+

WO1992004169A1 - Glueing method in production of fibre bodies according to the dry method - Google Patents

Glueing method in production of fibre bodies according to the dry method Download PDF

Info

Publication number
WO1992004169A1
WO1992004169A1 PCT/SE1991/000570 SE9100570W WO9204169A1 WO 1992004169 A1 WO1992004169 A1 WO 1992004169A1 SE 9100570 W SE9100570 W SE 9100570W WO 9204169 A1 WO9204169 A1 WO 9204169A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
fibres
powder
glue
fibre
Prior art date
Application number
PCT/SE1991/000570
Other languages
French (fr)
Inventor
Sven Ljungbo
Original Assignee
Sven Ljungbo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sven Ljungbo filed Critical Sven Ljungbo
Publication of WO1992004169A1 publication Critical patent/WO1992004169A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/0209Methods, e.g. characterised by the composition of the agent

Definitions

  • fibres of different types - especially wood fibres - are dispersed in an airstream. This one goes to a forming station or a moulder, where the air is exhausted by suction so that the fibres are packed together in a cake or a slab. This one is then pressed in a hot moulding press at the same time being dried and possibly cured to a body of required form and density.
  • glue materials dispersed or dissolved in water, are added.
  • the glue addition is made by injection of the glue into the steam-fiber-stream from the defibrator, producing the wood fibres. Then the fibres are dried strictly observing that the added glue must not be cured if it is a curable one. Then the fibres are dispersed in an air-stream which is blown into a diffuser, giving the air-fibre stream the right width and height, before it streams into the moulder.
  • the glue injection is made directly into the diffuser with or without previous drying of the fibres from the defibrator.
  • the glue powder can be water soluble and then forms a glue solution with water, which either goes with the fibres from the beginning of the process or is added though injection during the process. At the final drying the size powder transcends to a firm bond, joining the fibres. If a specially waterresistant fibre product is required also a hardener for the glue substance can be added. This hardener is added either in powder form separately or mixed with the size powder or as a solution in the water, added during the process. Alkali silicates have proved suitable as size powder. Compared to the abovementioned thermosets or curable glues they have the advantage of not emitting any harmful fumes and also of incresing the fire resistance of the fibrebodies.
  • the constitution of the alkali silicates or the ratio, L e. the mole ratio between silicon dioxide and alkali oxide can for sodium or potassium silicates suitably lie between 1,2 and 4,7 but also other ratios give usuable alkali silicate powders.
  • a silicate powder suitable for that purpose, is spray-dried water glass.
  • the latter is produced through spraying waterglass so it forms an aerosol, quickly being dried to powder in the hot air.
  • Such a powder of sedium waterglass with ratio 3,3 contains such a high percentage of bound water, that it is quickly dissolved by furhter added water already at a temperature of about 100 oC.
  • a condition precedent for the powder-glueing method is that the glue powder is evenly distributed over the fibres at the admixture and is then not separated from those during the airtransport to the moulder. This condition is met by adding a ' suitable amount of water - 10 to 100 % of the dry weight of the fibres - moistening the fibres to make the powder adhere.
  • This admixture can be made by simple, mechanical stirring.
  • a hardener transcending the alkali silicate to waterinsoluble silicates, can be added.
  • Firchips are defibrated in a disk defibrator.
  • the warm fibres are separated from the steam in a cyclone, from which they, by transport screw and conveyor belt, are taken to a cutter, which disperses them in an airstream, leading into a diffusor.
  • spraydried sodium silicate powder with ratio 3,3 is blown into the fibre-air-stream and is mixed with the fibers, ratio of components being 10 - 25 parts silicate powder to 100 parts dry fibre.
  • the moisture content of the fibre is 30 % at the injection into the diffusor.
  • the fibre - powder - air stream goes from the diffusor into the moulder, forming a cake, which then is transmitted to a hot moulding press, where it is given its final form and is glued/dried to a firm disk
  • Wood fibres from a defibrator are blown down into a mixer, where they are mixed with sodium silicate powder of the same type as in example 1 and with magnesium oxide, ratio of components being 8 parts silicate powder and 16 parts magnesium oxide powder to 100 parts dry fibre.
  • the moisture content of the fibre is 35 % at the injection into the diffusor.
  • the mixiuie is transmitted by conveyor to an ejector, which disperses it in air and injects it into a diffusor of a moulding machine, in which it is the formed, hot moulded hardened and dried to required fiberbody.
  • the cake can also be dried and hardened in heat without being compressed Thus it gets appropriate density in order to be used as insulating material.
  • magnesium oxide - silicate powder mixture a compounding of 10 parts silicate powder and 9 parts zink oxide to 100 parts dry fibre with the same moisture content as the above mentioned can be used
  • fibres than wood fibres just produced can be used to manufacture products according to the invention.
  • suitable fibres are paper - and paperreturn fibres, cotton- , flax- and hempfibres, syntetic polymer fibres, mineral fibres and others.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Forests & Forestry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

The invention relates to the glueing method at the manufacturing of fibre bodies, disks, profiles, panels, insulating carpets, packing material etc - according to the dry method. It consists in the fact that the glue is composed of water glass powder, which is mixed with the fibres which have been somewhat moistured before or during the blending and then, together with the fibres are blown into the moulder to be die-pressed to intended fibre body. During the process the glue powder is dissolved in the water present, transcending into plastic or liquid form so as to aggluminate the fibres, whereupon it dries and hardens into a solid bond during the die-pressing. To make the method work satisfactorily the silicatepowder ought to contain some water, bound as gel-liquid or water of crystallization in the alcali silicate. Thus, spray-dried water glass is appropriate as glue powder. To improve the water resistance of the fibre bodies a hardener transcending the alcali silicate to water insoluble silicates can be added. Suitable hardeners are magnesium oxide, zinc oxide or titanium dioxide.

Description

GLUEING METHOD IN PRODUCTION OF FIBRE BODIES ACCORDING TO
THE DRY METHOD
The production of fibre bodies - disks, profiles, panels etc. - by the dry method is now increasing. The method is constituted of the following processes: fibres of different types - especially wood fibres - are dispersed in an airstream. This one goes to a forming station or a moulder, where the air is exhausted by suction so that the fibres are packed together in a cake or a slab. This one is then pressed in a hot moulding press at the same time being dried and possibly cured to a body of required form and density.
To obtain sufficient strength in the final product suitable glue materials, dispersed or dissolved in water, are added. According to earlier methods the glue addition is made by injection of the glue into the steam-fiber-stream from the defibrator, producing the wood fibres. Then the fibres are dried strictly observing that the added glue must not be cured if it is a curable one. Then the fibres are dispersed in an air-stream which is blown into a diffuser, giving the air-fibre stream the right width and height, before it streams into the moulder.
According to newer methods the glue injection is made directly into the diffuser with or without previous drying of the fibres from the defibrator.
The sizes, most frequently used, are watersolutions of urea - melamine - or phenolic resins with hardeners. These sizes, however emit health-endangering fumes - formaldehyde, phenol - causing problems for the products.
Due to the newer methods tests have also been made with water glass i. e. water solutions of alkali silicates. But these solutions bring about such difficult disturbances in the process - aggregations to fibre bundles or balls with poor binding to other fibres or poor through-glueing - that no acceptable results have been achieved that way. Also other types of glue with high viscosity give similar disturbances.
According to this invention these problems are solved through adding the glue as a powder, which transcends to plastic or liquid form during the continued process and in the end hardens to a strong adhesive.
The glue powder can be water soluble and then forms a glue solution with water, which either goes with the fibres from the beginning of the process or is added though injection during the process. At the final drying the size powder transcends to a firm bond, joining the fibres. If a specially waterresistant fibre product is required also a hardener for the glue substance can be added. This hardener is added either in powder form separately or mixed with the size powder or as a solution in the water, added during the process. Alkali silicates have proved suitable as size powder. Compared to the abovementioned thermosets or curable glues they have the advantage of not emitting any harmful fumes and also of incresing the fire resistance of the fibrebodies. The constitution of the alkali silicates or the ratio, L e. the mole ratio between silicon dioxide and alkali oxide can for sodium or potassium silicates suitably lie between 1,2 and 4,7 but also other ratios give usuable alkali silicate powders.
But it is less suitable to use powder of calcined alkali silicate so-called rawglass. This glass requires temperatures far above 100 oC - for a sodium silicate with ratio 3,3 about 150 - 170 oC - to be solved with acceptable speed in the water, that in some phase of the production schedule before the die-pressing has been added to the fibres. The temperature inside the produced fiberbody, for instance a disk, normally does not overreach 130 - 150 oC during the die-pressing. Therefore the silicate powder ought to contain water in the form of crystallization or gel- bound water. This bound water makes the silicate powder quickly dissoluble in the water, added before the pressing already at a temperature lower than the highest presstemperatures inside the fibre body.
A silicate powder, suitable for that purpose, is spray-dried water glass. The latter is produced through spraying waterglass so it forms an aerosol, quickly being dried to powder in the hot air. Such a powder of sedium waterglass with ratio 3,3 contains such a high percentage of bound water, that it is quickly dissolved by furhter added water already at a temperature of about 100 oC.
A condition precedent for the powder-glueing method is that the glue powder is evenly distributed over the fibres at the admixture and is then not separated from those during the airtransport to the moulder. This condition is met by adding a ' suitable amount of water - 10 to 100 % of the dry weight of the fibres - moistening the fibres to make the powder adhere. This admixture can be made by simple, mechanical stirring.
If a product with a high waterresistance is wanted, a hardener, transcending the alkali silicate to waterinsoluble silicates, can be added.
Different chemical compounds of 2-rated, 3-rated or 4-rated metals can be used as such hardeners. Magnesium oxide, zink oxide and titanium dioxide have proved especially suitable as hardeners.
The following examples present some application forms of the invention without restricting the same: Example 1
Firchips are defibrated in a disk defibrator. The warm fibres are separated from the steam in a cyclone, from which they, by transport screw and conveyor belt, are taken to a cutter, which disperses them in an airstream, leading into a diffusor. In this difjiiser spraydried sodium silicate powder with ratio 3,3 is blown into the fibre-air-stream and is mixed with the fibers, ratio of components being 10 - 25 parts silicate powder to 100 parts dry fibre. The moisture content of the fibre is 30 % at the injection into the diffusor.
The fibre - powder - air stream goes from the diffusor into the moulder, forming a cake, which then is transmitted to a hot moulding press, where it is given its final form and is glued/dried to a firm disk
Example 2
Wood fibres from a defibrator are blown down into a mixer, where they are mixed with sodium silicate powder of the same type as in example 1 and with magnesium oxide, ratio of components being 8 parts silicate powder and 16 parts magnesium oxide powder to 100 parts dry fibre. The moisture content of the fibre is 35 % at the injection into the diffusor.
The mixiuie is transmitted by conveyor to an ejector, which disperses it in air and injects it into a diffusor of a moulding machine, in which it is the formed, hot moulded hardened and dried to required fiberbody.
The cake can also be dried and hardened in heat without being compressed Thus it gets appropriate density in order to be used as insulating material.
As an alternative to the magnesium oxide - silicate powder mixture a compounding of 10 parts silicate powder and 9 parts zink oxide to 100 parts dry fibre with the same moisture content as the above mentioned can be used
As indicated in the introduction of the application also other fibres than wood fibres just produced can be used to manufacture products according to the invention. Examples of other suitable fibres are paper - and paperreturn fibres, cotton- , flax- and hempfibres, syntetic polymer fibres, mineral fibres and others.
To the mixture of fibres and glue also powdered fillers as kaolin, chalk, dolomite, quartz and others can be added to attain special quantities as better fire endurance, lower costs, greater stiffness etc.

Claims

1. Process for producing fibre bodies - disks, profiles, panels, insulating carpets, packing material - according to the dry method characterised in that the glue required is added to the fibres in the form of a powder of waterglass, which during the continued process is dissolved in the water present transcending into plastic or liquid form, agglutinating the fibres, whereupon the glue dries and hards to a solid bond
2. Process according to claim 1 - characterised in that the water glasspowder contains water, bound to the alcalisilicate in the form of gel-liquid and or water of crystallization.
3. Process according to claim 1 and 2, characterised in that also a hardener is added, which converts the alcalisilicate into waterinsoluble silicates during the die-pressing, thus making the fibrebody more water -resistent.
4. Process according to claim 1, 2 and 3 characterised in that one of the metal oxides, magnesium oxide, zink oxide or titanium dioxide is used as hardener.
PCT/SE1991/000570 1990-08-31 1991-08-30 Glueing method in production of fibre bodies according to the dry method WO1992004169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9002781A SE467244B (en) 1990-08-31 1990-08-31 CLIMBING METHOD FOR MANUFACTURING FIBER BODIES ACCORDING TO THE DRY METHOD
SE9002781-4 1990-08-31

Publications (1)

Publication Number Publication Date
WO1992004169A1 true WO1992004169A1 (en) 1992-03-19

Family

ID=20380246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE1991/000570 WO1992004169A1 (en) 1990-08-31 1991-08-30 Glueing method in production of fibre bodies according to the dry method

Country Status (3)

Country Link
AU (1) AU8534991A (en)
SE (1) SE467244B (en)
WO (1) WO1992004169A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033057A1 (en) * 1995-04-21 1996-10-24 Kühne, Michael Method of producing mouldings
WO2003104160A1 (en) * 2002-06-05 2003-12-18 Van Baerle & Cie Ag Material comprising cellulose material and silicate
WO2004024824A1 (en) * 2002-09-06 2004-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of fire-resistant moulded wood fibre pieces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302841A1 (en) * 1983-01-28 1984-08-09 Hans W. 7850 Lörrach Geisert Flame-retardant sheet or the like and manufacturing process therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3302841A1 (en) * 1983-01-28 1984-08-09 Hans W. 7850 Lörrach Geisert Flame-retardant sheet or the like and manufacturing process therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033057A1 (en) * 1995-04-21 1996-10-24 Kühne, Michael Method of producing mouldings
US6007765A (en) * 1995-04-21 1999-12-28 Exori-Import-Export Gmbh & Co. Kg Method of producing molded articles
WO2003104160A1 (en) * 2002-06-05 2003-12-18 Van Baerle & Cie Ag Material comprising cellulose material and silicate
CH695855A5 (en) * 2002-06-05 2006-09-29 Baerle & Cie Ag Material comprising cellulosic material and silicate.
WO2004024824A1 (en) * 2002-09-06 2004-03-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of fire-resistant moulded wood fibre pieces
US7858005B2 (en) * 2002-09-06 2010-12-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Method for the production of fire-resistant wood fiber moldings

Also Published As

Publication number Publication date
SE9002781D0 (en) 1990-08-31
SE467244B (en) 1992-06-22
SE9002781L (en) 1992-03-01
AU8534991A (en) 1992-03-30

Similar Documents

Publication Publication Date Title
US3796777A (en) Method of making hollow spheres by spray drying
CA1225916A (en) Wood composites of low formaldehyde emission
AU605504B2 (en) Process for the preparation of urea-formaldehyde resins
WO1992004169A1 (en) Glueing method in production of fibre bodies according to the dry method
KR0139636B1 (en) Binders and binder-components for mineral fibers
CN107735378A (en) Flake glass and resin combination
US4968773A (en) Process for the preparation of urea-formaldehyde resins
US3968308A (en) Process for the manufacture of chip boards using condensation resins as binders and product
US3383230A (en) Phosphoric acid bonded asbestos fiber sheets and method of manufacture
SU1629277A1 (en) Raw mixture for producing heat insulating material
US3932686A (en) Binder composition
US5071940A (en) Curing agent mixture for curing alkaline phenol/formaldehyde resins
US3376239A (en) Process of manufacturing aminoplast molding powder
SU935260A1 (en) Method of making an abrasive tool
KR950003998B1 (en) Method of manufacturing light particle board
JPH0436845B2 (en)
SU1271751A1 (en) Method of manufacturing articles from composite mateials
US2343247A (en) Urea-formaldehyde composition
JP3810888B2 (en) WOODEN MATERIAL BASED MATERIAL AND ITS MANUFACTURING METHOD
SU522213A1 (en) Binder
JP3256007B2 (en) Method for producing phenolic resin molding material
JP2840607B2 (en) Manufacturing method of fiber molded body
FI73717C (en) Semi-dry formaldehyde-free method of making chipboard.
RU1367432C (en) Composition for manufacturing foamed plastic material
US4526737A (en) Method of making molded articles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA FI HU JP KR NO RO SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载