WO1992009651A1 - Polycyanoacrylate foam - Google Patents
Polycyanoacrylate foam Download PDFInfo
- Publication number
- WO1992009651A1 WO1992009651A1 PCT/GB1991/002121 GB9102121W WO9209651A1 WO 1992009651 A1 WO1992009651 A1 WO 1992009651A1 GB 9102121 W GB9102121 W GB 9102121W WO 9209651 A1 WO9209651 A1 WO 9209651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- monomer
- foam
- cyanoacrylate
- foaming agent
- Prior art date
Links
- 239000006260 foam Substances 0.000 title claims abstract description 57
- 229920002721 polycyanoacrylate Polymers 0.000 title claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 80
- 239000000178 monomer Substances 0.000 claims abstract description 58
- 239000004088 foaming agent Substances 0.000 claims abstract description 47
- 229920001651 Cyanoacrylate Polymers 0.000 claims abstract description 43
- -1 2-cyanoacrylate ester Chemical class 0.000 claims abstract description 42
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 claims abstract description 42
- 239000003999 initiator Substances 0.000 claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 18
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 238000009835 boiling Methods 0.000 claims abstract description 7
- 229920000642 polymer Polymers 0.000 claims abstract description 5
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 15
- 238000010539 anionic addition polymerization reaction Methods 0.000 claims description 14
- 239000003112 inhibitor Substances 0.000 claims description 13
- 239000003505 polymerization initiator Substances 0.000 claims description 12
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 claims description 11
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical group CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 10
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 claims description 8
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 6
- 125000003342 alkenyl group Chemical group 0.000 claims description 6
- 238000010526 radical polymerization reaction Methods 0.000 claims description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 6
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 claims description 5
- MHKLKWCYGIBEQF-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-ylsulfanyl)morpholine Chemical compound C1COCCN1SC1=NC2=CC=CC=C2S1 MHKLKWCYGIBEQF-UHFFFAOYSA-N 0.000 claims description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 claims description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 claims description 4
- 125000000304 alkynyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 claims description 4
- MXHTZQSKTCCMFG-UHFFFAOYSA-N n,n-dibenzyl-1-phenylmethanamine Chemical compound C=1C=CC=CC=1CN(CC=1C=CC=CC=1)CC1=CC=CC=C1 MXHTZQSKTCCMFG-UHFFFAOYSA-N 0.000 claims description 4
- 239000003208 petroleum Substances 0.000 claims description 4
- 125000003884 phenylalkyl group Chemical group 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 4
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 4
- 239000002562 thickening agent Substances 0.000 claims description 4
- 239000002781 deodorant agent Substances 0.000 claims description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 3
- 239000004014 plasticizer Substances 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 125000001424 substituent group Chemical group 0.000 claims description 3
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 claims description 2
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 claims description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 claims description 2
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical compound CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 claims description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- QRBVCAWHUSTDOT-UHFFFAOYSA-N Methyridine Chemical compound COCCC1=CC=CC=N1 QRBVCAWHUSTDOT-UHFFFAOYSA-N 0.000 claims description 2
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims description 2
- 125000005081 alkoxyalkoxyalkyl group Chemical group 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 150000003927 aminopyridines Chemical class 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- USBHFGNOYVOTON-UHFFFAOYSA-K bis(dimethylcarbamothioylsulfanyl)bismuthanyl n,n-dimethylcarbamodithioate Chemical compound [Bi+3].CN(C)C([S-])=S.CN(C)C([S-])=S.CN(C)C([S-])=S USBHFGNOYVOTON-UHFFFAOYSA-K 0.000 claims description 2
- 230000000903 blocking effect Effects 0.000 claims description 2
- 210000004204 blood vessel Anatomy 0.000 claims description 2
- VTJUKNSKBAOEHE-UHFFFAOYSA-N calixarene Chemical compound COC(=O)COC1=C(CC=2C(=C(CC=3C(=C(C4)C=C(C=3)C(C)(C)C)OCC(=O)OC)C=C(C=2)C(C)(C)C)OCC(=O)OC)C=C(C(C)(C)C)C=C1CC1=C(OCC(=O)OC)C4=CC(C(C)(C)C)=C1 VTJUKNSKBAOEHE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 claims description 2
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 claims description 2
- 229920001971 elastomer Polymers 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- CWOMTHDOJCARBY-UHFFFAOYSA-N n,n,3-trimethylaniline Chemical compound CN(C)C1=CC=CC(C)=C1 CWOMTHDOJCARBY-UHFFFAOYSA-N 0.000 claims description 2
- FPPYFDBIUGVMNA-UHFFFAOYSA-N n,n-diethyl-3-phenylpropan-1-amine Chemical compound CCN(CC)CCCC1=CC=CC=C1 FPPYFDBIUGVMNA-UHFFFAOYSA-N 0.000 claims description 2
- 210000003101 oviduct Anatomy 0.000 claims description 2
- 229960004624 perflexane Drugs 0.000 claims description 2
- LGUZHRODIJCVOC-UHFFFAOYSA-N perfluoroheptane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F LGUZHRODIJCVOC-UHFFFAOYSA-N 0.000 claims description 2
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 229920000075 poly(4-vinylpyridine) Polymers 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 239000005060 rubber Substances 0.000 claims description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 2
- 238000001356 surgical procedure Methods 0.000 claims description 2
- 241001465754 Metazoa Species 0.000 claims 3
- 125000005037 alkyl phenyl group Chemical group 0.000 claims 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 claims 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims 1
- 125000005119 alkyl cycloalkyl group Chemical group 0.000 claims 1
- 125000000392 cycloalkenyl group Chemical group 0.000 claims 1
- 125000001316 cycloalkyl alkyl group Chemical group 0.000 claims 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 claims 1
- 239000007858 starting material Substances 0.000 claims 1
- 238000002560 therapeutic procedure Methods 0.000 claims 1
- 239000013008 thixotropic agent Substances 0.000 claims 1
- 239000012745 toughening agent Substances 0.000 claims 1
- 238000005187 foaming Methods 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 6
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical class OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 150000003460 sulfonic acids Chemical class 0.000 description 2
- 150000008053 sultones Chemical class 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- RXJKFRMDXUJTEX-UHFFFAOYSA-N triethylphosphine Chemical compound CCP(CC)CC RXJKFRMDXUJTEX-UHFFFAOYSA-N 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 125000001340 2-chloroethyl group Chemical group [H]C([H])(Cl)C([H])([H])* 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical compound CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 125000005595 acetylacetonate group Chemical group 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- FGNLEIGUMSBZQP-UHFFFAOYSA-N cadaverine dihydrochloride Chemical compound Cl.Cl.NCCCCCN FGNLEIGUMSBZQP-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000000853 cresyl group Chemical group C1(=CC=C(C=C1)C)* 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- JJJFUHOGVZWXNQ-UHFFFAOYSA-N enbucrilate Chemical compound CCCCOC(=O)C(=C)C#N JJJFUHOGVZWXNQ-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 229940073584 methylene chloride Drugs 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- JDEJGVSZUIJWBM-UHFFFAOYSA-N n,n,2-trimethylaniline Chemical compound CN(C)C1=CC=CC=C1C JDEJGVSZUIJWBM-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- ITCZEZQMUWEPQP-UHFFFAOYSA-N prop-2-enyl 2-cyanoprop-2-enoate Chemical compound C=CCOC(=O)C(=C)C#N ITCZEZQMUWEPQP-UHFFFAOYSA-N 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/14—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
Definitions
- This invention relates to a foam forming cyanoacrylate composition.
- the present invention provides cyanoacrylate based composition, comprising a cyanoacrylate monomer, a liquid foaming agent and a cyanoacrylate polymerization initiator.
- composition Upon or after formation of the composition it polymerizes to produce expanded polycyanoacrylate foam.
- the composition can also optionally contain other reactive monomers, as well as modifiers and additives such as polymeric thickeners, plasticizers, thixotrcpic agents, compatibilizers, pigments and colourants, fillers, deodorants and perfumes, for example.
- the invention provides a method of creating a polycyanoacrylate foam and the foam itself.
- the cyanoacrylate monomers used in the composition of the invention are 2-cyanoacrylate esters of the formula
- R represents an ester-forming group.
- R can be any ester-forming group compatible with the monomer and with foam formation.
- the group R should not initiate autopolymerization of the monomer or prevent polymerization of the composition described above.
- R should also desirably be selected to provide a foam with the desired properties.
- R represents alkyl, alkenyl, alkynyl, aryl or an aromatic heterocyclic radical.
- R may also be one of the foregoing moieties substituted with one or more other of the moieties; this includes the case of a substituent itself being substituted.
- Group R may contain other compatible substituents, for example alkoxy, alkoxyalkoxy, carbalkoxyalkyl or halogen.
- R can be any moiety which does not contain a sufficiently nucleophilic group to initiate polymerization or sufficiently electrophilic group to interfere with polymerization.
- the alkyl or alkenyl moiety may be cyclic and normally R contains from 1 to 16 carbon atoms and often is a 1C, 2C, 3C, 4C, 5C, 6C, 7C or 8C group, more usually it is a 1C-6C group.
- R contains from 1 to 16 carbon atoms and often is a 1C, 2C, 3C, 4C, 5C, 6C, 7C or 8C group, more usually it is a 1C-6C group.
- moieties containing a heterocycle heteroatom ring members are normally counted as a carbon atom.
- R is alkyl, halogenated alkyl, alkenyl, alkynyl, phenyl, halogenated phenyl, phenylalkyl, halogenated phenylalkyl, alkoxyalkyl, alkoxyalkoxyalkyl, carbalkoxymethyl or alkylideneglyceryl, wherein the terms "alkyl” and "alkenyl” include the corresponding cyclic radicals.
- Uninterrupted carbon chains preferably contain 1, 2 or 3 carbon atoms.
- R are methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, pentyl, hexyl, trifluoroethyl, 2-chloroethyl, 3-chloropropyl, 2-chlorobutyl, cyclohexyl, tertiary butylcyclohexyl, benzyl, phenyl, cresyl, allyl, crotyl, methallyl, propargyl, furfuryl, 2-methoxyethyl, 2-ethoxyethyl, 2-methoxyisopropyl, 2-(2'-ethoxy)-ethoxymethyl, 2-(2'-ethoxy)-ethoxyethyl, 2-(2'-ethoxy)-ethoxybutyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, isopropoxycarbonylmethyl, isoprop
- a mixture of two or more cyanoacrylate monomers may be used.
- cyanoacrylate monomers are stabilized with anionic and free-radical polymerization inhibitors.
- Anionic polymerization inhibitors known in the art are soluble acidic gases (for example sulfur dioxide), hyrogen fluoride, phosphonic, carboxylic and organic sulfonic acids. sultones, BF 3 and its complexes and phosphazenes, for example.
- the free-radical polymerization inhibitors are usually hydroquinone, p-methoxyphenol or t-butyl catechol, for example.
- the inhibitors are normally used in small amounts of from 0.00001 to 1% by weight of the monomer.
- the preferred quantities for the above-mentioned inhibitors are: acidic gases - from 0.001% to 0.06%; acids - from 0.0005% to 0.01%; sultones - from 0.01% to 0.1%; BF 3 - from 0.0001% to 0.01%; phosphazenes - from 0.0001% to 0.001%; free-radical inhibitors - from 0.001% to 1%.
- the foregoing percentages are percentages by weight of the cyanoacrylate monomer. It should be noted that the quantity of inhibitor will influence the onset of polymerization of the composition of the present invention and could be used as a means to control the time interval between the formation of the composition and its transformation into a polymeric cyanoacrylate foam.
- the liquid foaming agent used in the composition of the present invention can be any organic compound with a boiling point preferably not higher than 100°C.
- the liquid foaming agent used can be a single compound or a mixture thereof.
- it will be soluble or semi-soluble in the cyanoacrylate monomer and will not act as a solvent for the corresponding polycyanoacrylate.
- its solubility parameter should be below 9.
- it is a non-polar liquid.
- Solubility parameter is a quantity used to predict the solubility of solutes and solvents and is explained in the "CRC Handbook of Chemistry and Physics", published by CRC Press Inc. of Boca Raton, Florida, USA see for example page C-676 of the 67th Edition (1986-87). The CRC Handbook also contains lists of solubility parameter values.
- foaming agents are pentane, hexane, heptane, 1,1,2-trichlorotriflouroethane, 1,1,1-trichlorotrifluoroethane, petroleum ether, diethyl ether, cyclopentane, cyclohexane, benzene, carbon tetrachloride, chloroform, methylcyclopentane, dimethylsulfide, 1,1-dichlororethane,
- the above-mentioned compounds are only representative and do not limit the compounds that can be used as liquid blowing agents. It was found that even very polar liquids like ethanol and methanol or liquids which are typical solvents for polycyanoacrylates, like acetone, 2-butanone and acetonitrile, can be used as foaming agents.
- volume ratio of cyanoacrylate monomer to foaming agent is not critical but is preferably from 1:10 to 20:1, more preferably from 1:2 to 5:1, especially from 1:1 to 4:1.
- the cyanoacrylate polymerization initiator used in the composition of the present invention may comprise any of the known initiators and accelerators of the anionic polymerization of cyanoacrylate monomers, for example.
- the anionic initiator can be used singly or in admixture with one or more other initiators.
- anionic initiators are pyridine, aminopyridine, vinylpyridine, methoxyethylpyridine, piperidine, picoline, lutidine, N,N-dimethyl-p-toluidine, N,N-dimethyl-o-toluidine, N,N-dimethyl-m-toluidine, triphenylphosphine, triethylphosphine, tribenzylamine, triethylamine, benzyldimethylamine, diethylenetriamine, benzyltriethylamine, tribenzylamine, poly(4-vinylpyridine), calixarenes, tertiary amine-SO, complexes, polyethyleneglycol, phenolformaldehyde resins, vinylimidazole, triethanolaminatotitanium, aminosilanes, phosphites, metal acetylacetonates, N-(oxydiethylene) benzothiazole-2-sulfen
- anionic polymerization initiators are N,N-dimethyl-p-toluidine and N-(oxydiethylene) benzothiazole-2-sulfenamide.
- the above-mentioned compounds are only representative and do not restrict the scope of suitable initiators.
- any of the anionic polymerization initiators known in the art for cyanoacrylate monomers or accelerators of their anionic polymerization can successfully be used in the compositions of the present invention.
- free-radical polymerization initiators such as methylethylketone peroxide, cyclohexane peroxide, cumene hydroperoxide or dibenzoyl peroxide, for example, can be used in conjunction with the anionic polymerization initiator.
- additives can be introduced into the composition. They can be, for example, any of the known polymeric thickeners and viscosity regulators, rubbers, plasticizers and tougheners, compatibilizers, thioxtropic agents, colourants, deodorants or perfumes, for example, used in cyanoacrylate adhesives.
- the composition may also contain other monomers containing a reactive double bond, for example (di)acrylates or (di)methacrylates, or reactive resins or oligomers, e.g. epoxy or urethane, in minor amounts, e.g. up to 25 mole % of the total monomer content and more preferably in an amount of no more than 5 or 10 mole %.
- monomers containing a reactive double bond for example (di)acrylates or (di)methacrylates, or reactive resins or oligomers, e.g. epoxy or urethane, in minor amounts, e.g. up to 25 mole % of the total monomer content and more preferably in an amount of no more than 5 or 10 mole %.
- polymerization of the cyanoacrylate monomer occurs. It is fast and exothermic, which leads to the simultaneous evaporation of the liquid foaming agent.
- polycyanoacrylate foam is produced.
- the expanded material can occupy a volume of as much as 40 times the volume of the original liquid composition.
- the expansion coefficient and the properties of the foam are dependent on the components used and their ratios. They are also dependent on the availabile volume for expansion.
- the formed polymeric foam is of a closed-cell type.
- a distinctive feature is that the foam is covered by a thin film of polycyanoacrylate, which resembles a polycyanoacrylate glue-line and ensures excellent adhesion of the foam to the surface(s) which it has contacted.
- the time necessary for the onset of polymerization and foaming can be regulated from seconds to minutes by varying the type and amount of anionic initiator and/or stabilizer present in the cyanoacrylate monomer or composition.
- composition of the present invention Another distinctive feature of the composition of the present invention is that it is easy to prepare, the foaming reaction takes place at room temperature and compressed gases are not required or utilized.
- foamed polycyanoacrylate Another distinctive feature of the foamed polycyanoacrylate is that it can easily be collapsed when contacted with solvents for polycyanoacrylates like acetone, acetonitrile, methylenechloride, N,N-dimethylformamide, nitromethane, butyrolactone or alkyl cyanoacetates, for example.
- solvents for polycyanoacrylates like acetone, acetonitrile, methylenechloride, N,N-dimethylformamide, nitromethane, butyrolactone or alkyl cyanoacetates, for example.
- foaming composition of the present invention and the method of obtaining polycyanoacrylate foams include two major areas, i.e. plugging of ducts, pipes and vessels and, secondly, adhesive bonding and sealing of porous substrates.
- foaming composition of the present invention temporary, permanent or semi-permanent blocking of flow of fluids in pipelines can be achieved. Gas and oil pipelines are of particular interest. Following repairs or other work on the pipeline the foam blockage can easily be collapsed by application of a suitable solvent.
- the main advantage of the material and method of the invention is the simplicity and speed of forming the foam, its high adhesion to the walls of the pipe, and the simplicity and speed of collapsing the foam.
- foaming composition of the present invention blood vessel occlusion, fallopian tube sealing or other medical or surgical procedures can be achieved.
- the above-mentioned applications are currently executed with conventional cyanoacrylates for the purpose of stopping haemorrhage and for female sterilization.
- Using the foaming composition in those cases would greatly increase the success rate of the present methods, ensuring excellent plugging capacity as a result of polymer expansion in the vessel.
- the quantity of the cyanoacrylate introduced into the body will be reduced more than tenfold, which would greatly increase the physiological safety of the procedures.
- orthopaedic casts for broken limbs can be prepared.
- the distinct advantages will be the speed and ease of preparation of the casts, their extremely low weight and sufficient rigidity, advantages specially valuable in emergency cases and military action.
- the cyanoacrylate monomer and the initiator must obviously be kept separate until it is desired to form the foaming composition, but the foaming agent may if desired be mixed with one or other (or both) of the monomer and the initiator to form a preblend.
- the binary system could include a third container containing all or part of the foaming agent, and if desired separate containers holding other components may be provided.
- Such a binary or multipart delivery system forms one aspect of the invention.
- the delivery system or kit may take the form of a syringe having an in-line static (stationary phase) mixer or of spray apparatus. In any event, it preferably includes means to mix the components prior to, or in the process of, their dispensing from the apparatus. In the case of a syringe, a thickener is preferably provided to increase the viscosity of the final composition.
- the delivery system is a two-part system, in which all the components are included in the containers holding the monomer preparation and the initiator.
- the invention includes a preblend for forming the foaming composition, comprising the monomer and a foaming agent.
- Example 1 In an open polyethylene cylindrical container with a diameter of 50 mm, 4 ml of pure, freshly distilled ethyl 2-cyanoacrylate are placed. To the cyanoacrylate is added a given amount of liquid foaming agent, containing N,N-dimethyl-p-toluidine. The contents are manually mixed for 3 seconds so that a clear solution is produced. The so formed composition is left static and the time lapse before the onset of expansion and the time interval of actual expansion is recorded. The volume of the expanded foam is measured and the coefficient of expansion is calculated as the ratio of the volume of the polycyanoacrylate foam to the volume of the cyanoacrylate monomer in the composition. The results are shown in Table 1.
- the concentration of initiator is expressed as percentage by weight based on the total composition.
- the ratio of ethyl 2-cyanoacrylate monomer to foaming agent in Table 1 was established to be the best for each pair in previous experiments.
- the results indicate that the most important factor in choosing the foaming agent is its boiling point and as can be seen the lower the boiling point the higher is the expansion which can be achieved.
- the following major consideration is the polarity and the solubility parameter of the foaming agent. Best results are produced with non-polar solvents with solubility parameters at the lower end of the scale, e.g. pentane, 1,1,2-trichlorotrifluoroethane. Foaming agents with solubility parameters at the other end of the scale and high polarity are normally unsuitable due to the formation of exceptionally brittle foams.
- Foaming agents with a solubility parameter similar to poly(ethyl 2-cyanoacrylate) and thus being good solvents for the foam, e.g. acetone, are also unsatisfactory due to immediate shrinkage and collapse of the foamed material.
- Example 2 Experiments according to the procedure described in Example 1 were carried out. Ethyl 2-cyanoacrylate was used as the cyanoacrylate monomer and 1,1,2-trichlorotrifluoroethane as the foaming agent. Different anionic polymerization initiators were evaluated. The ratio of cyanoacrylate to 1,1,2-trichlorotrifluoroethane and the concentration levels of the initiators were optimized in previous experiments. The results are presented in Table 2. Table 2
- Piperidine gives slightly longer onset times and is very smelly. Very slow onset and expansion times can be achieved with triethylphosphine and triphenylphosphine.
- Example 2 Experiments according to the procedure described in Example 1 were carried out. Ethyl 2-cyanoacrylate was used as the cyano ⁇ acrylate monomer. 1,1,2-Trichlorotrifluoroethane was used as foaming agent. Their ratio was 4:1 by volume. N,N-dimethyl-p-toluidine was used as initiator in 0.01% by weight of the composition. The cyanoacrylate monomer was stabilized with p-toluenesulfonic acid or trifluoromethanesulfonic acid. The results of the onset time of foaming are presented in Table 3.
- Example 2 Experiments according to the procedure described in Example 1 were carried out. Different types of cyanoacrylate mono-mers were used. 1,1,2-Trichlorotrifluoroethane was used as foaming agent. N,N-dimethyl-p-toluidine was used as initia ⁇ tor in amount of 0.01% by weight of the composition.
- the expansion coefficient data are shown in Table 4.
- compositions based on various cyanoacrylate monomers and 1,1,2-trichlorotrifluoroethane in a volume ratio of 4:1 and containing 0.01% by weight N,N-dimethyl-p-toluidine as initiator were injected into polyethylene tubes with an internal diameter of 12.5 mm. Seconds after the injection, the composition expanded into polycyanoacrylate foam which plugged the tubes. The walls of the tubes were carefully cut and the foamed material removed. Test pieces of the foam were cut from it and tested. The results of some physical characteristics of the foams are presented in Table 5.
- Tubes and pipes made of cast iron, stainless steel, copper, polycarbonate, polystyrene, polyvinylchloride, polypropylene and polyethylene having inside diameters from 1 mm to 100 mm were plugged with foam by injecting through a specially drilled opening a foaming composition consisting of ethyl 2 cyanoacrylate and 1,1,2-trichlorotrifluoroethane in a volume ratio of 4:1 and containing 0.01% by weight N,N-dimethyl-p-toluidine.
- the expanded foam created an efficient plug, whose adhesion to the pipe wall was higher than the strength of the foam material itself.
- the pipes were hermetically sealed by the foam plug and easily withstood pressure of 10 Atmospheres.
- acetone was injected with a syringe through the same opening used for injecting the composition, which subsequently was also plugged with foam. In 5 seconds to 2 minutes, depending on the size of the pipe, the foam collapsed and flow through the pipe was restored.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Polycyanoacrylate foam is made by mixing together a cyanoacrylate monomer, a liquid foaming agent and a polymerisation initiator. The mixture simultaneously polymerises and foams. The foaming agent is usually an organic compound with a boiling point not higher than 100 °C, miscible with the monomer but not a solvent for the polymer. The monomer may be any 2-cyanoacrylate ester compatible with the composition.
Description
POLYCYANOACRYLATE FOAM
This invention relates to a foam forming cyanoacrylate composition.
Since their commercialization in the sixties adhesives based on cyanoacrylate monomers have found wide application. Numerous compositions are known in the art. A variety of additional components are introduced into the cyanoacrylate monomer to impart thickening (US Patent No. 2,794,788) and thixotropy (US Patent No. 4,533,422) of the adhesive, toughness (WO 83/02,450), heat resistance (Japanese Patent No. 62,199,668), impact and peel-resistance (Japanese Patent No. 63,00,377), electroconductivity (WO 86/06,738) and other properties of the resultant adhesive bond.
It has now been unexpectedly found that when cyanoacrylate monomers are mixed with organic liquids and polymerization initiators the so formed composition can transform itself by simultaneous polymerization and expansion into a polycyanoacrylate foam.
The present invention provides cyanoacrylate based composition, comprising a cyanoacrylate monomer, a liquid foaming agent and a cyanoacrylate polymerization initiator.
Upon or after formation of the composition it polymerizes to produce expanded polycyanoacrylate foam. The composition can also optionally contain other reactive monomers, as well as modifiers and additives such as polymeric thickeners, plasticizers, thixotrcpic agents, compatibilizers, pigments and colourants, fillers, deodorants and perfumes, for example.
In another aspect the invention provides a method of creating a polycyanoacrylate foam and the foam itself.
The cyanoacrylate monomers used in the composition of the invention are 2-cyanoacrylate esters of the formula
wherein R represents an ester-forming group. In principle, R can be any ester-forming group compatible with the monomer and with foam formation. For example, the group R should not initiate autopolymerization of the monomer or prevent polymerization of the composition described above. R should also desirably be selected to provide a foam with the desired properties.
Preferably R represents alkyl, alkenyl, alkynyl, aryl or an aromatic heterocyclic radical. R may also be one of the foregoing moieties substituted with one or more other of the moieties; this includes the case of a substituent itself being substituted. Group R may contain other compatible substituents, for example alkoxy, alkoxyalkoxy, carbalkoxyalkyl or halogen. In general, R can be any moiety which does not contain a sufficiently nucleophilic group to initiate polymerization or sufficiently electrophilic group to interfere with polymerization. The alkyl or alkenyl moiety may be cyclic and normally R contains from 1 to 16 carbon atoms and often is a 1C, 2C, 3C, 4C, 5C, 6C, 7C or 8C group, more usually it is a 1C-6C group. In the case of
moieties containing a heterocycle, heteroatom ring members are normally counted as a carbon atom.
More preferably, R is alkyl, halogenated alkyl, alkenyl, alkynyl, phenyl, halogenated phenyl, phenylalkyl, halogenated phenylalkyl, alkoxyalkyl, alkoxyalkoxyalkyl, carbalkoxymethyl or alkylideneglyceryl, wherein the terms "alkyl" and "alkenyl" include the corresponding cyclic radicals. Uninterrupted carbon chains preferably contain 1, 2 or 3 carbon atoms.
Specific examples of R are methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, pentyl, hexyl, trifluoroethyl, 2-chloroethyl, 3-chloropropyl, 2-chlorobutyl, cyclohexyl, tertiary butylcyclohexyl, benzyl, phenyl, cresyl, allyl, crotyl, methallyl, propargyl, furfuryl, 2-methoxyethyl, 2-ethoxyethyl, 2-methoxyisopropyl, 2-(2'-ethoxy)-ethoxymethyl, 2-(2'-ethoxy)-ethoxyethyl, 2-(2'-ethoxy)-ethoxybutyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, isopropoxycarbonylmethyl, isobutoxycarbonylmethyl, isoamyloxycarbonylmethyl and 1,2-isopropylideneglyceryl. Most preferred are ethyl, n-butyl, iso-butyl, 2-methoxyethyl, 2-ethoxyethyl and 2-methoxyisopropyl cyanoacrylates.
If desired, a mixture of two or more cyanoacrylate monomers may be used.
Usually the cyanoacrylate monomers are stabilized with anionic and free-radical polymerization inhibitors. Anionic polymerization inhibitors known in the art are soluble acidic gases (for example sulfur dioxide), hyrogen fluoride, phosphonic, carboxylic and organic sulfonic acids.
sultones, BF3 and its complexes and phosphazenes, for example. The free-radical polymerization inhibitors are usually hydroquinone, p-methoxyphenol or t-butyl catechol, for example.
The inhibitors are normally used in small amounts of from 0.00001 to 1% by weight of the monomer. The preferred quantities for the above-mentioned inhibitors are: acidic gases - from 0.001% to 0.06%; acids - from 0.0005% to 0.01%; sultones - from 0.01% to 0.1%; BF3 - from 0.0001% to 0.01%; phosphazenes - from 0.0001% to 0.001%; free-radical inhibitors - from 0.001% to 1%. The foregoing percentages are percentages by weight of the cyanoacrylate monomer. It should be noted that the quantity of inhibitor will influence the onset of polymerization of the composition of the present invention and could be used as a means to control the time interval between the formation of the composition and its transformation into a polymeric cyanoacrylate foam.
The liquid foaming agent used in the composition of the present invention can be any organic compound with a boiling point preferably not higher than 100°C. The liquid foaming agent used can be a single compound or a mixture thereof. Preferably it will be soluble or semi-soluble in the cyanoacrylate monomer and will not act as a solvent for the corresponding polycyanoacrylate. Preferably its solubility parameter should be below 9. Preferably it is a non-polar liquid. Preferably it should be non-toxic, non-flammable and non-irritant.
Solubility parameter is a quantity used to predict the solubility of solutes and solvents and is explained in the "CRC Handbook of Chemistry and Physics", published by CRC Press Inc. of Boca Raton, Florida, USA see for example page C-676 of the 67th Edition (1986-87). The CRC Handbook also contains lists of solubility parameter values.
Specific examples of foaming agents are pentane, hexane, heptane, 1,1,2-trichlorotriflouroethane, 1,1,1-trichlorotrifluoroethane, petroleum ether, diethyl ether, cyclopentane, cyclohexane, benzene, carbon tetrachloride, chloroform, methylcyclopentane, dimethylsulfide, 1,1-dichlororethane,
1,1, 1-trichloroethane, perfluorohexane, perfluoroheptane, 1-bromopropane. Most preferred are pentane, hexane, 1,1,2-trichlorotriflouroethane, cyclohexane, petroleum ether and diethyl ether. The above-mentioned compounds are only representative and do not limit the compounds that can be used as liquid blowing agents. It was found that even very polar liquids like ethanol and methanol or liquids which are typical solvents for polycyanoacrylates, like acetone, 2-butanone and acetonitrile, can be used as foaming agents.
When solvents for polycyanoacrylates are used as foaming agents, they expand the foam but immediately thereafter the foam shrinks in volume or sometimes collapses. Such solvents are therefore normally unacceptable as foaming agents when used alone, but in principle can be used so long as the selected combination of solvent, polycyanoacrylate and their relative quantities do not lead to collapse of the foam. Polycyanoacrylate solvents are more acceptable when used in minor amounts with other foaming agents.
The volume ratio of cyanoacrylate monomer to foaming agent is not critical but is preferably from 1:10 to 20:1, more preferably from 1:2 to 5:1, especially from 1:1 to 4:1. The cyanoacrylate polymerization initiator used in the composition of the present invention may comprise any of the known initiators and accelerators of the anionic polymerization of cyanoacrylate monomers, for example. The anionic initiator can be used singly or in admixture with one or more other initiators.
Specific examples of anionic initiators are pyridine, aminopyridine, vinylpyridine, methoxyethylpyridine, piperidine, picoline, lutidine, N,N-dimethyl-p-toluidine, N,N-dimethyl-o-toluidine, N,N-dimethyl-m-toluidine, triphenylphosphine, triethylphosphine, tribenzylamine, triethylamine, benzyldimethylamine, diethylenetriamine, benzyltriethylamine, tribenzylamine, poly(4-vinylpyridine), calixarenes, tertiary amine-SO, complexes, polyethyleneglycol, phenolformaldehyde resins, vinylimidazole, triethanolaminatotitanium, aminosilanes, phosphites, metal acetylacetonates, N-(oxydiethylene) benzothiazole-2-sulfenamide, bismuth dimethyldithiocarbamate, as well as alcohols, bases and hydroxyl or amine group containing compounds. Most preferred anionic polymerization initiators are N,N-dimethyl-p-toluidine and N-(oxydiethylene) benzothiazole-2-sulfenamide. The above-mentioned compounds are only representative and do not restrict the scope of suitable initiators. For example any of the anionic polymerization initiators known in the
art for cyanoacrylate monomers or accelerators of their anionic polymerization can successfully be used in the compositions of the present invention. Optionally, but not necessarily, free-radical polymerization initiators such as methylethylketone peroxide, cyclohexane peroxide, cumene hydroperoxide or dibenzoyl peroxide, for example, can be used in conjunction with the anionic polymerization initiator. In order to impart desired properties to the composition of the present invention and to the properties of the resultant foam, as well as for economic considerations, further additives can be introduced into the composition. They can be, for example, any of the known polymeric thickeners and viscosity regulators, rubbers, plasticizers and tougheners, compatibilizers, thioxtropic agents, colourants, deodorants or perfumes, for example, used in cyanoacrylate adhesives.
The composition may also contain other monomers containing a reactive double bond, for example (di)acrylates or (di)methacrylates, or reactive resins or oligomers, e.g. epoxy or urethane, in minor amounts, e.g. up to 25 mole % of the total monomer content and more preferably in an amount of no more than 5 or 10 mole %.
Upon mixing the three major components of the present invention (monomer, foaming agent and initiator) a mixture is formed in which, under the action of the anionic initiator, polymerization of the cyanoacrylate monomer occurs. It is fast and exothermic, which leads to the simultaneous evaporation of the liquid foaming agent. As a result polycyanoacrylate foam is produced. The expanded material can occupy a volume of as much as 40 times the
volume of the original liquid composition. The expansion coefficient and the properties of the foam are dependent on the components used and their ratios. They are also dependent on the availabile volume for expansion. The formed polymeric foam is of a closed-cell type.
A distinctive feature is that the foam is covered by a thin film of polycyanoacrylate, which resembles a polycyanoacrylate glue-line and ensures excellent adhesion of the foam to the surface(s) which it has contacted. The time necessary for the onset of polymerization and foaming can be regulated from seconds to minutes by varying the type and amount of anionic initiator and/or stabilizer present in the cyanoacrylate monomer or composition.
Another distinctive feature of the composition of the present invention is that it is easy to prepare, the foaming reaction takes place at room temperature and compressed gases are not required or utilized.
Another distinctive feature of the foamed polycyanoacrylate is that it can easily be collapsed when contacted with solvents for polycyanoacrylates like acetone, acetonitrile, methylenechloride, N,N-dimethylformamide, nitromethane, butyrolactone or alkyl cyanoacetates, for example.
Applications of the foaming composition of the present invention and the method of obtaining polycyanoacrylate foams include two major areas, i.e. plugging of ducts, pipes and vessels and, secondly, adhesive bonding and sealing of porous substrates.
Using the foaming composition of the present invention temporary, permanent or semi-permanent blocking of flow of fluids in pipelines can be achieved. Gas and oil pipelines are of particular interest. Following repairs or other work on the pipeline the foam blockage can easily be collapsed by application of a suitable solvent. The main advantage of the material and method of the invention is the simplicity and speed of forming the foam, its high adhesion to the walls of the pipe, and the simplicity and speed of collapsing the foam.
Using the foaming composition of the present invention blood vessel occlusion, fallopian tube sealing or other medical or surgical procedures can be achieved. The above-mentioned applications are currently executed with conventional cyanoacrylates for the purpose of stopping haemorrhage and for female sterilization. Using the foaming composition in those cases would greatly increase the success rate of the present methods, ensuring excellent plugging capacity as a result of polymer expansion in the vessel. Furthermore the quantity of the cyanoacrylate introduced into the body will be reduced more than tenfold, which would greatly increase the physiological safety of the procedures. Using the foaming composition of the present invention orthopaedic casts for broken limbs can be prepared. The distinct advantages will be the speed and ease of preparation of the casts, their extremely low weight and sufficient rigidity, advantages specially valuable in emergency cases and military action.
The cyanoacrylate monomer and the initiator must obviously be kept separate until it is desired to form the foaming composition, but the foaming agent may if desired be mixed with one or other (or both) of the monomer and the initiator to form a preblend.
It is therefore convenient to provide a binary delivery system holding the monomer and the initiator in separate containers from which they may be dispensed and mixed. If desired, the binary system could include a third container containing all or part of the foaming agent, and if desired separate containers holding other components may be provided. Such a binary or multipart delivery system forms one aspect of the invention.
The delivery system or kit may take the form of a syringe having an in-line static (stationary phase) mixer or of spray apparatus. In any event, it preferably includes means to mix the components prior to, or in the process of, their dispensing from the apparatus. In the case of a syringe, a thickener is preferably provided to increase the viscosity of the final composition.
Preferably, the delivery system is a two-part system, in which all the components are included in the containers holding the monomer preparation and the initiator.
The invention includes a preblend for forming the foaming composition, comprising the monomer and a foaming agent.
The above-mentioned applications are only indicative and do not limit the scope or application of the foaming composition of the present invention.
The invention is illustrated by the following examples. Example 1 In an open polyethylene cylindrical container with a diameter of 50 mm, 4 ml of pure, freshly distilled ethyl 2-cyanoacrylate are placed. To the cyanoacrylate is added a given amount of liquid foaming agent, containing N,N-dimethyl-p-toluidine. The contents are manually mixed for 3 seconds so that a clear solution is produced. The so formed composition is left static and the time lapse before the onset of expansion and the time interval of actual expansion is recorded. The volume of the expanded foam is measured and the coefficient of expansion is calculated as the ratio of the volume of the polycyanoacrylate foam to the volume of the cyanoacrylate monomer in the composition. The results are shown in Table 1.
In Table 1, the concentration of initiator is expressed as percentage by weight based on the total composition.
Table 1
Foaming compositions based on different foaming agents (FA)
Foaming Volume ratio Concentr Solubility Polarity b.p. of Onset Time Expan¬agent of cyanoacryof iniparameter of FA FA time of sion late to FA tiator of FA expancoeffision cient
Wt.% °C sec sec
Pentane 1:1 0.025 7.0 non 35 20 5 23
Hexane 2:1 0.017 7.3 non 69 25 5 13
1 , 1 , 2-tri-chlorotri4 : 1 0.010 7.3 non 48 6 6 25 fluoroethane
Heptane 4:1 0.020 7.4 non 98 10 10 4
Diethyl
ether 4:1 0.010 7.4 mod 35 19 5 18
Cyclohexane 2:1 0.017 8.2 non 81 34 5 10
2-Butanone 2:1 0.017 9.3 mod 80 10 15 17
Acetone 2:1 0.017 9.9 mod 56 5 10 22 *
Ethanol 2:1 0.017 10.0 high 78 5 10 10
Acetoni- trile 2:1 0.017 11.9 high 82 10 10 3
Methanol 4:1 0.020 14.5 high 65 5 25 8
*Foam collapses after expansion
The ratio of ethyl 2-cyanoacrylate monomer to foaming agent in Table 1 was established to be the best for each pair in previous experiments. The results indicate that the most important factor in choosing the foaming agent is its boiling point and as can be seen the lower the boiling point the higher is the expansion which can be achieved. The following major consideration is the polarity and the solubility parameter of the foaming agent. Best results are produced with non-polar solvents with solubility parameters at the lower end of the scale, e.g. pentane, 1,1,2-trichlorotrifluoroethane. Foaming agents with solubility parameters at the other end of the scale and high polarity are normally unsuitable due to the formation of exceptionally brittle foams. Foaming agents with a solubility parameter similar to poly(ethyl 2-cyanoacrylate) and thus being good solvents for the foam, e.g. acetone, are also unsatisfactory due to immediate shrinkage and collapse of the foamed material. Solvents in the mid-range of the solubility parameter scale and with boiling point around 80°C, like cyclohexanone, produce resilient foams.
Example 2 Experiments according to the procedure described in Example 1 were carried out. Ethyl 2-cyanoacrylate was used as the cyanoacrylate monomer and 1,1,2-trichlorotrifluoroethane as the foaming agent. Different anionic polymerization initiators were evaluated. The ratio of cyanoacrylate to 1,1,2-trichlorotrifluoroethane and the concentration levels of the initiators were optimized in previous experiments. The results are presented in Table 2.
Table 2
Foaming compositions based on different anionic polymerization initiators (API)
API Concentration Volume ratio Onset Time of Expansion of API in of cyanoacrytime expancoefficient composition late to foamsion
ing agent
wt.% sec sec
N,N-Dimethyl- p-toluidine 0.010 4:1 6 6 25
Pyridine 0.0002 4:3 450 20 5
Piperidine 0.010 2:1 30 10 18
Triethyl
phosphine 0.003 2:1 133 40 17
Triphenyl
phosphine 0 . 0048 4 : 3 298 68 4 5
N-(oxydiethylene)
benzothiazole-2- 0.017 2:1 25 5 25 sulfenamide
The results summarized in Table 2 show that best expansion coefficients and time of expansion are achieved with N,N- dimethyl-p-toluidine and N-(oxydiethylene)benzothiazole-2-sulfenamide, the latter having the advantage of no odour.
Piperidine gives slightly longer onset times and is very smelly. Very slow onset and expansion times can be achieved with triethylphosphine and triphenylphosphine.
Example 3.
Experiments according to the procedure described in Example 1 were carried out. Ethyl 2-cyanoacrylate was used as the cyano¬acrylate monomer. 1,1,2-Trichlorotrifluoroethane was used as foaming agent. Their ratio was 4:1 by volume. N,N-dimethyl-p-toluidine was used as initiator in 0.01% by weight of the composition. The cyanoacrylate monomer was stabilized with p-toluenesulfonic acid or trifluoromethanesulfonic acid. The results of the onset time of foaming are presented in Table 3.
Table 3
Stabilized foaming compositions
Acid Concentration of acid Onset time in cyanoacrylate
wt.% sec p-Toluenesulfonic 0 10 p-Toluenesulfonic 0.0003 14 p-Toluenesulfonic 0.0006 16 p-Toluenesulfonic 0.0012 20 p-Toluenesulfonic 0.002 37 p-Toluenesulfonic 0.005 66 p-Toluenesulfonic 0.01 195
Trifluoro-methanesulfonic 0 10
Trifluoro- 0.001 11 methanesulfonic
Trifluoro-methanesulfonic 0.002 24
Trifluoro-methanesulfonic 0.005 43
Trifluoro- 0.01 117 methanesulfonic
The results presented in Table 3 clearly demonstrate that the introduction of sulfonic acids, which are often used commercially to stabilize the cyanoacrylate monomers, can increase the onset time of foam expansion and by regulating their level the period between mixing the composition of the present invention and its expansion into polymer foam can be controled.
Example 4
Experiments according to the procedure described in Example 1 were carried out. Different types of cyanoacrylate mono-mers were used. 1,1,2-Trichlorotrifluoroethane was used as foaming agent. N,N-dimethyl-p-toluidine was used as initia¬tor in amount of 0.01% by weight of the composition. The expansion coefficient data are shown in Table 4.
Table 4
Foaming compositions based on different cyanoacrylate monomers
Cyanoacrylate Volume ratio of Expansion monomer cyanoacrylate to coefficient foaming agent
Methyl 2-cyanoacrylate 4:1 13
Ethyl 2-cyanoacrylate 4:1 25
Butyl 2-cyanoacrylate 1:1 29 iso-Butyl
2-cyanoacrylate 1:1 35
Allyl 2-cyanoacrylate 1:1 20
2-Methoxyethyl
2-cyanoacrylate 4:3 20
2-Ethoxyethyl
2-cyanoacrylate 4:3 15
2-Methoxyisopropyl
2-cyanoacrylate 4:3 23
Example 5
Compositions based on various cyanoacrylate monomers and 1,1,2-trichlorotrifluoroethane in a volume ratio of 4:1 and containing 0.01% by weight N,N-dimethyl-p-toluidine as initiator were injected into polyethylene tubes with an internal diameter of 12.5 mm. Seconds after the injection, the composition expanded into polycyanoacrylate foam which plugged the tubes. The walls of the tubes were carefully cut and the foamed material removed. Test pieces of the foam were cut from it and tested. The results of some physical characteristics of the foams are presented in Table 5.
Table 5
Physical characteristics of polycyanoacrylate foams
2-CyanoSpecific Tensile ElongaTensile Compression acrylate gravity strength tion at shear strength at monomer at break break strength 10% deformaat break tion
g/cm3 kg/cm2 % kg/cm2 kg/cm2
Methyl 0.28 0.8 2.5 0.5 5.7
Ethyl 0.13 10.6 3.7 5.2 4.9
Butyl 0.25 5.7 6.7 1.8 4.9 iso-Butyl 0.24 3.2 3.7 3.0 5.7
Allyl 0.18 5.0 3.0 3.0 7.3
2-Methoxy- ethyl 0.41 1.6 2.0 1.9 6.5
2-Ethoxy- ethyl 0.22 1.6 1.7 1.5 5.5
2-Methoxy- isopropyl 0.28 1.8 2.0 1.7 4.0
Example 6
Tubes and pipes made of cast iron, stainless steel, copper, polycarbonate, polystyrene, polyvinylchloride, polypropylene and polyethylene having inside diameters from 1 mm to 100 mm were plugged with foam by injecting through a specially drilled opening a foaming composition consisting of ethyl 2 cyanoacrylate and 1,1,2-trichlorotrifluoroethane in a volume ratio of 4:1 and containing 0.01% by weight N,N-dimethyl-p-toluidine. The expanded foam created an efficient plug, whose adhesion to the pipe wall was higher than the strength of the foam material itself. The pipes were hermetically sealed by the foam plug and easily withstood pressure of 10 Atmospheres.
In a following operation acetone was injected with a syringe through the same opening used for injecting the composition, which subsequently was also plugged with foam. In 5 seconds to 2 minutes, depending on the size of the pipe, the foam collapsed and flow through the pipe was restored.
Claims
1. A foam-forming cyanoacrylate composition comprising a
2-cyanoacrylate ester monomer, a liquid foaming agent and a polymerization initiator, for anionic polymerization of the monomer, which composition upon or after mixing polymerizes and foams .to produce a polycyanoacrylate foam.
2. A composition as claimed in claim 1, wherein the cyanoacrylate monomer and the liquid foaming agent are in a volume ratio from 1:10 to 20:1.
3. A composition as claimed in claim 1 or claim 2, wherein the polymerization initiator is in an amount of from 0.00001% to 1% by weight of the composition.
4. A composition as claimed in any one of the preceding claims, wherein the foaming agent is an organic compound with a boiling point not higher than 100°C.
5. A composition as claimed in claim 4, wherein the foaming agent is miscible with the cyanoacrylate monomer. β. A composition as claimed in claim 5, wherein the foaming agent has a solubility parameter below 9 and is non-polar.
7. A composition as claimed in claim 4, wherein the foaming agent is pentane, hexane, heptane, 1,1,2-trichlorotriflouroethane,
1,1,1-trichlorotrifluoroethane, petroleum ether, diethyl ether, cyclopentane, cyclohexane, benzene, carbon tetrachloride, chloroform, methylcyclopentane, dimethylsulfide, 1,1-dichlororethane, 1,1,1-trichlorαethane,
perfluorohexane, perfluoroheptane, 1-bromopropane or a mixture thereof.
8. A composition as claimed in claim 7, wherein the foaming agent is pentane, hexane, 1,1,2-trichlorotrifluoroethane, petroleum ether, cyclohexane or diethyl ether or is a mixture thereof.
9. A composition as claimed in any one of the preceding claims, wherein the cyanoacrylate monomer comprises one or more compounds of the formula
wherein R is alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl or an aromatic heterocyclic radical or is one of these moieties substituted with one or more other of the moieties, and wherein these moieties may optionally be substituted with alkoxy, carbalkoxyalkyl, halogen or another inert substituent.
10. A composition as claimed in claim 9, wherein R contains from 1 to 16 carbon atoms, the heteroatom ring members of any aromatic heterocycle being counted as a carbon atom.
11. A composition as claimed in claim 9 or claim 10, wherein R is alkyl, halogenated alkyl, cycloalkyl, cycloalkylalkyl, alkylcycloalkyl, alkenyl, alkynyl, phenyl, halogenated phenyl, phenylalkyl, halogenated phenylalkyl.
alkylphenyl, halogenated alkylphenyl, alkylphenylalkyl, halogenated alkylphenylalkyl, alkoxyalkyl, alkoxyalkoxyalkyl, carbalkoxymethyl or isopropylideneglyceryl.
12. A composition as claimed in claim 11, wherein R is ethyl, n-butyl, iso-butyl, 2-methoxyethyl, 2-ethoxyethyl or 2-methoxyisopropyl. 13. A composition as claimed in any one of the preceding claims, wherein the initiator is pyridine, aminopyridine, vinylpyridine, methoxyethylpyridine, piperidine, picoline, lutidine, N,N-dimethyl-p-toluidine,
N,N-diιnethyl-o-toluidine, N,N-dimethyl-m-toluidine, triphenylphosphine, turiethylphosphine, tribenzylamine, triethylamine, benzyldimethylamine, diethylenetriamine, benzyltriethylamine, tribenzylamine, poly ( 4-vinylpyridine) , a calixarene, a tertiary amine-SO3 complex, polyethyleneglycol, a phenolformaldehyde resin, vinylimidazole, txiethanolaminatotitanium, an aminosilane, a phosphite, a metal acetylacetonate, N-(oxydiethylene) benzothiazole-2-sulfenamide, bismuth dimethyldithiocarbamate, an alcohol, a base or a hydroxyl or amine group containing compound.
14. A composition as claimed in claim 13, wherein the initiator is N,N-dimethyl-p-toluidine or N-(oxydiethylene) benzothiazole-2-sulfenamide. 15. A composition as claimed in any one of the preceding claims and which further comprises a free-radical polymerization inhibitor or an anionic polymerization
inhibitor in an amount insufficient to inhibit the initiator, or both.
16. A composition as claimed in any one of the preceding claims and further comprising another reactive monomer or a reactive resin or oligomer, a thickener, a viscosity regulator, a rubber, a plasticizer, a toughener, a compatibilizer, a thixotropic agent, a colourant, a deodorant or a mixture thereof.
17: A poly(2-cyanoacrylate ester) foam, the polymer optionally including a minor amount of one or more other monomer units than 2-cyanoacrylate ester unitsor, a reactive resin or oligomer.
18. A foam as claimed in claim 17, wherein the 2-cyanoacrylate ester is as defined in any one of claims 9 to 12.
19. A method of forming a poly(2-cyanoacrylate ester) foam, comprising forming a composition as defined in any one of claims 1 to 16- and allowing the monomer to polymerize and form a foam.
20. A method as claimed in claim 19 wherein the components of the composition are mixed together in a static mixer or in a spray.
21. A kit or device for forming a poly(2-cyanoacrylate ester) foam, comprising a first container containing. 2-cyanoacrylate ester monomer and a second container
containing a polymerization initiator for anionic polymerization, the kit additionally containing a liquid foaming agent in the first container, in the second container or in a third container or in any combination thereof.
22. A kit or device as claimed in claim 21, wherein the monomer is as defined in any one of claims 9 to 12, the foaming agent, is as defined in any one of claims 4 to 8, the initiator is as defined in claim 13 or claim 14, the monomer and the foaming agent are in a volume ratio of from 1:10 to 20:1, and/or the polymerization initiator is in an amount of from 0.00001% to 1% by weight of the total contents of the kit.
23. A kit or device as claimed in claim 21or claim 22 wherein the monomer is in admixture with an anionic polymerization inhibitor or a free radical polymerization inhibitor or both, and/or one or more of the containers additionally contains one or more of the further components defined in claim 16.
24. A kit or device as claimed, in any one of claims 21 to 3 which comprises a two part or three part syringe.
25. A kit or device as claimed in any one of claims 21 to 23 wherein the first and second containers and any third container are connected by ducts to a spray head for mixing the contents of the containers and means is provided to expel the contents of the containers through the ducts to the spray head.
26. A delivery system for forming a composition as defined in any one of claims 1 to 16 the system comprising the monomer and the initiator in separate containers from which they may be dispensed, the foaming agent being included in said containers and/or in a separate container, and the system optionally including means to mix the container contents before or as they are dispensed from the system.
27. A preblend for forming a cyanoacrylate foam, comprising a 2-cyanoacrylate ester monomer and a liquid foaming agent.
28. A preblend as claimed in claim 27, wherein the cyanoacrylate monomer and the foaming agent are in a volume ratio of from 1:10 to 20:1, the foaming agent is as defined in any one of claims 4 to 8 and/or the cyanoacrylate monomer is as defined in any one of claims 9 to 12.
29. A preblend as claimed in claim 27 or claim 28 and which further comprises a free-radical polymerization inhibitor, an anionic polymerization inhibitor or both, and/or one or more further components as defined in claim 16.
30. A method of blocking a pipe, comprising placing in the pipe a composition as defined in any one of claims 1 to 16 and allowing the composition to polymerize to form a foam which blocks the pipe.
31. A method as claimed in claim 30, wherein the pipe is blocked temporarily and is subsequently unblocked by applying to the foam a solvent therefor.
32. A method of forming a cast, for example for a broken or injured limb, comprising applying a composition as defined in any one of claims 1 to 16 to the limb or other body around which the cast is to be formed and allowing the composition to polymerize and foam to form, a cast.
33. A method of occluding or stopping a blood vessel, fallopian tube or other tubular part of a human or animal body, comprising applying to the tubular part a composition as defined in any one of claims 1 to 16 and allowing the composition to polymerize to form a foam occluding to stopping the tubular part.
34. The use of 2-cyanoacrylate ester monomer as a starting material to form a polycyanoacrylate foam.
35. The use of claim 34. wherein the monomer is as defined in any one of claims 9 to 12. 36. The use of an organic liquid with a boiling point of no greater than 100°C as a foaming agent to form a polycyanoacrylate foam.
37. The use of claim 36, wherein the organic liquid is as further defined in any one of claims 6 to 8.
38. A composition as defined in any one of claims 1
to 16 for use in the treatment of the human or animal body by surgery or therapy.
39. A method of forming a polymer foam on or around a part of the human or animal body, comprising applying a composition as defined in any one of claims 1 to 16 on or around the part.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9026065.4 | 1990-11-30 | ||
GB909026065A GB9026065D0 (en) | 1990-11-30 | 1990-11-30 | Composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992009651A1 true WO1992009651A1 (en) | 1992-06-11 |
Family
ID=10686257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1991/002121 WO1992009651A1 (en) | 1990-11-30 | 1991-11-29 | Polycyanoacrylate foam |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU8930091A (en) |
GB (1) | GB9026065D0 (en) |
WO (1) | WO1992009651A1 (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048471A (en) * | 1997-07-18 | 2000-04-11 | Richard G. Henry | Zero volatile organic compound compositions based upon organic solvents which are negligibly reactive with hydroxyl radical and do not contribute appreciably to the formation of ground based ozone |
US6306943B1 (en) | 1997-07-18 | 2001-10-23 | Polymer Solvents, Llc | Zero volitile organic solvent compositions |
EP1738694A1 (en) * | 2005-06-30 | 2007-01-03 | Cordis Development Corporation | Chemically based deployment system with gripping feature for a vascular occlusion device |
EP1743600A1 (en) * | 2005-06-30 | 2007-01-17 | Cordis Development Corporation | Chemically based deployment system for a vascular occlusion device |
US7441973B2 (en) | 2006-10-20 | 2008-10-28 | Ethicon Endo-Surgery, Inc. | Adhesive applicator |
US7553321B2 (en) | 2006-03-31 | 2009-06-30 | Cordis Development Corporation | Chemically based vascular occlusion device deployment |
US8603683B2 (en) | 2009-03-19 | 2013-12-10 | Enevate Corporation | Gas phase deposition of battery separators |
US8628553B2 (en) | 2006-11-08 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Expanding adhesive foam structure to reduce stomach volume |
EP2708245A2 (en) | 2012-09-14 | 2014-03-19 | Aesculap Ag | Composition, reaction product, kit and applicator, especially for use in medicine |
US8834498B2 (en) | 2006-11-10 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners |
US8834451B2 (en) | 2002-10-28 | 2014-09-16 | Smith & Nephew Plc | In-situ wound cleansing apparatus |
US20140277093A1 (en) * | 2013-03-14 | 2014-09-18 | Stryker Nv Operations Limited | Vaso-occlusive device delivery system |
US8876844B2 (en) | 2006-11-01 | 2014-11-04 | Ethicon Endo-Surgery, Inc. | Anastomosis reinforcement using biosurgical adhesive and device |
US8998866B2 (en) | 2010-07-02 | 2015-04-07 | Smith & Nephew Plc | Provision of wound filler |
US9044569B2 (en) | 2004-04-28 | 2015-06-02 | Smith & Nephew Plc | Wound dressing apparatus and method of use |
US9198801B2 (en) | 2004-04-05 | 2015-12-01 | Bluesky Medical Group, Inc. | Flexible reduced pressure treatment appliance |
WO2016094306A1 (en) * | 2014-12-08 | 2016-06-16 | Bloomfield Louis A | Compositions and methods for bonding glues, adhesives, and coatings to surfaces |
WO2017196512A1 (en) * | 2016-05-11 | 2017-11-16 | Owens Corning Intellectual Capital, Llc | Polymeric foam comprising low levels of brominated flame retardant and method of making same |
US9956121B2 (en) | 2007-11-21 | 2018-05-01 | Smith & Nephew Plc | Wound dressing |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US10071190B2 (en) | 2008-02-27 | 2018-09-11 | Smith & Nephew Plc | Fluid collection |
US10143784B2 (en) | 2007-11-21 | 2018-12-04 | T.J. Smith & Nephew Limited | Suction device and dressing |
US10159604B2 (en) | 2010-04-27 | 2018-12-25 | Smith & Nephew Plc | Wound dressing and method of use |
US10207035B2 (en) | 2004-05-21 | 2019-02-19 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US10265445B2 (en) | 2002-09-03 | 2019-04-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10537657B2 (en) | 2010-11-25 | 2020-01-21 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
US10675392B2 (en) | 2007-12-06 | 2020-06-09 | Smith & Nephew Plc | Wound management |
US11045598B2 (en) | 2007-11-21 | 2021-06-29 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US11638666B2 (en) | 2011-11-25 | 2023-05-02 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
US11931226B2 (en) | 2013-03-15 | 2024-03-19 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US11938231B2 (en) | 2010-11-25 | 2024-03-26 | Smith & Nephew Plc | Compositions I-I and products and uses thereof |
US12102512B2 (en) | 2007-12-06 | 2024-10-01 | Smith & Nephew Plc | Wound filling apparatuses and methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2359170A1 (en) * | 1976-07-23 | 1978-02-17 | Polymerics Inc | COMPOSITIONS FOR EXPANDABLE POLYMERIC COATINGS |
DE3421360A1 (en) * | 1984-06-08 | 1985-12-12 | Reich Spezialmaschinen GmbH, 7440 Nürtingen | Process for bonding workpieces using a cyanoacrylate adhesive |
FR2610828A1 (en) * | 1987-02-17 | 1988-08-19 | Mo G Meditsi | Compound for the occlusion of ducts and cavities in the body |
JPH0391542A (en) * | 1989-09-04 | 1991-04-17 | Toray Ind Inc | Foamed object |
-
1990
- 1990-11-30 GB GB909026065A patent/GB9026065D0/en active Pending
-
1991
- 1991-11-29 AU AU89300/91A patent/AU8930091A/en not_active Abandoned
- 1991-11-29 WO PCT/GB1991/002121 patent/WO1992009651A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2359170A1 (en) * | 1976-07-23 | 1978-02-17 | Polymerics Inc | COMPOSITIONS FOR EXPANDABLE POLYMERIC COATINGS |
DE3421360A1 (en) * | 1984-06-08 | 1985-12-12 | Reich Spezialmaschinen GmbH, 7440 Nürtingen | Process for bonding workpieces using a cyanoacrylate adhesive |
FR2610828A1 (en) * | 1987-02-17 | 1988-08-19 | Mo G Meditsi | Compound for the occlusion of ducts and cavities in the body |
JPH0391542A (en) * | 1989-09-04 | 1991-04-17 | Toray Ind Inc | Foamed object |
Non-Patent Citations (2)
Title |
---|
Chemical Abstracts, vol. 100, no. 18, (Columbus, Ohio, US), J.A. NIGHTINGALE et al.: "Use of methyl cyanoacrylate (MCA) as a sclerosing agent in female sterilization: effect of inhibitors and radiopaque additives on MCA polymerization in vitro and on oviduct occlusion in vivo in rabbits", see abstract no. 144952t, & POLYM. PREPR. (AM. CHEM. SOC., DIV. POLYM. CHEM.), 24(1), 28-9, see abstract * |
Chemical Abstracts, vol. 115, no. 6, 12 August 1991, (Columbus, Ohio, US), see abstract no. 51548k, & JP,A,3091542 (TORAY INDUSTRIES) 17 April 1991, see abstract * |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6048471A (en) * | 1997-07-18 | 2000-04-11 | Richard G. Henry | Zero volatile organic compound compositions based upon organic solvents which are negligibly reactive with hydroxyl radical and do not contribute appreciably to the formation of ground based ozone |
US6306943B1 (en) | 1997-07-18 | 2001-10-23 | Polymer Solvents, Llc | Zero volitile organic solvent compositions |
US10265445B2 (en) | 2002-09-03 | 2019-04-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US11376356B2 (en) | 2002-09-03 | 2022-07-05 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US11298454B2 (en) | 2002-09-03 | 2022-04-12 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US9387126B2 (en) | 2002-10-28 | 2016-07-12 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10842678B2 (en) | 2002-10-28 | 2020-11-24 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US8834451B2 (en) | 2002-10-28 | 2014-09-16 | Smith & Nephew Plc | In-situ wound cleansing apparatus |
US9205001B2 (en) | 2002-10-28 | 2015-12-08 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9844474B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US9844473B2 (en) | 2002-10-28 | 2017-12-19 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10278869B2 (en) | 2002-10-28 | 2019-05-07 | Smith & Nephew Plc | Apparatus for aspirating, irrigating and cleansing wounds |
US10350339B2 (en) | 2004-04-05 | 2019-07-16 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US9198801B2 (en) | 2004-04-05 | 2015-12-01 | Bluesky Medical Group, Inc. | Flexible reduced pressure treatment appliance |
US10363346B2 (en) | 2004-04-05 | 2019-07-30 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US10842919B2 (en) | 2004-04-05 | 2020-11-24 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US11730874B2 (en) | 2004-04-05 | 2023-08-22 | Smith & Nephew, Inc. | Reduced pressure treatment appliance |
US10105471B2 (en) | 2004-04-05 | 2018-10-23 | Smith & Nephew, Inc. | Reduced pressure treatment system |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US9044569B2 (en) | 2004-04-28 | 2015-06-02 | Smith & Nephew Plc | Wound dressing apparatus and method of use |
US10758425B2 (en) | 2004-04-28 | 2020-09-01 | Smith & Nephew Plc | Negative pressure wound therapy dressing system |
US10039868B2 (en) | 2004-04-28 | 2018-08-07 | Smith & Nephew Plc | Dressing and apparatus for cleansing the wounds |
US10758424B2 (en) | 2004-04-28 | 2020-09-01 | Smith & Nephew Plc | Dressing and apparatus for cleansing the wounds |
US9950100B2 (en) | 2004-04-28 | 2018-04-24 | Smith & Nephew Plc | Negative pressure wound therapy dressing system |
US10207035B2 (en) | 2004-05-21 | 2019-02-19 | Smith & Nephew, Inc. | Flexible reduced pressure treatment appliance |
US8206413B2 (en) | 2005-06-30 | 2012-06-26 | Codman & Shurtleff, Inc. | Chemically based vascular occlusion device deployment |
US7780695B2 (en) | 2005-06-30 | 2010-08-24 | Codman & Shurtleff, Inc. | Chemically based vascular occlusion device deployment |
JP2007014762A (en) * | 2005-06-30 | 2007-01-25 | Cordis Development Corp | Chemically based vascular occlusion device arrangement |
EP1743600A1 (en) * | 2005-06-30 | 2007-01-17 | Cordis Development Corporation | Chemically based deployment system for a vascular occlusion device |
JP2007014763A (en) * | 2005-06-30 | 2007-01-25 | Cordis Development Corp | Chemically based vascular occlusion device arrangement with gripping feature |
US7357809B2 (en) | 2005-06-30 | 2008-04-15 | Cordis Neurovascular, Inc. | Chemically based vascular occlusion device deployment with gripping feature |
EP1738694A1 (en) * | 2005-06-30 | 2007-01-03 | Cordis Development Corporation | Chemically based deployment system with gripping feature for a vascular occlusion device |
US8449591B2 (en) | 2006-03-31 | 2013-05-28 | Codman & Shurtleff, Inc. | Chemically based vascular occlusion device deployment |
US8216292B2 (en) | 2006-03-31 | 2012-07-10 | Codman & Shurtleff, Inc. | Chemically based vascular occlusion device deployment |
US7553321B2 (en) | 2006-03-31 | 2009-06-30 | Cordis Development Corporation | Chemically based vascular occlusion device deployment |
US7441973B2 (en) | 2006-10-20 | 2008-10-28 | Ethicon Endo-Surgery, Inc. | Adhesive applicator |
US8876844B2 (en) | 2006-11-01 | 2014-11-04 | Ethicon Endo-Surgery, Inc. | Anastomosis reinforcement using biosurgical adhesive and device |
US8628553B2 (en) | 2006-11-08 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Expanding adhesive foam structure to reduce stomach volume |
US8834498B2 (en) | 2006-11-10 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners |
US12285318B1 (en) | 2007-11-21 | 2025-04-29 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11364151B2 (en) | 2007-11-21 | 2022-06-21 | Smith & Nephew Plc | Wound dressing |
US10143784B2 (en) | 2007-11-21 | 2018-12-04 | T.J. Smith & Nephew Limited | Suction device and dressing |
US12194224B2 (en) | 2007-11-21 | 2025-01-14 | T.J.Smith And Nephew, Limited | Suction device and dressing |
US11179276B2 (en) | 2007-11-21 | 2021-11-23 | Smith & Nephew Plc | Wound dressing |
US9956121B2 (en) | 2007-11-21 | 2018-05-01 | Smith & Nephew Plc | Wound dressing |
US10231875B2 (en) | 2007-11-21 | 2019-03-19 | Smith & Nephew Plc | Wound dressing |
US11344663B2 (en) | 2007-11-21 | 2022-05-31 | T.J.Smith And Nephew, Limited | Suction device and dressing |
US11351064B2 (en) | 2007-11-21 | 2022-06-07 | Smith & Nephew Plc | Wound dressing |
US10016309B2 (en) | 2007-11-21 | 2018-07-10 | Smith & Nephew Plc | Wound dressing |
US11701266B2 (en) | 2007-11-21 | 2023-07-18 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11766512B2 (en) | 2007-11-21 | 2023-09-26 | T.J.Smith And Nephew, Limited | Suction device and dressing |
US11129751B2 (en) | 2007-11-21 | 2021-09-28 | Smith & Nephew Plc | Wound dressing |
US10555839B2 (en) | 2007-11-21 | 2020-02-11 | Smith & Nephew Plc | Wound dressing |
US11974902B2 (en) | 2007-11-21 | 2024-05-07 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US11045598B2 (en) | 2007-11-21 | 2021-06-29 | Smith & Nephew Plc | Vacuum assisted wound dressing |
US10744041B2 (en) | 2007-11-21 | 2020-08-18 | Smith & Nephew Plc | Wound dressing |
US10675392B2 (en) | 2007-12-06 | 2020-06-09 | Smith & Nephew Plc | Wound management |
US12102512B2 (en) | 2007-12-06 | 2024-10-01 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
US11141520B2 (en) | 2008-02-27 | 2021-10-12 | Smith & Nephew Plc | Fluid collection |
US10071190B2 (en) | 2008-02-27 | 2018-09-11 | Smith & Nephew Plc | Fluid collection |
US12201764B2 (en) | 2008-02-27 | 2025-01-21 | Smith & Nephew Plc | Fluid collection |
US9647259B2 (en) | 2009-03-19 | 2017-05-09 | Enevate Corporation | Gas phase deposition of battery separators |
US8603683B2 (en) | 2009-03-19 | 2013-12-10 | Enevate Corporation | Gas phase deposition of battery separators |
US11058587B2 (en) | 2010-04-27 | 2021-07-13 | Smith & Nephew Plc | Wound dressing and method of use |
US11090195B2 (en) | 2010-04-27 | 2021-08-17 | Smith & Nephew Plc | Wound dressing and method of use |
US10159604B2 (en) | 2010-04-27 | 2018-12-25 | Smith & Nephew Plc | Wound dressing and method of use |
US9801761B2 (en) | 2010-07-02 | 2017-10-31 | Smith & Nephew Plc | Provision of wound filler |
US8998866B2 (en) | 2010-07-02 | 2015-04-07 | Smith & Nephew Plc | Provision of wound filler |
US10537657B2 (en) | 2010-11-25 | 2020-01-21 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
US11730876B2 (en) | 2010-11-25 | 2023-08-22 | Smith & Nephew Plc | Composition I-II and products and uses thereof |
US11938231B2 (en) | 2010-11-25 | 2024-03-26 | Smith & Nephew Plc | Compositions I-I and products and uses thereof |
US11638666B2 (en) | 2011-11-25 | 2023-05-02 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
EP2708245A2 (en) | 2012-09-14 | 2014-03-19 | Aesculap Ag | Composition, reaction product, kit and applicator, especially for use in medicine |
DE102012216387A1 (en) | 2012-09-14 | 2014-03-20 | Aesculap Ag | Composition, reaction product, kit and dispenser, especially for use in medicine |
EP2708245A3 (en) * | 2012-09-14 | 2016-03-02 | Aesculap Ag | Composition, reaction product, kit and applicator, especially for use in medicine |
US9451964B2 (en) * | 2013-03-14 | 2016-09-27 | Stryker Corporation | Vaso-occlusive device delivery system |
US10426486B2 (en) | 2013-03-14 | 2019-10-01 | Stryker Corporation | Vaso-occlusive device delivery system |
US20140277093A1 (en) * | 2013-03-14 | 2014-09-18 | Stryker Nv Operations Limited | Vaso-occlusive device delivery system |
US11931226B2 (en) | 2013-03-15 | 2024-03-19 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US10703843B2 (en) | 2014-12-08 | 2020-07-07 | University Of Virginia Patent Foundation | Compositions and methods for bonding glues, adhesives, and coatings to surfaces |
WO2016094306A1 (en) * | 2014-12-08 | 2016-06-16 | Bloomfield Louis A | Compositions and methods for bonding glues, adhesives, and coatings to surfaces |
US11447613B2 (en) | 2016-05-11 | 2022-09-20 | Owens Corning Intellectual Capital, Llc | Polymeric foam comprising low levels of brominated flame retardant and method of making same |
WO2017196512A1 (en) * | 2016-05-11 | 2017-11-16 | Owens Corning Intellectual Capital, Llc | Polymeric foam comprising low levels of brominated flame retardant and method of making same |
CN109312108A (en) * | 2016-05-11 | 2019-02-05 | 欧文斯科宁知识产权资产有限公司 | Polymeric foams containing low levels of brominated flame retardants and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
AU8930091A (en) | 1992-06-25 |
GB9026065D0 (en) | 1991-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1992009651A1 (en) | Polycyanoacrylate foam | |
JP3080639B2 (en) | Curable injection-molded gasket, its in-situ forming method and its composition | |
JP2016041825A (en) | In situ formation of hemostatic foam implants | |
JP2007197730A (en) | Plugging composition for chemical fastening | |
US11325993B2 (en) | Chemical polymerization initiator, adhesive composition, adhesive composition kit, dental material, dental material kit, and method of storing adhesive composition | |
EP2297218B1 (en) | Process for forming amphiphilic block copolymer formulations | |
KR20140147873A (en) | Low viscosity synthetic cement | |
CN102405210B (en) | Hydrogen peroxide complexes and their use in the cure system of anaerobic adhesives | |
BR112019000773B1 (en) | Powder-liquid type denture base coating material | |
JP3389427B2 (en) | Dental or surgical adhesive and polymerization initiator composition therefor | |
JP7423004B2 (en) | Adhesive composition, adhesive composition kit, and storage method for adhesive composition | |
Dulik | Evaluation of commercial and newly-synthesized amine accelerators for dental composites | |
JP2024500564A (en) | Adhesive composition for hard tissue repair | |
Kotzev et al. | Novel uses of cyanoacrylate adhesives—polycyanoacrylate foams | |
CN110461377B (en) | Composition for hard tissue repair and kit for hard tissue repair | |
US8541511B2 (en) | Amphiphilic block copolymer formulations | |
JP7496369B2 (en) | Two-component curing composition | |
CN113332486A (en) | Adhesive composition for hard tissue repair and kit for hard tissue repair | |
JP7217949B2 (en) | Chemical polymerization initiator, adhesive composition, adhesive composition kit, dental material, dental material kit, and method for storing adhesive composition | |
US5434230A (en) | Composition containing olefinically unsaturated compounds and hydrazones | |
WO2006123589A1 (en) | Material for medical use | |
TW202212380A (en) | Curable two-part adhesive composition | |
WO2011091736A1 (en) | Liquid embolic material and preparation method thereof | |
EP2413943A1 (en) | Controlled exotherm of cyanoacrylate formulations | |
EP0458866A1 (en) | Cement compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |