WO1992010198A1 - Agents, compositions et procedes immunotherapeutiques - Google Patents
Agents, compositions et procedes immunotherapeutiques Download PDFInfo
- Publication number
- WO1992010198A1 WO1992010198A1 PCT/AU1991/000563 AU9100563W WO9210198A1 WO 1992010198 A1 WO1992010198 A1 WO 1992010198A1 AU 9100563 W AU9100563 W AU 9100563W WO 9210198 A1 WO9210198 A1 WO 9210198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- mop
- uva
- treatment
- treated
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 239000000203 mixture Substances 0.000 title claims description 7
- 239000002955 immunomodulating agent Substances 0.000 title 1
- 210000004027 cell Anatomy 0.000 claims abstract description 79
- 238000011282 treatment Methods 0.000 claims abstract description 54
- 230000006378 damage Effects 0.000 claims abstract description 19
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 16
- 230000030833 cell death Effects 0.000 claims abstract description 12
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 10
- 201000011510 cancer Diseases 0.000 claims abstract description 9
- 230000001404 mediated effect Effects 0.000 claims abstract description 9
- 238000011534 incubation Methods 0.000 claims abstract description 8
- 230000002427 irreversible effect Effects 0.000 claims abstract description 8
- 239000000825 pharmaceutical preparation Substances 0.000 claims abstract description 8
- 241000124008 Mammalia Species 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- 230000028993 immune response Effects 0.000 claims abstract description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 3
- OLXZPDWKRNYJJZ-UHFFFAOYSA-N 5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(CO)O1 OLXZPDWKRNYJJZ-UHFFFAOYSA-N 0.000 claims description 54
- 210000004698 lymphocyte Anatomy 0.000 claims description 54
- 108020004414 DNA Proteins 0.000 claims description 28
- 230000005778 DNA damage Effects 0.000 claims description 19
- 231100000277 DNA damage Toxicity 0.000 claims description 19
- 238000000338 in vitro Methods 0.000 claims description 12
- 210000004369 blood Anatomy 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 11
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 claims description 10
- 230000001472 cytotoxic effect Effects 0.000 claims description 10
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 9
- 102000053602 DNA Human genes 0.000 claims description 8
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 8
- 239000003112 inhibitor Substances 0.000 claims description 7
- 229940100198 alkylating agent Drugs 0.000 claims description 6
- 239000002168 alkylating agent Substances 0.000 claims description 6
- 230000000340 anti-metabolite Effects 0.000 claims description 6
- 229940100197 antimetabolite Drugs 0.000 claims description 6
- 239000002256 antimetabolite Substances 0.000 claims description 6
- 230000003211 malignant effect Effects 0.000 claims description 6
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 5
- 229960004857 mitomycin Drugs 0.000 claims description 5
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical group C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 claims description 5
- 229960002340 pentostatin Drugs 0.000 claims description 5
- 229930024421 Adenine Natural products 0.000 claims description 4
- 229960000643 adenine Drugs 0.000 claims description 4
- 239000002487 adenosine deaminase inhibitor Substances 0.000 claims description 4
- 150000003838 adenosines Chemical class 0.000 claims description 4
- 229940045799 anthracyclines and related substance Drugs 0.000 claims description 4
- 229960005420 etoposide Drugs 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- PBUUPFTVAPUWDE-UGZDLDLSSA-N 2-[[(2S,4S)-2-[bis(2-chloroethyl)amino]-2-oxo-1,3,2lambda5-oxazaphosphinan-4-yl]sulfanyl]ethanesulfonic acid Chemical group OS(=O)(=O)CCS[C@H]1CCO[P@](=O)(N(CCCl)CCCl)N1 PBUUPFTVAPUWDE-UGZDLDLSSA-N 0.000 claims description 3
- 229940080778 Adenosine deaminase inhibitor Drugs 0.000 claims description 3
- 108010006654 Bleomycin Proteins 0.000 claims description 3
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 claims description 3
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 claims description 3
- 239000003242 anti bacterial agent Substances 0.000 claims description 3
- 229940088710 antibiotic agent Drugs 0.000 claims description 3
- FIVPIPIDMRVLAY-UHFFFAOYSA-N aspergillin Natural products C1C2=CC=CC(O)C2N2C1(SS1)C(=O)N(C)C1(CO)C2=O FIVPIPIDMRVLAY-UHFFFAOYSA-N 0.000 claims description 3
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 3
- 108091092356 cellular DNA Proteins 0.000 claims description 3
- 229940103893 gliotoxin Drugs 0.000 claims description 3
- FIVPIPIDMRVLAY-RBJBARPLSA-N gliotoxin Chemical compound C1C2=CC=C[C@H](O)[C@H]2N2[C@]1(SS1)C(=O)N(C)[C@@]1(CO)C2=O FIVPIPIDMRVLAY-RBJBARPLSA-N 0.000 claims description 3
- 229930190252 gliotoxin Natural products 0.000 claims description 3
- 238000001727 in vivo Methods 0.000 claims description 3
- 229950000547 mafosfamide Drugs 0.000 claims description 3
- 229940127073 nucleoside analogue Drugs 0.000 claims description 3
- 230000002265 prevention Effects 0.000 claims description 3
- OFEZSBMBBKLLBJ-UHFFFAOYSA-N 2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1C1OC(CO)CC1O OFEZSBMBBKLLBJ-UHFFFAOYSA-N 0.000 claims description 2
- WVKOPZMDOFGFAK-UHFFFAOYSA-N 4-hydroperoxycyclophosphamide Chemical compound OOC1=NP(O)(N(CCCl)CCCl)OCC1 WVKOPZMDOFGFAK-UHFFFAOYSA-N 0.000 claims description 2
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 claims description 2
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 claims description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 2
- 229930192392 Mitomycin Natural products 0.000 claims description 2
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 claims description 2
- 230000000118 anti-neoplastic effect Effects 0.000 claims description 2
- 210000001185 bone marrow Anatomy 0.000 claims description 2
- 239000003937 drug carrier Substances 0.000 claims description 2
- 210000002751 lymph Anatomy 0.000 claims description 2
- 210000003563 lymphoid tissue Anatomy 0.000 claims description 2
- 229960000485 methotrexate Drugs 0.000 claims description 2
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical class COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 claims description 2
- 150000003431 steroids Chemical class 0.000 claims description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 claims description 2
- 229960001278 teniposide Drugs 0.000 claims description 2
- HDZZVAMISRMYHH-LITAXDCLSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO)[C@H](O)[C@H]1O HDZZVAMISRMYHH-LITAXDCLSA-N 0.000 claims description 2
- 229960003636 vidarabine Drugs 0.000 claims description 2
- 230000000840 anti-viral effect Effects 0.000 claims 1
- 230000003115 biocidal effect Effects 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000003085 diluting agent Substances 0.000 claims 1
- 230000001506 immunosuppresive effect Effects 0.000 claims 1
- 210000000265 leukocyte Anatomy 0.000 abstract description 31
- 210000002433 mononuclear leukocyte Anatomy 0.000 abstract description 4
- QXKHYNVANLEOEG-UHFFFAOYSA-N Methoxsalen Chemical compound C1=CC(=O)OC2=C1C=C1C=COC1=C2OC QXKHYNVANLEOEG-UHFFFAOYSA-N 0.000 description 69
- 229940027041 8-mop Drugs 0.000 description 66
- 241000699670 Mus sp. Species 0.000 description 44
- 210000004988 splenocyte Anatomy 0.000 description 42
- 206010012601 diabetes mellitus Diseases 0.000 description 37
- 241000699666 Mus <mouse, genus> Species 0.000 description 33
- 230000035899 viability Effects 0.000 description 31
- 230000000694 effects Effects 0.000 description 25
- 201000005962 mycosis fungoides Diseases 0.000 description 20
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 18
- 239000013256 coordination polymer Substances 0.000 description 18
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 18
- 238000002474 experimental method Methods 0.000 description 18
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 18
- GSCPDZHWVNUUFI-UHFFFAOYSA-N 3-aminobenzamide Chemical compound NC(=O)C1=CC=CC(N)=C1 GSCPDZHWVNUUFI-UHFFFAOYSA-N 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 14
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 12
- 239000008103 glucose Substances 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 12
- 125000003729 nucleotide group Chemical group 0.000 description 12
- 101710126859 Single-stranded DNA-binding protein Proteins 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 235000019527 sweetened beverage Nutrition 0.000 description 11
- 102000003960 Ligases Human genes 0.000 description 10
- 108090000364 Ligases Proteins 0.000 description 10
- 108091026813 Poly(ADPribose) Proteins 0.000 description 10
- 230000007423 decrease Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 210000001744 T-lymphocyte Anatomy 0.000 description 9
- 231100000433 cytotoxic Toxicity 0.000 description 9
- 208000023275 Autoimmune disease Diseases 0.000 description 8
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 8
- 230000006907 apoptotic process Effects 0.000 description 8
- 229940127089 cytotoxic agent Drugs 0.000 description 8
- 239000002254 cytotoxic agent Substances 0.000 description 8
- 231100000599 cytotoxic agent Toxicity 0.000 description 8
- 230000003013 cytotoxicity Effects 0.000 description 8
- 231100000135 cytotoxicity Toxicity 0.000 description 8
- 230000005731 poly ADP ribosylation Effects 0.000 description 8
- 230000001640 apoptogenic effect Effects 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 239000003855 balanced salt solution Substances 0.000 description 6
- 239000012894 fetal calf serum Substances 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000005783 single-strand break Effects 0.000 description 6
- 239000012980 RPMI-1640 medium Substances 0.000 description 5
- 230000007717 exclusion Effects 0.000 description 5
- 235000001727 glucose Nutrition 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 5
- 108010062580 Concanavalin A Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000004660 morphological change Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 230000003389 potentiating effect Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 3
- 231100001074 DNA strand break Toxicity 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000005779 cell damage Effects 0.000 description 3
- 208000037887 cell injury Diseases 0.000 description 3
- 230000003833 cell viability Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000013610 patient sample Substances 0.000 description 3
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- BUNGCZLFHHXKBX-UHFFFAOYSA-N 8-methoxypsoralen Natural products C1=CC(=O)OC2=C1C=C1CCOC1=C2OC BUNGCZLFHHXKBX-UHFFFAOYSA-N 0.000 description 2
- 230000005730 ADP ribosylation Effects 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- 239000012623 DNA damaging agent Substances 0.000 description 2
- 230000033616 DNA repair Effects 0.000 description 2
- 230000007018 DNA scission Effects 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 238000012404 In vitro experiment Methods 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000005104 human peripheral blood lymphocyte Anatomy 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000001391 lymphocytotoxic effect Effects 0.000 description 2
- 206010025482 malaise Diseases 0.000 description 2
- 230000010534 mechanism of action Effects 0.000 description 2
- 229960004469 methoxsalen Drugs 0.000 description 2
- SQBBOVROCFXYBN-UHFFFAOYSA-N methoxypsoralen Natural products C1=C2OC(=O)C(OC)=CC2=CC2=C1OC=C2 SQBBOVROCFXYBN-UHFFFAOYSA-N 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 238000003359 percent control normalization Methods 0.000 description 2
- 230000002186 photoactivation Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical compound [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- IOSAAWHGJUZBOG-UHFFFAOYSA-N 3-(6-amino-9h-purin-9-yl)nonan-2-ol Chemical compound N1=CN=C2N(C(C(C)O)CCCCCC)C=NC2=C1N IOSAAWHGJUZBOG-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- PWJFNRJRHXWEPT-UHFFFAOYSA-N ADP ribose Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OCC(O)C(O)C(O)C=O)C(O)C1O PWJFNRJRHXWEPT-UHFFFAOYSA-N 0.000 description 1
- SRNWOUGRCWSEMX-KEOHHSTQSA-N ADP-beta-D-ribose Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)OC[C@H]1O[C@@H](O)[C@H](O)[C@@H]1O SRNWOUGRCWSEMX-KEOHHSTQSA-N 0.000 description 1
- 208000009746 Adult T-Cell Leukemia-Lymphoma Diseases 0.000 description 1
- 241001132374 Asta Species 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 208000022936 Chronic acquired demyelinating polyneuropathy Diseases 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 206010018429 Glucose tolerance impaired Diseases 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010070070 Hypoinsulinaemia Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001197446 Mus cypriacus Species 0.000 description 1
- DYLRFXGKCIFZAH-NNDOHRJVSA-N NCCCC[C@H](N)C(O)=O.OS(=O)(=O)CCS[C@H]1CCO[P@@](=O)(N1)N(CCCl)CCCl Chemical compound NCCCC[C@H](N)C(O)=O.OS(=O)(=O)CCS[C@H]1CCO[P@@](=O)(N1)N(CCCl)CCCl DYLRFXGKCIFZAH-NNDOHRJVSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 208000010378 Pulmonary Embolism Diseases 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 238000009171 T-cell vaccination Methods 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- 239000007978 cacodylate buffer Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- -1 dCF deoxycofor ycin Chemical compound 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000000212 effect on lymphocytes Effects 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 238000007421 fluorometric assay Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 150000002304 glucoses Chemical class 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000035860 hypoinsulinemia Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000007233 immunological mechanism Effects 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 231100000636 lethal dose Toxicity 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 229960003966 nicotinamide Drugs 0.000 description 1
- 235000005152 nicotinamide Nutrition 0.000 description 1
- 239000011570 nicotinamide Substances 0.000 description 1
- 239000011824 nuclear material Substances 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005362 photophoresis Methods 0.000 description 1
- 238000001126 phototherapy Methods 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007390 skin biopsy Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000011521 systemic chemotherapy Methods 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 230000005951 type IV hypersensitivity Effects 0.000 description 1
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000008320 venous blood flow Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/14—Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
- A61K31/366—Lactones having six-membered rings, e.g. delta-lactones
- A61K31/37—Coumarins, e.g. psoralen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/40—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
- A61K31/407—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with other heterocyclic ring systems, e.g. ketorolac, physostigmine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7076—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/10—Cellular immunotherapy characterised by the cell type used
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/20—Cellular immunotherapy characterised by the effect or the function of the cells
- A61K40/22—Immunosuppressive or immunotolerising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K40/00—Cellular immunotherapy
- A61K40/40—Cellular immunotherapy characterised by antigens that are targeted or presented by cells of the immune system
- A61K40/41—Vertebrate antigens
- A61K40/416—Antigens related to auto-immune diseases; Preparations to induce self-tolerance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/31—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterized by the route of administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the dose, timing or administration schedule
Definitions
- This invention relates to methods of treatment of immunologically related conditions, and to agents and compositions thereof.
- the invention relates to a method of treatment of the patient's own lymphocytes, which treatment is carried out extracorporeally.
- UVA ultraviolet A light 8-MOP 8-methoxypsoralen, dCF deoxycofor ycin, dAdo deoxyadenosine, NOD mouse non-obese diabetic mouse, CTCL cutaneous T-cell lymphoma, PBL peripheral blood lymphocytes, ECPC extracorporeal photochemotherapy, CP cyclophosphamide, Con A Concanavalin A EDTA ethylenediaminotetraacetate, BSS mouse isotonic buffered balanced salt solution; PBL peripheral blood lymphocytes; PBS phosphate buffered saline; %D % double-stranded DNA remaining; DNA SSBs DNA single-strand breaks; MDSS maximum decrease in skin score; S.E. standard error.
- lymphocytes in particular T cells
- T cells Treatments to augment the activity of lymphocytes, in particular T cells, have been proposed as a means of treatment for autoimmune disease, and it has been suggested that such treatments result in the generation of 'anti-clonotypic' T cells which inhibit the patient's autoreactive T cells.
- the procedure has been termed 'T cell vaccination' (Cohen and für, 1988) .
- the most widely clinically investigated of these procedures is known as photopheresis; this involves exposure of cells to a psoralen, followed by photoactivation with ultraviolet A. See, for example, European Patent Application No. 261648 and Australian Patent Application No. 13584/88, the entire disclosures of which are herein incorporated by reference. It is evident that the following procedures of extracorporeal treatment of lymphocytes are known or suggested to be effective in the treatment of autoimmune disease and/or cancer:
- Chemical cross linking eg. with formaldehyde or glutaraldehyde; Photoactivated cross-linking using a psoralen and ultraviolet A, optionally with prior activation of lymphocytes using eg. Con A; Activation of lymphocytes eg. with Con A, followed by chemical cross-linking; Irradiation;
- Infusions of photoirradiated T-cells prevent or ameliorate a number of diseases in animal models of autoimmune disease and transplantation (Knobler and
- ECPC extracorporeal photochemotherapy
- Cutaneous T-cell lymphoma is a malignant monoclonal proliferation of T-lymphocytes, usually those of the helper phenotype (Kubler and Edelson, 1986) .
- the diseases encompassed include Sezary syndrome, mycosis fungoides and various adult T-cell leukemias.
- Sezary syndrome mycosis fungoides
- T-cell leukemias There are up to 10,000 new cases per year in the USA; it is more common in males, and is usually diagnosed after the age of 40. It typically remains localized to the skin for a time, then evolves into a nonepidermotropic stage in which there is dissemination and involvement of other organ systems. Extracutaneous spread is associated with refractoriness to treatment and a poor prognosis.
- CTCL vascular endothelial cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic
- DNA-damaging agents may kill cells by causing ATP and NAD depletion secondary to poly (ADP-ribosyl)a ion at sites of DNA strand breakage (Berger, 1985) : this might be an important mechanism of the lymphocytotoxicity of CTCL cells treated with ECPC.
- ADP-ribosyl ADP-ribosyl
- lymphocytotoxic effect of ECPC in CTCL is mediated by DNA damage, with concomitant stimulation of poly (ADP-ribose) synthetase and depletion of adenine nucleotides in the cells.
- the treated cells appear programmed to die by apoptosis, with characteristic morphological changes associated with endonucleolytic DNA cleavage.
- NOD/WEHI mouse was chosen as an animal model, because it provided a well-defined autoimmune disease with clear, easily assessed endpoints (Bescher et ai, 1990; Yasunumi and Bach, 1988; Harada and Makino, 1984).
- UVA/8-M0P significantly reduces the incidence of diabetes in CP-treated 90-120 day old NOD/WEHI mice.
- dCF and dAdo were similarly low incidence of diabetes in a group of mice that received splenocytes treated with dCF and dAdo. Both forms of treatment induce apoptosis in these splenocytes.
- a pharmaceutical preparation for specifically altering the immune response of a mammal comprising mononuclear leukocytes from said mammal, which leukocytes have been treated by extracorporeal incubation with an agent which induces irreversible damage to the cells or cell death.
- the invention provides a pharmaceutical composition for treatment of an immunologically-mediated condition or a cancer, comprising an effective amount of a preparation according to the first aspect of the invention, together with a pharmaceutically- acceptable carrier.
- the invention provides a method for prevention or treatment of an immunologically- mediated condition or of a cancer, comprising the step of administering to a patient in need of such treatment an effective quantity of a composition according to the second aspect of the invention.
- the invention provides a method of preparation of a pharmaceutical preparation according to the invention, comprising the steps of incubating a sample of cells from a patient suffering from an immunologically-mediated condition or a cancer, said sample comprising normal or malignant mononuclear leukocytes, with an agent which induces irreversible damage to the cells or cell death, for a period and under conditions effective to cause irreversible damage to said cells, and optionally washing the cells.
- Agents suitable for use in the invention are those which damage cellular DNA.
- Suitable agents for use in the invention include, but are not necessarily limited to antineoplastic or antiviral agents, especially nucleoside analogues, alkylating agents, inhibitors of topisomerase-II, antimetabolites and anthracyclines, and steroids.
- Two or more active agents may be used in combination.
- Particularly preferred agents are as follows: 1. An adenosine deaminase inhibitor in combination with an adenosine analogue.
- Preferred adenosine deaminase inhibitors are deoxycoformycin, EHNA (erythro-9-(3-hydroxy- 2-nonyl)adenine, and 2-chlorodeoxyadenosine, while preferred adenosine analogues are 2'- deoxyadenosine, 3'-deoxyadenosine (cordycepin) , tubercidin and 9-(J-D- arabinofuranosyl)adenine (Ara-A; vidarabine) ;
- alkylating agents preferred alkylating agents are mafosfamide and 4- hydroperoxycyclo-phosphamide;
- Antimetabolites a preferred antimetabolite is methotrexate
- Inhibitors of topoisomerase II; preferred inhibitors are etoposide (VP-16-213) and teniposide (VP-16) , and other derivatives of podophyllotoxin; and 5.
- Antibiotics which induce DNA strand breakage such as the bleomycins, mitomycin, anthracyclines such as daunorubicin and epirubicin, and gliotoxin.
- analogues or derivatives of the specific agents named which may also be used, provided that they are effective in inducing cell death. Such effectiveness may be readily established by methods known in the art.
- the cells which are the target of the extracorporeal treatment will normally have been activated in vivo as part of the disease process.
- the method of the invention may also optionally include a specific step of activation of the target cells prior to extracorporeal treatment, either by immunization of the subject or by treatment of the cells .in vitro with an agent such as Con A. Such a step would have the advantage of expanding the clone of activated target cells which are to be treated.
- the cells to be treated are normal or malignant mononuclear leukocytes of ly phocytic or monocytic lineage, preferably lymphoid cells. These cells may be obtained from blood, lymph, bone marrow, or lymphoid tissue. For convenience, the preferred cells to be treated are buffy coat leukocytes.
- the method of the invention is suitable for the treatment of a condition selected from the group consisting of: autoimmune diseases; cancer; allograft and/or xenograft rejection; graft-versus-host disease; delayed-type hypersensitivity; and allergy, especially autoimmune diseases, and malignancies of the lymphoid system.
- a condition selected from the group consisting of: autoimmune diseases; cancer; allograft and/or xenograft rejection; graft-versus-host disease; delayed-type hypersensitivity; and allergy, especially autoimmune diseases, and malignancies of the lymphoid system.
- the treatment of the invention results in the induction of cell death; it is thought that the treatment of the invention induces programmed cell death (apoptosis) rather than necrosis.
- agents which induce apoptosis are particularly preferred for use in the invention.
- Such agents induce fragmentation of cellular DNA, and include bleomycin, anthracyclines and gliotoxin.
- Figure 1 shows % increase in DNA single strand breaks vs. % decrease in cellular (trypan blue) viability.
- Simple regression analysis yields a R 2 of 0.877.
- the intercept for the graph is 82.1 (38.9-125.2, 95% confidence limits) and the gradient is -1.03 (-2.12-0.06).
- Figure 2 shows effects on viability.
- Figure 3 shows DNA damage in PBL exposed to UVA light (1-5 J/cm 2 ) with or without 8-MOP (300 ng/ml) ; the % increase in DNA single strand breaks was measured 2 hours later fluorometrically. Mean of 2 experiments each performed in duplicate.
- Figure 4 shows effects on nucleotide content.
- Figure 5 shows a comparison between photochemo- therapy and treatment with deoxycoformycin plus deoxy- adenosine.
- A. PBL were exposed to 1 ⁇ M dCF and 0-20 ⁇ M dAdo for 4 hours and corrected viability was determined for the next 72 hours.
- Figure 6 shows results of an experiment in which mouse splenocytes were exposed to various cytotoxic agents and their corrected viability measured by trypan blue exclusion for the next 48 hours.
- A. 1 1 J/cm 2 UVA light.
- 2 1 J/cm 2 UVA light plus 100 ng/ml 8-MOP.
- B. 1 ⁇ M dCF, 5 ⁇ M dAdo for 4 hours.
- Results represent the mean of at least 2 separate experiments preferred in duplicate.
- Figure 7 shows the incidence of diabetes (%) in
- CP-treated NOD/WEHI mice whose splenocytes were subjected to various treatments.
- Recipient NOD/WEHI mice were given 350 mg/kg intraperitoneal CP on day 1 and had their plasma glucose measured 14-18 days later. Diabetes was defined as a plasma glucose level of 15 mM or more.
- UVAR photopheresis system Therakos, King of Prussia, PA, USA
- This machine is the vehicle for the collection of buffy coat lymphocytes and also contains the clear plastic disposable cassette where lymphocytes are exposed to UVA light.
- the patients ingested 8-MOP tablets at a dose of 0.6 mg/kg.
- the patients were venepunctured and connected to the photopheresis machine.
- the UVA source was switched on to irradiate the buffy coat sample.
- Treatment policy and assessment of response Patients were treated on two consecutive -days every 4 weeks for 6 months, with treatment frequency modified according to clinical response. Disease progress was monitored by measurement of standardized skin scores, skin biopsies and by regular clinical photographs. Briefly, all skin was graded from 0 to 4, with 4 representing the most severe disease. This was then multiplied by the percentage of total surface area involved so the maximum possible score is 400. Skin score assessments were made before the commencement of therapy and then monthly before each course of ECPC by an experienced dermatologist. Response was defined as a 25% improvement in the skin score, sustainable over a one month period. Complete reassessment of all patients occurred 6 months after starting treatment.
- Specimens of buffy coat blood were obtained from the first buffy coat specimen and also after UV irradiation was complete, immediately before reinfusion to the patient. About 20 ml of buffy coat blood was underlaid with 5 ml of Ficoll-Hypaque and spun at 450g for 25 minutes. The cloudy mononuclear cell fraction was removed and counted. After washing in phosphate-buffered saline, the lymphocytes were resuspended in RPMI 1640 plus 10% fetal calf serum. After the above handling, the mean composition of the cells (+ S.E.) was: lymphocytes 74 + 9%, granulocytes (including band forms) 22 + 8% and monocytes 3 + 1%.
- lymphocytes from the buffy coat samples were suspended in RPMI 1640 plus 10% fetal calf serum and incubated at 37°C. Viability was determined by the ability of cells to exclude 0.5% trypan blue. Viability was assessed every 24 for 96 hours after photoirradiation and compared with the 24-96 hour viabilities of the unirradiated buffy coat lymphocytes which were similarly handled.
- lymphocytes were centrifuged to form a pellet and then processed in triplicate samples according to the fluorometric method of Birnboim and Jevcak (1981) .
- the percentage of double-stranded DNA remaining (% D) of the first (control) specimen was corrected to 100 and the % D value obtained for the second specimen was expressed as a percentage of this.
- the increase in DNA SSBs was calculated by subtracting the % D value from 100.
- the .in vitro processing of lymphocytes from normal human donors and their exposure to 8-MOP did not affect cellular viability; viability was unimpaired at the time of measuring DNA damage.
- lymphocytes were centrifuged to form a pellet, extracted with ice-cold perchloric acid and their NAD and ATP content were measured by HPLC as previously described (Crescentini and Stocchi, 1984) .
- the lymphocytes obtained from the unirradiated buffy coat specimen were regarded as having normal (control) NAD and ATP content and the nucleotide content of the lymphocytes from the second specimen was calculated as a percentage of this control value.
- Fresh human peripheral lymphocytes were obtained by venesection or from normal human volunteers' buffy coat specimens (Victorian Red Cross Blood Bank) which were available within 1 hour of leukapheresis.
- the 40 ml buffy coat specimen was overlaid onto 5-10 ml of Ficoll-Hypaque and spun at 450g for 25 minutes. Two washes in phosphate-buffered saline were followed by suspension in RPMI 1640 plus 10% fetal calf serum and antibiotics.
- UV irradiation of lymphocytes or splenocytes UV irradiation of lymphocytes or splenocytes:
- UV irradiation cells were suspended in culture medium at about 5 x 10 5 cells/ml. 8-MOP was freshly made up from stock solutions (1 mg/ml) and was added to cells shielded from the light for at least 15 minutes before photoirradiation. 5-10 ml aliquots of cell suspension were irradiated in 25 cm 2 plastic tissue culture flasks (Costar, Cambridge, MA, USA) with a Therakos research light box which contained a Photosette-R UVA light assembly mimicking the therapeutic equipment used for humans. Two banks of 6 lamps were located behind windows of transparent glass 10 cm apart. The lamps were operated at the maximum power setting (ten) for at least 10 minutes before experiments. The CSIRO National Measurement Laboratory of Australia calibrated the machine; a 32 second exposure was equivalent to 1 J/cm 2 of energy. The centre of the panel exclusively was used for UV irradiation.
- Serum 8-MOP levels were measured according to the HPLC method of Puglisi et al (1977) . Blood samples were taken from all patients at hourly intervals during the period of photopheresis, so the peak 8-MOP level and its timing could be determined.
- Non-obese diabetic mice are non-obese diabetic mice.
- the non-obese diabetic (NOD) mouse is a model of type I diabetes (Makino et al, 1980; Baxter et al 1990) .
- a lymphocytic insulitis causes beta cell destruction with consequent hypoinsulinemia and hyperglycemia.
- NOD/WEHI mice have insulitis, but only a small proportion of susceptible mice (10% females and ⁇ l% males) spontaneously develop diabetes by 150 days of age. It is hypothesized that active suppression mechanisms prevent the progression from insulitis to diabetes.
- CP usually an immunosuppressive agent
- NOD/WEHI mice a dose of 300-350 mg/kg increases the incidence of diabetes to nearly 70% within 21 days.
- the transfer of syngeneic mononuclear cells from prediabetic mice prevents CP-induced diabetes; the same cells from diabetic mice do not affect the incidence of diabetes.
- CP has an immunological mechanism of action; it does not directly damage beta cells, nor does it cause diabetes in any of several other strains of mice not prone to develop diabetes.
- mice were maintained in specific pathogen-free conditions before being placed in an open animal room where they were fed commercial food pellets and water ad libitum. All mice were maintained on racks in the same room, with a 12 hour/12 hour light and dark cycle in a constant temperature of 21°C. Overtly unwell mice or mice with evidence of diabetes before treatment were excluded from experiments. CP was freshly dissolved in mouse cell isotonic buffered balanced salt solution (BSS) and injected intraperitoneally into 100-120 day old female mice on day 1 at a dose of 350 mg/kg. This treatment causes diabetes in about 60% of mice 14 days later.
- BSS mouse cell isotonic buffered balanced salt solution
- mice Before entry into the study, recipient mice had to be shown to have a random plasma glucose of ⁇ 12 mM. Diabetes was defined as a random plasma glucose of 15 mM or more. Although the incidence of spontaneous diabetes at 90-120 days of age is low ( ⁇ 5%) , in relatively small treatment groups it could be significant; pretreatment glucose measurements eliminated this possibility.
- mice Syngeneic mouse splenocytes were obtained from diabetic mice of approximately 110 days of age, 14 days after they had been given CP. Mice were killed by exposure to C0 2 and their spleens removed aseptically and placed in ice-cold BSS. The spleen was then processed by routine methods. Splenocytes were suspended in 0.156 M ammonium chloride, 0.1 mM EDTA and 12 mM sodium bicarbonate, pH 7.3, (a red cell lysis buffer) and left on ice for 5 minutes before resuspension in Dulbecco's modified Eagle medium with 5% fetal calf serum. One spleen yielded approximately 10 8 cells whose viability exceeded 80% by trypan blue exclusion. Culture of mouse splenocytes and exposure to DNA-damaging agents:
- Cells were washed and suspended in Dulbecco's modified Eagle medium with 5% fetal calf serum at a density of 10 6 /ml before exposure, and the cytotoxic drugs were directly added. Cells were then washed in BSS and resuspended in 0.2 ml of this before injection into mice. During cytotoxic exposure, cells were maintained at 37°C in humidified conditions with 7% C0 2 /93% air.
- Plasma glucose estimations were made with a modified glucose oxidase technique on an autoanalyzer (Beckman Glucose Analyzer 2, Fullerton, CA, USA) .
- cells were washed twice in RPMI 1640, and then pelleted (200g, 5 minutes) .
- Cell specimens were fixed in 1% glutaraldehyde in 0.1 M sodium cacodylate, resuspended in 1:1 horse serum:saline for 2 hours (4°C) , then stained with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer.
- Each slide had several cell clumps taken from different areas in the pellet; cells were scored in several areas in order to avoid possible biases after centrifugation due to the differential density of cells. At least five hundred cells were counted per specimen.
- Dulbecco's modified Eagle medium and Earle's basic salt solution were from Flow Laboratories (North Ryde, Sydney, Australia) .
- 8-MOP, dAdo and mitomycin C were from Sigma (St Louis, MO) and cyclophosphamide was from Farmitalia Carlo Erba (Hawthorn, Victoria, Australia) .
- Deoxycoformycin was a gift from Parke-Davis (Morris Plains, NJ) and mafosfamide (Asta Z 7654) was from Asta Werke (Bielefeld, Germany) .
- Aqueous lqiuid scintillant and 3 H- NAD(3Ci/mmol) were from Amersham (Bucks, U.K.). All other chemicals were from BDH (Kilsyth, Victoria, Australia) .
- Examples 1 and 2 are comparative examples designed to investigate the mechanism whereby ECPC exerts its effect.
- the mean maximum decrease in skin score was 41% (range
- DNA damage was assessed. Although other forms of DNA damage may have bee induced by the UVA/8-MOP, DNA single strand breaks were assayed by the fluorometric technique. DNA damage was assessed in samples of buffy coat lymphocytes after photoirradiation, just before reinfusion into the patient. The viability of photoirradiated cells at the time of measuring DNA SSBs was the same as that of non- photoirradiated control cells (85%) . The control % double stranded DNA remaining (% D) value for non-photoirradiated lymphocytes was corrected to 100% and the treated lymphocyte sample expressed as a percentage of this.
- the absolute control % D value for the patients' cells (and for normal PBL) was 79 (range 60 to 97) . All samples assessed had a marked increase in DNA SSBs (Table 1) , but the extent of damage varied considerably between different patients, ranging from 9 to 60%. DNA damage was assessed twice in all patients except number 3. There was less than 15% variation between readings from samples at different time points; only the mean is stated. There was no correlation between the number of malignant cells and the percentage of DNA SSBs.
- DNA SSBs were measured immediately after photoirradiation by the fluorometric unwinding method 20 (see methods) .
- the mean peak level was 168 ng/ml and occurred at an average of 2 hours after ingestion. Peak serum 8-MOP levels did not correlate with clinical response, in vitro lymphocytotoxicity or with any of the biochemical parameters associated with cell death.
- Samples were taken from patients' buffy coat collections before (control) and after photoirradiation, placed in RPMI 1640 plus 10% fetal calf serum, and trypan blue viability measured for the next 96 hours. The results shown represent the mean of nine patient samples from four patients. The mean control cell viability after exposure to 8-MOP and processing was 85%. Many cytotoxic agents that are thought to mediate t h eir cytotoxic effect via poly (ADP-ribosyl)ation have t h eir cytotoxicity reduced (or completely eliminated) by t h e a dd ition of specific poly (ADP-ribose) synthetase inhibitors.
- the DNA damage for a range of UVA light doses ( 1-5 J/cm 2 ) was studied 2 hours after irradiation (figure 3) .
- the DNA damaging effect of UVA light on PBL was potentiated by the addition of 8-MOP.
- the extent of this potentiating effect was dependent on the dose of UVA light and the timing of the assay.
- Edelson et al ( 1 98 7) reported that the dose of UVA light delivered to their patients' buffy coat lymphocytes was 1-2 J/cm 2 ; we have shown that in vitro this was the dose where 8-MOP maximally potentiated the DNA damage caused by UVA light.
- UVA/8-MOP-associated DNA damage is associated with adenine nucleotide depletion; our results also suggest that stimulation of poly (ADP-ribosyl)ation and consequent nucleotide depletion are involved in the lymphocytotoxic effect of photoactivated psoralens.
- Photoirradiation in the presence of 8-MOP caused significantly elevated levels of poly (ADP-ribose) synthetase activity.
- elevated enzyme activity levels were only found at high doses (10 J/cm 2 ) of UVA light. This may be due to the insensitivity of the assay or may reflect the transient nature of the rise in enzyme activity.
- Deoxycoformycin and deoxyadenosine lymphocyto ⁇ toxicity has been previously shown to be associated with DNA damage and adenine nucleotide depletion, this is thought to be secondary to stimulation of poly
- Example 4 Sensitivity of NOD/WEHI mouse splenocytes to UVA light and 8-methoxypsoralen.
- Freshly harvested mouse splenocytes were exposed to UVA light with or without 100 ng/ml 8-MOP and the -viability measured by trypan blue exclusion. 1 J/cm 2 UVA in the presence of 100 ng/ml 8-MOP caused 100% cell death in 48 hours ( igure 1A) .
- mice splenocytes The doses of cytotoxic drugs that reproduced the rate of decline in viability caused by exposing mouse splenocytes to 1 J/cm 2 UVA in the presence of 100 ng/ml 8-MOP were identified. Mouse splenocytes were found to be highly sensitive to low doses of cytotoxic agents.
- Control mouse splenocytes contained 12.4% apoptotic cells: the process of cell harvesting and incubation caused a degree of cell damage.
- Apoptotic cells were identified by the crescentic argination of their nuclear material to the periphery of the nucleus. The size of apoptotic cells appeared reduced, but the plasma membrane remained intact.
- mice were given 350 mg/kg intraperitoneal CP. Retroorbital venous blood was sampled between 14 and 18 days later, and the plasma glucose measured. Recipient mice were divided into 5 groups, of which two were control groups. One of the control groups was given no further treatment, in order to determine the control incidence of CP-induced diabetes; the other was given untreated mouse splenocytes. Untreated cells were
- mice received mouse splenocytes treated with 1 J/cm 2 UVA, 1 J/cm 2 UVA plus 100 ng/ml 8-MOP, or a 4 hour exposure to 1 ⁇ M dCF and 10 ⁇ M dAdo respectively.
- Mouse splenocytes were injected immediately after cytotoxic exposure.
- mice There were 139 evaluable mice. Groups were well matched except group E (dCF/dAdo) mice, who received fewer cells than the other 4 groups. There were only small differences between the groups with respect to the ages and initial plasma glucoses of recipient mice. These results are summarized in Table 3.
- mice received 350 mg/kg CP intraperitoneally on day 1.
- Splenocytes were injected intravenously at 8, 24 and 48 hours.
- mice A small number of mice (11/139, 8%) died before the 14-18 day plasma glucose could be measured (Table 3) . Mice were examined daily, and overtly unwell mice had their glucose measured. Our previous experience has shown that CP 350 mg/kg is associated with a low but definite mortality rate. These mice did not reach the defined endpoint, and have been excluded from further analysis. No treatment group had significantly more deaths.
- mice who developed diabetes in the control (no further treatment) group is consistent with previous reports (Charlton et al, 1989) .
- the incidence (48%) in the group that received untreated cells was not significantly less (p>0.05).
- the infusion of UVA/8-MOP-treated splenocytes reduced the incidence to 10% at 14-18 days (p ⁇ 0.01). Further glucose measurements at 21 and 28 days showed that diabetes was prevented, and not just delayed.
- the UVA-only-treated splenocyte group had more diabetes (4/15, 27%), but this was not statistically significantly different to the incidence in the UVA/8-MOP group (2/20, 10%, p>0.10).
- mice There were 23 mice in the dCF/dAdo-treated splenocyte group; all were evaluable. This treatment reduced the incidence of diabetes to 14% (p ⁇ 0.01), and appeared to have the same efficacy as UVA/8-MOP (p>0.50). It is noteworthy that this group actually received fewer splenocytes than the other treatment groups.
- Fluorometric method for rapid detection of DNA strand breaks in human white blood cells produced by low doses of radiation.
- Makino S. K.Kunimoto, T.Muraoka, Y.Mizushima, K.Katagiri, and Y.Tochino. Breeding of a non-obese diabetic strain of mice. Exp. Anim. (Tokyo) 1980, 29:1-13.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Gastroenterology & Hepatology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
L'invention concerne une préparation pharmaceutique qui modifie de façon spécifique la réponse immunitaire d'un mammifère, comprenant des leucocytes mononucléaires dudit mammifère qui ont été traités par incubation extracorporelle au moyen d'un agent provoquant des lésions irréversibles dans les cellules ou les tuant. L'invention concerne également une composition pharmaceutique et un procédé de traitement d'un état d'origine immunologique ou d'un cancer, ainsi qu'un procédé de préparation de ladite préparation pharmaceutique de l'invention.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPK373790 | 1990-12-06 | ||
AUPK3737 | 1990-12-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992010198A1 true WO1992010198A1 (fr) | 1992-06-25 |
Family
ID=3775124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1991/000563 WO1992010198A1 (fr) | 1990-12-06 | 1991-12-05 | Agents, compositions et procedes immunotherapeutiques |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1992010198A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997017079A1 (fr) * | 1995-11-08 | 1997-05-15 | Emory University | Procede de transplantation de cellules souches hematopoietiques allogeniques sans echec de greffe, et n'entrainant pas de maladie opposant le greffon a l'hote |
WO1998007436A1 (fr) * | 1996-08-22 | 1998-02-26 | Vasogen Inc. | Traitement des maladies auto-immunes |
US5773607A (en) * | 1991-11-14 | 1998-06-30 | Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai | Processes for preparing 2'-deoxy-2'-fluorocoformycin and stereoisomers thereof |
US6213127B1 (en) | 1996-07-29 | 2001-04-10 | Emory University | Methods for treating cancer using allogeneic lymphocytes without graft vs host disease activity |
WO2001026605A3 (fr) * | 1999-10-11 | 2002-06-27 | Fujisawa Pharmaceutical Co | Composition immunosuppressive |
US6669965B2 (en) | 1992-02-07 | 2003-12-30 | Vasogen Ireland Limited | Method of treating atherosclerosis |
AT502055B1 (de) * | 2005-06-21 | 2007-11-15 | Univ Wien Med | Anti tumor medikament |
CN117137932A (zh) * | 2023-10-18 | 2023-12-01 | 中国中医科学院中药研究所 | 一种用于肿瘤的中药复方制剂及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2012584A (en) * | 1978-01-19 | 1979-08-01 | Jaeger K H | Process for the manufacture from cells of an immunological active substance complex which acts against malignant growth |
GB2048069A (en) * | 1979-05-10 | 1980-12-10 | Limburg H | Medicinal Preparations for Treating Carcinomas |
US4428744A (en) * | 1979-12-11 | 1984-01-31 | Frederic A. Bourke, Jr. | Method and system for externally treating the blood |
US4844893A (en) * | 1986-10-07 | 1989-07-04 | Scripps Clinic And Research Foundation | EX vivo effector cell activation for target cell killing |
-
1991
- 1991-12-05 WO PCT/AU1991/000563 patent/WO1992010198A1/fr unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2012584A (en) * | 1978-01-19 | 1979-08-01 | Jaeger K H | Process for the manufacture from cells of an immunological active substance complex which acts against malignant growth |
GB2048069A (en) * | 1979-05-10 | 1980-12-10 | Limburg H | Medicinal Preparations for Treating Carcinomas |
US4428744A (en) * | 1979-12-11 | 1984-01-31 | Frederic A. Bourke, Jr. | Method and system for externally treating the blood |
US4844893A (en) * | 1986-10-07 | 1989-07-04 | Scripps Clinic And Research Foundation | EX vivo effector cell activation for target cell killing |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5886167A (en) * | 1991-11-01 | 1999-03-23 | Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai | 2'-deoxy-2'-epi-2'-fluorocoformycin |
US5773607A (en) * | 1991-11-14 | 1998-06-30 | Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai | Processes for preparing 2'-deoxy-2'-fluorocoformycin and stereoisomers thereof |
US6669965B2 (en) | 1992-02-07 | 2003-12-30 | Vasogen Ireland Limited | Method of treating atherosclerosis |
US6569467B1 (en) | 1992-02-07 | 2003-05-27 | Vasogen Ireland Limited | Treatment of autoimmune diseases |
US5800539A (en) * | 1995-11-08 | 1998-09-01 | Emory University | Method of allogeneic hematopoietic stem cell transplantation without graft failure or graft vs. host disease |
WO1997017079A1 (fr) * | 1995-11-08 | 1997-05-15 | Emory University | Procede de transplantation de cellules souches hematopoietiques allogeniques sans echec de greffe, et n'entrainant pas de maladie opposant le greffon a l'hote |
US6213127B1 (en) | 1996-07-29 | 2001-04-10 | Emory University | Methods for treating cancer using allogeneic lymphocytes without graft vs host disease activity |
WO1998007436A1 (fr) * | 1996-08-22 | 1998-02-26 | Vasogen Inc. | Traitement des maladies auto-immunes |
WO2001026605A3 (fr) * | 1999-10-11 | 2002-06-27 | Fujisawa Pharmaceutical Co | Composition immunosuppressive |
AT502055B1 (de) * | 2005-06-21 | 2007-11-15 | Univ Wien Med | Anti tumor medikament |
US7981878B2 (en) | 2005-06-21 | 2011-07-19 | Medizinische Universitat Wien | Tumor treatment with gliotoxin derivatives |
CN117137932A (zh) * | 2023-10-18 | 2023-12-01 | 中国中医科学院中药研究所 | 一种用于肿瘤的中药复方制剂及其应用 |
CN117137932B (zh) * | 2023-10-18 | 2024-04-19 | 中国中医科学院中药研究所 | 一种用于肿瘤的中药复方制剂及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suthanthiran et al. | Hydroxyl radical scavengers inhibit human natural killer cell activity | |
Srinivasan et al. | Radioprotection by vitamin E: injectable vitamin E administered alone or with WR-3689 enhances survival of irradiated mice | |
US6239114B1 (en) | Compositions and methods for treatment of neoplastic diseases with combinations of limonoids, flavonoids and tocotrienols | |
Marks et al. | Mechanisms of lymphocytotoxicity induced by extracorporeal photochemotherapy for cutaneous T cell lymphoma. | |
Górski et al. | Immunomodulating activity of heparin | |
Mahoney et al. | Macrophage functions in beige (Chediak-Higashi syndrome) mice | |
Viora et al. | Interference with cell cycle progression and induction of apoptosis by dideoxynucleoside analogs | |
Luo et al. | Effects of cannabinoids and cocaine on the mitogen-induced transformations of lymphocytes of human and mouse origins | |
WO1992010198A1 (fr) | Agents, compositions et procedes immunotherapeutiques | |
Myers et al. | Relationships between tumour necrosis factor, eicosanoids and platelet-activating factor as mediators of endotoxin-induced shock in mice | |
Levitt et al. | Phase I study of gemcitabine given weekly as a short infusion for non-small cell lung cancer: results and possible immune system-related mechanisms | |
Lawrence et al. | AMSA-A Promising New Agent in Refractory Acute Leukemia 1, 2, 3 | |
Poydock et al. | Inhibiting effect of vitamins C and B12 on the mitotic activity of ascites tumors | |
Weltin et al. | N-acetylcysteine protects lymphocytes from nitrogen mustard-induced apoptosis | |
Dularay et al. | Enhanced oxidative response of polymorphonuclear leukocytes from synovial fluids of patients with rheumatoid arthritis | |
Miura et al. | Induction of apoptosis with fusarenon-X in mouse thymocytes | |
Pinegin et al. | Experimental immunology The effect of polyoxidonium on the phagocytic activity of human peripheral blood leukocytes | |
Kakizaki et al. | Effect of alpha-tocopherol on hepatocarcinogenesis in transforming growth factor-alpha (TGF-alpha) transgenic mice treated with diethylnitrosamine | |
Yamauchi et al. | Inhibitory effect of sarcophytol A on development of spontaneous hepatomas in mice | |
Östraat et al. | Thalidomide prolonged graft survival in a rat cardiac transplant model but had no inhibitory effect on lymphocyte function in vitro | |
Grant et al. | Effect of uridine on response of 5-azacytidine-resistant human leukemic cells to inhibitors of de novo pyrimidine synthesis | |
US20070161704A1 (en) | Pharmaceutical composition useful for treating chronic myeloid leukemia | |
Ruiz-Argüelles et al. | In vitro effect of cimetidine on human cell-mediated cytotoxicity: I. Inhibition of natural killer cell activity | |
Sartorelli et al. | Antineoplastic activity of combinations of 6-chloropurine and azaserine | |
Elvin et al. | Anti-tumour activity of novel adducts of ascorbic acid with aldehydes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE |
|
NENP | Non-entry into the national phase |
Ref country code: CA |