WO1992005617A1 - Energiespeicherndes stromaggregat - Google Patents
Energiespeicherndes stromaggregat Download PDFInfo
- Publication number
- WO1992005617A1 WO1992005617A1 PCT/DE1991/000754 DE9100754W WO9205617A1 WO 1992005617 A1 WO1992005617 A1 WO 1992005617A1 DE 9100754 W DE9100754 W DE 9100754W WO 9205617 A1 WO9205617 A1 WO 9205617A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- flywheel
- heat engine
- generator
- control circuit
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000004146 energy storage Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- 239000005300 metallic glass Substances 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/02—Additional mass for increasing inertia, e.g. flywheels
- H02K7/025—Additional mass for increasing inertia, e.g. flywheels for power storage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J15/00—Systems for storing electric energy
- H02J15/007—Systems for storing electric energy involving storage in the form of mechanical energy, e.g. fly-wheels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Definitions
- Own power generation with small combined heat and power plants and / or solar cells is mainly operated on the power distribution network.
- the network acts as an intermediate energy store.
- This mode of operation is not optimal in terms of costs, because the transport and distribution costs of electrical energy make up a significant part of the electricity costs.
- the invention avoids these disadvantages.
- flywheel energy buffer for example with a magnetic bearing, carries magnets rotating with the flywheel, preferably permanent magnets, which form the rotor magnets of a synchronous machine which, in cooperation with the associated stator coils, accelerates the flywheel mass.
- the energy delivered by the heat engine is charged via a magnetic field coupling into the flywheel energy buffer until it is filled, i.e. has reached its maximum speed.
- the heat engine When the flywheel energy store is filled, the heat engine is stopped and the consumer is supplied with energy from the flywheel energy store. Shortly before the flywheel energy buffer is emptied. the heat engine is restarted with energy from the flywheel energy buffer and a new energy storage interval begins.
- the flywheel energy buffer runs very high speed and with changing speed, so that a 50 Hz consumer voltage must be generated with a frequency converter in the multi-way electrical energy converter coupling.
- Usual switching converters e.g. used in uninterruptible power supplies, chop the input voltage and conduct it e.g. pulse-width modulated via a high-frequency transformer, which usually has several percent of the nominal output of iron losses. This is disadvantageous in the case of households as consumers because a typical German four-person household that only consumes about 500 W average power has a peak requirement of at least ten times, i.e. 5 kW, for which the transformer should be designed. The transformer losses would be several percent of this peak power, so they would make up a considerable part of the average household power.
- the frequency converter is designed without a power transformer, either in such a way that the pulsed voltage is passed through a choke coil as an energy buffer, or in such a way that several, for example three DC voltages a staircase voltage is interconnected, which approximates a sinusoidal voltage.
- three DC voltages in a ratio of 1: 2: 4 for example, seven stages with the same voltage spacing can be formed.
- the three voltages in a ratio of 1: 2: 4 can be obtained in a simple manner by tapping the individual stator pole windings.
- the control circuit of the clutch can also be used to generate energy from other sources, e.g. Store from solar cells in the flywheel energy buffer.
- the cost-optimal flywheel design for this stationary energy storage application is likely to be a flywheel wound from thin amorphous metal strip.
- the stator can be moved in the axial direction out of the area of the permanent magnets rotating with the rotor.
- the flywheel energy buffer can be magnetically supported without contact, e.g. with a vertical axis of rotation with a permanent magnet axial bearing that supports the weight and two active radial bearings.
- the radial bearing position sensor signals can also be used to control a balancing device which e.g. consists of three balancing masses rotating with the flywheel energy buffer, which are displaced radially.
- the energy for shifting the balancing masses can be obtained from a co-rotating coil that rotates past a permanent magnet positioned near the flight circle of the coil.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Ein Schwungradenergiezwischenspeicher speichert intervallweise von einer Wärmekraftmaschine produzierte Elektroenergie, um einen Verbraucher kontinuierlich mit Elektroenergie zu versorgen. Ein transformatorloser Frequenzwandler vermeidet Transformatoreisenverluste.
Description
Beschreibung ©
Energiespeicherndes Stromaggregat
Eigenstromerzeugung mit Klein-Blockheizkraftwerken und/oder Solarzellen wird vor¬ wiegend am Stromverteilungsnetz betrieben. Das Netz wirkt dabei als Energiezwi¬ schenspeicher.
Diese Betriebsart ist nicht kostenoptimal, denn die Transport- und Verteilungskosten der Elektroenergie machen einen erheblichen Teil der Stromkosten aus. Die Erfindung ver¬ meidet diese Nachteile.
Gemäß der Erfindung wird in kurzen Intervallen in einer Wärmekraftmaschine erzeugte Energie in einem Schwungradenergiezwischenspeicher zwischengespeichert. Der beispielsweise magnetgelagerte Schwungradenergiezwischenspeicher trägt mit dem Schwungrad rotierende Magnete, vorzugsweise Permanentmagnete, die die Läufermagnete einer Synchronmaschine bilden, die im Zusammenwirken mit zugehörigen Statorspulen die Schwungmasse beschleunigt. Die von der Wärmekraftmaschine gelieferte Energie wird über eine Kupplung per Magnetfeld in den Schwungradenergiezwischenspeicher geladen, bis dieser aufgefüllt ist, d.h. seine maximale Drehzahl erreicht hat.
Wenn der Schwungradenergiezwischenspeicher gefüllt ist, wird die Wärmekraftmaschine ge¬ stoppt, und der Verbraucher wird aus dem Schwunradenergiezwischenspeicher weiter mit Energie versorgt. Kurz bevor der Schwungradenergiezwischenspeicher entleert ist. wird die Wärmekraftmaschine mit Energie aus dem Schwungradenergiezwischenspeicher wieder an¬ gelassen, und es beginnt ein neues Energiespeicherintervall.
Der Schwungradenergiezwischenspeicher läuft sehr hochtourig und mit sich ändernder Dreh¬ zahl, so daß eine 50-Hz-Verbaucherspannung mit einem Frequenzwandler in der Mehrwege- Elektroenergiewandlerkupplung erzeugt werden muß. Übliche Schaltwandler, wie sie z.B. in unterbrechungsfreien Stromversorgungen verwendet werden, zerhacken dabei die Ein¬ gangsspannung und leiten sie z.B. pulsbreitenmoduliert über einen Hochfrequenztransfor¬ mator, der gewöhnlich mehrere Prozent der Nennleistung an Eisenverlusten aufweist. Das ist im Fall von Haushalten als Verbraucher deswegen nachteilig, weil ein typischer deutscher Vier-Personenhaushalt der nur etwa 500 W Durschschittsleistung verbraucht, trotzdem einen Spitzenbedarf von mindestens dem Zehnfachen, also 5 kW, hat, für den der Transformator ausgelegt sein müßte. Die Transformatorverluste wären mehrere Prozent dieser Spitzenlei¬ stung, würden also einen beträchtlichen Teil der Haushaltsdurchschnittsleistung ausmachen.
In dem erfindungsgemäßen Stromaggregat ist der Frequenzwandler ohne Leistungstransfor¬ mator ausgeführt, und zwar entweder derart, daß die gepulste Spannung über eine Dros¬ selspule als Energiezwischenspeicher geleitet wird, oder derart, daß aus mehreren, z.B. drei
Gleichspannungen eine Treppenspannung zusammengeschaltet wird, die eine Sinusspannung annähert. Mit drei Gleichspannungen im Verhältnis 1 : 2 : 4 kann man z.B. sieben Stufen mit gleichem Spannungsabstand bilden. Die drei Spannungen im Verhältnis 1 : 2 : 4 erhält man auf einfache Weise dadurch, daß man die einzelnen Statorpolwicklungen jeweils anzapft.
Über die Steuerschaltung der Kupplung kann man auch Energie aus anderen Quellen, z.B. aus Solarzellen in den Schwungradenergiezwischenspeicher einspeichern.
Die kostenoptimale Schwungradausführung für diese stationäre Energiespeicher-Anwendung dürfte ein aus dünnem Amorphmetallband gewickeltes Schwungrad sein.
Um dann, wenn dem Schwungradenergiezwischenspeicher keine oder nur wenig Energie entnommen wird, Ummagnetisierungs- und Wirbelstromverluste in den Statorspulen des Schwungradenergiezwischenspeichers zu minimieren, ist der Stator in Achsrichtung aus dem Bereich der mit dem Rotor kreisenden Permantmagnete herausverschiebbar.
Der Schwungradenergiezwischenspeicher kann berührungslos magnetgelagert werden, bei vertikaler Drehachse z.B. mit einem Permanentmagnet-Axiallager, das das Gewicht trägt, und zwei aktiven Radialllagern.
Die Radiallager-Positionssensorsignale können zur Steuerung einer Wuchtausgleichsvorrich¬ tung mitverwendet werden, die z.B. aus drei mit dem Schwungradenergiezwischenspeicher rotierenden Ausgleichsmassen besteht, die radial verschoben werden. Die Energie zum Verschieben der Ausgleichsmassen kann dabei aus einer ebenfalls mitrotierenden Spule gewonnen werden, die an einem nahe dem Flugkreis der Spule positionierten Dauermag¬ neten vorbeirotiert.
Es ist zweckmäßig, die Schwungmasse im unteren Teil des Stromaggregates zu plazieren, wobei man einen Warmwasserspeicher als zusätzlichen Dämmschutz nutzen kann, wenn man das Stromaggregat innerhalb des Warmwasserspeichers plaziert.
Claims
1. Energiespeicherndes Stromaggregat bestehend aus einer Wärmekraftmaschine, einer Kup¬ plung, mittels der per Magnetfeld Energie zwischen der Wärmekraftmaschine und einer Energiespeicherschwungmasse transportiert wird, einer Energiespeicherschwungmasse, einer Schaltvorrichtung zur Erzeugung einer Nutzausgangsspannung und einer Kupplungs- Steuerschaltung, dadurch gekennzeichnet, daß die Wärmekraftmaschine bei Erreichen eines unteren Energiepegelstandes des Schwungradenergiezwischenspeichers, gesteuert von der Kupplungs-Steuerschaltung angelassen wird und dann Energie vorzugsweise mit voller Wärmekraftmaschinenleistung liefert, bis ein oberer Energiepegelstand des Schwungradener¬ giezwischenspeichers erreicht ist, worauf die Wärmekraftmaschine, gesteuert von der Kup¬ plungs-Steuerschaltung gestoppt wird, wobei die von der Wärmekraftmaschine erzeugte Energie über eine vorzugsweise aus zwei Statorteilen, zwei Permanentmagnetrotorteilen und einer Kupplungs-Steuerschaltung bestehenede Kupplung in den Schwungradenergiezwi¬ schenspeicher geladen wird, mit dem zusammen der Läuferteil eines Elektroener¬ giegenerators mit vorzugsweise mehreren Erregermagneten rotiert, und dessen erzeugte Elektroenergie zur Vermeidung von Transformatorverlusten transformatorlos, beispielsweise mittels Drosselspule als Energiezwischenspeicher für die gepulste Generatorenergie oder vorzugsweise über eine Halbleiters chaltvorrichtung, mittels der in mehreren Spulen des Elektroenergiegenerators erzeugte Gleichspannungen zur einer Nutzausgangsspannung, vor¬ zugsweise einer die Netzsinusspannung annähernden Treppenspannung, zusammengeschal¬ tet werden, zum Ausgang übertragen wird.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie durch Einspeisung von Elektoenergie aus anderen Quellen als der Wärmekraftmaschine über die Kupplungs- Steuerschaltung auch ohne die Wärmekraftmaschine als Elektroenergiezwischenspeicher betrieben werden kann.
3. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichent, daß die Statorspulen des Elektroenergiegenerators des Schwungradenergiezwischenspeichers dann, wenn keine oder wenig Elektroenergie aus dem Schwungradenergiezwischenspeicher entnommen werden soll, aus dem Bereich der mit dem Schwungrad rotierenden Generatormagnete teilweise oder ganz herausgefahren werden können, z.B. durch axiales Verschieben, um so Eisenver¬ luste durch Ummagnetisierung und/oder Wirbelstromverluste zu minimieren.
4. Vorrichtung nach Anspruch 1, 2, 3 und 4, dadurch gekennzeichnet, daß die Ener¬ gieflußrichtung der Kupplung steuerbar ist, so daß die gespeicherte Enrgie des Schwungrades zum Anlassen der Wärmekraftmaschine verwendet werden kann.
5. Vorrichtung nach Anspruch 1, 2, 3 und 4, dadurch gekennzeichnet, daß die Schwungmasse des Schwungradspeichers überwiegend aus Amorphmetallband gewickelt ist.
6. Vorrichtung nach Anspruch 1, 2, 3, 4 und 5, dadurch gekennnzeichnet, daß bei Unwucht der Schwungmasse während des Betriebes des Schwungradenergiezwischenspeichers ein ak¬ tiver Wuchtausgleich stattfinden kann, indem mit der Schwungmasse rotierende Ausgleichsmassen radial verschoben werden.
7. Vorrichtung nach Anspruch 1, 2, 3, 4, 5 und 6, dadurch gekennzeichnet, daß das Schwungrad radial aktivmagnetisch gelagert ist, und daß die Sensorsignale der Radiallager¬ regelung benutzt werden, um auch den aktiven Wuchtausgleich zu regeln.
8. Vorrichtung nach Anspruch 1, 2, 3, 4, 5, 6 und 7, dadurch gekennzeichnet, daß die An¬ triebsenergie für den die Verschiebung bewirkenden, vorzugsweise mitrotierenden VerStell¬ antrieb dadurch als Elektroenergie aus der Rotationsenergie des Schwungrades gwonnen wird, daß in mit dem Schwungrad rotierenden Spulen Spannungen erzeugt werden, wenn diese an in die Nähe der Kreisbahn dieser Spulen gebrachten Magneten vorbeirotieren.
9. Vorrichtung nach Anspruch 1, 2, 3, 4, 5, 6, 7 und 8, dadurch gekennzeichnet, daß die vor¬ zugsweise als flacher Ring ausgebildete Schwungmasse im unteren Teil des erner- giespeichernden Stromaggregates angeordnet ist, daß sie berührungslos magnetgelagert ist, und daß die Drehachse senkrecht steht.
10. Vorrichtung nach Anspruch 1, 2, 3, 4, 5, 6, 7, 8 und 9, dadurch gekennzeichnet, daß der Schwungradenergiezwischenspeicher im Innern eines Wasser- oder eines Wärmespeichers angeordnet ist, so daß der Wasser- oder Wärmespeicher als Dämmschutz vor umherfliegen den Teilen bei eventuellem Versagen des Schwungradenergiezwischenspeichers dient.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4030134.6 | 1990-09-24 | ||
DE4030134A DE4030134A1 (de) | 1990-09-24 | 1990-09-24 | Energiespeicherndes stromaggregat |
DE4102006A DE4102006A1 (de) | 1990-09-24 | 1991-01-24 | Magnetisch beruehrungslos gelagerter schwungradgenerator mit senkrechter drehachse |
DEP4102006.5 | 1991-01-24 | ||
DEP4104088.0 | 1991-02-11 | ||
DE4104088A DE4104088A1 (de) | 1990-09-24 | 1991-02-11 | Selbst zerlegendes metallschwungrad |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992005617A1 true WO1992005617A1 (de) | 1992-04-02 |
Family
ID=27201709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1991/000754 WO1992005617A1 (de) | 1990-09-24 | 1991-09-24 | Energiespeicherndes stromaggregat |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU8633991A (de) |
WO (1) | WO1992005617A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995002272A1 (en) * | 1993-07-06 | 1995-01-19 | British Nuclear Fuels Plc | A stator |
WO1995027326A1 (en) * | 1994-03-31 | 1995-10-12 | United Technologies Corporation | Adjustable airgap motor/generator for flywheel system |
WO1996024981A1 (en) * | 1995-02-06 | 1996-08-15 | U.S. Flywheel Systems | Flywheel based energy storage system |
US5627419A (en) * | 1994-03-31 | 1997-05-06 | United Technologies Corporation | Self-adjusting airgap motor/generator for flywheel system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR920849A (fr) * | 1945-10-17 | 1947-04-18 | Dispositif pour la production d'énergie électrique sous une faible puissance |
-
1991
- 1991-09-24 AU AU86339/91A patent/AU8633991A/en not_active Abandoned
- 1991-09-24 WO PCT/DE1991/000754 patent/WO1992005617A1/de unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR920849A (fr) * | 1945-10-17 | 1947-04-18 | Dispositif pour la production d'énergie électrique sous une faible puissance |
Non-Patent Citations (4)
Title |
---|
MESURES REGULATION AUTOMATISME. Bd. 45, Nr. 2, Februar 1980, PARIS FR Seiten 77 - 78; 'Techniques d'applications : Le stockage d'énergie par accumulateurs cinétiques grâce aux paliers magnétiques' siehe Seite 77, Spalte 3, letzter Absatz - Seite 79, Spalte 1, Zeile 55 * |
PROCEEDINGS OF THE 24TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, AUGUST 6-11 , 1989. WASHINGTON, D.C. US Seiten 1485 - 1490; D. PLANT ET AL.: 'Prototype of a magnetically suspended flywheel energy storage system' siehe Zusammenfassung siehe Seite 1489, linke Spalte, Zeile 23 - Zeile 26 * |
PT ELECTROTECHNIEK, ELEKTRONICA. Bd. 32, Nr. 6, Juni 1977, RIJSWIJK NL Seiten 302 - 309; A. LENGER: 'Elektrische energieopslag met behulp van een vliegwiel' siehe Seite 302, Zeile 1 - Zeile 13 siehe Seite 303, rechte Spalte, Zeile 26 - Zeile 32; Abbildung 2 * |
THE CONFERENCE RECORD OF THE FIFTEENTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE-1981 ; MAY 12-15 , KISSIMMEE FLORIDA US Seiten 636 - 641; P. JARVINEN ET AL.: 'Performance characteristics of solar photovoltaic flywheel storage systems' siehe Seite 636, linke Spalte, Absatz 2 - rechte Spalte, Absatz 2 siehe Abbildung 1 SA 51432 030siehe Seite 638, rechte Spalte, Absatz 1 - Seite 639, rechte Spalte, Absatz 1 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995002272A1 (en) * | 1993-07-06 | 1995-01-19 | British Nuclear Fuels Plc | A stator |
WO1995027326A1 (en) * | 1994-03-31 | 1995-10-12 | United Technologies Corporation | Adjustable airgap motor/generator for flywheel system |
US5627419A (en) * | 1994-03-31 | 1997-05-06 | United Technologies Corporation | Self-adjusting airgap motor/generator for flywheel system |
WO1996024981A1 (en) * | 1995-02-06 | 1996-08-15 | U.S. Flywheel Systems | Flywheel based energy storage system |
US5614777A (en) * | 1995-02-06 | 1997-03-25 | U.S. Flywheel Systems | Flywheel based energy storage system |
Also Published As
Publication number | Publication date |
---|---|
AU8633991A (en) | 1992-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stiebler | Wind energy systems for electric power generation | |
US7071579B2 (en) | Wind farm electrical system | |
EP0495872B1 (de) | Windturbine | |
Chen et al. | A modular, permanent-magnet generator for variable speed wind turbines | |
DE112014003958T5 (de) | Wind-Stromerzeugungssystem | |
Chapallaz et al. | Manual on induction motors used as generators | |
WO2009083446A2 (en) | Apparatus and method for controlling reactive power from clusters of wind turbines connected to a utility grid | |
US6943462B2 (en) | Ring generator for a wind power installation | |
Sung et al. | Design of a 12-MW HTS wind power generator including a flux pump exciter | |
Elmorshedy et al. | Load voltage control and maximum power extraction of a stand-alone wind-driven PMSG including unbalanced operating conditions | |
WO2004042227A1 (de) | Synchronmaschine mit permanenterregtem axialfeld in windkraftanlage | |
WO1992005617A1 (de) | Energiespeicherndes stromaggregat | |
Rossouw | Analysis and design of axial flux permanent magnet wind generator system for direct battery charging applications | |
DE3825349A1 (de) | Tragbarer variabler hochfrequenzgenerator | |
DE19908557A1 (de) | Elektrischer Generator, Windkraftwerk und Schwungmassenspeicher | |
DE10117212A1 (de) | Verfahren zum Betrieb einer Windenergieanlage | |
DE102011116619A1 (de) | Generator mit eisenlosem Läufer und innerem und äußerem Stator | |
Nitta et al. | Power charging and discharging characteristics of SMES connected to artificial transmission line | |
CN107687399A (zh) | 风力发电机的塔筒及其温控调频系统 | |
Sulaiman et al. | Fundamental study of outer-rotor hybrid excitation flux switching generator for grid connected wind turbine applications | |
Beik et al. | Wind Turbine Systems | |
IL291843A (en) | A unique method of harnessing energy from the magnetic domains found in ferromagnetic and paramagnetic materials | |
DE662880C (de) | Anordnung zur Erzeugung von Heizenergie mit Hilfe einer elektrischen Stromerzeugungsanlage | |
Holt | Feasibility Studies on a Stand-Alone Hybrid Wind-Diesel System for Fish Farming Applications | |
DE4033696A1 (de) | Generator fuer profilsegelrotor mit gegeneinander drehenden segeln |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR HU JP KR SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |