palladium, are used as internal electrodes. They had to be used and had the disadvantage of high manufacturing costs. In order to make multilayer ceramic capacitors cheap, it is necessary to use porcelain that can be sintered at the lowest possible temperature, especially at 1000 ° C or lower, so that inexpensive metals, mainly silver and nickel, can be used for internal electrodes. . The electrical properties of the dielectric ceramic composition are basically required to have a high dielectric constant, a small dielectric loss, and a high insulation resistance.
積層セラミックチップコンデンサ一の場合は、 チップコンデンサーを基板に実 装した時、 基板とチップコンデンサーを構成している磁器との熱膨張係数の違い により、 チップコンデンサーに機械的な歪が加わリ、 チップコンデンサーにクラ ックが発生したり、 破損したりする場合がある。 この場合、 コンデンサーを形成 している磁器の機械的強度が低いほどクラックが入リやすく、 容易に破損し信頼 性が低くなるため、 磁器の機械的強度をできるだけ増大させることは実用上極め て重要なことである。 また誘電体層と絶縁体層などを積層した構造をもってい る複合積層セラミック部品においては、 絶縁体の焼結温度が 850 〜1 000°Cである
1 1 In the case of a multilayer ceramic chip capacitor, when the chip capacitor is mounted on a substrate, mechanical distortion is applied to the chip capacitor due to the difference in the coefficient of thermal expansion between the substrate and the porcelain that constitutes the chip capacitor. The condenser may crack or break. In this case, the lower the mechanical strength of the porcelain forming the capacitor, the easier it is for cracks to occur, the more easily it is broken and the lower the reliability, and it is extremely important in practical use to increase the mechanical strength of the porcelain as much as possible. That is what. In the case of a composite multilayer ceramic component having a structure in which a dielectric layer and an insulator layer are laminated, the sintering temperature of the insulator is 850 to 1,000 ° C. 1 1
2 Two
こと、 低コスト化のために銀、 ニッケルなどを主成分とする安価な金属を導体と して利用すること、 焼結時の複合化によるストレスの発生および絶縁体の収縮特 性とのマッチングなどのために、 1000°C以下で焼結ができ、 機械的強度の高い誘 電体磁器が必要である。 Use of inexpensive metals mainly composed of silver, nickel, etc. as conductors for cost reduction, generation of stress due to compounding during sintering, and matching with insulator shrinkage characteristics, etc. Therefore, dielectric ceramics that can be sintered at 1000 ° C or less and have high mechanical strength are required.
積層セラミックコンデンサーに対しては最近では電子部品の高温での使用や回 路特性の安定化のために使用温度に対する容量変化率が小さく、 小型大容置のも のが求められてきている。 容量変化率に関しては、 例えばこれまでに- 30 〜十 85 での温度範囲で E I A規格の Y 5 U特性や Y 5 T特性を満足するものがいくつか 知られているが、 いづれも誘電率が Y 5 U特性で 8000-1 2000、 Y 5 T特性で 6000 -8000 程度と低い。 そのため、 穣層コンデンサーの小型大容量化および温度特性 の改善のためには、 誘電率が高く測定温度に対する容量変化率が小さい誘電体磁 器組成を見いだすことが必要であるとともに、 誘電体層の膜厚をできるだけ薄く して穑層数を増やすことによリ静電容量を大きくすることが必要である。 しかし 、 従来のチタン酸バリウム系磁器では、 誘電率を高くしょうとすると焼結体の粒 径が大きくなリ、 誘電体層の厚みの薄い積層コンデンサーを製造しょうとすると 艳緣破壊電圧が低下し信頼性も悪くなるという欠点があった。 In recent years, multilayer ceramic capacitors have been required to have a small capacity change rate with respect to the operating temperature and to be small and large in order to use electronic components at high temperatures and stabilize circuit characteristics. Regarding the rate of change in capacitance, for example, there have been known some that satisfy the Y5U characteristic and Y5T characteristic of the EIA standard in a temperature range of -30 to 85, but all have a dielectric constant of It is as low as 8000-12000 for Y5U characteristics and 6000-8000 for Y5T characteristics. Therefore, in order to reduce the size and capacitance of the ferroelectric capacitor and improve its temperature characteristics, it is necessary to find a dielectric ceramic composition with a high dielectric constant and a small rate of change in capacitance with respect to the measurement temperature. It is necessary to increase the capacitance by reducing the film thickness as much as possible and increasing the number of layers. However, in the conventional barium titanate-based porcelain, if the dielectric constant is to be increased, the grain size of the sintered body will be large, and if the multilayer capacitor having a thin dielectric layer is to be manufactured, the breakdown voltage will decrease. There was a drawback that the reliability also deteriorated.
Pb( g, /2W, /2 )03-Pb( gl /3Nb2/3 )03 -PfaTi03 系については、 特開昭 55- 1 16662 号などで開示されており、 マグネシウム ·タングステン酸鉛を多く含む 誘電体磁器組成物は、 容童の温度変化が小さく優れた特徴を有することが知られ ている。 しかし、 一方では電気的特性の焼結温度依存性が高く、 安定した電気的 特性を有する焼結体が得られにくいという問題点があることも知られている。 ま た、 焼結体磁器の粒径が大きく機械的強度も低いため、 一層の膜厚の薄い積層チ ップコンデンサーの製造が困難であった。 これを改善するために、 原料粉末の粉 末合成方法が種々検討されてきたが、 いづれも製造コストが高くなるという欠点 があった。 Pb (g, / 2 W, / 2) 03-Pb for (g l / 3Nb 2/3 ) 03 -PfaTi0 3 system, are disclosed in such as JP 55- 1 No. 16662, magnesium tungstate It is known that a dielectric porcelain composition containing a large amount of lead has excellent characteristics in which the temperature change of the child is small. However, on the other hand, it is also known that there is a problem that the electrical characteristics are highly dependent on the sintering temperature and it is difficult to obtain a sintered body having stable electrical characteristics. In addition, since the sintered ceramics had a large particle size and low mechanical strength, it was difficult to manufacture a multilayer chip capacitor having a thinner film thickness. In order to improve this, various methods of synthesizing the powder of the raw material powder have been studied, but all have the disadvantage of increasing the production cost.
【発明の開示】 DISCLOSURE OF THE INVENTION
本発明ば以上述べたような課題を解决するとともに、 1000°G以下の低温領域で
焼結でき、 誘電率が高く誘電率の温度変化率が小さく、 誘電損失が小さく、 室温 および高温における絶縁抵抗が高く、 絶縁破壊電圧が高く、 機械的強度が高く、 電気的特性の焼結温度依存性が低く焼結体粒径が小さい誘電体磁器組成物を提供 することを目的とする。 The present invention solves the above-mentioned problems, and at a low temperature range of 1000 ° G or less. Sinterable, high dielectric constant, low rate of temperature change of dielectric constant, low dielectric loss, high insulation resistance at room temperature and high temperature, high dielectric breakdown voltage, high mechanical strength, sintering temperature of electrical characteristics It is an object of the present invention to provide a dielectric ceramic composition having a low dependency and a small sintered body particle diameter.
①発明の構成 ① Configuration of the invention
本発明は、 マグネシウム ·タングステン酸鉛 [Pb(Mg,/2W,/2)03 ] , ニッケル •ニオブ酸鉛 [Pb(Ni,/3Nb2/3)03] , マグネシウム,ニオブ酸鉛 [Pb(Mg,/3Nb2/ 3)03] , チタン酸鉛 [PbTi03] , およびジルコニウム酸鉛 [PbZr03] からなる固 溶体磁器組成物を、 The present invention, magnesium lead tungstate [Pb (Mg, / 2 W , / 2) 0 3], nickel • niobate [Pb (Ni, / 3 Nb 2/3) 0 3], magnesium niobate lead [Pb (Mg, / 3 Nb 2/3) 0 3], lead titanate [PbTi0 3], and consists of lead zirconate [PbZr0 3] a solid solution ceramic composition,
CPb(Mg,/ZW,/2)03 ] X - [Pb(Ni,/3Nb2/3)03] y - [Pb(Mg1/3Nb2/3 )03] z - CPb (Mg, / Z W, / 2) 03] X - [Pb (Ni, / 3Nb 2/3) 0 3] y - [Pb (Mg 1/3 Nb 2/3) 0 3] z -
[PbTi03] u - CPbZr033 w [PbTi0 3 ] u-CPbZr0 3 3 w
ただし、 X+Y+Z+U+W=1 Where X + Y + Z + U + W = 1
と表現した時、 X, Y,Z,U, Wがそれぞれ X, Y, Z, U, W
0.05≤Χ ≤0.3 0.05≤Χ ≤0.3
0.05≤Υ ≤0.5 0.05≤Υ ≤0.5
0.05≤Ζ ≤0·了 5 0.05≤Ζ ≤0
0.05≤U ≤0.35 0.05≤U ≤0.35
0.05≤W ≤0·3 0.05≤W ≤0.3
で表される組成物を含有することを特徴とする誘電体磁器組成物、 および、 この 組成物に対して、 マンガンもしくはマンガンを含む複合酸化物を 4mol¾ 以下含有 する誘電体磁器組成物である。 And a dielectric ceramic composition containing 4 mol% or less of manganese or a composite oxide containing manganese with respect to this composition.
②詳細な説明 ② Detailed explanation
ィ. 誘電体磁器の原料及び製造方法 A. Raw material and manufacturing method for dielectric porcelain
本発明の誘電体磁器組成物は、 出発原料として酸化物、 水酸化物、 炭酸塩など 600 °C以上の温度で酸化物となる原料化合物を使用し、 例えば秤量した原料化合 物をボールミル等により湿式混合した後、 仮焼を行い、 磁器組成物用の原料粉末 を得、 得られた原料粉末を使用して成形した後、 大気中 1000°C前後で焼結するこ
とにょリ製造することができる。 The dielectric porcelain composition of the present invention uses, as a starting material, a starting compound such as an oxide, a hydroxide, or a carbonate, which becomes an oxide at a temperature of 600 ° C. or higher.For example, a weighed starting compound is subjected to ball milling or the like. After wet mixing, calcining is performed to obtain a raw material powder for the porcelain composition. The obtained raw material powder is molded, and then sintered at about 1000 ° C in the air. It can be manufactured.
原料としては、 個々の酸化物や炭酸塩を使用する代わりに、 マグネシウム、 二 ッケル、 タングステン、 ニオブ等の化合物を混合彼焼して得られるニオブ酸マグ ネシゥ厶、 ニオブ酸ニッケル、 タングステン酸マグネシウムなどの複合酸化物、 およびそれらの混合物、 あるいはそれらの複合酸化物の固溶体なども出発原料と して使用可能である。 これらの複合酸化物またはその固溶体を出発原料として使 用した場合は、 仮焼工程が 2回以上必要であるため原料コストは上昇するものの 組成によっては誘電率が向上するといぅメリッ 卜がぁリ、 高性能なセラミックコ ンデンサー用の材料として有利である。 As raw materials, instead of using individual oxides and carbonates, magnesium, nickel, tungsten, niobium, and other compounds are mixed and calcined to obtain magnesium niobate, nickel niobate, magnesium tungstate, etc. Complex oxides, mixtures thereof, and solid solutions of these complex oxides can also be used as starting materials. When these composite oxides or their solid solutions are used as starting materials, the calcining step is required twice or more, which increases the raw material cost, but increases the dielectric constant depending on the composition. It is advantageous as a material for high-performance ceramic capacitors.
□. 主成分の割合 □. Ratio of main component
マグネシウム ·タングステン酸鉛が本発明範囲よリ多い組成物においては、 誘 鼋率が小さく電気的特性の焼結温度依存性が高く、 焼結後の磁器組成物の粒径が 大きくな y機械的強度が低下する等の欠点があるため実用的ではない。 一方、 含 有量が 0. 05より少ない組成においては誘電率の温度変化が大きく誘電率の温度特 性が平坦なセラミックコンデンサー用の材料としては不適当であるという欠点を 有する。 In a composition containing more magnesium and lead tungstate than in the range of the present invention, the dielectric constant is small, the electrical characteristics are highly dependent on the sintering temperature, and the particle size of the sintered porcelain composition is large. It is not practical because it has disadvantages such as reduced strength. On the other hand, a composition having a content of less than 0.05 has a drawback that the temperature change of the dielectric constant is large and the temperature characteristic of the dielectric constant is unsuitable as a material for a ceramic capacitor having a flat temperature characteristic.
ジルコニウム酸鉛を含む 5成分を主成分とする本発明の磁器組成物においては 、 誘電率の温度変化を抑えて、 かつ電気的特性の焼結温度依存性を小さくし粒成 長を抑制しつつ焼結することが可能となる。 しかし、 ジルコニウム酸鉛が本発明 範囲よリ多い組成物においては、 誘電率が小さく室温における誘置損失が大きく なリ実用的ではない。 一方、 含有量が 0. 05ょリ少ない組成においては誘電率の温 度変化が大きく、 粒成長を抑制できず抗折強度が低いという欠点を有する。 In the porcelain composition of the present invention containing five components including lead zirconate as a main component, it is possible to suppress the temperature change of the dielectric constant, to reduce the sintering temperature dependence of the electrical characteristics, and to suppress the grain growth. It becomes possible to sinter. However, a composition containing more lead zirconate than the range of the present invention is not practical because the dielectric constant is small and the induced loss at room temperature is large. On the other hand, a composition having a small content of 0.05 has a drawback that the temperature change of the dielectric constant is large, grain growth cannot be suppressed, and the transverse rupture strength is low.
ニッケル 'ニオブ酸鉛、 マグネシウム 'ニオブ酸鉛、 チタン酸鉛の含有量が 0. 05ょリ少ない組成物においては、 誘電率が小さくなリ実用的でない。 一方、 これ らの成分の含有量が本発明範囲よリ多い組成においては誘電率の測定温度による 変化が大きいという欠点を有する。 特に、 チタン酸鉛の含有量が 0. 05ょリ少ない 組成では、 誘電率の温度特性を実用的なセラミックコンデンサー材料に適したも
のにするためには、 ジルコニウム酸鉛の含有量を増やさざるを得ないため誘電率 が大きく低下してしまい好ましくない。 Nickel 'lead niobate, magnesium' lead niobate, and a composition with a low lead titanate content of 0.05 are not practical because the dielectric constant is small. On the other hand, a composition in which the content of these components is larger than the range of the present invention has a disadvantage that the change in the dielectric constant with the measurement temperature is large. In particular, in a composition with a low lead titanate content of 0.05 mm, the temperature characteristics of the dielectric constant are suitable for practical ceramic capacitor materials. In order to achieve this, the content of lead zirconate must be increased, and the dielectric constant is greatly reduced, which is not preferable.
ハ. 添加物 C. Additives
また、 添加物としてマンガンを含む複合酸化物を添加した場合には、 静電容量 は低下するものの、 容躉変化の温度特性は実施例に示したように大きく改善され る。 主成分に含まれるマグネシウム■夕ングステン酸鉛、 ジルコニウム酸鉛の割 合を増加させることによつても同様の効果が得られるが、 上述したような理由に ょリそれらの含有量には制限があるため、 マンガンを含む複合酸化物を適当童添 加することによリ所望の誘電率の温度特性を得ることができる。 In addition, when a composite oxide containing manganese is added as an additive, although the capacitance is reduced, the temperature characteristic of the capacitance change is greatly improved as shown in the examples. The same effect can be obtained by increasing the percentage of magnesium, lead gungstenate, and lead zirconate contained in the main component, but their contents are limited for the reasons mentioned above. Therefore, a desired temperature characteristic of the dielectric constant can be obtained by appropriately adding a composite oxide containing manganese.
マンガンを含む複合酸化物としては Pb(Mn,/ 3Nb2/3)03,Pb(Mn,/2Nb,/2) 03,Pb(Mn,/3Ta2z3)03,Pb(Mn,/2W,/2)03,Pb(Mn,/3Sb2/3)03等があげられ、 いづれ も同様の効果が得られる。 これらのマンガンを含む複合酸化物は、 単独でも 2種 以上を組み合わせて使用しても良く、 その添加量は種類によっても多少異なるが 、 主成分に対して 4mo 以下が適当である。 それよりも多く添加した場合には誘 電率が小さくなり過ぎたリ、 絶縁抵抗が低下したりして好ましくない。 As the composite oxide containing manganese Pb (Mn, / 3 Nb 2/3 ) 0 3, Pb (Mn, / 2 Nb, / 2) 0 3, Pb (Mn, / 3 Ta 2 z 3) 0 3, Pb (Mn, / 2 W, / 2) 0 3, Pb (Mn, / 3 Sb 2/3) 0 3 and the like, Izure same effect can be obtained. These manganese-containing composite oxides may be used singly or in combination of two or more. The amount of the manganese-containing composite oxide varies slightly depending on the type, but is preferably 4 mol or less with respect to the main component. If it is added in excess, the dielectric constant becomes too low, and the insulation resistance decreases, which is not preferable.
二. 任意成分2. Optional components
nO 、 Si02、 ZnO 、 NiO 、 Cr203 、 MgO 、 Nb205 、 PbO等の金厲酸化物があげ られ、 その含有置は効果を阻害しない範囲で適宜選択することが可能である。 【発明を実施するための最良の形態】 nO, Si0 2, ZnO, NiO , Cr 2 0 3, MgO, Nb 2 0 5, gold厲酸products such as PbO and the like, the content location is can be appropriately selected within a range not impairing the effects . BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 Example 1
出発原料として純度 99.9¾以上の酸化鉛(PbO) 、 酸化マグネシウム(MgO) 、 酸 化タングステン(W03) 、 酸化ニッケル(ΝίΟ) 、 酸化ニオブ(Nb205 ) 、 酸化チタン (Ti02)、 酸化ジルコニウム(Zr02)および炭酸マンガン(MnC03) を使用し、 表 1 に 示した配合比になるように各々秤量した。 次に秤量した各原料をボールミルによ リアセ トン中で湿式混合した後、 了 00-800 °Cでマグネシア坩堝中で仮焼を行い、 この粉末をボールミル粉碎した後、 濾過乾燥して磁器組成物用の原料粉末とした 。 得られた原料粉末を使用して直径 10mm、 厚さ 3國 の円板を作成し、 密閉マグネ
シァ匣鉢に入れて大気中 1000°Cで 1時間焼成した。 焼結した円板の上下面に 600 でで銀電極を焼付け、 超絶縁抵抗計で室温において直流 50V の電圧を 1分間印加 して絶縁抵抗を測定し比抵抗を算出した。 次に、 試料を恒温槽に設置してデジ夕 ル LCR メーターで周波数 1 kHz 電圧 1 Vrmsで 25でにおける静電容量と誘電摸失を 測定し誘電率を算出した。 4個の試料の平均値をとリ代表値とした。 さらに、 -5 5 〜+125での温度 ¾囲で静電容量と誘電損失を測定し、 20°Cにおける静電容量を 基準とした時の容量変化率を算出した。 Purity 99.9¾ more lead oxide as the starting material (PbO), magnesium oxide (MgO), oxidation tungsten (W0 3), nickel oxide (ΝίΟ), niobium oxide (Nb 2 0 5), titanium oxide (Ti0 2), using zirconium oxide (Zr0 2) and manganese carbonate (MnC0 3), were each weighed so that the blending ratio shown in Table 1. Next, the weighed raw materials are wet-mixed in a riacetone using a ball mill, and then calcined in a magnesia crucible at 00-800 ° C. Raw material powder. Using the obtained raw material powder, a disk with a diameter of 10 mm and a thickness of 3 It was placed in a sheer sagger and fired in the atmosphere at 1000 ° C for 1 hour. The silver electrode was baked on the upper and lower surfaces of the sintered disk with a 600, and a 50V DC voltage was applied for 1 minute at room temperature with a super insulation resistance meter to measure the insulation resistance and calculate the specific resistance. Next, the sample was placed in a thermostat and the capacitance and dielectric loss at 25 at a frequency of 1 kHz and a voltage of 1 Vrms were measured with a digital LCR meter to calculate the dielectric constant. The average value of the four samples was used as the representative value. Furthermore, the capacitance and the dielectric loss were measured in a temperature range of −55 to +125, and the capacitance change rate based on the capacitance at 20 ° C. was calculated.
表 1には各主成分の配合比、 および添加物の種類と添加量、 25°Cにおける誘電 率と誘電損失、 室温における比抵抗、 20¾を基準とした時の- 30 でおよび 85でに おける容曼変化率の値を示した。 ただし、 表 1 において、 主成分のマグネシウム ■タングステン酸鉛を P翳 、 ニッケル 'ニオブ酸鉛を PNN 、 マグネシウム 'ニォ ブ酸鉛を PMN 、 チタン酸鉛を PT、 ジルコニウム酸鉛を ΡΖと表し、 S合比 Χ' , Υ' , Ζ' Table 1 shows the compounding ratio of each main component, the type and amount of additives, the dielectric constant and dielectric loss at 25 ° C, the specific resistance at room temperature, and the values at −30 and 85 with reference to 20 °. The values of Yongman change rate are shown. However, in Table 1, the main component, magnesium ■ Lead tungstate is denoted by P, nickel 'lead niobate is denoted by PNN, magnesium' lead niobate is denoted by PMN, lead titanate is denoted by PT, and lead zirconate is denoted by ΡΖ.比 ', Υ', Ζ '
, ,》1('は百分率にして«' +丫' +2' +1]' +»1(' -100 とする) 表記した。 ,, >> 1 ('is expressed as a percentage «' + 丫 '+2' +1] '+» 1 (let's be -100).
また、 焼結体の破断面を走査型電子顕微鏡によリ観察した結果、 平均粒径は 2 # mと小さく均一な微構造であつた。 Observation of the fracture surface of the sintered body with a scanning electron microscope revealed that the average grain size was as small as 2 #m and uniform.
実施例 2〜 1 1、 1 5、 1 8 Examples 2 to 11, 15 and 18
実施例 1 と同様にして表 1 に示す ifi合の原料粉末を作成し、 焼結温度 1000でで 焼結体を作成し竃気特性を測定した。 測定した結果をまとめて表 1 に示した。 ま た、 実施例 1 1の焼結体について破断面を走査型電子顕微錶によリ観察した結果、 平均粒径は 2 # mと小さく均一な微構造であつた。 In the same manner as in Example 1, raw material powders of the ifi combination shown in Table 1 were prepared, and a sintered body was prepared at a sintering temperature of 1000, and the gas characteristics were measured. Table 1 summarizes the measured results. In addition, as a result of observing the fracture surface of the sintered body of Example 11 with a scanning electron microscope, the average particle size was 2 #m, which was a small and uniform microstructure.
実施例 1 2〜 1 4 Examples 12 to 14
実施例 1 と同様にして表 1に示す配合の原料粉末を作成し、 焼結温度を 950, 10 00, 1 050 °Gと変えて焼結体を作成し、 電気特性を測定した。 焼結温度が 100 で変 化しても電気特性には殆ど変化が認められなかった。 測定した結果をまとめて表 1に示した。 Raw material powders having the composition shown in Table 1 were prepared in the same manner as in Example 1, and sintered bodies were prepared by changing the sintering temperature to 950, 1000, and 1050 ° G, and the electrical characteristics were measured. Even when the sintering temperature was changed at 100, almost no change was observed in the electrical characteristics. Table 1 summarizes the measured results.
実施例 1 6, 1 7 Examples 16 and 17
出発原料として純度 99. 9¾以上の酸化鉛(PbO) 、 酸化マグネシウム(MgO) 、 酸
化タングステン(W03) 、 酸化ニオブ(Nb205 ) 、 酸化チタン(Ti02)、 酸化ジルコ二 ゥ厶(Zr02)、 およびニオブ酸ニッケル(NiNb206 ) を使用し、 表 1 に示した配合比 になるように各々抨量した。 ここに使用したニオブ酸ニッケル(NiNb206 ) は酸化 ニッケル(ΝίΟ) と酸化ニオブ(Nb205 ) を原料として所定量を湿式混合した後、 乾 燥仮焼を行って別途合成したものである。 次に秤量した各原料をボールミルによ リアセトン中で湿式混合し、 以下実施例 1 と同様にして表 1 に示す配合の原料粉 末を作成し、 焼結温度 950 °Cと 1000でで焼結体を作成し電気特性を測定した。 測 定した結果をまとめて表 1 に示した。 Starting materials: 99.9 純度 or more pure lead oxide (PbO), magnesium oxide (MgO), acid Tungsten (W0 3), niobium oxide (Nb 2 0 5), titanium oxide (Ti0 2), oxidized zirconium two ©厶(Zr0 2), and using niobate nickel (NiNb 2 0 6), Table 1 Each was weighed so as to have the indicated mixing ratio. After use niobium, nickel (NiNb 2 0 6) is wet-mixed a predetermined amount of niobium oxide and nickel oxide (ΝίΟ) (Nb 2 0 5 ) as a starting material herein, those synthesized separately performing dry燥仮ware It is. Next, the weighed raw materials were wet-mixed in acetone using a ball mill to prepare raw material powders having the composition shown in Table 1 in the same manner as in Example 1 and sintered at sintering temperatures of 950 ° C and 1000. The body was created and the electrical properties were measured. Table 1 summarizes the measured results.
実施例 1 9 , 2 0 Example 19, 20
出発原料として純度 99.9¾以上の酸化鉛(PbO) 、 酸化マグネシウム(MgO) 、 酸 化タングステン(W03) 、 酸化ニオブ(Nb205 ) 、 酸化チタン(Τί02)、 酸化ジルコ二 ゥ厶(Zr02)、 ニオブ酸ニッケル(NiNb206 ) 、 およびニオブ酸マグネシウム(MgNb2 06) を使用し、 表 1 に示した配合比になるように各々秤量した。 ここに使用した ニオブ酸ニッケル(NiNb206 ) は酸化ニッケル(NiO) と酸化ニオブ(Nb205 ) を原料 として、 またニオブ酸マグネシウム(MgNb206 ) は酸化マグネシウム(MgO) と酸化 ニオブ(Nb205 ) を原料として所定量を湿式混合した後、 乾燥し仮焼を行って別途 合成したものである。 次に秤惫した各原料をボールミルによリアセトン中で湿式 混合し、 以下実施例 1 と同様にして表 1 に示す配合の原料粉末を作成し、 焼結温 度 950 でと 1000°Cで焼結体を作成し電気特性を測定した。 測定した結果をまとめ て表 1 に示した。 Purity 99.9¾ more lead oxide as the starting material (PbO), magnesium oxide (MgO), oxidation tungsten (W0 3), niobium oxide (Nb 2 0 5), titanium oxide (Τί0 2), oxidized zirconium two ©厶( Zr0 2), niobium, nickel (NiNb 2 0 6), and using magnesium niobate (MgNb 2 0 6), were each weighed so that the blending ratio shown in Table 1. Using the niobate nickel (NiNb 2 0 6) niobium oxide and nickel oxide (NiO) (Nb 2 0 5 ) as a starting material herein, also magnesium niobate (MgNb 2 0 6) oxide and magnesium oxide (MgO) after wet mixing predetermined amounts niobium (Nb 2 0 5) as a raw material, dried to perform calcination is obtained by separately synthesized. Next, the weighed raw materials were wet-mixed in acetone using a ball mill to prepare raw material powders having the composition shown in Table 1 in the same manner as in Example 1 and sintered at sintering temperatures of 950 and 1000 ° C. The aggregate was formed and the electrical characteristics were measured. Table 1 summarizes the measured results.
実施例 2 1〜 3 1 Example 2 1 to 3 1
実施例〗 と同様にして表 1 に示す配合の原料粉末を作成し、 焼結温度 1000°Cと 1050°Cで焼結体を作成し電気特性を測定した。 測定した結果をまとめて表〗 に示 した。 Raw material powders having the composition shown in Table 1 were prepared in the same manner as in Example I, and sintered bodies were prepared at sintering temperatures of 1000 ° C and 1050 ° C, and the electrical characteristics were measured. The results of the measurement are summarized in Table 1.
比較例 1, 2 Comparative Examples 1 and 2
実施例 1 と同様にして表 2に示す主成分配合比の粉末を作成し、 焼結温度 1050 でで磁器組成物の焼結体を作成し電気特性を測定し表 2に示す結果を得た。
比较例 3〜 5 Powders having the main component mixing ratios shown in Table 2 were prepared in the same manner as in Example 1, and a sintered body of the porcelain composition was prepared at a sintering temperature of 1050, and the electrical characteristics were measured.The results shown in Table 2 were obtained. . Comparative examples 3 to 5
実施例 1 と同様にして表 2に示す主成分配合比の原料粉末を作成し、 焼結温度 を 1000.1050, 1100°Cで焼結体を作成し電気特性を測定した。 測定した結果をまと めて表 2に示した。 表 2に示したように焼結温度が 100 °G変化すると電気特性が 大きく変化した。 In the same manner as in Example 1, raw material powders having the mixing ratios of main components shown in Table 2 were prepared, and sintered bodies were prepared at sintering temperatures of 1000.1050 and 1100 ° C, and the electrical characteristics were measured. Table 2 summarizes the measured results. As shown in Table 2, when the sintering temperature changed by 100 ° G, the electrical characteristics changed significantly.
比較例 6 ~ 1 2 Comparative Examples 6 to 1 2
実施例〗 と同様にして表 2に示す主成分配合比の原料粉末を作成し、 焼結温度 を 1050, 1100 でで焼結体を作成し電気特性を測定した。 測定した結果をまとめて 表 2に示した。 また、 比較例 4の焼結体の破断面を走査型電子顕微鏡によリ観察 した結果、 平均粒径は 5〜了 /zmと大きく粒径分布も不均一であった。 Raw material powders having the main component mixing ratios shown in Table 2 were prepared in the same manner as in Example 1, and sintered bodies were prepared at sintering temperatures of 1050 and 1100, and the electrical characteristics were measured. Table 2 summarizes the measured results. Further, as a result of observing the fracture surface of the sintered body of Comparative Example 4 with a scanning electron microscope, the average particle size was as large as 5 to 了 / zm, and the particle size distribution was not uniform.
抗折強度の測定 Measurement of bending strength
実施例了, 9 , 2 6, 2 了および比較例 4, 7の焼結体から輻 2mm 、 厚さ 0.5mm、 長さ 12mmの短冊状の試料を 10本切り出し曲げ強度試験装置で抗折強度を 測定した。 測定した 10本の平均値をまとめて表 3に示した。
From the sintered bodies of Examples 2, 9, 26 and 2 and Comparative Examples 4 and 7, 10 strip-shaped samples of 2 mm in thickness, 0.5 mm in thickness and 12 mm in length were cut out, and the bending strength was measured using a bending strength tester. Was measured. Table 3 summarizes the average values of the 10 samples measured.
表 1. 実施例 Table 1. Examples
* 2 : Pb(Mn,/zW,/z)03 注 2 ) 主成分に対する molS!で表わした,
* 2: expressed Pb (Mn, / zW, / z) 0 3 Note 2) molS relative to the main component in!
¾ 2. 比校例 ¾ 2. Comparative examples
表 3. 実施例及び比較例 (抗折強度の測定) Table 3. Examples and Comparative Examples (Measurement of bending strength)
注 1 ) * 1 : Pb(Mn,/3Nb 2/3 )03 Note 1) * 1: Pb (Mn, / 3 Nb 2/3) 0 3
注 2 ) 主成分に対する mo で表わした。 Note 2) Expressed as mo for the principal component.
注 3 ) 曲げ強度測定値の平均値を示した,
Note 3) The average value of the measured bending strength is shown.
92/13810 r 92/13810 r
1 2 1 2
【産業上の利用可能性】 [Industrial applicability]
表 1に示した結果から明かなように、 Pb(Hg,/ZW, /2)03 — Pb(Ni,/3Nb2/3)03— Pb( g, /3 b2/3 )03一 PbTi03一 PbZr03の組成物を含有する誘電体磁器組成物、 もし くはこの組成物に添加物としてマンガン、 もしくはマンガンを含む複合酸化物を 4mol%以下添加含有せしめた本発明の範囲内のものは、 誘電率が高く誘電損失が 0.7 %以下と小さく、 比抵抗が室温において 4 xl(H2Qcm以上と高く、 焼結体の 粒子径も 2 以下と小さく、 機械的強度も 1500kg/cm2以上である上に、 マンガン を含む複合酸化物を所定躉添加することによリ温度特性を E I A規格の Y 5 U特 性や Y 5 T特性に適合させることができ、 Y 5 U特性で誘髦率 ί6000 、 Υ 5 Τ特 性で誘電率 11000 が得られている。 従って、 本発明の磁器組成物は、 こうした誘 電率の温度特性が平坦な小型大容耋の穣層セラミックコンデンサー用の材料とし ても極めて優れていると言える。 And As is clear from the results shown in Table 1, Pb (Hg, / Z W, / 2) 0 3 - Pb (Ni, / 3 Nb 2/3) 0 3 - Pb (g, / 3 b 2/3 ) 0 3 one PbTi0 3 one PbZr0 3 of a dielectric ceramic composition containing the composition, if Ku the present invention the additional inclusion added below 4 mol% of the composite oxide containing manganese, or a manganese as an additive to the composition In the range, the dielectric constant is high, the dielectric loss is as low as 0.7% or less, the specific resistance is as high as 4 xl (H2Qcm or more) at room temperature, the particle size of the sintered body is as small as 2 or less, and the mechanical strength is 1500 kg / cm 2 or more, and by adding a manganese-containing composite oxide in a prescribed amount, the temperature characteristics can be adapted to the Y5U characteristics and Y5T characteristics of the EIA standard. A dielectric constant of 16000 is obtained with a dielectric constant of 6000 and a dielectric constant of 5 with characteristics of 5. Therefore, the porcelain composition of the present invention provides a small, large-sized ferromagnetic cell with a flat temperature characteristic of the dielectric constant. It can be said that it is extremely excellent as a material for lamic capacitors.
焼結体の破断面を観察した電子顕微鍊写真からも明かなように、 本発明の組成 領域の磁器は極めて微細で均一な微構造を有しているため一層の膜厚の薄い穣層 セラミックコンデンサーの製造に適したものといえる。 一方、 比較例に示したよ うに本発明の組成領域外の磁器では粒径も大きく粒径分布も不均一であるため、 膜厚の薄い稜層セラミックコンデンサーを製造すると絶縁破壊電圧が低下したリ 信頼性が低下してしまうため実用材料としては不適当なものであった。 As can be seen from the electron micrographs of the fractured surface of the sintered body, the porcelain in the composition region according to the present invention has an extremely fine and uniform microstructure, so that the thickness of the ceramic layer is thinner. It can be said that it is suitable for manufacturing a capacitor. On the other hand, as shown in the comparative example, in the ceramics outside the composition range of the present invention, the grain size is large and the grain size distribution is not uniform. Therefore, when a ridged ceramic capacitor having a small thickness is manufactured, the dielectric breakdown voltage is reduced. Therefore, it was unsuitable as a practical material because its properties deteriorated.
本発明の誘竃体磁器組成物は、 焼結温度が低温であるため穑層コンデンサーの 内部電極を安価な金属にすることによリ低価格化を実現できるとともに、 得られ る磁器は電気的特性に優れ誘電体層の薄膜化に対応できるため、 小型大容量の積 層セラミックコンデンサ一が製造可能である。 Since the porcelain composition of the present invention has a low sintering temperature, the price of the internal electrode of the multilayer capacitor can be reduced by using an inexpensive metal, and the obtained porcelain can be made electrically. Since it has excellent characteristics and can cope with thinning of the dielectric layer, it is possible to manufacture a small and large-capacity multilayer ceramic capacitor.
また、 PbZr03成分が含有されているため、 製造コストが高くなるような原料粉 末の合成法を採用しなくても優れた特性を有する磁器が得られ、 焼結体粒径を小 さくすることも可能となったため、 表 3に示すように機械的強度が大きく向上し 絶縁破壊電圧も高くなつて、 一層の膜厚の薄いかつ信頼性の高いセラミックコン デンサ一が製造できる。 また、 実施例および比較例に示したように、 本発明の組
成領域内の組成物を使用すれば、 焼結温度が変化しても電気的特性の安定した磁 器が得られてぉリ、 実用上極めて優れた特性である。
Also, since it contains three components of PbZr03, porcelain with excellent properties can be obtained without using a method of synthesizing the raw material powder, which would increase the production cost, and the particle size of the sintered body can be reduced. As shown in Table 3, the mechanical strength is greatly improved and the dielectric breakdown voltage is increased, so that a thinner and more reliable ceramic capacitor can be manufactured. In addition, as shown in Examples and Comparative Examples, The use of the composition in the formation region makes it possible to obtain a porcelain having stable electrical characteristics even when the sintering temperature changes, which is extremely excellent in practical use.
Claims
【請求項 1】 マグネシウム ' タングステン酸鉛 [Pb(Mg,/2 /2) 0s ] , ニッケ ル'ニオブ酸鉛 [Pb(Ni1/3Nb2/3)03] , マグネシウム■ニオブ酸鉛 [Pb(Mg ,/3N b2/3 )03 3 , チタン酸鉛 [PbTi03] , およびジルコニウム酸鉛 [PbZrO3] からな る固溶体磁器組成物を 1. A magnesium 'lead tungstate [Pb (Mg, / 2/ 2) 0s], nickel' niobate [Pb (Ni 1/3 Nb 2/3) 0 3], magnesium ■ niobate [Pb (Mg, / 3 N b 2/3) 0 3 3, lead titanate [PbTi0 3], and lead zirconate [PbZrO 3] Tona Ru solid solution ceramic composition
[Pb(Mg, 2Wi 2)03 ] X - [Pb(Ni, 3 2/3)03 j γ ~ Crb( gi/3Nb2/3 )03] z -[Pb (Mg, 2Wi 2) 03] X-[Pb (Ni, 3 2/3) 03 j γ ~ Crb (gi / 3Nb2 / 3) 0 3 ] z-
[PbTi03] u - [PbZr03] w [PbTi0 3 ] u-[PbZr0 3 ] w
ただし、 Χ+Υ+Ζ+ΙΗΪί=1 Where Χ + Υ + Ζ + ΙΗΪί = 1
と表現した時、 X,Y,Z,U,Wがそれぞれ X, Y, Z, U, W
0.05≤X ≤0.3 0.05≤X ≤0.3
0.05≤Y ≤0.5 0.05≤Y ≤0.5
0·05≤Ζ ≤0.75 005≤Ζ ≤0.75
0.05≤U ≤0.35 0.05≤U ≤0.35
0.05≤W ≤0.3 0.05≤W ≤0.3
で表される組成物を含有することを特徴とする誘電体磁器組成物。 A dielectric porcelain composition comprising a composition represented by the formula:
【請求項 2】 請求項〗に記載の組成物に対して、 マンガンもしくはマンガンを 含む複合酸化物を 4molX以下含有する誘電体磁器組成物。
2. A dielectric ceramic composition containing manganese or a manganese-containing composite oxide in an amount of 4 molX or less with respect to the composition according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3/29204 | 1991-01-31 | ||
JP2920491 | 1991-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992013810A1 true WO1992013810A1 (en) | 1992-08-20 |
Family
ID=12269667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1992/000085 WO1992013810A1 (en) | 1991-01-31 | 1992-01-29 | Dielectric ceramic composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1992013810A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100434418B1 (en) * | 2000-08-18 | 2004-06-04 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric ceramic material, sintered piezoelectric ceramic compact, and piezoelectric ceramic device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5850727A (en) * | 1981-07-03 | 1983-03-25 | アイ・テイ・テイ・インダストリ−ズ | Dielectric composition and method of producing ceramic condenser |
JPS6049502A (en) * | 1983-08-30 | 1985-03-18 | 日本電気株式会社 | Porcelain composition |
JPS6214490B2 (en) * | 1984-08-18 | 1987-04-02 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | |
JPS6291420A (en) * | 1985-10-18 | 1987-04-25 | Ube Ind Ltd | Method for producing raw material powder for easily sinterable composite perovskite using multi-stage wet process |
JPS62100907A (en) * | 1985-10-24 | 1987-05-11 | エステイ−シ− ピ−エルシ− | Dielectric compound |
-
1992
- 1992-01-29 WO PCT/JP1992/000085 patent/WO1992013810A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5850727A (en) * | 1981-07-03 | 1983-03-25 | アイ・テイ・テイ・インダストリ−ズ | Dielectric composition and method of producing ceramic condenser |
JPS6049502A (en) * | 1983-08-30 | 1985-03-18 | 日本電気株式会社 | Porcelain composition |
JPS6214490B2 (en) * | 1984-08-18 | 1987-04-02 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | |
JPS6291420A (en) * | 1985-10-18 | 1987-04-25 | Ube Ind Ltd | Method for producing raw material powder for easily sinterable composite perovskite using multi-stage wet process |
JPS62100907A (en) * | 1985-10-24 | 1987-05-11 | エステイ−シ− ピ−エルシ− | Dielectric compound |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100434418B1 (en) * | 2000-08-18 | 2004-06-04 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric ceramic material, sintered piezoelectric ceramic compact, and piezoelectric ceramic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3435607B2 (en) | Non-reducing dielectric porcelain composition | |
JP2566995B2 (en) | High dielectric constant porcelain composition and ceramic capacitor | |
JP4862501B2 (en) | Dielectric ceramic, manufacturing method thereof and multilayer ceramic capacitor | |
JP3368602B2 (en) | Non-reducing dielectric porcelain composition | |
JP3634930B2 (en) | Dielectric porcelain composition | |
JPH04115409A (en) | Non-reducing dielectric ceramic composite | |
WO1992013810A1 (en) | Dielectric ceramic composition | |
JP3321823B2 (en) | Non-reducing dielectric porcelain composition | |
JP2803320B2 (en) | Dielectric porcelain composition | |
JP3438261B2 (en) | Non-reducing dielectric porcelain composition | |
JP2001278662A (en) | Method for manufacturing dielectric ceramic | |
JP2926827B2 (en) | Dielectric porcelain composition | |
JP3368599B2 (en) | Non-reducing dielectric porcelain composition | |
JPH10279353A (en) | Dielectric porcelain | |
JP3385631B2 (en) | Non-reducing dielectric porcelain composition | |
JP3385630B2 (en) | Non-reducing dielectric porcelain composition | |
JP2958826B2 (en) | Dielectric porcelain composition | |
JP2005035843A (en) | Piezoelectric ceramics, sintering aid, and laminated piezoelectric element | |
JPH10139539A (en) | Dielectric porcelain composition | |
JP3318951B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JPH056710A (en) | Dielectric porcelain composition | |
JP3603842B2 (en) | Non-reducing dielectric ceramic composition | |
WO1991011408A1 (en) | Dielectric ceramic composition | |
JPH08208332A (en) | Dielectric porcelain composition | |
JPH07288035A (en) | Dielectric porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |