+

WO1992007676A1 - Hypereutectic aluminum/silicon alloy powder and production thereof - Google Patents

Hypereutectic aluminum/silicon alloy powder and production thereof Download PDF

Info

Publication number
WO1992007676A1
WO1992007676A1 PCT/JP1991/001488 JP9101488W WO9207676A1 WO 1992007676 A1 WO1992007676 A1 WO 1992007676A1 JP 9101488 W JP9101488 W JP 9101488W WO 9207676 A1 WO9207676 A1 WO 9207676A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
alloy powder
aluminum
weight
alloy
Prior art date
Application number
PCT/JP1991/001488
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Takeda
Tetsuya Hayashi
Toshihiko Kaji
Yusuke Odani
Kiyoaki Akechi
Original Assignee
Sumitomo Electric Industries, Ltd.
Toyo Aluminium K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., Toyo Aluminium K.K. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US07/863,285 priority Critical patent/US5366691A/en
Priority to DE69120299T priority patent/DE69120299T2/en
Priority to EP91918937A priority patent/EP0592665B1/en
Publication of WO1992007676A1 publication Critical patent/WO1992007676A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys

Definitions

  • the present invention relates to a hypereutectic aluminum-silicon-based alloy powder and a method for producing the same, and in particular, to a hypereutectic aluminum-silicon-based alloy powder having a stable fine silicon primary crystal. And its manufacturing method.
  • A11-Si-based alloys steel materials are classified as AC or ADC according to the JIS standard, and are used in large quantities as aluminum alloys such as engine blocks.
  • A1-Si-based alloys as wrought materials are classified into the 4000 series, and are added to various parts by extrusion, forging, etc. from forged billets.
  • hypereutectic Al-Si alloys are produced by a sintering method.
  • Hypereutectic A 1 -Si-based alloys obtained by sintering have excellent properties such as low coefficient of thermal expansion, high rigidity, high wear resistance, and are suitable for use in various fields. It is expected.
  • hypereutectic A 1 -Si-based alloy The presence of large silicon primary crystals degrades their mechanical properties and machinability during machining.
  • a rapidly solidified powder manufacturing method such as an atomizing method can produce a powder from a molten metal at a large cooling rate that was impossible with the melt-casting method.
  • the primary crystal of silicon can be refined and contains silicon having a eutectic composition or more, and further, iron (Fe) and nickel (Ni) as the third alloy components.
  • transition metal elements X such as chromium (Cr) and manganese (Mn).
  • Al — 17 S i — X, A 1-20 S i-X, A Powder metallurgy alloys such as 1-25Si-X have been put to practical use.
  • the primary crystal of silicon can be refined by increasing the cooling rate when producing powder.
  • the cooling rate is largely determined by the atomizing method and equipment, and increasing the cooling rate by other industrial methods has not been realized due to economic and productivity problems.
  • the present invention has been made in view of the above-described conventional circumstances, and it has been found that the atomization method allows the silicon primary crystals to be fine and uniform, and particularly suppresses the crystallization of coarse silicon primary crystals. It is an object of the present invention to provide a possible hypereutectic A 1 —Si alloy powder composition and a method for producing the same.
  • an aluminum silicon-based material to which a primary crystal silicon refiner containing phosphorus is added is added. It is obtained by melting a molten alloy or an aluminum-silicon alloy ingot containing a phosphorus-containing primary crystal silicon refiner in advance. The molten alloy is prepared using air or an inert gas. It was found that by atomizing, an extremely fine hypereutectic aluminum-silicon alloy powder of primary silicon could be obtained.
  • silicon is contained in an amount of from 12% by weight to 50% by weight, and phosphorus is contained in an amount of 0.0005% by weight or more. Contains 0.1% by weight or less.
  • the particle diameter of the primary crystal silicon in the hypereutectic aluminum silicon-based alloy powder of the present invention is the same as that of the primary crystal silicon in the hypereutectic aluminum-silicon alloy obtained by the conventional fabrication method. Much smaller than the size, usually less than 10 m.
  • the aluminum-silicon alloy powder of the present invention has a silicon content of 12% by weight or more and 50% by weight or less, preferably 20% by weight or more and 30% by weight or less. If the silicon content is less than 12% by weight, primary silicon does not crystallize. On the other hand, if the silicon content exceeds 50% by weight, the amount of primary crystal silicon is too large even if the primary crystal of silicon is refined no matter how much, and it was made from the obtained powder. The machinability of the solidified body is poor, and its mechanical strength is also poor.
  • the phosphorus content in the aluminum silicon alloy powder of the present invention is from 0.0005% to 0.1% by weight, preferably from 0.0005% to 0.05% by weight. It is as follows. If the content of phosphorus is less than 0.0005% by weight, no refining effect is obtained and no improvement in mechanical strength is observed. On the other hand, even if the phosphorus content exceeds 0.1% by weight, the effect of miniaturization is not further improved. In particular, aluminum-silicon alloy powder having a phosphorus content of 0.02% by weight or more and 0.1% by weight or less has excellent machinability during machining.
  • a molten metal of a hypereutectic aluminum-silicon alloy containing phosphorus is prepared.
  • the molten metal is sprayed and rapidly solidified using air or an inert gas.
  • the melt of a hypereutectic aluminum silicon-based alloy containing phosphorus can be either a molten aluminum-silicon-based alloy to which a primary silicon-containing alloy refiner containing phosphorus is added, or a molten metal containing phosphorus.
  • the primary silicon refiner containing phosphorus may be any molten alloy obtained by melting an aluminum silicon-based alloy ingot containing a crystalline silicon refiner in advance.
  • primary crystal silicon refining agents used in conventional manufacturing methods such as Cu—8 wt% P, Cu
  • the primary crystal silicon refining agent is usually used in an amount of 0.0005% to 0.1% by weight, preferably 0.02% to 0.05% by weight. Is done. When the amount of the primary crystal silicon refiner is less than 0.005% by weight, the effect of the addition of the primary silicon refiner is not sufficient. Further, even if the primary crystal silicon refiner is added in an amount exceeding 0.1% by weight, no further improvement in the effect is observed.
  • the aluminum silicon alloy melt is subjected to an atomizing treatment according to a known method.
  • the alloy melt is subjected to the atomizing treatment while being kept at a temperature of 100 ° C. or higher and 130 ° C. or lower than the liquidus temperature of the aluminum-silicon alloy. It is preferable. Even when the primary silicon refiner is added to the aluminum-silicon alloy, it is preferable to keep the alloy at the above temperature.
  • the liquidus temperature means the temperature at which the alloy of the composition is completely melted.
  • the liquidus temperature of an aluminum-silicon alloy containing 25% by weight of silicon is about 780 ° C.
  • the molten alloy is maintained at a temperature lower than the liquidus temperature of the aluminum silicon-based alloy at (liquidus temperature + 100), the dissolution of the phosphorus will be insufficient and the amount of added phosphorus will be insufficient. In contrast, the amount of phosphorus contained in the alloy is reduced, and it is difficult to obtain an alloy powder containing the correct amount of phosphorus. Also, if the molten alloy is kept at a temperature exceeding 1300 ° C, the crucible and the furnace material will be seriously damaged, and depending on the contained alloy element, it will partially evaporate and have the desired composition. An alloy may not be obtained.
  • the aluminum-silicon alloy to which the method of the present invention is applied is not particularly limited, and elements other than aluminum and silicon, for example, magnesium, manganese, iron, nickel, zinc General aluminum silicon-based alloys containing the same may also be included.
  • the production method of the present invention is particularly useful for aluminum-silicon alloys having a high silicon content (20 to 40% by weight).
  • a hypereutectic aluminum silicon alloy powder in which extremely fine primary crystals are uniformly dispersed can be obtained. Further, when manufactured under the above preferable conditions, a hypereutectic aluminum-silicon alloy powder having a desired composition can be obtained.
  • the solidified body produced from the hypereutectic aluminum-silicon alloy powder of the present invention has extremely excellent machinability and mechanical properties.
  • a molten metal of a hypereutectic aluminum-silicon alloy containing phosphorus is prepared. It is.
  • the hypereutectic aluminum silicon-based alloy powder is produced by spraying and rapidly solidifying the molten metal using air. Only alloy powder with a particle size of 400 m or less is selected.
  • the inoculation method used in the melt-casting method is applied, and first, phosphorus is inoculated into a molten hypereutectic aluminum-double-silicon alloy for atomization.
  • nuclei for solidification can be prepared in advance, and uneven nucleation due to supercooling can be suppressed.
  • the inoculated phosphorus must be uniformly dispersed in the molten metal as solid particles at the spray temperature. At the same time, if undissolved components other than phosphorus are present in the molten metal, coarse crystals can easily be formed.
  • the inoculated molten metal can be once cooled and solidified, then melted again and returned to the original inoculated molten metal state.
  • the air atomization method is used as a method for producing powder by rapid solidification because it is more economical than other methods and because the surface of the powder is stabilized by moderate oxidation, handling is easy. This is because there are advantages such as
  • the rapid solidification condition is that the higher the cooling rate, the finer the structure becomes.
  • a large number of crystallization nuclei of silicon primary crystals are previously contained in the molten metal.
  • the presence makes it possible to control the maximum crystal grain size of the primary silicon in a fine and narrow range with respect to the grain size of the obtained powder without strongly depending on the cooling rate which is difficult to directly control.
  • fine and relatively uniform primary crystals of silicon can be obtained even at a lower cooling rate (the particle size of the obtained powder is relatively large) as compared with the conventional atomizing method.
  • the maximum crystal grain size of the primary crystal silicon can be controlled to be equal to or less than 100 // m.
  • the maximum crystal grain size of primary silicon can be controlled to be 7 m or less. More preferably, if the grain size of the obtained alloy powder is selected to be 100 m or less, the maximum crystal grain size of primary silicon can be controlled to 5 m or less. If the particle size of the obtained alloy powder is selected to be 50 / zm or less, the maximum crystal grain size of primary silicon can be controlled to 3 zm or less.
  • the concentration of the inoculated phosphorus is preferably in the range of 0.05% by weight or more and 0.02% by weight or less.
  • the primary crystal silicon of the hypereutectic aluminum-silicon alloy powder produced by the atomization method is refined and uniformized,
  • the dependence of the primary crystal silicon particle size on the alloy powder particle size can be significantly reduced as compared with the conventional case.
  • a crystalline aluminum-silicon alloy powder it is possible to produce a solidified powder having improved mechanical properties at a high yield without restriction on the powder particle size.
  • FIG. 2 is a photograph of a crystal structure by an optical microscope showing a structure of primary crystal silicon in the alloy powder obtained in Comparative Example 1 (magnification: X400).
  • FIG. 3 is a photograph of the crystal structure by an optical microscope showing the structure of primary silicon in the forged alloy (magnification: X400).
  • FIG. 4 is an optical micrograph showing the metallographic structure of the hypereutectic aluminum 25-% by weight silicon alloy powder obtained in Example 3 and inoculated with phosphorus (magnification: X 40%). 0).
  • FIG. 5 is an optical micrograph (magnification: X400) showing the metal structure of the hypereutectic aluminum-125% by weight silicon alloy powder obtained in Example 3 but not inoculated with phosphorus.
  • FIG. 6 shows the relationship between the maximum grain size of silicon primary crystals in the hypereutectic aluminum alloy 25% by weight silicon alloy powder and the tensile strength at room temperature of the solidified body obtained from the powder in Example 3. It is a graph which shows a relationship.
  • Example 1 A molten aluminum alloy having the composition shown in Table 1 was maintained at a temperature of 950 ° C, and Cu-8% by weight P was melted so as to obtain the phosphorus content shown in Table 1. Was added. After maintaining the molten metal at a temperature of 950 ° C. for 1 hour, the molten metal was pulverized by an air atomizing method (see alloy powders N 0.1 to N 0.4 in Table 1).
  • Alloy powder N 0.5 was prepared under the same conditions as alloy powder No. 1. However, in this case, Cu—8% by weight of P was not added to the molten aluminum alloy.
  • the size of the primary crystal silicon in the powder is optically determined. It was measured by observing the structure with a microscope. The results are shown in Table 1. A micrograph of the alloy powder N 0.5 by an optical microscope is shown in FIG.
  • Aluminum alloy having the same composition as alloy powder No. 1. was maintained at a temperature of 950 ° C., and Cu—8 wt% P was added so that the phosphorus content shown in Table 1 was obtained. After holding at a temperature of 950 ° C. for 1 hour, the molten metal was poured into a mold having a diameter of 30 mm and a height of 80 mm to prepare an alloy material (No. 6).
  • the size of the primary crystal silicon in the alloy powder obtained by the method of the present invention was determined by the size of the lithium obtained in Comparative Example 1. It is clear that the particles are finer and more uniformly dispersed than the size of the primary silicon in the alloy powder of the same composition, which does not contain copper.
  • Comparative Example 1 A (structure N 0, 6) 1.01 From the results shown in Table 2, it is clear that the machinability of the compact produced from the alloy powder of the present invention is extremely excellent.
  • Alloy powders No. 16 to No. 18 were prepared under the same conditions as alloy powders No. ll to No. 15. However, in this case, Aluminum alloy ingots that do not contain phosphorus were used.
  • the alloy powders N 0.11 to N 0.18 obtained in Example 2 and Comparative Example were converted to 100 mesh (particle size of less than 147 / zm). After classification, cold preforming was performed at a pressure of 3 ton Z cm 2 to a size of 30 mm in diameter ⁇ 80 mm in height. Thereafter, these compacts were hot extruded into a flat plate having a width of 2 mm and a thickness of 4 mm at an extrusion temperature of 450 ° C. and an extrusion ratio of 10. After the flat plate extruded material thus obtained was subjected to T6 treatment, the transverse rupture strength was measured at a gauge distance of 30 mm based on JISZ223. The results are shown in Table 4. Table 4
  • the die strength of the alloy powder containing phosphorus of the present invention is about 10% higher than that of the alloy powder containing no phosphorus.
  • the alloy powder of the invention of No. 13 having a phosphorus content exceeding 0.02% by weight The force to lower the transverse rupture strength slightly compared to No. 16 of the alloy powder. It can be used sufficiently.
  • the following hypereutectic aluminum-silicon alloys were prepared from metal.
  • A-20 20 24 bullion + 20 wt% S i
  • the obtained alloy powder was continuously collected, classified by air, and further classified by sieving.
  • the particle size of the silicon co down primary crystals of these alloy powders as a result of determining by quantitative image analysis microscope, the maximum particle diameter D e of the powder particle size D p and S i primary crystal; the relationship first Table 5 shown in Table 5
  • the hypereutectic aluminum mini-silicon alloy powder obtained for the A-25 alloy was classified based on the maximum grain size of the silicon primary crystal.
  • the tensile strength at room temperature of the solidified product of each powder produced under the same conditions as above was measured. The results of these measurements are shown in FIG. From the above results, according to the production method of the present invention, the size of the silicon primary crystal in the powder can be controlled to be small and extremely narrow, so that the coarse silicon crystal is used as a starting point. The resulting fracture is significantly reduced and the mechanical strength of the solidified powder is improved. In addition, even when cutting the obtained solidified body, effects such as stabilization and control of chipping and wear of the cutting tool can be obtained.
  • the compact produced from the hypereutectic aluminum-silicon alloy powder according to the present invention has extremely excellent machinability and mechanical strength. Therefore, it is useful as a part for various mechanical structures.
  • the primary crystal silicon of the hypereutectic aluminum-silicon alloy powder can be made finer and uniform. The dependence of the primary silicon particle size on the powder particle size can be significantly reduced as compared with the conventional case. As a result, it is possible to produce a solidified powder having improved mechanical properties as compared with the conventional one at a high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

A hypereutectic aluminum/silicon alloy powder wherein a primary crystal of silicon has a grain diameter of as minute as 10 νm or less is produced by the atomization process which comprises preparing a melt of a hypereutectic aluminium/silicon alloy containing phosphorus and spraying the melt by means of air or an inactive gas to effect rapid cooling for solidification. The obtained alloy powder contains 12 to 50 wt% of silicon and 0.0005 to 0.1 wt% of phosphorus. This powder can provide a solidified powder with improved mechanical properties in a high yield without any limitation to the grain size.

Description

明細書  Specification
過共晶アルミ ニウムーシリ コン系合金粉末およびその製 造方法  Hypereutectic aluminum-silicon alloy powder and method for producing the same
技術分野  Technical field
この発明は、 過共晶アルミ ニウム一シ リ コ ン系合金粉末 およびその製造方法に関し、 特に微細なシ リ コ ン初晶を安 定して有する過共晶アルミ ニウム—シリ コン系合金粉末お よびその製造方法に関する。  The present invention relates to a hypereutectic aluminum-silicon-based alloy powder and a method for producing the same, and in particular, to a hypereutectic aluminum-silicon-based alloy powder having a stable fine silicon primary crystal. And its manufacturing method.
背景技術  Background art
アルミ ニウム (A 1 ) にシ リ コ ン ( S i ) を添加する と、 熱膨張係数の低下、 剛性率の向上および耐摩耗性の改善な どに顕著な効果がある。 この効果を利用した A 1 一 S i系 合金がすでに広く使用されている。  The addition of silicon (S i) to aluminum (A 1) has remarkable effects such as lowering the coefficient of thermal expansion, improving rigidity, and improving wear resistance. A1-Si-based alloys utilizing this effect have already been widely used.
このような A 1 一 S i 系合金のうち、 铸造材は J I S規 格で A Cや A D Cと して分類され、 エンジンプロ ッ ク等の アルミニウム合金鐯物と して多量に使用されている。 また、 展伸材と しての A 1 — S i 系合金は 4 0 0 0番台に分類さ れ、 铸造ビレツ 卜から押出しや鍛造等により各種部品に加 ェされる。  Among such A11-Si-based alloys, steel materials are classified as AC or ADC according to the JIS standard, and are used in large quantities as aluminum alloys such as engine blocks. A1-Si-based alloys as wrought materials are classified into the 4000 series, and are added to various parts by extrusion, forging, etc. from forged billets.
過共晶 A 1 一 S i系合金を銪造法で製造するこ とは周知 である。 铸造法によって得られた過共晶 A 1 - S i 系合金 鍀物は、 低い熱膨脹率、 高い剛性率、 高い耐摩耗性といつ た優れた特性を有しており、 各種分野での使用が期待され ている。 しかしながら、 過共晶 A 1 - S i 系合金铸物に粗 大なシ リ コ ンの初晶が存在する と、 その機械的特性と機械 加工時の被削性が悪化する。 It is well known that hypereutectic Al-Si alloys are produced by a sintering method. Hypereutectic A 1 -Si-based alloys obtained by sintering have excellent properties such as low coefficient of thermal expansion, high rigidity, high wear resistance, and are suitable for use in various fields. It is expected. However, hypereutectic A 1 -Si-based alloy The presence of large silicon primary crystals degrades their mechanical properties and machinability during machining.
過共晶 A 1 — S i系合金铸物のシリ コンの初晶を微細化 するために、 微細化剤、 特にリ ン (P) を添加することも 周知である。 しかしながら、 過共晶 A 1 一 S i系合金の铸 造時に微細化剤を添加しても、 シリ コンの初晶の微細化に は限度がある。 特にシ リ コンの含有量が 2 0重量%を越え る A 1 一 S i系合金の場合には、 微細化剤を添加しても粗 大なシ リ コ ンの初晶が存在するので、 その合金の機械的特 性と機械加工時の被削性は依然と して悪い。  It is also well-known that hyperfine eutectic A 1 —Si-based alloy ferrite is added with a refining agent, particularly phosphorus (P), in order to refine the primary crystal of silicon. However, even if a refiner is added during the production of a hypereutectic Al-Si alloy, the refinement of the primary crystal of silicon is limited. In particular, in the case of A1-Si alloys having a silicon content exceeding 20% by weight, coarse silicon primary crystals exist even when a refiner is added. The alloy's mechanical properties and machinability during machining are still poor.
一方、 近年ではア トマイズ法等の急冷凝固粉末の製造法 により、 溶解铸造法で不可能であつた大きな冷却速度で溶 湯から粉末を製造することができる。 そのため、 シリ コ ン の初晶を微細化するこ とができ、 共晶組成以上のシ リ コ ン を含み、 さ らには第 3合金成分として鉄 (F e) 、 ニッケ ル (N i ) 、 ク ロム (C r) 、 マンガン (Mn) 等の遷移 金属元素 Xを含む過共晶 A 1 - S i系合金粉末の製造が可 能となる。 これらの粉末を用いた粉末冶金法によって製造 される合金と して、 铸造合金より もはるかに優れて特性を 有する A l — 1 7 S i —X, A 1 - 2 0 S i - X, A 1 - 2 5 S i — X等の粉末冶金合金が実用化されている。  On the other hand, in recent years, a rapidly solidified powder manufacturing method such as an atomizing method can produce a powder from a molten metal at a large cooling rate that was impossible with the melt-casting method. As a result, the primary crystal of silicon can be refined and contains silicon having a eutectic composition or more, and further, iron (Fe) and nickel (Ni) as the third alloy components. It is possible to produce hypereutectic A1-Si-based alloy powders containing transition metal elements X such as chromium (Cr) and manganese (Mn). As an alloy produced by powder metallurgy using these powders, Al — 17 S i — X, A 1-20 S i-X, A Powder metallurgy alloys such as 1-25Si-X have been put to practical use.
上記の粉末冶金合金の機械的特性をさ らに向上させるた めには、 シリ コンの結晶を一層微細化すると同時にシリ コ ンの結晶粒径を均一化することが必要である。 さ らに、 わ ずかな量でも破壊の起点となり、 材料強度のばらつきの原 因となる粗大なシリ コ ンの結晶を減少させることが極めて 重要である。 しかも、 粉末中のシ リ コ ンの初晶は鍛造や押 出し等の熱間固化により細かく なる可能性はほとんどなく、 むしろォス ト ヮル ド成長により粗大化する。 したがつて、 合金粉末中のシ リ コ ンの初晶の大きさが決定的に重要であ る c In order to further improve the mechanical properties of the powder metallurgy alloys described above, it is necessary to further refine the silicon crystals and to make the silicon crystal grain size uniform. In addition, It is extremely important to reduce the amount of coarse silicon crystals that cause fracture even at a small amount and cause variations in material strength. In addition, the primary silicon crystals in the powder are unlikely to become fine due to hot solidification such as forging or extrusion, but rather become coarse due to osto-growth. It was but connexion, Ru Shi Li co down decisively important size of primary crystal in the alloy powder c
ところで、 シリ コンの初晶を微細化するには、 粉末を製 造する際の冷却速度を大き くすればよいことは知られてい る。 しかし、 その冷却速度はア トマイズの方法や装置によ つておおむね決定され、 他の工業的方法で冷却速度を大き くすることは経済性や生産性の点で問題があり、 実現され ていない。  By the way, it is known that the primary crystal of silicon can be refined by increasing the cooling rate when producing powder. However, the cooling rate is largely determined by the atomizing method and equipment, and increasing the cooling rate by other industrial methods has not been realized due to economic and productivity problems.
また、 従来のァ トマイズ法では冷却速度が粉末の粒度に 依存するため、 得られる粉末が一定幅の粒度分布を有する 限り、 全粉末中では、 存在するシ リ コ ンの初晶の粒径に大 きなばらつきがある。 たとえば、 従来、 粒径 4 0 0 m程 度の粉末中には粒径 2 0 程度の粗大なシリ コ ンの初晶 の存在が避けられなかった。  In addition, in the conventional atomizing method, since the cooling rate depends on the particle size of the powder, as long as the obtained powder has a certain width of particle size distribution, the particle size of the existing silicon primary crystals in all powders There are large variations. For example, in the past, a coarse silicon primary crystal having a particle size of about 20 was unavoidable in a powder having a particle size of about 400 m.
そこで、 従来から、 粗大なシリ コンの初晶を有する粒子 を除く ために冷却速度の低い粗粒粉末をふるい分けして除 去して、 微細粉末のみを用いて固化体を製造する こ とが行 なわれていた。 しかしながら、 この方法によれば、 材料歩 留り低下により経済性が悪化する上、 粉末の流動性や成形 性等のハン ドリ ング性が著しく低下し、 さ らには粉塵爆発 の危険が増大する等の問題があつた。 Therefore, conventionally, in order to remove particles having coarse primary crystals of silicon, a coarse powder having a low cooling rate is sieved and removed, and a solidified body is produced using only the fine powder. Was being done. However, according to this method, the economic efficiency is deteriorated due to a decrease in the material yield, and the fluidity of the powder and In addition, there were problems such as the remarkable decrease in the handling properties such as the properties, and the increased risk of dust explosion.
本発明は、 上述のような従来の事情に鑑み、 ア トマイズ 法により、 シ リ コ ンの初晶が微細でかつ均一であり、 特に 粗大なシリ コンの初晶の晶出を抑制することが可能な過共 晶 A 1 — S i系合金粉末の組成およびその製造方法を提供 することを目的とする。  The present invention has been made in view of the above-described conventional circumstances, and it has been found that the atomization method allows the silicon primary crystals to be fine and uniform, and particularly suppresses the crystallization of coarse silicon primary crystals. It is an object of the present invention to provide a possible hypereutectic A 1 —Si alloy powder composition and a method for producing the same.
発明の開示  Disclosure of the invention
本願発明者らは、 上述の従来技術の問題点に鑑みて、 種 々の実験と研究を重ねた結果、 リ ンを含有する初晶シリ コ ン微細化剤を添加したアルミニゥムーシリ コン系合金の溶 湯、 またはリ ンを含有する初晶シリ コン微細化剤を予め含 むアルミ ニウム—シ リ コ ン系合金地金を溶解して得られる . 合金溶湯を空気または不活性ガスを用いてァ トマイズする こ とにより、 初晶シリ コ ンの極めて微細な過共晶アルミ二 ゥムーシリ コン系合金粉末が得られることを知見した。  In view of the above-mentioned problems of the prior art, the inventors of the present application have conducted various experiments and studies, and as a result, have found that an aluminum silicon-based material to which a primary crystal silicon refiner containing phosphorus is added is added. It is obtained by melting a molten alloy or an aluminum-silicon alloy ingot containing a phosphorus-containing primary crystal silicon refiner in advance. The molten alloy is prepared using air or an inert gas. It was found that by atomizing, an extremely fine hypereutectic aluminum-silicon alloy powder of primary silicon could be obtained.
この発明の第 1の局面に従った過共晶アルミニウムーシ リ コン系合金粉末は、 シ リ コンを 1 2重量%以上 5 0重量 %以下、 リ ンを 0 . 0 0 0 5重量%以上 0 . 1重量%以下 含有する。  In the hypereutectic aluminum-silicon alloy powder according to the first aspect of the present invention, silicon is contained in an amount of from 12% by weight to 50% by weight, and phosphorus is contained in an amount of 0.0005% by weight or more. Contains 0.1% by weight or less.
この発明の過共晶アルミニゥムーシリ コン系合金粉末中 の初晶シリ コンの粒径は、 従来の鐯造法によって得られる 過共晶アルミニウムーシリ コン系合金中の初晶シリ コ ンの 大きさより もはるかに小さ く、 通常 1 0 m以下である。 この発明のアルミ ニウム一シ リ コ ン系合金粉末における シリ コ ンの含有量が 1 2重量%以上 5 0重量%以下、 好ま し く は 2 0重量 以上 3 0重量%以下である。 シ リ コ ンの 含有量が 1 2重量%未満では初晶のシリ コンが晶出しない。 一方、 シ リ コ ンの含有量が 5 0重量%を越えると、 シリ コ ンの初晶をいく ら微細化しても初晶シ リ コ ンの量が多すぎ、 得られた粉末から作製した固化体の被削性が悪く、 その機 械的強度も劣る。 The particle diameter of the primary crystal silicon in the hypereutectic aluminum silicon-based alloy powder of the present invention is the same as that of the primary crystal silicon in the hypereutectic aluminum-silicon alloy obtained by the conventional fabrication method. Much smaller than the size, usually less than 10 m. The aluminum-silicon alloy powder of the present invention has a silicon content of 12% by weight or more and 50% by weight or less, preferably 20% by weight or more and 30% by weight or less. If the silicon content is less than 12% by weight, primary silicon does not crystallize. On the other hand, if the silicon content exceeds 50% by weight, the amount of primary crystal silicon is too large even if the primary crystal of silicon is refined no matter how much, and it was made from the obtained powder. The machinability of the solidified body is poor, and its mechanical strength is also poor.
本発明のアルミ ニゥムーシリ コン系合金粉末における リ ンの含有量は 0 . 0 0 0 5重量%以上 0 . 1重量%以下、 好ま しく は 0 . 0 0 0 5重量%以上 0 . 0 5重量%以下で ある。 リ ンの含有量が 0 . 0 0 0 5重量%未満では微細化 効果が得られず、 機械的強度の改善も見られない。 一方、 . リ ンの含有量が 0 . 1重量%を越えても微細化効果がより 向上することはない。 特にリ ンの含有量が 0 . 0 2重量% 以上 0 . 1重量%以下であるアルミ ニゥム一シリ コン系合 金粉末は機械加工時の被削性に優れている。  The phosphorus content in the aluminum silicon alloy powder of the present invention is from 0.0005% to 0.1% by weight, preferably from 0.0005% to 0.05% by weight. It is as follows. If the content of phosphorus is less than 0.0005% by weight, no refining effect is obtained and no improvement in mechanical strength is observed. On the other hand, even if the phosphorus content exceeds 0.1% by weight, the effect of miniaturization is not further improved. In particular, aluminum-silicon alloy powder having a phosphorus content of 0.02% by weight or more and 0.1% by weight or less has excellent machinability during machining.
本発明のより好ま しく、 具体的なアルミ ニウムーシ リ コ ン系合金粉末は、 シ リ コ ンを 1 2重量%以上 5 0重量%以 下、 銅を 2 . 0重量%以上 3 . 0重量%以下、 マグネシゥ ムを 0 . 5重量%以上 1 . 5重量%以下、 マンガンを 0 . 2重量%以上 0 . 8重量%以下、 リ ンを 0 . 0 0 0 5重量 %以上 0 . 0 5重量%以下含有し、 残部がアル ミ ニウムと 不可避不純物である。 銅、 マグネシウム、 マンガンの各元 素を含有するアル ミ ニウム— シ リ コ ン系合金粉末は、 より 高い機械的強度を有する。 More preferably, concrete aluminum-silicon alloy powder of the present invention contains silicon in an amount of from 12% to 50% by weight, and copper in an amount of from 2.0% to 3.0% by weight. In the following, magnesium is 0.5% by weight or more and 1.5% by weight or less, manganese is 0.2% by weight or more and 0.8% by weight or less, and phosphorus is 0.005% by weight or more and 0.05% by weight. %, The balance being aluminum and unavoidable impurities. Copper, magnesium, and manganese sources Aluminum-silicon alloy powders containing silicon have higher mechanical strength.
この発明の第 2の局面に従った過共晶アル ミ ニウムーシ リ コン系合金粉末の製造方法によれば、 まず、 リ ンを含有 する過共晶アルミニウムーシリ コン系合金の溶湯が準備さ れる。 空気または不活性ガスを用いて、 その溶湯を噴霧し て急冷凝固させる。  According to the method for producing a hypereutectic aluminum-silicon alloy powder according to the second aspect of the present invention, first, a molten metal of a hypereutectic aluminum-silicon alloy containing phosphorus is prepared. . The molten metal is sprayed and rapidly solidified using air or an inert gas.
リ ンを含有する過共晶アルミニゥムーシリ コン系合金の 溶湯は、 リ ンを含有する初晶シリ コン微細化剤を添加した アルミニウムーシリ コン系合金の溶湯、 またはリ ンを含有 する初晶シリ コン微細化剤を予め含むアルミニゥムーシリ コン系合金地金を溶解して得られる合金溶湯であればよい, 本発明の製造方法においてひ ンを含有する初晶シリ コン 微細化剤と しては、 従来の鐯造法において使用されている 初晶シ リ コ ン微細化剤、 たとえば C u— 8重量% P、 C u The melt of a hypereutectic aluminum silicon-based alloy containing phosphorus can be either a molten aluminum-silicon-based alloy to which a primary silicon-containing alloy refiner containing phosphorus is added, or a molten metal containing phosphorus. In the production method of the present invention, the primary silicon refiner containing phosphorus may be any molten alloy obtained by melting an aluminum silicon-based alloy ingot containing a crystalline silicon refiner in advance. For example, primary crystal silicon refining agents used in conventional manufacturing methods, such as Cu—8 wt% P, Cu
― 1 5重量% P、 P C i 5 、 赤リ ンを主体と した混合塩等 あるいは A 1 — C u— P微細化剤が使用される。 - 1 5 wt% P, PC i 5, mixed salt mainly composed of lights down like, or A 1 - C u- P refiner is used.
初晶シ リ コ ン微細化剤は通常、 0 . 0 0 0 5重量%以上 0 . 1重量%以下、 好ま しく は 0 . 0 0 2重量%以上 0 . 0 5重量%以下の量で使用される。 初晶シリ コ ン微細化剤 の量が 0 . 0 0 0 5重量%未満のときには、 初晶シ リ コ ン 微細化剤添加の効果が十分でない。 また、 初晶シ リ コ ン微 細化剤を 0 . 1重量%を越える量で添加しても効果のさ ら なる向上は見られない。 本発明の製造方法においてアルミニゥムーシリ コン系合 金溶湯は公知の方法に従ってァ トマイズ処理される。 The primary crystal silicon refining agent is usually used in an amount of 0.0005% to 0.1% by weight, preferably 0.02% to 0.05% by weight. Is done. When the amount of the primary crystal silicon refiner is less than 0.005% by weight, the effect of the addition of the primary silicon refiner is not sufficient. Further, even if the primary crystal silicon refiner is added in an amount exceeding 0.1% by weight, no further improvement in the effect is observed. In the production method of the present invention, the aluminum silicon alloy melt is subjected to an atomizing treatment according to a known method.
この発明の製造方法において、 合金溶湯をアル ミ ニウム ーシリ コン系合金の液相線温度より 1 0 0 °c高い温度以上 1 3 0 0 °C以下の温度に保持された状態でァ トマイズ処理 することが好ま しい。 アルミニウム一シリ コン系合金に初 晶シリ コン微細化剤を添加する際にも、 その合金を上記の 温度に保持しておく ことが好ま しい。  In the production method of the present invention, the alloy melt is subjected to the atomizing treatment while being kept at a temperature of 100 ° C. or higher and 130 ° C. or lower than the liquidus temperature of the aluminum-silicon alloy. It is preferable. Even when the primary silicon refiner is added to the aluminum-silicon alloy, it is preferable to keep the alloy at the above temperature.
こ こで、 液相線温度とは、 その組成の合金が完全に溶解 し終わる温度を意味する。 たとえば、 シ リ コ ンを 2 5重量 %含有するアルミニウムーシリ コン系合金の液相線温度は 約 7 8 0 °Cである。  Here, the liquidus temperature means the temperature at which the alloy of the composition is completely melted. For example, the liquidus temperature of an aluminum-silicon alloy containing 25% by weight of silicon is about 780 ° C.
合金溶湯をアルミ ニゥムーシリ コン系合金の (液相線温 . 度 + 1 0 0 ) での温度より低い温度で保持した場合には、 リ ンの溶解が不十分となり、 添加されたリ ンの量に対して 合金中に含有する リ ンの量が少なく なり、 正確なリ ンの量 を含有する合金粉末を得ることが困難である。 また、 合金 溶湯を 1 3 0 0 °Cを越える温度で保持した場合には、 ルツ ボと炉材の損傷が甚し く、 含まれる合金元素によっては一 部蒸発し、 所望通りの組成を有する合金が得られないこと があり得る。  If the molten alloy is maintained at a temperature lower than the liquidus temperature of the aluminum silicon-based alloy at (liquidus temperature + 100), the dissolution of the phosphorus will be insufficient and the amount of added phosphorus will be insufficient. In contrast, the amount of phosphorus contained in the alloy is reduced, and it is difficult to obtain an alloy powder containing the correct amount of phosphorus. Also, if the molten alloy is kept at a temperature exceeding 1300 ° C, the crucible and the furnace material will be seriously damaged, and depending on the contained alloy element, it will partially evaporate and have the desired composition. An alloy may not be obtained.
より好ま しく は、 合金溶湯をアルミ ニウム—シ リ コ ン系 合金の液相線温度より 1 0 0 °C高い温度以上 1 3 0 0 °C以 下の温度に少なく と も 3 0分間保持した後、 ァ トマイズ処 理する。 保持時間が 3 0分より も短い場合においても、 リ ンの溶解が不十分となり、 添加されたリ ンの量に対して合 金中に含有する リ ンの量が少なく なり、 正確なリ ンの量を 含有する合金粉末を得ることが困難である。 しかし、 A 1 — C u— P接種剤を使用する際は、 その限りでない (保持 時間を 3 0分より短く できる場合がある。 ) 。 More preferably, the molten alloy is kept at a temperature of 100 ° C higher than the liquidus temperature of the aluminum-silicon alloy and lower than 1300 ° C for at least 30 minutes. Later, the atomize process Manage. Even when the holding time is shorter than 30 minutes, the dissolution of the phosphorus is insufficient, and the amount of the phosphorus contained in the alloy becomes small relative to the amount of the added phosphorus. It is difficult to obtain an alloy powder containing the above amount. However, this is not the case when using the A 1 —Cu—P inoculant (retention time may be shorter than 30 minutes).
本発明の方法が適用されるアルミ ニウム一シ リ コ ン系合 金は特に限定されず、 アルミ ニウム、 シ リ コ ン以外の他の 元素、 たとえば鋦、 マグネシウム、 マンガン、 鉄、 ニッケ ル、 亜鉛等を含有する一般的なアルミニゥムーシリ コン系 合金も包含され得る。 本発明の製造方法は、 高いシリ コン の含有量 ( 2 0重量%以上 4 0重量%以下) のアルミ ニゥ ム一シリ コン系合金に対して特に有用である。  The aluminum-silicon alloy to which the method of the present invention is applied is not particularly limited, and elements other than aluminum and silicon, for example, magnesium, manganese, iron, nickel, zinc General aluminum silicon-based alloys containing the same may also be included. The production method of the present invention is particularly useful for aluminum-silicon alloys having a high silicon content (20 to 40% by weight).
以上、 本発明によれば、 極めて微細な初晶シリ コンが均 —に分散した過共晶アルミニゥムーシリ コン系合金粉末が 得られる。 また、 上記の好ま しい条件下で製造したときに は、 所望の組成を有する過共晶アルミ ニウム一シリ コ ン系 合金粉末が得られる。  As described above, according to the present invention, a hypereutectic aluminum silicon alloy powder in which extremely fine primary crystals are uniformly dispersed can be obtained. Further, when manufactured under the above preferable conditions, a hypereutectic aluminum-silicon alloy powder having a desired composition can be obtained.
本発明の過共晶アルミ ニウムーシリ コ ン系合金粉末から 作製した固化体は、 極めて優れた被削性と機械的特性を有 する。  The solidified body produced from the hypereutectic aluminum-silicon alloy powder of the present invention has extremely excellent machinability and mechanical properties.
この発明の第 3の局面に従つた過共晶アルミニゥ厶ーシ リ コン系合金粉末の製造方法によれば、 まず、 リ ンを含有 する過共晶アルミニゥム一シリ コン系合金の溶湯が準備さ れる。 空気を用いて、 この溶湯を噴霧して急冷凝固させる こ とによつて過共晶アルミ ニゥムーシ リ コ ン系合金粉末が 作製される。 粒径 4 0 0 m以下の合金粉末のみが選別さ れる。 According to the method for producing a hypereutectic aluminum silicon alloy powder according to the third aspect of the present invention, first, a molten metal of a hypereutectic aluminum-silicon alloy containing phosphorus is prepared. It is. The hypereutectic aluminum silicon-based alloy powder is produced by spraying and rapidly solidifying the molten metal using air. Only alloy powder with a particle size of 400 m or less is selected.
本発明の製造方法では、 溶解铸造法において用いられて いた接種法を応用し、 まず、 ア トマイズ用の過共晶アルミ 二ゥムーシ リ コ ン系合金溶湯にリ ンを接種する。  In the production method of the present invention, the inoculation method used in the melt-casting method is applied, and first, phosphorus is inoculated into a molten hypereutectic aluminum-double-silicon alloy for atomization.
均一に溶融した合金溶湯にリ ンを接種して分散させるこ とにより、 凝固の際の核を予め準備し、 過冷却による不均 一な核生成を抑制することができる。 接種されたリ ンは噴 霧温度において固体微粒子と して溶湯中に均一に分散して いることが必要である。 同時に溶湯中にはリ ン以外の未溶 解成分が存在すると容易に粗大な晶出物となるので、 これ をなく す必要がある。 なお、 接種された溶湯は、 一旦、 冷 却凝固させた後、 再度溶解して元の接種溶湯の状態に復帰 するこ とが可能である。  By inoculating and dispersing the uniformly molten molten alloy with phosphorus, nuclei for solidification can be prepared in advance, and uneven nucleation due to supercooling can be suppressed. The inoculated phosphorus must be uniformly dispersed in the molten metal as solid particles at the spray temperature. At the same time, if undissolved components other than phosphorus are present in the molten metal, coarse crystals can easily be formed. The inoculated molten metal can be once cooled and solidified, then melted again and returned to the original inoculated molten metal state.
次に、 接種溶湯を空気ァ トマイズ法により噴霧し、 急冷 凝固させる。 急冷凝固して粉末を製造する方法と して空気 ア トマイズ法を採用する理由は、 他の方法より も経済的で ある点と、 適度な酸化により粉末の表面が安定化するため、 取扱いが容易になる等の利点があるからである。  Next, the inoculum is sprayed by an air atomizing method and rapidly solidified. The air atomization method is used as a method for producing powder by rapid solidification because it is more economical than other methods and because the surface of the powder is stabilized by moderate oxidation, handling is easy. This is because there are advantages such as
急冷凝固の条件と して、 冷却速度が大きいほど組織が微 細化する こ とは知られている。 しかし、 本発明の製造方法 においては、 シ リ コ ンの初晶の晶出核を予め多数溶湯中に 存在させることによって、 直接的管理が困難な冷却速度に 強く依存することなく、 得られる粉末の粒径に対して初晶 シリ コンの最大結晶粒径が常に微細かつ狭い範囲に制御さ れ得る。 すなわち、 従来のァ トマイズ法と比較して小さな 冷却速度 (得られる粉末の粒径が比較的大きい) の場合で あっても、 微細で比較的均一なシリ コンの初晶が得られる。 得られる合金粉末の粒径を 4 0 0 // in以下に選別すると、 初晶シリ コンの最大結晶粒径は 1 0 // m以下に制御され得 る。 好ま しく は、 得られる合金粉末の粒径を 2 0 0 z m以 下に選別すると、 初晶シリ コンの最大結晶粒径が 7 m以 下に制御され得る。 さ らに好ま しく は、 得られる合金粉末 の粒径を 1 0 0 m以下に選別すると、 初晶シリ コ ンの最 大結晶粒径を 5 m以下に制御することができる。 さ らに 得られる合金粉末の粒径を 5 0 /z m以下に選別すると、 初 晶シリ コンの最大結晶粒径を 3 z m以下に制御することが できる。 It is known that the rapid solidification condition is that the higher the cooling rate, the finer the structure becomes. However, in the production method of the present invention, a large number of crystallization nuclei of silicon primary crystals are previously contained in the molten metal. The presence makes it possible to control the maximum crystal grain size of the primary silicon in a fine and narrow range with respect to the grain size of the obtained powder without strongly depending on the cooling rate which is difficult to directly control. In other words, fine and relatively uniform primary crystals of silicon can be obtained even at a lower cooling rate (the particle size of the obtained powder is relatively large) as compared with the conventional atomizing method. When the particle size of the obtained alloy powder is selected to be equal to or less than 400 // in, the maximum crystal grain size of the primary crystal silicon can be controlled to be equal to or less than 100 // m. Preferably, if the particle size of the obtained alloy powder is selected to be less than 200 zm, the maximum crystal grain size of primary silicon can be controlled to be 7 m or less. More preferably, if the grain size of the obtained alloy powder is selected to be 100 m or less, the maximum crystal grain size of primary silicon can be controlled to 5 m or less. If the particle size of the obtained alloy powder is selected to be 50 / zm or less, the maximum crystal grain size of primary silicon can be controlled to 3 zm or less.
なお、 上記のような作用効果を安定して得るためには、 接種する リ ンの濃度を 0 . 0 0 5重量%以上 0 . 0 2重量 %以下の範囲にすることが好ま しい。  In order to stably obtain the above-mentioned effects, the concentration of the inoculated phosphorus is preferably in the range of 0.05% by weight or more and 0.02% by weight or less.
以上のように、 この発明の第 3の局面によれば、 ア トマ ィズ法により製造した過共晶アルミニウム—シリ コン系合 金粉末の初晶シ リ コ ンを微細化かつ均一化させ、 合金粉末 の粒度に対する初晶シリ コンの粒径の依存性を従来より も 著しく低下させることができる。 その結果、 得られた過共 晶アルミニウムーシリ コ ン系合金粉末を用いるこ とにより、 粉末粒度の制約がなく、 高い歩留りで従来より も機械的特 性が改善された粉末の固化体を製造することが可能となる。 As described above, according to the third aspect of the present invention, the primary crystal silicon of the hypereutectic aluminum-silicon alloy powder produced by the atomization method is refined and uniformized, The dependence of the primary crystal silicon particle size on the alloy powder particle size can be significantly reduced as compared with the conventional case. As a result, By using a crystalline aluminum-silicon alloy powder, it is possible to produce a solidified powder having improved mechanical properties at a high yield without restriction on the powder particle size.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施例 1で得られた合金粉末中の初晶シリ コ ンの構造を示す光学顕微鏡による結晶の構造の写真である FIG. 1 is a photograph of the crystal structure by an optical microscope showing the structure of primary silicon in the alloy powder obtained in Example 1.
(倍率 X 4 0 0 ) 。 (Magnification X 400).
第 2図は、 比較例 1で得られた合金粉末中の初晶シリ コ ンの構造を示す光学顕微鏡による結晶の構造の写真である (倍率 X 4 0 0 ) 。  FIG. 2 is a photograph of a crystal structure by an optical microscope showing a structure of primary crystal silicon in the alloy powder obtained in Comparative Example 1 (magnification: X400).
第 3図は、 铸造合金中の初晶シリ コンの構造を示す光学 顕微鏡による結晶の構造の写真である (倍率 X 4 0 0 ) 。  FIG. 3 is a photograph of the crystal structure by an optical microscope showing the structure of primary silicon in the forged alloy (magnification: X400).
第 4図は、 実施例 3で得られ、 リ ンを接種した過共晶ァ . ルミ二ゥムー 2 5重量%シ リ コン合金粉末の金属組織を示 す光学顕微鏡写真である (倍率 X 4 0 0 ) 。  FIG. 4 is an optical micrograph showing the metallographic structure of the hypereutectic aluminum 25-% by weight silicon alloy powder obtained in Example 3 and inoculated with phosphorus (magnification: X 40%). 0).
第 5図は、 実施例 3で得られ、 リ ンを接種しない過共晶 アル ミ ニウム一 2 5重量%シリ コン合金粉末の金属組織を 示す光学顕微鏡写真である (倍率 X 4 0 0 ) 。  FIG. 5 is an optical micrograph (magnification: X400) showing the metal structure of the hypereutectic aluminum-125% by weight silicon alloy powder obtained in Example 3 but not inoculated with phosphorus.
第 6図は、 実施例 3 において、 過共晶アルミ ニゥムー 2 5重量%シリ コン合金粉末におけるシリ コン初晶の最大粒 径と、 その粉末から得られた固化体の常温での引張り強度 との関係を示すグラフである。  FIG. 6 shows the relationship between the maximum grain size of silicon primary crystals in the hypereutectic aluminum alloy 25% by weight silicon alloy powder and the tensile strength at room temperature of the solidified body obtained from the powder in Example 3. It is a graph which shows a relationship.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 第 1表に示す組成を有するアルミニゥム合金の溶湯を温 度 9 5 0 °Cに保持し、 第 1表に示される リ ンの含有量にな るように C u— 8重量% Pをその溶湯に添加した。 溶湯を 温度 9 5 0 °Cで 1時間保持した後、 この溶湯をエア · ア ト マイズ法により粉末化した (第 1表の合金粉末 N 0. 1〜 N 0. 4参照) 。 Example 1 A molten aluminum alloy having the composition shown in Table 1 was maintained at a temperature of 950 ° C, and Cu-8% by weight P was melted so as to obtain the phosphorus content shown in Table 1. Was added. After maintaining the molten metal at a temperature of 950 ° C. for 1 hour, the molten metal was pulverized by an air atomizing method (see alloy powders N 0.1 to N 0.4 in Table 1).
このようにして得られた合金粉末を一 42〜一 8 0メ ッ シュ (1 7 5〜 3 5 0 ; mの粒径) に分級した後、 粉末中 の初晶シリ コ ンの大きさを光学顕微鏡で組織観察すること により、 測定した。 その結果は第 1表に示される。 また、 合金粉末 N 0. 1の光学顕微鏡による組織写真は第 1図に 示される。  After classifying the alloy powder thus obtained into 142-180 mesh (175-350; particle size of m), the size of primary silicon in the powder was determined. It was measured by observing the structure with an optical microscope. The results are shown in Table 1. A micrograph of the alloy powder N 0.1 by an optical microscope is shown in FIG.
比較例 1  Comparative Example 1
合金粉末 N.o. 1と同一条件下で合金粉末 N 0. 5を作 製した。 ただし、 この場合、 C u— 8重量% Pはアルミ二 ゥム合金の溶湯に添加されなかつた。  Alloy powder N 0.5 was prepared under the same conditions as alloy powder No. 1. However, in this case, Cu—8% by weight of P was not added to the molten aluminum alloy.
このようにして得られた合金粉末を一 4 2〜一 8 0メ ッ シュ (1 7 5〜 3 5 0 mの粒径) に分級した後、 粉末中 の初晶シリ コンの大きさを光学顕微鏡で組織観察すること により測定した。 その結果は第 1表に示される。 また、 合 金粉末 N 0. 5の光学顕微鏡による組織写真は第 2図に示 される。  After classifying the alloy powder obtained in this way into a mesh of 142 to 180 mesh (particle size of 175 to 350 m), the size of the primary crystal silicon in the powder is optically determined. It was measured by observing the structure with a microscope. The results are shown in Table 1. A micrograph of the alloy powder N 0.5 by an optical microscope is shown in FIG.
比較例 1 A  Comparative Example 1 A
合金粉末 N o. 1 と同一組成を有するアルミ ニウム合金 の溶湯を温度 9 5 0 °Cに保持し、 第 1表に示される リ ンの 含有量になるように C u— 8重量% Pを添加した。 温度 9 5 0 °Cで 1時間保持した後、 この溶湯を直径 3 0 m m X高 さ 8 0 m mの金型に铸込み、 合金铸物 (N o . 6 ) を作製 した。 Aluminum alloy having the same composition as alloy powder No. 1. Was maintained at a temperature of 950 ° C., and Cu—8 wt% P was added so that the phosphorus content shown in Table 1 was obtained. After holding at a temperature of 950 ° C. for 1 hour, the molten metal was poured into a mold having a diameter of 30 mm and a height of 80 mm to prepare an alloy material (No. 6).
このようにして得られた合金铸物中の初晶シリ コンの大 きさを光学顕微鏡を用いて組織観察することにより測定し た。 その結果は第 1表に示される。 また、 合金鍀物の光学 顕微鏡による組織写真は第 3図に示される。  The size of the primary crystal silicon in the thus obtained alloy material was measured by observing the structure using an optical microscope. The results are shown in Table 1. Fig. 3 shows a micrograph of the structure of the alloy alloy under an optical microscope.
第 1図〜第 3図に示された光学顕微鏡による組織写真の 比較から、 本発明の方法で得られた合金粉末中の初晶シリ コ ンの大きさは、 比較例 1で得られたリ ンを含まない同一 組成の合金粉末中の初晶シ リ コ ンの大きさに比べて微細か . つ均一に分散していることが明らかである。  From the comparison of the micrographs by the optical microscope shown in FIGS. 1 to 3, the size of the primary crystal silicon in the alloy powder obtained by the method of the present invention was determined by the size of the lithium obtained in Comparative Example 1. It is clear that the particles are finer and more uniformly dispersed than the size of the primary silicon in the alloy powder of the same composition, which does not contain copper.
(以下余白) (Hereinafter the margin)
第 1表 α 組成 Si初晶 Table 1 α composition Si primary crystal
粒径  Particle size
No. Si し u Mg Mn P ί m) 実施例 1 1 25 2. 5 1. 0 0. 5 0. 0240 丄〜 5  No.Si s u Mg Mn P ί m) Example 1 1 25 2.5 1.0.0 0.5 0.50 240 丄 to 5
2 25 3. 5 0. 5 0. 5 0. 0055 1〜 6 2 25 3.5 0 0.5 0 0.5 0 0.0055 1 to 6
3 25 3. ό 1. 0 0, 0 0. 0545 1 〜 53 25 3.ό 1. 0 0, 0 0. 0545 1 to 5
4 25 2. 5 1. 0. 5 0. 0125 1〜 5 比較例 1 5 25 2. 5 1. 0 0. 5 く 0. 0005 3〜 2 0 比較例 6 25 2. 5 1. 0 0. 5 0. 0240 5〜 8 0 次に、 上記実施例と比較例で得られた合金粉末と合金铸 物から作製された成形体の披削性を試験した。 4 25 2.5 1.0.5 0.50 125 1 to 5 Comparative Example 1 5 25 2.5 1.0.5 0.5 to 0.0005 3 to 20 Comparative Example 6 25 2.5 1.0.0 50.0240 5 to 80 Next, the machinability of the compacts made from the alloy powder and the alloy body obtained in the above Examples and Comparative Examples was tested.
実施例 1 と比較例 1で得られた合金粉末 N 0 . l〜N o . 5を一 4 2 メ ッ シュ ( 3 5 0 ; 以下の粒径) に分級した 後、 圧力 3 ト ン Z c m2 で直径 3 0 111111ズ高さ 8 0 111111の 大きさに冷間予備成形した。 その後、 これらの成形体を押 出し温度 4 5 0 °C、 押出比 1 0で直径 1 0 mmの丸棒に熱 間押出しした。 また、 比較例 1 Aで得られた合金铸物 N 0 , 6 も同様にして直径 1 0 mmの丸棒に押出した。 After classifying the alloy powders No. 5 to No. 5 obtained in Example 1 and Comparative Example 1 into 142 mesh (350; particle size below), a pressure of 3 tons Z cm was applied. It was cold preformed into a size of 3 0 111 111 height and 800 111 111 height at 2 . Thereafter, these compacts were hot extruded into a round rod having a diameter of 10 mm at an extrusion temperature of 450 ° C. and an extrusion ratio of 10. Similarly, the alloy product N 0,6 obtained in Comparative Example 1A was extruded into a round bar having a diameter of 10 mm.
このようにして得られた丸棒押出材を、 超硬合金工具を 用いて切削速度 1 0 0 mZ分、 乾式で切削加工し、 1 0分 間切削後の工具の摩耗量を測定した。 その結果は第 2表に 示される 第 2表 工具摩耗量 (mm) 実施例 1 (合金 N 0. 1) 0. 0 3 The round bar extruded material thus obtained was dry-cut with a cutting speed of 100 mZ using a cemented carbide tool, and the wear of the tool after cutting for 10 minutes was measured. The results are shown in Table 2. Indicated Table 2 Tool wear (mm) Example 1 (alloy N 0.1) 0.0 3
比較例 1 (合金 N 0. 5 ) 0. 1 2  Comparative Example 1 (Alloy N 0.5) 0.12
比較例 1 A (铸造 N 0, 6 ) 1. 0 1 第 2表に示す結果から、 本発明の合金粉末から作製した 成形体の被削性は非常に優れていることが明らかである。  Comparative Example 1 A (structure N 0, 6) 1.01 From the results shown in Table 2, it is clear that the machinability of the compact produced from the alloy powder of the present invention is extremely excellent.
実施例 2  Example 2
第 3表に示されるようにリ ンを含有するアルミ ニウム合 金地金を溶解して得られた溶湯を 9 5 0 °Cの温度で 1時間 保持した。 その後、 この溶湯をエア · ア トマイズ法により 粉末化した (第 3表の合金粉末 N 0. l l〜N o . 1 5参 照) 。  As shown in Table 3, the molten metal obtained by dissolving the aluminum alloy metal containing phosphorus was kept at a temperature of 950 ° C for 1 hour. Thereafter, the molten metal was powdered by an air atomizing method (see Alloy powders No. 11 to No. 15 in Table 3).
このよう にして得られた合金粉末を一 1 0 0メ ッ シュ ( 1 4 7 μ πι以下の粒径) に分級した後、 粉末中の初晶シ リ コンの大きさを光学顕微鏡を用いて組織観察する ことに より測定した。 その結果は第 3表に示される。  After classifying the alloy powder thus obtained into 100 meshes (particle diameter of less than 147 μπι), the size of primary silicon in the powders was determined using an optical microscope. It was measured by observing the tissue. The results are shown in Table 3.
比較例 2  Comparative Example 2
合金粉末 N o . l l〜N o. 1 5と同一条件下で合金粉 末 N o. 1 6〜N o. 1 8を作製した。 ただし、 この場合、 リ ンを含有しないアルミニゥム合金地金を使用した。 Alloy powders No. 16 to No. 18 were prepared under the same conditions as alloy powders No. ll to No. 15. However, in this case, Aluminum alloy ingots that do not contain phosphorus were used.
このようにして得られた合金粉末を一 1 0 0メ ッ シュ (1 4 7 /zm以下の粒径) に分級した後、 粉末中の初晶シ リ コンの大きさを光学顕微鏡を用いて組織観察するこ とに より測定した。 その結果は第 3表に示される。 第 3表 合金 組成 S i初晶 粒径  After classifying the alloy powder thus obtained into 100 mesh (particle size of less than 147 / zm), the size of the primary silicon in the powder was determined using an optical microscope. It was measured by observing the tissue. The results are shown in Table 3. Table 3 Alloy composition Si primary crystal grain size
No, Si Cu Mg Mn P ( m) 実施例 2 1 1 25 2.5 1 0 0.5 0.0041 1〜: L 0  No, Si Cu Mg Mn P (m) Example 2 1 1 25 2.5 1 0 0.5 0.0041 1 ~: L 0
1 2 25 2.5 1 0 0.5 0.0116 1〜: L 0 1 2 25 2.5 1 0 0.5 0.0116 1 ~: L 0
1 3 25 2.5 1 0 0.5 0.0395 1〜 51 3 25 2.5 1 0 0.5 0.0395 1〜5
1 4 2δ 3.5 9 0 0. S 0.0075 1〜 1 01 4 2δ 3.5 9 0 0.S 0.0075 1 ~ 1 0
1 5 25 2. δ 1 0 0.0 0.0152 1〜 1 0 比較例 2 1 6 2ό 2. a 1 0 0.5 < 0.0005 1〜 2 0 1 5 25 2.δ 1 0 0.0 0.0152 1 ~ 1 0 Comparative example 2 1 6 2ό 2.a 1 0 0.5 <0.0005 1 ~ 2 0
1 7 25 3.5 2 0 0.5 〈0.0005 1〜 2 0 1 7 25 3.5 2 0 0.5 <0.0005 1 ~ 2 0
1 8 25 2.5 1 • 0 0.0 く Q.0005 1〜 2 ひ 次に、 上記実施例と比較例で得られた合金粉末の抗折強 度を試験した。 1 8 25 2.5 1 • 0 0.0 Q.0005 1-2. Next, the transverse rupture strength of the alloy powders obtained in the above Examples and Comparative Examples was tested.
実施例 2と比較例 で得られた合金粉末 N 0 . 1 1〜N 0 . 1 8を一 1 0 0メ ッ シュ ( 1 4 7 /z m以下の粒径) に 分級した後、 圧力 3 ト ン Z c m2 で直径 3 O mm x高さ 8 0 mmの大きさに冷間予備成形した。 その後、 これらの成 形体を押出し温度 4 5 0 °C、 押出比 1 0で幅 2 O mm x厚 み 4 mmの平板に熱間押出し した。 このようにして得られ た平板押出材を T 6処理した後、 J I S Z 2 2 0 3に基づ き標点間距離 3 0 mmにて抗折強度を測定した。 その結果 は第 4表に示される。 第 4表 The alloy powders N 0.11 to N 0.18 obtained in Example 2 and Comparative Example were converted to 100 mesh (particle size of less than 147 / zm). After classification, cold preforming was performed at a pressure of 3 ton Z cm 2 to a size of 30 mm in diameter × 80 mm in height. Thereafter, these compacts were hot extruded into a flat plate having a width of 2 mm and a thickness of 4 mm at an extrusion temperature of 450 ° C. and an extrusion ratio of 10. After the flat plate extruded material thus obtained was subjected to T6 treatment, the transverse rupture strength was measured at a gauge distance of 30 mm based on JISZ223. The results are shown in Table 4. Table 4
Figure imgf000019_0001
第 4表に示す結果から、 本発明のリ ンを含有する合金粉 末の抗折強度はリ ンを含有しない合金粉末より も約 1 0 % 高いことが明らかである。 また、 リ ンの含有量が 0. 0 2 重量%を越える N o. 1 3の発明の合金粉末は、 *比較例の 合金粉末の N o. 1 6に比べて抗折強度が若干低下する力 十分使用され得るものである。
Figure imgf000019_0001
From the results shown in Table 4, it is clear that the die strength of the alloy powder containing phosphorus of the present invention is about 10% higher than that of the alloy powder containing no phosphorus. The alloy powder of the invention of No. 13 having a phosphorus content exceeding 0.02% by weight The force to lower the transverse rupture strength slightly compared to No. 16 of the alloy powder. It can be used sufficiently.
実施例 3 Example 3
以下の過共晶アルミニウムーシリ コン合金を地金より調 製した。  The following hypereutectic aluminum-silicon alloys were prepared from metal.
A - 1 7 : 2 0 2 4地金 + 1 7 w t % S i  A-17: 2 0 2 4 bullion + 1 7 wt% S i
A - 2 0 : 2 0 2 4地金 + 2 0 w t % S i  A-20: 20 24 bullion + 20 wt% S i
A— 2 5 : 2 0 2 4地金 + 2 5 w t % S i  A— 2 5: 2 0 2 4 bullion + 25 w t% S i
B— 2 5 : 2 02 4地金 + 2 5 w t % S i - 5 w  B— 2 5: 2 02 4 bullion + 25 wt% S i-5 w
%F e  % F e
C - 2 5 : 2 0 24地金 + 2 5 w t % S i + 5 w t  C-25: 20 24 bullion + 25 wt% S i + 5 w t
% F e + 2 w t . % N i  % F e + 2 w t.% N i
D - 2 5 : A l + 2 5 w t . % S i + 2. 5 w t . % C u + 1 t . %M g + 0. 5 t . % F e + 0. 5 w t . %M n  D-25: Al + 25 wt.% S i + 2.5 wt.% Cu + 1 t.% M g + 0.5 t.% F e + 0.5 wt.% Mn
E - 2 5 : 9 9. 9 %純度 A 1地金 + 2 5 t . % S i 上記の各合金溶湯中に第 5表に示す割合でリ ンを接種し、 または接種せずに、 解放式空気ァ トマイズ法により空気圧 5〜 1 0 k gZmm2 の条件で噴霧して各合金溶湯を急冷 凝固させた。 E-25: 99.9% purity A 1 bullion + 25 t.% S i Inoculate each of the above alloys with phosphorus at the ratio shown in Table 5 or release without inoculation Each alloy melt was rapidly cooled and solidified by spraying at a pneumatic pressure of 5 to 10 kgZmm 2 by a pneumatic atomizing method.
得られた合金粉末を連続的に捕集し、 空気で分級した後- さ らにふるいにより分級した。 これらの合金粉末のシリ コ ン初晶の粒径を定量画像分析顕微鏡により決定した結果と して、 粉末粒径 D p と S i初晶の最大粒径 D e ;の関係を第 5表に示す 第 5表 The obtained alloy powder was continuously collected, classified by air, and further classified by sieving. The particle size of the silicon co down primary crystals of these alloy powders as a result of determining by quantitative image analysis microscope, the maximum particle diameter D e of the powder particle size D p and S i primary crystal; the relationship first Table 5 shown in Table 5
S i初晶最大粒径 D S j ( β m) 粉末粒径 Dp ( ^ m ) 200く Dp 100く Dp 50<D DpS i Primary crystal maximum particle size D S j (β m) Powder particle size Dp (^ m) 200 D Dp 100 D Dp 50 <D Dp
≤ 400 ≤ 200 ≤ 100 ≤ 50 合金 P接種 ≤ 400 ≤ 200 ≤ 100 ≤ 50 Alloy P inoculation
Α-Π 0.008 w t . % 5 4 3 2 Α-Π 0.008 w t.% 5 4 3 2
Α-Π なし. 1 5 8 7 5Α-Π None.1 5 8 7 5
A-20 0.008 w t . % 6 5 3 2A-20 0.008 w t.% 6 5 3 2
A-20 なし 2 0 8 7 6A-20 None 2 0 8 7 6
A-25 0.008 w t . % 8 5 3 2A-25 0.008 w t.% 8 5 3 2
A - 25 なし 2 0 1 2 6 5A-25 None 2 0 1 2 6 5
B-25 0.012 w t . % 7 4 3 2B-25 0.012 w t.% 7 4 3 2
B-25 なし 1 8 8 8 4B-25 None 1 8 8 8 4
C-25 0.007 t . % 7 4. 2 2C-25 0.007 t.% 7 4.2 2 2
D-25 0.010 w t . % 8 5 2 2D-25 0.010 w t.% 8 5 2 2
E-25 0.015 w t . % 9 7 5 3 上記の A - 2 5合金でリ ンを接種することにより得られ た過共晶アルミニゥムーシリ コ ン合金粉末の金属組織は、 4 0 0倍の光学顕微鏡写真により第 4図に示される。 また 上記の A— 2 5合金でリ ンを接種しないで得られた過共晶 アルミ ニウム—シ リ コ ン合金粉末の金属組織は同様に第 5 図に示される。 第 4図と第 5図において、 濃い灰色の部分 がシリ コ ン初晶、 薄い灰色の部分がマ ト リ ッ クスであり、 黒い部分は空孔ゃ埋込樹脂の部分である。 E-25 0.015 wt.% 9753 The metal structure of the hypereutectic aluminum silicon alloy powder obtained by inoculating phosphorus with the above A-25 alloy is 400 times larger. It is shown in FIG. 4 by an optical micrograph. The hypereutectic obtained by inoculating phosphorus with the A-25 alloy The microstructure of the aluminum-silicon alloy powder is also shown in Fig. 5. In FIGS. 4 and 5, the dark gray area is the primary silicon crystal, the light gray area is the matrix, and the black area is the void / embedding resin area.
次に、 上記の A - 2 5合金でリ ン接種の有無による 2種 類の粉末を得られたまま、 分級することなく、 冷間加圧成 形した。 これらの成形体を温度 4 5 CTCで 3 0分間、 脱ガ ス加熱処理した。 そして、 同じ温度でこれらの成形体を予 備加熱した後、 面圧 6 ト ン Z c m 2 で鍛造成形し、 T 6熱 処理を施した。 Next, cold pressing was performed without classifying the two powders obtained with or without phosphorus inoculation using the A-25 alloy. These compacts were subjected to degassing heat treatment at a temperature of 45 CTC for 30 minutes. Then, after preheating these compacts at the same temperature, they were forged at a surface pressure of 6 tons Z cm 2 and subjected to a T6 heat treatment.
得られた各粉末の固化体の機械的特性を測定した。 その 測定結果は第 6表に示される。 第 6表  The mechanical properties of the solidified body of each of the obtained powders were measured. Table 6 shows the measurement results. Table 6
Figure imgf000022_0001
また、 上記の A— 2 5合金について得られた過共晶アル ミニゥムーシリ コン合金粉末をシリ コン初晶の最大粒径に より分級した。 分級した粉末ごとに上記と同一条件で製造 した各粉末の固化体の常温での引張り強さを測定した。 こ れらの測定結果は第 6図に示される。 以上の結果から、 本発明の製造方法によれば、 粉末中の シリ コ ン初晶の大きさが小さ く、 かつ極めて'狭い範囲内に 制御できるため、 粗大なシ リ コ ン結晶を起点と して起こる 破壊が大幅に減少し、 粉末の固化体の機械的強度が向上す る。 また、 得られる固化体の切削時においても切削工具の チッ ピングゃ摩耗が安定しかつ制御され得る等の効果が得 られる。
Figure imgf000022_0001
In addition, the hypereutectic aluminum mini-silicon alloy powder obtained for the A-25 alloy was classified based on the maximum grain size of the silicon primary crystal. For each of the classified powders, the tensile strength at room temperature of the solidified product of each powder produced under the same conditions as above was measured. The results of these measurements are shown in FIG. From the above results, according to the production method of the present invention, the size of the silicon primary crystal in the powder can be controlled to be small and extremely narrow, so that the coarse silicon crystal is used as a starting point. The resulting fracture is significantly reduced and the mechanical strength of the solidified powder is improved. In addition, even when cutting the obtained solidified body, effects such as stabilization and control of chipping and wear of the cutting tool can be obtained.
産業上の利用可能性  Industrial applicability
以上のように、 本発明による過共晶アルミニウム一シリ コン系合金粉末から作製される成形体は、 極めて優れた被 削性と機械的強度を有している。 そのため、 各種の機械構 造用部品と して有用である。 また、 この発明の過共晶アル ミニゥムーシリ コン系合金粉末の製造方法によれば、 過共 . 晶アルミニウムーシ リ コン系合金粉末の初晶シリ コンを微 細化かつ均一化することができ、 粉末粒度に対する初晶シ リ コンの粒径の依存性を従来より も著し く 低下させるこ と ができる。 その結果、 高い歩留りで従来より も機械的特性 が改善された粉末の固化体を製造することが可能となる。  As described above, the compact produced from the hypereutectic aluminum-silicon alloy powder according to the present invention has extremely excellent machinability and mechanical strength. Therefore, it is useful as a part for various mechanical structures. Further, according to the method for producing a hypereutectic aluminum-silicon alloy powder of the present invention, the primary crystal silicon of the hypereutectic aluminum-silicon alloy powder can be made finer and uniform. The dependence of the primary silicon particle size on the powder particle size can be significantly reduced as compared with the conventional case. As a result, it is possible to produce a solidified powder having improved mechanical properties as compared with the conventional one at a high yield.

Claims

請求の範囲 The scope of the claims
1. シリ コ ンを 12重量%以上 5 0重量%以下、 リ ンを 0. 0 0 0 5重量%以上 0. 1重量%以下含有する、 過共晶ァ ルミニゥムーシリ コ ン系合金粉末。  1. A hypereutectic aluminum-mu-silicon alloy powder containing 12% to 50% by weight of silicon and 0.05% to 0.1% by weight of phosphorus.
2. リ ンを 0. 0 0 0 5重量%以上 0. 0 5重量%含有す る、 請求の範囲第 1項に記載の過共晶アルミ ニウム -シリ コン系合金粉末。 2. The hypereutectic aluminum-silicon alloy powder according to claim 1, comprising at least 0.05% by weight of phosphorus and 0.05% by weight of phosphorus.
3. リ ンを 0. 02重量%以上 0. 1重量%以下含有する、 請求の範囲第 1項に記載の過共晶アルミ ニゥムーシ リ コン 系合金粉末。  3. The hypereutectic aluminum-silicon-based alloy powder according to claim 1, comprising 0.02% by weight or more and 0.1% by weight or less of phosphorus.
4. 当該合金粉末中で初晶シ リ コ ンの結晶粒径が 1 0 μ m 以下である、 請求の範囲第 1項に記載の過共晶アルミニゥ ム一シリ コン系合金粉末。  4. The hypereutectic aluminum-silicon alloy powder according to claim 1, wherein the primary crystal silicon has a crystal grain size of 10 μm or less in the alloy powder.
5. 銅を 2. 0重量%以上 3. 0重量%以下、 マグネシゥ ムを 0. 5重量%以上 1. 5重量%以下、 マンガンを 0. 5. Copper is 2.0% by weight or more and 3.0% by weight or less, magnesium is 0.5% by weight or more and 1.5% by weight or less, and manganese is 0.5% by weight or less.
2重量%以上 0. 8重量%以下、 リ ンを 0. 0 0 05重量 %以上 0. 0 5重量%以下含有し、 残部がアルミ ニウムと 不可避不純物である、 請求の範囲第 1項に記載の過共晶ァ ル ミ 二ゥム一シリ コ ン系合金粉末。 Claim 1. Claim 2 containing not less than 2% by weight and not more than 0.8% by weight, not more than 0.05% by weight of phosphorus and not more than 0.05% by weight of phosphorus, and the balance being aluminum and unavoidable impurities. Hypereutectic aluminum-silicon alloy powder.
6. リ ンを含有する過共晶アルミ ニウム一シ リ コ ン系合金 の溶湯を準備する工程と、 6. a step of preparing a melt of a hypereutectic aluminum-silicon alloy containing phosphorus;
空気または不活性ガスを用いて前記溶湯を噴霧して急冷 凝固させる工程と、  Spraying the molten metal using air or an inert gas to rapidly cool and solidify the molten metal;
を備えた、 過共晶アルミニウムーシリ コン系合金粉末の製 造方法。 Of hypereutectic aluminum-silicon alloy powder with Construction method.
7 . 前記アルミ ニウム一シリ コン系合金の溶湯を準備する 工程は、 アルミニウム一シ リ コ ン系合金の溶湯にリ ンを含 有する初晶シリ コン微細化剤を添加するこ とを含む、 請求 の範囲第 6項に記載のァルミニゥムーシリ コン系合金粉末 の製造方法。  7. The step of preparing a molten aluminum-silicon alloy includes adding a primary crystal silicon refiner containing phosphorus to the molten aluminum-silicon alloy. 7. The method for producing an aluminum mini-silicon alloy powder according to item 6.
8 . 前記アル ミ ニウム一シ リ コ ン系合金の溶湯を準備する 工程は、 リ ンを含有する初晶シリ コン微細化剤を予め含む アルミ ニウムーシリ コン系合金の固体を溶融することを含 む、 請求の範囲第 6項に記載の過共晶アル ミ ニウムーシリ コン系合金粉末の製造方法。  8. The step of preparing a molten aluminum-silicon alloy includes melting a solid of an aluminum-silicon alloy containing a primary crystal silicon refiner containing phosphorus in advance. 7. The method for producing a hypereutectic aluminum-silicon alloy powder according to claim 6.
9 . 前記溶湯を噴霧して急冷凝固させる工程は、 アルミ 二 ゥムーシリ コン系合金の液相線温度より 1 0 0 °C高い温度 . 以上 1 3 0 0 °C以下の温度に保持された状態で前記溶湯を 噴霧することを含む、 請求の範囲第 6項に記載の過共晶ァ ルミニゥムーシリ コン系合金粉末の製造方法。  9. The step of spraying and rapidly solidifying the molten metal is performed at a temperature 100 ° C. higher than the liquidus temperature of the aluminum silicate alloy. 7. The method for producing a hyper-eutectic aluminum alloy silicon-based alloy powder according to claim 6, comprising spraying the molten metal.
1 0 . 前記溶湯を噴霧して急冷凝固させる工程は、 アルミ ニゥムー シリ コン系合金の液相線温度より 1 0 0 °C高い温 度以上 1 3 0 0 °C以下の温度に少なく とも 3 0分間保持し た後、 前記溶湯を噴霧することを含む、 請求の範囲第 9項 に記載の過共晶アルミニゥムーシリ コ ン系合金粉末の製造 方法。  100. The step of spraying and rapidly solidifying the molten metal is carried out at a temperature of at least 100 ° C higher than the liquidus temperature of the aluminum alloy silicon-based alloy and at least 300 ° C or lower. The method for producing a hypereutectic aluminum silicon-based alloy powder according to claim 9, further comprising spraying the molten metal after holding the molten metal for about one minute.
1 1 . リ ンを含有する過共晶アル ミ ニウム一シ リ コ ン系合 金の溶湯を準備する工程と、 空気を用いて前記溶湯を噴霧して急冷凝固させることに よって過共晶アルミ ニウムーシリ コン系合金粉末を作製す る工程と、 1 1. A step of preparing a melt of hypereutectic aluminum-silicon alloy containing phosphorus. Preparing a hypereutectic aluminum-silicon alloy powder by spraying and rapidly solidifying the molten metal using air;
粒径 4 0 0 ^ m以下の前記合金粉末を選別する工程と、 を備えた、 過共晶アルミ ニウム一シリ コ ン系合金粉末の製 造方法。  A method for producing a hypereutectic aluminum-silicon alloy powder comprising: a step of selecting the alloy powder having a particle size of 400 ^ m or less.
1 2 . 前記合金粉末を選別する工程は、 粒径 2 0 0 μ πι以 下の前記合金粉末を選別することを含む、 請求の範囲第 1 1項に記載の過共晶アルミニゥムーシリ コン系合金粉末の 製造方法。  12. The hypereutectic aluminum silicon silicon according to claim 11, wherein the step of selecting the alloy powder includes selecting the alloy powder having a particle size of 200 μππ or less. Production method of base alloy powder.
1 3 . 前記合金粉末を選別する工程は、 粒径 1 0 0 Ai m以 下の前記合金粉末を選別することを含む、 請求の範囲第 1 13. The step of selecting the alloy powder includes selecting the alloy powder having a particle size of 100 Aim or less.
1項に記載の過共晶アルミニゥムーシリ コン系合金粉末の . 製造方法。 2. The method for producing hypereutectic aluminum silicon-based alloy powder according to item 1.
1 4 . 前記合金粉末を選別する工程は、 粒径 5 0 m以下 の前記合金粉末を選別することを含む、 請求の範囲第 1 1 項に記載の過共晶アルミニゥムーシリ コン系合金粉末の製 ia刀法 o 14. The hypereutectic aluminum silicon-based alloy powder according to claim 11, wherein the step of selecting the alloy powder includes selecting the alloy powder having a particle size of 50 m or less. Made of ia sword method o
PCT/JP1991/001488 1990-10-31 1991-10-31 Hypereutectic aluminum/silicon alloy powder and production thereof WO1992007676A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/863,285 US5366691A (en) 1990-10-31 1991-10-31 Hyper-eutectic aluminum-silicon alloy powder and method of preparing the same
DE69120299T DE69120299T2 (en) 1990-10-31 1991-10-31 OVEREUTECTIC ALUMINUM-SILICONE POWDER AND THEIR PRODUCTION
EP91918937A EP0592665B1 (en) 1990-10-31 1991-10-31 Hypereutectic aluminum/silicon alloy powder and production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP29501890 1990-10-31
JP2/295019 1990-10-31
JP2/295099 1990-10-31
JP2/295018 1990-10-31
JP29509990 1990-10-31
JP29501990 1990-10-31

Publications (1)

Publication Number Publication Date
WO1992007676A1 true WO1992007676A1 (en) 1992-05-14

Family

ID=27337951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/001488 WO1992007676A1 (en) 1990-10-31 1991-10-31 Hypereutectic aluminum/silicon alloy powder and production thereof

Country Status (3)

Country Link
EP (1) EP0592665B1 (en)
DE (1) DE69120299T2 (en)
WO (1) WO1992007676A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405576A (en) * 1991-07-22 1995-04-11 Toyo Aluminum Kabushiki Kaisha Hypereutectic aluminum-silicon alloys produced by powder metallurgy techniques
CN114101689A (en) * 2021-11-15 2022-03-01 河北新立中有色金属集团有限公司 High-silicon aluminum alloy melt fluidity and purity control method for gas atomization powder preparation
CN116970831A (en) * 2023-09-13 2023-10-31 四川航天职业技术学院(四川航天高级技工学校) Refining method of high-silicon aluminum alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333645A (en) * 1995-06-06 1996-12-17 Toyota Motor Corp Al-matrix composite material excellent in adhesion resistance and its production
GB9514777D0 (en) * 1995-07-19 1995-09-20 Osprey Metals Ltd Silicon alloys for electronic packaging
DE19532253C2 (en) * 1995-09-01 1998-07-02 Peak Werkstoff Gmbh Process for the production of thin-walled pipes (II)
DE19532252C2 (en) * 1995-09-01 1999-12-02 Erbsloeh Ag Method of manufacturing bushings
DE19532244C2 (en) * 1995-09-01 1998-07-02 Peak Werkstoff Gmbh Process for the production of thin-walled tubes (I)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937339B2 (en) * 1977-04-15 1984-09-08 昭和電工株式会社 Method for manufacturing high silicon aluminum alloy sintered body
JPS63266004A (en) * 1987-11-10 1988-11-02 Showa Denko Kk High strength aluminum alloy powder having heat and wear resistances
JPH01147038A (en) * 1987-12-02 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH02213401A (en) * 1989-02-13 1990-08-24 Toyota Motor Corp Aluminum alloy powder for powder metallurgy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953202A (en) * 1975-02-10 1976-04-27 Kawecki Berylco Industries, Inc. Phosphorus-bearing master composition for addition to hyper-eutectic silicon-aluminum casting alloys and process therefor
JPS55145134A (en) * 1979-04-27 1980-11-12 Aikoorosuborou Kk Grain refiner for hyper-eutectic aluminum-silicon alloy
EP0185540A3 (en) * 1984-12-18 1987-05-27 Sumitomo Light Metal Industries Limited Method of refining grains fo primary silicon in hypereutectic al-si alloys
FR2604186A1 (en) * 1986-09-22 1988-03-25 Peugeot PROCESS FOR MANUFACTURING HYPERSILICALLY ALUMINUM ALLOY PARTS OBTAINED FROM COOLED COOLED POWDERS AT HIGH SPEED
JPS63108945A (en) * 1986-10-27 1988-05-13 Nippon Light Metal Co Ltd Flux for fining primary crystal silicon
JP2703840B2 (en) * 1991-07-22 1998-01-26 東洋アルミニウム 株式会社 High strength hypereutectic A1-Si powder metallurgy alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937339B2 (en) * 1977-04-15 1984-09-08 昭和電工株式会社 Method for manufacturing high silicon aluminum alloy sintered body
JPS63266004A (en) * 1987-11-10 1988-11-02 Showa Denko Kk High strength aluminum alloy powder having heat and wear resistances
JPH01147038A (en) * 1987-12-02 1989-06-08 Honda Motor Co Ltd Heat-resistant al alloy for powder metallurgy
JPH02213401A (en) * 1989-02-13 1990-08-24 Toyota Motor Corp Aluminum alloy powder for powder metallurgy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0592665A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405576A (en) * 1991-07-22 1995-04-11 Toyo Aluminum Kabushiki Kaisha Hypereutectic aluminum-silicon alloys produced by powder metallurgy techniques
CN114101689A (en) * 2021-11-15 2022-03-01 河北新立中有色金属集团有限公司 High-silicon aluminum alloy melt fluidity and purity control method for gas atomization powder preparation
CN114101689B (en) * 2021-11-15 2023-11-03 河北新立中有色金属集团有限公司 Method for controlling fluidity and purity of high-silicon aluminum alloy melt for gas atomization powder preparation
CN116970831A (en) * 2023-09-13 2023-10-31 四川航天职业技术学院(四川航天高级技工学校) Refining method of high-silicon aluminum alloy

Also Published As

Publication number Publication date
EP0592665B1 (en) 1996-06-12
EP0592665A4 (en) 1993-11-19
DE69120299D1 (en) 1996-07-18
EP0592665A1 (en) 1994-04-20
DE69120299T2 (en) 1997-01-23

Similar Documents

Publication Publication Date Title
JP5326114B2 (en) High strength copper alloy
US6471797B1 (en) Quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability and method of making the same
EP0144898A2 (en) Aluminum alloy and method for producing same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
JP4500916B2 (en) Magnesium alloy and manufacturing method thereof
EP0821072B1 (en) Highly wear-resistant aluminium-based composite alloy and wear-resistant parts
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP5691477B2 (en) Al-Si alloy and method for producing the same
CN114438374B (en) Al-V-Ti-B grain refiner and preparation and application method thereof
JP2021507088A (en) Aluminum alloy for additive technology
JP3173452B2 (en) Wear-resistant covering member and method of manufacturing the same
JP2703840B2 (en) High strength hypereutectic A1-Si powder metallurgy alloy
EP0105595B1 (en) Aluminium alloys
US5366691A (en) Hyper-eutectic aluminum-silicon alloy powder and method of preparing the same
WO1992007676A1 (en) Hypereutectic aluminum/silicon alloy powder and production thereof
JP3283550B2 (en) Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less
CN111411270B (en) Method for changing morphology of ferrosilicon phase in aluminum alloy
WO2003080881A1 (en) Process for the production of al-fe-v-si alloys
JPH08176768A (en) Wear resistant aluminum member and production thereof
JPH062057A (en) Al base composite material
JP3485961B2 (en) High strength aluminum base alloy
JPH10298684A (en) Aluminum matrix alloy-hard particle composite material excellent in strength, wear resistance and heat resistance
Gomez Influence of nano-particles of alumina (Al2O3) and titanium di-boride (TiB2) on the microstructure and properties of the alloy Al-Cu 3-Fe1-Si9 for foundry applications to high pressure
JPH08269648A (en) High-strength aluminum-based alloy and method for producing the same
JPH05214477A (en) Composite material and its manufacture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991918937

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991918937

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991918937

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载