+

WO1992003747A1 - Procede de positionnement precis - Google Patents

Procede de positionnement precis Download PDF

Info

Publication number
WO1992003747A1
WO1992003747A1 PCT/EP1991/001504 EP9101504W WO9203747A1 WO 1992003747 A1 WO1992003747 A1 WO 1992003747A1 EP 9101504 W EP9101504 W EP 9101504W WO 9203747 A1 WO9203747 A1 WO 9203747A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
alternative
rms error
vector
phase ambiguities
Prior art date
Application number
PCT/EP1991/001504
Other languages
German (de)
English (en)
Inventor
Erwin Frei
Original Assignee
Leica Heerbrugg Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Heerbrugg Ag filed Critical Leica Heerbrugg Ag
Priority to EP91914682A priority Critical patent/EP0497946B1/fr
Priority to DE59107994T priority patent/DE59107994D1/de
Publication of WO1992003747A1 publication Critical patent/WO1992003747A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the invention relates to a method for precise position determination according to the preamble of claim 1.
  • Satellite observation station Zimmerwald, No. 14 and Department of Surveying Engineering Technical Report No. 109, University of New Brunswick, Fredericton Canada, pp. 1-41, 78, 79 is known as relative static positioning with the GPS Navstar satellite navigation system.
  • Ashkenazi and Summerfield aa0 solve this problem by repeated measurements at the first measuring point.
  • the method specified by Frei and Beutler for the rapid resolution of the phase ambiguity uses only the a posteriori rms error in a method according to the preamble of claim 1 and checks all errors within a interval of plus and minus three times the a postiori rms error about the real phase ambiguities. whole
  • this method only works if 7 to 8 satellites can be received or if 5 to 6 satellites can measure on two frequencies (L1 and L2).
  • the method is used for geodetic surveying with the GPS Navsat satellite positioning system, but also with others
  • the technology of measurement and navigation with such systems is characterized by a close connection of radio or light transmission and reception technology, the technical and geometric design of transmitter networks and by the use of extensive algorithms and computers with the appropriate performance for processing
  • an algorithm for determining the integer phase ambiguities is introduced, which makes it possible to significantly improve the primary measured value acquisition compared to the prior art, namely the measuring time and the number of reduce the required transmitters, with the same accuracy and improved security of the position determination.
  • the method for precise position determination provides: a) a first receiver R 1 at a measurement location r 1
  • the position vector is to be determined by the method
  • the example further provides: c) A number of 4 to 8 GPS satellite transmitters S n , which
  • radio waves with the designation L1 (19cm wavelength) and / or the designation L2 (24cm wavelength).
  • the radio waves transmitted transmit one identification and one
  • Position and synchronization information of the individual transmitters S n (cf. prospect WILD Heerbrugg aa0.) With reference to a geodetic
  • Each receiver R i can determine a phase measurement value uniquely assigned to a transmitter S n for a certain measurement time, which is referred to in each case as an epoch E K.
  • epoch E K a phase measurement value uniquely assigned to a transmitter S n for a certain measurement time
  • Phase measurement value is determined, is between about 2 and 10
  • Any transmitter S n is selected as a reference and all double differences are formed with respect to this transmitter S n .
  • S 1 is taken as a reference and the double differences
  • the starting solution vector contains the starting values for the
  • an alternative x jA with an error probability a is statistically compatible with if the inequality G1.6 is fulfilled.
  • the area of confidence is thus a u-dimensional hyperellipsoid, centered around and any alternative falling within this area x yes
  • This method is statistically exact and universally applicable, but it does not yet reduce the number of alternatives x jA to a very great extent (a hyper-cuboid is reduced to a hyper-ellipsoid) and therefore still requires relatively large computing power.
  • Equation G1.7 defines a confidence interval for each individual phase ambiguity x Ni . The less exactly one determined
  • Phase ambiguity x Ni is determined by the starting solution, the more integer alternatives x ANi are within the confidence range. All possible combinations of these integer alternatives x AKi form the set of alternative phase ambiguity vectors x hAN with N 1
  • the number N 1 of the vectors is given by
  • Phase ambiguity vectors x hAN for the further procedure reduced by checking their compatibility with the statistical information of the cofactor matrix Q xxj .
  • the first vector x 1A contains the closest integer as component x Ai .
  • the second vector x 2A is the same as the first, except for the last component x Ar , which takes the second nearest integer value.
  • the following vectors contain the third and fourth next value etc. as the last component until all integer values according to G1.7 are used for x Ar .
  • the next group of vectors begins with the second-nearest integer value for X A (r-1) and the next integer values for all other components. Again, x Ar is changed in sequence, creating this next group.
  • the test according to G1.8 is carried out with the difference X AN12 of the first (x A1 ) and second (x A2 ) components of the vector x 1AN .
  • This process step of the test according to G1.8 must be carried out for all vectors x x hA which have not already been eliminated by others due to a negative finding.
  • the index number h of the next vector is the sum of the index number h of the last one
  • Determination equation G1.4 determines the corresponding location vector x a ⁇ c (solution vector) and the rms error mg a . i) the vector x s ⁇ with the minimum rms error m ⁇ s is determined.
  • M 0s and m 0s ' are not considered to be significantly different if ,
  • ⁇ F b1, b2 1- ⁇ / 2 is the limit of the 1- ⁇ confidence interval according to Fisher's probability density function F with the degrees of freedom b 1 and b2 for the determination of mg s and m 0s '.
  • G1.11 is therefore used in parallel to 61.8 in the method if measurements with two frequencies (L1 and L2) are available and causes an additional drastic reduction in the number of integers
  • measurement data are used, which in the "Turtmann Campaign 89" with WM 102 receivers in the "TURT” and “ERGI” positions with an inclined distance of 2 km and a height difference of 500 m
  • Table 1 shows the individual results as a result of the starting solution
  • the rms errors m ⁇ Ni are in the range of 0.2 to 0.8 cycles. A direct fixation on the next whole number would lead to wrong results, as the comparison with the values x NTi shows.
  • Table 2 shows the coordinates of the measurement location (r 1 ) and the distance
  • a set of alternative phase ambiguity vectors x hA is first determined with x Ni and m ⁇ Ni according to 61.7.
  • Table 3 shows phase ambiguities and the associated rms errors x xNik compared to the "true" differences x NTik .
  • x N15 , X N26 , x N37 and x N48 are differences between identical satellites (transmitters) and different frequencies L1, L2.
  • the test according to G1.11 can also be carried out with the
  • Phase ambiguity vectors xh A that meet G1.7 Phase ambiguity vectors xh A that meet G1.7.
  • Table 5 shows the significant difference between the rms errors m 0s and m 0s ' compared to the two vectors after the F test (61.10):
  • the first vector with minimal rms error also fulfills the tests described under la) and 1b) and is therefore the solution x c of
  • the starting solution is shown in Table 7.
  • More measurement data would be required for a safe determination. A message then appears, requesting additional measurement data.
  • Example 3 is also limited to a frequency L1, but uses two blocks of 6 epochs each one minute in time
  • Receive transmitter 3 which is replaced by the transmitter 13 in the second block.
  • Table 9 gives the starting solution.
  • Table 10 shows a significant difference between the minimum rms error m 01 for the five x aA with the smallest rms errors m 0a after the ⁇ 2 test (G1.10).
  • Example 4 uses only two epochs E 1 , E2 in two minutes of measurement time under otherwise identical conditions as example 1.
  • the rms errors m ⁇ Ni are 1 to 3.
  • Gl.ll can also be used to limit the number of alternatives, since measurements were made with two frequencies L1 and L2.
  • Table 14 shows the linear combinations x Lik that can be used for this, their rms errors m ⁇ . ⁇ And in comparison the "true" combinations x LikT .
  • n [(number (R i ) x number (S n )) - 1] .j

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Selon un procédé de positionnement précis, notamment de positionnement géodésique de satellites GPS (système de positionnement mondial) par des mesures des différences de phase entre des fréquences porteuses, on ulilise la double différence (Δønm(k)) des valeurs de mesure des phases, puis on calcule par égalisation une solution de départ pour le vecteur de position (x¿jc?) et des ambiguités réelles de phase (xjN), ainsi que des ambiguités alternatives de phases à nombres entiers (xjA). On réduit rapidement le nombre des ambiguités alternatives de phases (xjA) à traiter et on assure automatiquement la fiabilité statistique des résultats en appliquant des tests statistiques spéciaux de sélection qui prennent en considération la matrice correspondante de cofacteurs (Qxxj) et l'erreur rms à postériori (mOs) de la solution de départ. On peut ainsi réduire sensiblement le nombre requis des satellites observés (4 à 5) et la durée d'observation (quelques minutes uniquement), ainsi que la capacité de calcul. Les décisions de l'opérateur sont éliminées.
PCT/EP1991/001504 1990-08-24 1991-08-07 Procede de positionnement precis WO1992003747A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP91914682A EP0497946B1 (fr) 1990-08-24 1991-08-07 Procede de positionnement precis
DE59107994T DE59107994D1 (de) 1990-08-24 1991-08-07 Verfahren zur präzisen lagebestimmung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4026740A DE4026740A1 (de) 1990-08-24 1990-08-24 Verfahren zur praezisen lagebestimmung
DEP4026740.7 1990-08-24

Publications (1)

Publication Number Publication Date
WO1992003747A1 true WO1992003747A1 (fr) 1992-03-05

Family

ID=6412805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/001504 WO1992003747A1 (fr) 1990-08-24 1991-08-07 Procede de positionnement precis

Country Status (5)

Country Link
US (1) US5252982A (fr)
EP (1) EP0497946B1 (fr)
JP (1) JPH05503360A (fr)
DE (2) DE4026740A1 (fr)
WO (1) WO1992003747A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018977A1 (fr) * 1994-01-03 1995-07-13 Trimble Navigation Reseau de corrections differentielles gps utilisant des signaux de phase de code
WO1995018978A1 (fr) * 1994-01-03 1995-07-13 Trimble Navigation Reseau servant a effectuer des corrections differentielles de phases de porteuses dans un systeme de positionnement global
US6799116B2 (en) 2000-12-15 2004-09-28 Trimble Navigation Limited GPS correction methods, apparatus and signals
CN111149018A (zh) * 2017-09-26 2020-05-12 焦点定位有限公司 用于校准系统参数的方法和系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734981A (en) 1991-01-17 1998-03-31 Highwaymaster Communications, Inc. Method and apparatus for call delivery to a mobile unit
US5454027A (en) 1992-01-27 1995-09-26 Hm Holding Corporation Phantom mobile identification number method and apparatus
US6009330A (en) 1992-01-27 1999-12-28 Highwaymaster Communications, Inc. Method and apparatus for call delivery to a mobile unit
US5539810A (en) 1992-01-27 1996-07-23 Highwaymaster Communications, Inc. Data messaging in a communications network
US6295449B1 (en) 1992-01-27 2001-09-25 @Track Communications, Inc. Data messaging in a communications network using a feature request
US5493308A (en) * 1992-06-12 1996-02-20 Lockheed Idaho Technologies Company Close range fault tolerant noncontacting position sensor
US5359521A (en) * 1992-12-01 1994-10-25 Caterpillar Inc. Method and apparatus for determining vehicle position using a satellite based navigation system
US5359332A (en) * 1992-12-31 1994-10-25 Trimble Navigation Limited Determination of phase ambiguities in satellite ranges
US5583513A (en) * 1993-03-24 1996-12-10 Board Of Trustees Of The Leland Stanford Junior University System and method for generating precise code based and carrier phase position determinations
US5548293A (en) * 1993-03-24 1996-08-20 Leland Stanford Junior University System and method for generating attitude determinations using GPS
DE4312310A1 (de) * 1993-04-15 1995-03-16 Dietrich Gerhard Ellsaeser Objekterkennungsgerät
US5379045A (en) * 1993-09-01 1995-01-03 Trimble Navigation Limited SATPS mapping with angle orientation calibrator
US5438337A (en) * 1993-09-24 1995-08-01 Northrop Grumman Corporation Navigation system using re-transmitted GPS
JPH07190769A (ja) * 1993-12-27 1995-07-28 Sokkia Co Ltd Gps干渉測位方法
US5451964A (en) * 1994-07-29 1995-09-19 Del Norte Technology, Inc. Method and system for resolving double difference GPS carrier phase integer ambiguity utilizing decentralized Kalman filters
US5913170A (en) * 1994-11-16 1999-06-15 Highwaymaster Communications, Inc. Locating system and method using a mobile communications network
US5525999A (en) * 1994-11-28 1996-06-11 Motorola, Inc. Multi-receiver master control station for differential GPS and method
NO944954D0 (no) * 1994-12-20 1994-12-20 Geco As Fremgangsmåte til integritetsovervåking ved posisjonsbestemmelse
US5724243A (en) * 1995-02-10 1998-03-03 Highwaymaster Communications, Inc. Method and apparatus for determining expected time of arrival
US5699275A (en) 1995-04-12 1997-12-16 Highwaymaster Communications, Inc. System and method for remote patching of operating code located in a mobile unit
US5694322A (en) 1995-05-09 1997-12-02 Highwaymaster Communications, Inc. Method and apparatus for determining tax of a vehicle
US5702070A (en) * 1995-09-20 1997-12-30 E-Systems, Inc. Apparatus and method using relative GPS positioning for aircraft precision approach and landing
US5815114A (en) * 1996-04-05 1998-09-29 Discovision Associates Positioning system and method
US6057800A (en) * 1996-06-28 2000-05-02 State University Of New York RDOP surface for GPS relative positioning
US5825326A (en) * 1996-07-09 1998-10-20 Interstate Electronics Corporation Real-time high-accuracy determination of integer ambiguities in a kinematic GPS receiver
DE19633884B4 (de) * 1996-08-19 2004-09-02 Siemens Ag Verfahren zum Ermitteln der Objektposition eines Objekts
US6061631A (en) * 1997-07-03 2000-05-09 Trimble Navigation, Ltd. Hybrid approach for antenna baseline self-survey and line bias calibration using GPS carrier phase
US6133872A (en) * 1997-10-17 2000-10-17 Ball Aerospace & Technologies Corp. Real time precision orbit determination system
US7099796B2 (en) * 2001-10-22 2006-08-29 Honeywell International Inc. Multi-sensor information fusion technique
JP2005017047A (ja) * 2003-06-24 2005-01-20 Nec Corp 位置測位機能付き端末
US7117094B2 (en) * 2003-07-17 2006-10-03 Novatel, Inc. Seismic measuring system including GPS receivers
US20060066485A1 (en) * 2004-09-24 2006-03-30 Guohua Min Wireless tracking system based upon phase differences
US9818120B2 (en) 2015-02-20 2017-11-14 Innovative Global Systems, Llc Automated at-the-pump system and method for managing vehicle fuel purchases
US7117075B1 (en) 2005-08-15 2006-10-03 Report On Board Llc Driver activity and vehicle operation logging and reporting
US8626377B2 (en) 2005-08-15 2014-01-07 Innovative Global Systems, Llc Method for data communication between a vehicle and fuel pump
US20090189805A1 (en) * 2008-01-25 2009-07-30 Bruno Sauriol Low Cost Instant RTK Positioning System and Method
US7956808B2 (en) * 2008-12-30 2011-06-07 Trueposition, Inc. Method for position estimation using generalized error distributions
US20100250132A1 (en) * 2009-03-27 2010-09-30 Gm Global Technology Operations, Inc. Optimal coding of gps measurements for precise relative positioning
US7898472B2 (en) * 2009-03-27 2011-03-01 GM Global Technology Operations LLC Method and apparatus for precise relative positioning in multiple vehicles
FR3026495B1 (fr) * 2014-09-25 2019-05-31 Thales Procede et dispositif de verification d'integrite d'informations de position obtenues par au moins deux dispositifs de geolocalisation par satellite
WO2020122852A1 (fr) * 2018-12-12 2020-06-18 Харьковский Национальный Университет Радиоэлектроники (Хнурэ) Procédé de réalisation de mesures de trajectoire (et variantes) et système de mesures de trajectoire en phases à positions multiples pour sa mise en œuvre (et variantes)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006410A1 (fr) * 1986-04-15 1987-10-22 Magnavox Government And Industrial Electronics Com Procede et appareil de geodesie de precision utilisant des signaux transmis par satellite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE46580T1 (de) * 1984-06-08 1989-10-15 Decca Ltd Ortungsmessungsanordnung.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006410A1 (fr) * 1986-04-15 1987-10-22 Magnavox Government And Industrial Electronics Com Procede et appareil de geodesie de precision utilisant des signaux transmis par satellite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BULLTIN GEODESIQUE, Vol. 54, No. 2, 1980 BOSSLER et al: "Using the Global Positioning System (GPS) for Geodetic Positioning" Seiten 553 - 563 siehe Seite 555, Absatz 6 - Seite 558, Absatz 3; Abbildung 1 *
IEEE PLANS 1986, POSITION AND NAVIGATION SYMPOSIUM, November 1986, IEEE, New York, US; BEUTLER et al: "Using the Global Positioning System (GPS) for high precision Geodetic Surveys: Highlights and Problem Areas" Seiten 243 - 250 siehe Seite 244, rechte Spalte, Absatz 2 - Seite 245, linke Spalte, Absatz 4 *
LAND & MINERALS SURVEYING, Vol. 7, No. 10, Oktober 1989; ASHKENAZI et al: "Rapid Static and Kinematic GPS Surveying: with or without Cycle Slips"; Seiten 489 - 494 in der Anmeldung erwähnt siehe das ganze Dokument *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018977A1 (fr) * 1994-01-03 1995-07-13 Trimble Navigation Reseau de corrections differentielles gps utilisant des signaux de phase de code
WO1995018978A1 (fr) * 1994-01-03 1995-07-13 Trimble Navigation Reseau servant a effectuer des corrections differentielles de phases de porteuses dans un systeme de positionnement global
US7711480B2 (en) 1994-01-03 2010-05-04 Trimble Navigation Limited Differential GPS corrections using virtual stations
US6799116B2 (en) 2000-12-15 2004-09-28 Trimble Navigation Limited GPS correction methods, apparatus and signals
US6862526B2 (en) 2000-12-15 2005-03-01 Trimble Navigation Limited GPS correction methods, apparatus and signals
CN111149018A (zh) * 2017-09-26 2020-05-12 焦点定位有限公司 用于校准系统参数的方法和系统
CN111149018B (zh) * 2017-09-26 2023-09-15 焦点定位有限公司 用于校准系统参数的方法和系统

Also Published As

Publication number Publication date
EP0497946A1 (fr) 1992-08-12
DE4026740A1 (de) 1992-02-27
DE59107994D1 (de) 1996-08-14
EP0497946B1 (fr) 1996-07-10
JPH05503360A (ja) 1993-06-03
US5252982A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
WO1992003747A1 (fr) Procede de positionnement precis
DE69032709T2 (de) Verfahren und Vorrichtung zur genauen Lageermittlung und kinematischen Ortung
DE3883527T2 (de) Fahrzeug-ortungssystem mit grösserer genauigkeit für luftfahrzeuge.
DE69705052T2 (de) Navigationshilfeverfahren für ein mobiles objekt zu einem sich ebenfalls bewegenden objekt
DE69033597T2 (de) Integriertes Fahrzeugpositionier- und -navigationssystem; dessen Vorrichtung und Verfahren
DE3103376C2 (fr)
DE69922391T2 (de) Höhenmesserradar mit interferometrischsynthetischer apertur
DE68920113T2 (de) Richtige-Amplituden-Neigungsausschlagkorrektur.
DE2410500B2 (de) Pulsradarsystem linear zeitverknüpfter Trägerfrequenz mit hohem Entfernungsauflösungsvermögen
DE69102632T2 (de) Digitale korrekturschaltung für monopuls-prozessor.
DE19737592A1 (de) Lagebestimmungssystem für künstliche Satelliten
DE4340955A1 (de) Verfahren und Vorrichtung um die Genauigkeit von Positionsabschätzungen in einem satellitengestützten Navigationssystem zu verbessern
DE4002176A1 (de) Gps-navigationseinrichtung fuer ein fahrzeug
DE69323014T2 (de) Verfahren und System zur Positionsbestimmung eines Fahrzeuges
CH693653A5 (de) Verfahren zur Bestimmung der Relativlage mittels GPS und Vorrichtung dazu.
EP1868009A1 (fr) Procédé de calcul pour des grandeurs spécifiques au réseau dans un réseau provenant de stations de référence pour un système de positionnement par satellite
DE2348458A1 (de) Impulsradarsystem
DE69121568T2 (de) Methode und system zur richtungsbestimmung
DE1462731B2 (de) Korrelationsverfahren
DE2514751C2 (de) Tacan-System
DE2315347B2 (de) Verfahren und vorrichtung zur fortlaufenden korrelations-decodierung unter einbeziehung von amplitudengewichtung von gruppen bildenden signalen
DE69706165T2 (de) Satellitenempfänger mit prüfung der integrität mittels berechnung der geschwindigkeit
DE2714498C1 (de) Verarbeitungsschaltung fuer Seitensichtradarsignale
EP1217384B1 (fr) Procédé de localisation de satellites géostationaires par mesure de temps de vol de signaux provenant de systèmes de navigation par satellite
DE69832926T2 (de) Verfahren und System zur Echtzeit-Positionsbestimmung mittels Funksatelliten, insbesondere GPS-Satelliten

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1991914682

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1991914682

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991914682

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载