WO1992003747A1 - Procede de positionnement precis - Google Patents
Procede de positionnement precis Download PDFInfo
- Publication number
- WO1992003747A1 WO1992003747A1 PCT/EP1991/001504 EP9101504W WO9203747A1 WO 1992003747 A1 WO1992003747 A1 WO 1992003747A1 EP 9101504 W EP9101504 W EP 9101504W WO 9203747 A1 WO9203747 A1 WO 9203747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- alternative
- rms error
- vector
- phase ambiguities
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 239000013598 vector Substances 0.000 claims abstract description 67
- 238000005259 measurement Methods 0.000 claims abstract description 44
- 238000012360 testing method Methods 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 11
- 238000004364 calculation method Methods 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 230000005670 electromagnetic radiation Effects 0.000 claims 2
- 230000003068 static effect Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 101100028093 Drosophila melanogaster Or22b gene Proteins 0.000 description 1
- 238000001134 F-test Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000010972 statistical evaluation Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
- G01S19/44—Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
Definitions
- the invention relates to a method for precise position determination according to the preamble of claim 1.
- Satellite observation station Zimmerwald, No. 14 and Department of Surveying Engineering Technical Report No. 109, University of New Brunswick, Fredericton Canada, pp. 1-41, 78, 79 is known as relative static positioning with the GPS Navstar satellite navigation system.
- Ashkenazi and Summerfield aa0 solve this problem by repeated measurements at the first measuring point.
- the method specified by Frei and Beutler for the rapid resolution of the phase ambiguity uses only the a posteriori rms error in a method according to the preamble of claim 1 and checks all errors within a interval of plus and minus three times the a postiori rms error about the real phase ambiguities. whole
- this method only works if 7 to 8 satellites can be received or if 5 to 6 satellites can measure on two frequencies (L1 and L2).
- the method is used for geodetic surveying with the GPS Navsat satellite positioning system, but also with others
- the technology of measurement and navigation with such systems is characterized by a close connection of radio or light transmission and reception technology, the technical and geometric design of transmitter networks and by the use of extensive algorithms and computers with the appropriate performance for processing
- an algorithm for determining the integer phase ambiguities is introduced, which makes it possible to significantly improve the primary measured value acquisition compared to the prior art, namely the measuring time and the number of reduce the required transmitters, with the same accuracy and improved security of the position determination.
- the method for precise position determination provides: a) a first receiver R 1 at a measurement location r 1
- the position vector is to be determined by the method
- the example further provides: c) A number of 4 to 8 GPS satellite transmitters S n , which
- radio waves with the designation L1 (19cm wavelength) and / or the designation L2 (24cm wavelength).
- the radio waves transmitted transmit one identification and one
- Position and synchronization information of the individual transmitters S n (cf. prospect WILD Heerbrugg aa0.) With reference to a geodetic
- Each receiver R i can determine a phase measurement value uniquely assigned to a transmitter S n for a certain measurement time, which is referred to in each case as an epoch E K.
- epoch E K a phase measurement value uniquely assigned to a transmitter S n for a certain measurement time
- Phase measurement value is determined, is between about 2 and 10
- Any transmitter S n is selected as a reference and all double differences are formed with respect to this transmitter S n .
- S 1 is taken as a reference and the double differences
- the starting solution vector contains the starting values for the
- an alternative x jA with an error probability a is statistically compatible with if the inequality G1.6 is fulfilled.
- the area of confidence is thus a u-dimensional hyperellipsoid, centered around and any alternative falling within this area x yes
- This method is statistically exact and universally applicable, but it does not yet reduce the number of alternatives x jA to a very great extent (a hyper-cuboid is reduced to a hyper-ellipsoid) and therefore still requires relatively large computing power.
- Equation G1.7 defines a confidence interval for each individual phase ambiguity x Ni . The less exactly one determined
- Phase ambiguity x Ni is determined by the starting solution, the more integer alternatives x ANi are within the confidence range. All possible combinations of these integer alternatives x AKi form the set of alternative phase ambiguity vectors x hAN with N 1
- the number N 1 of the vectors is given by
- Phase ambiguity vectors x hAN for the further procedure reduced by checking their compatibility with the statistical information of the cofactor matrix Q xxj .
- the first vector x 1A contains the closest integer as component x Ai .
- the second vector x 2A is the same as the first, except for the last component x Ar , which takes the second nearest integer value.
- the following vectors contain the third and fourth next value etc. as the last component until all integer values according to G1.7 are used for x Ar .
- the next group of vectors begins with the second-nearest integer value for X A (r-1) and the next integer values for all other components. Again, x Ar is changed in sequence, creating this next group.
- the test according to G1.8 is carried out with the difference X AN12 of the first (x A1 ) and second (x A2 ) components of the vector x 1AN .
- This process step of the test according to G1.8 must be carried out for all vectors x x hA which have not already been eliminated by others due to a negative finding.
- the index number h of the next vector is the sum of the index number h of the last one
- Determination equation G1.4 determines the corresponding location vector x a ⁇ c (solution vector) and the rms error mg a . i) the vector x s ⁇ with the minimum rms error m ⁇ s is determined.
- M 0s and m 0s ' are not considered to be significantly different if ,
- ⁇ F b1, b2 1- ⁇ / 2 is the limit of the 1- ⁇ confidence interval according to Fisher's probability density function F with the degrees of freedom b 1 and b2 for the determination of mg s and m 0s '.
- G1.11 is therefore used in parallel to 61.8 in the method if measurements with two frequencies (L1 and L2) are available and causes an additional drastic reduction in the number of integers
- measurement data are used, which in the "Turtmann Campaign 89" with WM 102 receivers in the "TURT” and “ERGI” positions with an inclined distance of 2 km and a height difference of 500 m
- Table 1 shows the individual results as a result of the starting solution
- the rms errors m ⁇ Ni are in the range of 0.2 to 0.8 cycles. A direct fixation on the next whole number would lead to wrong results, as the comparison with the values x NTi shows.
- Table 2 shows the coordinates of the measurement location (r 1 ) and the distance
- a set of alternative phase ambiguity vectors x hA is first determined with x Ni and m ⁇ Ni according to 61.7.
- Table 3 shows phase ambiguities and the associated rms errors x xNik compared to the "true" differences x NTik .
- x N15 , X N26 , x N37 and x N48 are differences between identical satellites (transmitters) and different frequencies L1, L2.
- the test according to G1.11 can also be carried out with the
- Phase ambiguity vectors xh A that meet G1.7 Phase ambiguity vectors xh A that meet G1.7.
- Table 5 shows the significant difference between the rms errors m 0s and m 0s ' compared to the two vectors after the F test (61.10):
- the first vector with minimal rms error also fulfills the tests described under la) and 1b) and is therefore the solution x c of
- the starting solution is shown in Table 7.
- More measurement data would be required for a safe determination. A message then appears, requesting additional measurement data.
- Example 3 is also limited to a frequency L1, but uses two blocks of 6 epochs each one minute in time
- Receive transmitter 3 which is replaced by the transmitter 13 in the second block.
- Table 9 gives the starting solution.
- Table 10 shows a significant difference between the minimum rms error m 01 for the five x aA with the smallest rms errors m 0a after the ⁇ 2 test (G1.10).
- Example 4 uses only two epochs E 1 , E2 in two minutes of measurement time under otherwise identical conditions as example 1.
- the rms errors m ⁇ Ni are 1 to 3.
- Gl.ll can also be used to limit the number of alternatives, since measurements were made with two frequencies L1 and L2.
- Table 14 shows the linear combinations x Lik that can be used for this, their rms errors m ⁇ . ⁇ And in comparison the "true" combinations x LikT .
- n [(number (R i ) x number (S n )) - 1] .j
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Selon un procédé de positionnement précis, notamment de positionnement géodésique de satellites GPS (système de positionnement mondial) par des mesures des différences de phase entre des fréquences porteuses, on ulilise la double différence (Δønm(k)) des valeurs de mesure des phases, puis on calcule par égalisation une solution de départ pour le vecteur de position (x¿jc?) et des ambiguités réelles de phase (xjN), ainsi que des ambiguités alternatives de phases à nombres entiers (xjA). On réduit rapidement le nombre des ambiguités alternatives de phases (xjA) à traiter et on assure automatiquement la fiabilité statistique des résultats en appliquant des tests statistiques spéciaux de sélection qui prennent en considération la matrice correspondante de cofacteurs (Qxxj) et l'erreur rms à postériori (mOs) de la solution de départ. On peut ainsi réduire sensiblement le nombre requis des satellites observés (4 à 5) et la durée d'observation (quelques minutes uniquement), ainsi que la capacité de calcul. Les décisions de l'opérateur sont éliminées.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91914682A EP0497946B1 (fr) | 1990-08-24 | 1991-08-07 | Procede de positionnement precis |
DE59107994T DE59107994D1 (de) | 1990-08-24 | 1991-08-07 | Verfahren zur präzisen lagebestimmung |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4026740A DE4026740A1 (de) | 1990-08-24 | 1990-08-24 | Verfahren zur praezisen lagebestimmung |
DEP4026740.7 | 1990-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992003747A1 true WO1992003747A1 (fr) | 1992-03-05 |
Family
ID=6412805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1991/001504 WO1992003747A1 (fr) | 1990-08-24 | 1991-08-07 | Procede de positionnement precis |
Country Status (5)
Country | Link |
---|---|
US (1) | US5252982A (fr) |
EP (1) | EP0497946B1 (fr) |
JP (1) | JPH05503360A (fr) |
DE (2) | DE4026740A1 (fr) |
WO (1) | WO1992003747A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018977A1 (fr) * | 1994-01-03 | 1995-07-13 | Trimble Navigation | Reseau de corrections differentielles gps utilisant des signaux de phase de code |
WO1995018978A1 (fr) * | 1994-01-03 | 1995-07-13 | Trimble Navigation | Reseau servant a effectuer des corrections differentielles de phases de porteuses dans un systeme de positionnement global |
US6799116B2 (en) | 2000-12-15 | 2004-09-28 | Trimble Navigation Limited | GPS correction methods, apparatus and signals |
CN111149018A (zh) * | 2017-09-26 | 2020-05-12 | 焦点定位有限公司 | 用于校准系统参数的方法和系统 |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734981A (en) | 1991-01-17 | 1998-03-31 | Highwaymaster Communications, Inc. | Method and apparatus for call delivery to a mobile unit |
US5454027A (en) | 1992-01-27 | 1995-09-26 | Hm Holding Corporation | Phantom mobile identification number method and apparatus |
US6009330A (en) | 1992-01-27 | 1999-12-28 | Highwaymaster Communications, Inc. | Method and apparatus for call delivery to a mobile unit |
US5539810A (en) | 1992-01-27 | 1996-07-23 | Highwaymaster Communications, Inc. | Data messaging in a communications network |
US6295449B1 (en) | 1992-01-27 | 2001-09-25 | @Track Communications, Inc. | Data messaging in a communications network using a feature request |
US5493308A (en) * | 1992-06-12 | 1996-02-20 | Lockheed Idaho Technologies Company | Close range fault tolerant noncontacting position sensor |
US5359521A (en) * | 1992-12-01 | 1994-10-25 | Caterpillar Inc. | Method and apparatus for determining vehicle position using a satellite based navigation system |
US5359332A (en) * | 1992-12-31 | 1994-10-25 | Trimble Navigation Limited | Determination of phase ambiguities in satellite ranges |
US5583513A (en) * | 1993-03-24 | 1996-12-10 | Board Of Trustees Of The Leland Stanford Junior University | System and method for generating precise code based and carrier phase position determinations |
US5548293A (en) * | 1993-03-24 | 1996-08-20 | Leland Stanford Junior University | System and method for generating attitude determinations using GPS |
DE4312310A1 (de) * | 1993-04-15 | 1995-03-16 | Dietrich Gerhard Ellsaeser | Objekterkennungsgerät |
US5379045A (en) * | 1993-09-01 | 1995-01-03 | Trimble Navigation Limited | SATPS mapping with angle orientation calibrator |
US5438337A (en) * | 1993-09-24 | 1995-08-01 | Northrop Grumman Corporation | Navigation system using re-transmitted GPS |
JPH07190769A (ja) * | 1993-12-27 | 1995-07-28 | Sokkia Co Ltd | Gps干渉測位方法 |
US5451964A (en) * | 1994-07-29 | 1995-09-19 | Del Norte Technology, Inc. | Method and system for resolving double difference GPS carrier phase integer ambiguity utilizing decentralized Kalman filters |
US5913170A (en) * | 1994-11-16 | 1999-06-15 | Highwaymaster Communications, Inc. | Locating system and method using a mobile communications network |
US5525999A (en) * | 1994-11-28 | 1996-06-11 | Motorola, Inc. | Multi-receiver master control station for differential GPS and method |
NO944954D0 (no) * | 1994-12-20 | 1994-12-20 | Geco As | Fremgangsmåte til integritetsovervåking ved posisjonsbestemmelse |
US5724243A (en) * | 1995-02-10 | 1998-03-03 | Highwaymaster Communications, Inc. | Method and apparatus for determining expected time of arrival |
US5699275A (en) | 1995-04-12 | 1997-12-16 | Highwaymaster Communications, Inc. | System and method for remote patching of operating code located in a mobile unit |
US5694322A (en) | 1995-05-09 | 1997-12-02 | Highwaymaster Communications, Inc. | Method and apparatus for determining tax of a vehicle |
US5702070A (en) * | 1995-09-20 | 1997-12-30 | E-Systems, Inc. | Apparatus and method using relative GPS positioning for aircraft precision approach and landing |
US5815114A (en) * | 1996-04-05 | 1998-09-29 | Discovision Associates | Positioning system and method |
US6057800A (en) * | 1996-06-28 | 2000-05-02 | State University Of New York | RDOP surface for GPS relative positioning |
US5825326A (en) * | 1996-07-09 | 1998-10-20 | Interstate Electronics Corporation | Real-time high-accuracy determination of integer ambiguities in a kinematic GPS receiver |
DE19633884B4 (de) * | 1996-08-19 | 2004-09-02 | Siemens Ag | Verfahren zum Ermitteln der Objektposition eines Objekts |
US6061631A (en) * | 1997-07-03 | 2000-05-09 | Trimble Navigation, Ltd. | Hybrid approach for antenna baseline self-survey and line bias calibration using GPS carrier phase |
US6133872A (en) * | 1997-10-17 | 2000-10-17 | Ball Aerospace & Technologies Corp. | Real time precision orbit determination system |
US7099796B2 (en) * | 2001-10-22 | 2006-08-29 | Honeywell International Inc. | Multi-sensor information fusion technique |
JP2005017047A (ja) * | 2003-06-24 | 2005-01-20 | Nec Corp | 位置測位機能付き端末 |
US7117094B2 (en) * | 2003-07-17 | 2006-10-03 | Novatel, Inc. | Seismic measuring system including GPS receivers |
US20060066485A1 (en) * | 2004-09-24 | 2006-03-30 | Guohua Min | Wireless tracking system based upon phase differences |
US9818120B2 (en) | 2015-02-20 | 2017-11-14 | Innovative Global Systems, Llc | Automated at-the-pump system and method for managing vehicle fuel purchases |
US7117075B1 (en) | 2005-08-15 | 2006-10-03 | Report On Board Llc | Driver activity and vehicle operation logging and reporting |
US8626377B2 (en) | 2005-08-15 | 2014-01-07 | Innovative Global Systems, Llc | Method for data communication between a vehicle and fuel pump |
US20090189805A1 (en) * | 2008-01-25 | 2009-07-30 | Bruno Sauriol | Low Cost Instant RTK Positioning System and Method |
US7956808B2 (en) * | 2008-12-30 | 2011-06-07 | Trueposition, Inc. | Method for position estimation using generalized error distributions |
US20100250132A1 (en) * | 2009-03-27 | 2010-09-30 | Gm Global Technology Operations, Inc. | Optimal coding of gps measurements for precise relative positioning |
US7898472B2 (en) * | 2009-03-27 | 2011-03-01 | GM Global Technology Operations LLC | Method and apparatus for precise relative positioning in multiple vehicles |
FR3026495B1 (fr) * | 2014-09-25 | 2019-05-31 | Thales | Procede et dispositif de verification d'integrite d'informations de position obtenues par au moins deux dispositifs de geolocalisation par satellite |
WO2020122852A1 (fr) * | 2018-12-12 | 2020-06-18 | Харьковский Национальный Университет Радиоэлектроники (Хнурэ) | Procédé de réalisation de mesures de trajectoire (et variantes) et système de mesures de trajectoire en phases à positions multiples pour sa mise en œuvre (et variantes) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987006410A1 (fr) * | 1986-04-15 | 1987-10-22 | Magnavox Government And Industrial Electronics Com | Procede et appareil de geodesie de precision utilisant des signaux transmis par satellite |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE46580T1 (de) * | 1984-06-08 | 1989-10-15 | Decca Ltd | Ortungsmessungsanordnung. |
-
1990
- 1990-08-24 DE DE4026740A patent/DE4026740A1/de not_active Withdrawn
-
1991
- 1991-08-07 JP JP3514193A patent/JPH05503360A/ja active Pending
- 1991-08-07 DE DE59107994T patent/DE59107994D1/de not_active Expired - Lifetime
- 1991-08-07 US US07/849,065 patent/US5252982A/en not_active Expired - Lifetime
- 1991-08-07 WO PCT/EP1991/001504 patent/WO1992003747A1/fr active IP Right Grant
- 1991-08-07 EP EP91914682A patent/EP0497946B1/fr not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1987006410A1 (fr) * | 1986-04-15 | 1987-10-22 | Magnavox Government And Industrial Electronics Com | Procede et appareil de geodesie de precision utilisant des signaux transmis par satellite |
Non-Patent Citations (3)
Title |
---|
BULLTIN GEODESIQUE, Vol. 54, No. 2, 1980 BOSSLER et al: "Using the Global Positioning System (GPS) for Geodetic Positioning" Seiten 553 - 563 siehe Seite 555, Absatz 6 - Seite 558, Absatz 3; Abbildung 1 * |
IEEE PLANS 1986, POSITION AND NAVIGATION SYMPOSIUM, November 1986, IEEE, New York, US; BEUTLER et al: "Using the Global Positioning System (GPS) for high precision Geodetic Surveys: Highlights and Problem Areas" Seiten 243 - 250 siehe Seite 244, rechte Spalte, Absatz 2 - Seite 245, linke Spalte, Absatz 4 * |
LAND & MINERALS SURVEYING, Vol. 7, No. 10, Oktober 1989; ASHKENAZI et al: "Rapid Static and Kinematic GPS Surveying: with or without Cycle Slips"; Seiten 489 - 494 in der Anmeldung erwähnt siehe das ganze Dokument * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018977A1 (fr) * | 1994-01-03 | 1995-07-13 | Trimble Navigation | Reseau de corrections differentielles gps utilisant des signaux de phase de code |
WO1995018978A1 (fr) * | 1994-01-03 | 1995-07-13 | Trimble Navigation | Reseau servant a effectuer des corrections differentielles de phases de porteuses dans un systeme de positionnement global |
US7711480B2 (en) | 1994-01-03 | 2010-05-04 | Trimble Navigation Limited | Differential GPS corrections using virtual stations |
US6799116B2 (en) | 2000-12-15 | 2004-09-28 | Trimble Navigation Limited | GPS correction methods, apparatus and signals |
US6862526B2 (en) | 2000-12-15 | 2005-03-01 | Trimble Navigation Limited | GPS correction methods, apparatus and signals |
CN111149018A (zh) * | 2017-09-26 | 2020-05-12 | 焦点定位有限公司 | 用于校准系统参数的方法和系统 |
CN111149018B (zh) * | 2017-09-26 | 2023-09-15 | 焦点定位有限公司 | 用于校准系统参数的方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
EP0497946A1 (fr) | 1992-08-12 |
DE4026740A1 (de) | 1992-02-27 |
DE59107994D1 (de) | 1996-08-14 |
EP0497946B1 (fr) | 1996-07-10 |
JPH05503360A (ja) | 1993-06-03 |
US5252982A (en) | 1993-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1992003747A1 (fr) | Procede de positionnement precis | |
DE69032709T2 (de) | Verfahren und Vorrichtung zur genauen Lageermittlung und kinematischen Ortung | |
DE3883527T2 (de) | Fahrzeug-ortungssystem mit grösserer genauigkeit für luftfahrzeuge. | |
DE69705052T2 (de) | Navigationshilfeverfahren für ein mobiles objekt zu einem sich ebenfalls bewegenden objekt | |
DE69033597T2 (de) | Integriertes Fahrzeugpositionier- und -navigationssystem; dessen Vorrichtung und Verfahren | |
DE3103376C2 (fr) | ||
DE69922391T2 (de) | Höhenmesserradar mit interferometrischsynthetischer apertur | |
DE68920113T2 (de) | Richtige-Amplituden-Neigungsausschlagkorrektur. | |
DE2410500B2 (de) | Pulsradarsystem linear zeitverknüpfter Trägerfrequenz mit hohem Entfernungsauflösungsvermögen | |
DE69102632T2 (de) | Digitale korrekturschaltung für monopuls-prozessor. | |
DE19737592A1 (de) | Lagebestimmungssystem für künstliche Satelliten | |
DE4340955A1 (de) | Verfahren und Vorrichtung um die Genauigkeit von Positionsabschätzungen in einem satellitengestützten Navigationssystem zu verbessern | |
DE4002176A1 (de) | Gps-navigationseinrichtung fuer ein fahrzeug | |
DE69323014T2 (de) | Verfahren und System zur Positionsbestimmung eines Fahrzeuges | |
CH693653A5 (de) | Verfahren zur Bestimmung der Relativlage mittels GPS und Vorrichtung dazu. | |
EP1868009A1 (fr) | Procédé de calcul pour des grandeurs spécifiques au réseau dans un réseau provenant de stations de référence pour un système de positionnement par satellite | |
DE2348458A1 (de) | Impulsradarsystem | |
DE69121568T2 (de) | Methode und system zur richtungsbestimmung | |
DE1462731B2 (de) | Korrelationsverfahren | |
DE2514751C2 (de) | Tacan-System | |
DE2315347B2 (de) | Verfahren und vorrichtung zur fortlaufenden korrelations-decodierung unter einbeziehung von amplitudengewichtung von gruppen bildenden signalen | |
DE69706165T2 (de) | Satellitenempfänger mit prüfung der integrität mittels berechnung der geschwindigkeit | |
DE2714498C1 (de) | Verarbeitungsschaltung fuer Seitensichtradarsignale | |
EP1217384B1 (fr) | Procédé de localisation de satellites géostationaires par mesure de temps de vol de signaux provenant de systèmes de navigation par satellite | |
DE69832926T2 (de) | Verfahren und System zur Echtzeit-Positionsbestimmung mittels Funksatelliten, insbesondere GPS-Satelliten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 1991914682 Country of ref document: EP |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWP | Wipo information: published in national office |
Ref document number: 1991914682 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991914682 Country of ref document: EP |