+

WO1992002334A1 - Vehicule mobile de meulage de surface - Google Patents

Vehicule mobile de meulage de surface Download PDF

Info

Publication number
WO1992002334A1
WO1992002334A1 PCT/GB1991/001317 GB9101317W WO9202334A1 WO 1992002334 A1 WO1992002334 A1 WO 1992002334A1 GB 9101317 W GB9101317 W GB 9101317W WO 9202334 A1 WO9202334 A1 WO 9202334A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
grinding
floor
grinding tool
sensor
Prior art date
Application number
PCT/GB1991/001317
Other languages
English (en)
Inventor
James Leonard Beckett
Kevin Dare
Original Assignee
Concrete Grinding Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concrete Grinding Ltd. filed Critical Concrete Grinding Ltd.
Priority to AU83114/91A priority Critical patent/AU662488B2/en
Priority to EP91914154A priority patent/EP0541657B1/fr
Priority to DE69118698T priority patent/DE69118698T2/de
Priority to CA002088512A priority patent/CA2088512C/fr
Publication of WO1992002334A1 publication Critical patent/WO1992002334A1/fr
Priority to GB9303545A priority patent/GB2263426B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/18Single-purpose machines or devices for grinding floorings, walls, ceilings or the like
    • B24B7/186Single-purpose machines or devices for grinding floorings, walls, ceilings or the like with disc-type tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Definitions

  • the present invention relates to vehicles for grinding floors to a predetermined contour, for example, in order to produce a substantially perfect flat surface on a concrete floor.
  • a mobile floor grinding vehicle comprising a vehicle body movable in a predetermined direction of travel over a floor, one or more grinding tools supported by the body, drive means for driving the or each grinding tool to grind the floor to a desired contour, and control means for controlling the grinding depth of the or each grinding tool with respect to the floor in response to predetermined signals representative of said desired contour.
  • Preferably two support arms each carrying a grinding tool are mounted at either side of the vehicle body so as to swing outwardly with respect thereto in order to provide an adjustable transverse spacing between the grinding tools.
  • the or each grinding tool may be mounted on a transverse beam, preferably provided with lengthwise adjustability, again so that the transverse position of the grinding tools can be accurately set.
  • the vehicle is preferably self-propelled, for example by means of electric, hydraulic or diesel traction motors. Electrical power may be obtained from batteries carried by the vehicle.
  • the control means may be responsive to a signal representing a single predetermined datum level.
  • a signal representing a single predetermined datum level is a horizontal laser beam from a fixed external source, detected by a sensor on the vehicle which transmits appropriate signals to the control means to regulate the height of the grinding tools in relation to the datum level.
  • the vehicle includes a computer which is pre-programmable to control the control means in accordance with a predetermined pattern, eg, in accordance with data representing the initial contours of the floor and its desired final contours.
  • the vehicle is self-propelled, and the computer in linked to the propulsion means of the vehicle- so as to control the vertical position of the grinding heads in such a way as to compensate for variations in the initial contours and thereby grind the floor to the required degree of flatness.
  • Fig 1 is a diagram illustrating, in notional elevation, principal .component parts of the vehicle in a first embodiment
  • Fig 2 is a general outside view of the same vehicle
  • Fig 3 shows its propulsion and steering means
  • Fig 4 shows, greatly simplified, main structural elements of the same vehicle
  • Fig 5 shows how grinding heads are mounted on the vehicle of Figs 1 to 4;
  • Fig 6 is a simplified cross sectional elevation through a grinding head
  • Fig 7 is an outside elevation of a small part of the grinding head as seen from the left-hand side of Fig ⁇ ;
  • Figs 8 and 9 are diagrammatic views, in plan and elevation respectively, showing parts of a mobile floor grinding vehicle in a second embodiment;
  • Fig 10 is a plan view in diagrammatic form of a mobile floor grinding vehicle according to a still further embodiment of the invention.
  • Fig 11 shows, in diagrammatic form, an elevation view of the vehicle of Fig 10;
  • Fig 12 is a section through the grinding head of the embodiment shown in Figs 10 and 11.
  • a mobile floor grinding vehicle comprises a body indicated in phantom lines at 1, carried by wheels 2 on which it is movable over a floor 3.
  • At least one rigid, transverse support beam 4 is supported rigidly by the booy 1 and is movable vertically in the latter as indicated by the arrow 5. This movement is effected by any suitable means, for example a hydraulic piston and cylinder actuator 6.
  • the beam 4 defines a vertical plane 7, and is mounted for limited rotation on the body 1 about a horizontal transverse axis 8 in the plane 7.
  • This rotation is effected by any suitable means, for example by gravity or by a rotary actuator, which is indicated at 9 and which is controlled by a level sensor 10 in such a way as to maintain the plane 7 of the beam 4 vertical at all times. The reason for this will be apparent later.
  • a grinding-head 11 is secured rigidly to the beam 4 so that its attitude and vertical position faithfully follow those of the beam 4.
  • the head 11 includes a casing 12 to which a drive motor 13 is securely fastened.
  • a rotary floor grinding wheel 14, of any suitable type, within the casing 12, is driven through a shaft 15 by the motor 13, its axis of rotation 16 being contained in or parallel to the plane 7.
  • the vehicle includes control means for the vertical movement of the beam 4 in response to predetermined input signals to control the vertical position of the grinding wheel 14 as the vehicle is propelled over the floor 3, by any suitable propulsion means 17 driving a pair of the wheels 2.
  • the control means comprise a hydraulic control unit
  • the vehicle has two different systems for supplying the above-mentioned -1- input signals to the control unit 18.
  • the first of these comprises a laser beam sensor 19 which detects a horizontal beam 20 transmitted from a laser fixed in a suitable position up to, for example, about 300 metres from the vehicle.
  • the beam 20 defines a predetermined datum level, and given that the floor 3 is intially undulating, then as the vehicle travels over the floor the horizontal level of the beam 20 with respect ot the sensor 19 will vary. This variation produces, in any known manner, a varying input signal to the unit 18 which operates the actuator 6 in such a way that the head 11, and therefore the grinding wheel 14, remains at a constant vertical distance from the laser beam 20.
  • the other system for energising the unit 18 essentially comprises a computer 21, whic is linked with the propulsion means 17 so as to provide input signals to the unit 18 that vary in accordance with the initial contours of the floor, preprogrammed into the computer.
  • This preprogramming can be carried out in any known manner, for example by the use of the plotting device known as a PROFILERGRAPH.
  • the signals supplied by the computer 21 represent an analogue of the contours plotted by this device, the computer detecting the progress of the vehicle as it retraces the path previously followed by the plotting device.
  • Figs 2 to 7 The embodiment shown in Figs 2 to 7 has two grinding heads 11, one on either side of the vehicle and carried by a telescopic, rigid, transverse beams 22 which incorporates the two corresponding beams 4, adjustable for transverse spacing so as to position the grinding wheels 14 at any desired track width.
  • the body 1 includes a chassis 23 supported on the wheels
  • the chassis 23 carries a cockpit 25 for the operator, with electric batteries, for supplying power to the motors 17 and the control equipment, being mounted behind the cockpit.
  • the level sensor 10 is mounted on top of the telescopic beam 22. The latter is supported rigidly, by means not shown, on a rigid longitudinal main support beam 26 of the chassis. It should be noted that the track width between the two rear wheels is in this example narrow enough to keep them out of the path of the grinding wheels 14.
  • the hyraulic motor 13 of each grinding head 30 may be in line with the grinding wheel axis 9, or offset from it so as to drive the grinding wheel through a belt drive 27, Fig 5.
  • Each grinding head casing 12 containes a vacuum dust removal head 28, mounted behind the grinding wheel 14, the direction of travel being indicated at 29 in Fig ⁇ .
  • a rubber dust skirt 30 extends around the bottom casing 12 in contact with the floor, being carried on studs 31 fixed to the casing 12, and freely movable up and down by means of slots 32 by which it is supported on the studs 31.
  • each grinding wheel 16 has diamond grinding rings 33, the casing 12 being effectively sealed and having, besides the features mentioned above, an inlet 34 for water under pressure.
  • the piston of the associated actuator 6 is indicated at 35, being securely bolted to the top of the casing 12.
  • each grinding head 11 is carried on the free end of a corresponding rigid support arm 36, which is supported on the vehicle chassis 23, by means of a pivot having a pivotal axis 37.
  • the pivotal axes 37 of the arms 36 lie on a common transverse axis 38 with respect to the longitudinal axis 39 of the chassis 23.
  • Pivoting of each arm 36 is controlled by a cylinder- type actuator 40 mounted transversely on the chassis 23.
  • Fig 8 shows one support arm 36 and head 11 on each side of the chassis 23, illustrated both in their parked position with the beam parallel with the chassis, and in a swungout position.
  • the head 11 is operative in all beam positions.
  • the chassis 23 may be arranged with further grinding heads 11, each with its own support arm 36 and actuator 40, mounted in front of and/or behind those shown.
  • Any support arm 36 can be arranged to swing inwards as well as (or instead of) outwards.
  • Each support arm 36 can be arranged to carry more than one head 11.
  • each support arm 36, to raise and lower the grinding heads 11 is generally the same in construction and operation as that carried by a support beam 4 in Figs 1 to 7, eg cylinder actuator 6 operating to reciprocate the head 11 in response to signals received from the control unit 18.
  • Figs 8 and 9 by contrast with the previous embodiment, has front traction wheels 41 as the driving wheels, with the rear wheels 2 being steerable by a conventional steering mechanism, not shown.
  • a liquid petroleum gas (LPG) combustion engine not shown, supplies hydraulic power to hydraulic traction motors 2 driving the wheels 41, and also to the control equipment of the grinding heads 11. It will, however, be understood that, in any embodiment, either the front or the rear wheels may be steerable; and that in any embodiment traction may be electric or hydraulic.
  • LPG liquid petroleum gas
  • FIGs 10 to 12 A further embodiment of the invention is shown in Figs 10 to 12. In this embodiment, those component parts which are the same as in previous embodiments will have the same reference numbers.
  • This further embodiment comprises a chassis 43 formed of two rigidly spaced beams 44 provided with front driving wheels 45 and steerable trailing wheels 46.
  • the front wheels 45 are mounted on a drive axle 47 rotatably mounted between the rigid beams 44 of the chassis 43.
  • the drive wheels 45 are more closely spaced with respect to the central axis A of the chassis 43 than the rear wheels 46 and less than the track width to be ground by the grinding wheels 14 of the grinding heads 11.
  • the rear wheels 46 are provided to steer the vehicle and to this end are rotatably mounted on stub axles 48 projecting from the chassis beams 44.
  • a connecting rod 49 is pivotally mounted between two pivoting arms 50, 51, both of which are pivotally mounted to a pivot 52 on the stub axles 48.
  • the arm 51 extends to the other side of its associated stub axle 48 and is connected to the piston rod 53 of a piston 54 pivotally mounted at 55 to a rigid strut 56 fixed between the two beams 44.
  • hydraulic actuation of the piston 54 through the steering mechanism of the vehicle causes the wheels 46 to pivot on the stub axles 48 thus enabling the vehicle to be steered over the ground.
  • Power to drive the vehicle is supplied to the front wheels 47 by means of a hydraulic motor 56 acting on drive gear 57 coupled to the wheels 45 through a drive coupling 58.
  • the support arms 36 are pivotally mounted on rigid support pieces 59 which project from the chassis beams 44. In this way the support arms 36 are able to be brought into abutment with the beams 44 in their parked position as shown in dotted outline in Fig 10.
  • the support arms 36 are pivotally movable between the said parked position and a maximum swung-out position as shown in full outline in Fig 10.
  • the pivotal axes of the arms 36 on the support pieces 59 lie on a common transverse axis 38 with respect to the longitudinal axis A of the chassis 43.
  • Actuation of the support arms 36 is effected by means of a hydraulic piston 60 mounted on the chassis 43 such that the rod 62 thereof operates along the longitudinal central axes of the chassis 43.
  • the piston 60 acts on two control arms 61 of equal length pivotally mounted at one end of each thereof to the end of the rod 62 of the piston bO and at the other ends respectively to the rigid support arms 36 at equal distances from the respective pivot points on the support pieces 59.
  • the arms 36 may be moved outwardly upon actuation of the piston 60 by equal amounts at the same rate of travel such that the grinding heads 11 may be positioned to effect a grinding operation at equal distances from the longitudinal central axis A of the chassis 43.
  • Fig 12 are formed of a box structure having an inner box part 63 carrying the grinding wheel 14 and connected to the rod 64 of a piston 65 the cylinder of which is attached to an outer box part 66 of the box structure, and within which the inner box part 63 is able to reciprocate upon actuation of the piston
  • the top of the piston rod 64 carries the laser responsive receiver 19, adjustably mounted thereon, signals from which caused by variations of movement with respect to laser beam 20 are used to actuate the piston 65 through a control unit of the type 18 described with reference to Figs 1 to 7.
  • Each grinding wheel 14, see Fig 12, is mounted to a drive plate 67 connected to a drive shaft 68.
  • the drive shaft 68 revolves in a bearing 70 attached to a bottom wall 69 of the inner box part 63 and is driven by means of a drive motor 71.
  • the vehicle is provided with a forward cockpit area 72 having a drivers seat 73 suitable positioned therein.
  • a steering wheel 74 is provided in the cockpit 72 hydraulically coupled to the piston 54 operating the rear wheels 46 by suitable means, not shown, for steering the vehicle.
  • the vehicle is provided with a power pack in the form of a diesel engine 75 coupled to a hydraulic pump 76 which powers the hydraulics of the system through a controllable valving arrangement, not shown, such as the hydraulic motor 56, and pistons 54, 60 and 65, and thus travel of the vehicle, steering, position of support arms 36, and height adjustment of the grinding heads 11 respectively. All these operations may be effected from the cockpit 72 using control equipment of conventional design and familiar to one skilled in the art.
  • the speed of the vehicle is controlled by accelerator pedal 77, coupled to the engine 75.
  • To the rear of the vehicle is mounted a diesel fuel tank 78 and a hyraulic oil storage tank 79.
  • clean water is fed from an external source (not shown) to a water reservoir 80 above the grinding wheels 14, see Fig 12.
  • the clean water is delivered to the grinding area as required via water outlets 81. Dirty water and debris may be withdrawn from the grinding area to a dirty water collection tank (not shown) by means of a line connector 82.
  • the dirty water collection tank is caused to function using a vacuum unit 83 mounted adjacent to the enginve 75 and operated thereby.
  • the action of removing dirty water from the grinding area is assisted by means of a rubber squeegee device 84 arranged around the grinding head, shown more particularly in Fig 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Disintegrating Or Milling (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Vehicle Body Suspensions (AREA)
  • Harvester Elements (AREA)
  • Soil Working Implements (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

Un véhicule mobile de meulage de surface servant à égaliser un sol jusqu'à un niveau prédéterminé et pourvu d'une ou plusieurs têtes de meulage qui peuvent se régler en continu en même temps que le véhicule se déplace sur le sol pour maintenir la surface de meulage des têtes sur une position fixe correspondant au contour à égaliser sur le sol. Le contrôle de position des têtes s'effectue soit au moyen d'un faisceau laser provenant d'une source laser située à distance du véhicule et fournissant un niveau de référence en fonction duquel la position de fonctionnement des têtes de meulage est continuellement contrôlée et réglée par l'intermédiaire de détecteurs réagissant au faisceau laser, soit au moyen de signaux générés par un ordinateur embarqué, lesquels varient en fonction des contours initiaux du sol mesurés par rapport à des contours souhaités et pré-programmés dans l'ordinateur.
PCT/GB1991/001317 1990-08-01 1991-08-01 Vehicule mobile de meulage de surface WO1992002334A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU83114/91A AU662488B2 (en) 1990-08-01 1991-08-01 A mobile floor grinding vehicle
EP91914154A EP0541657B1 (fr) 1990-08-01 1991-08-01 Vehicule mobile de meulage de surface
DE69118698T DE69118698T2 (de) 1990-08-01 1991-08-01 Verfahrbare bodenschleifmaschine
CA002088512A CA2088512C (fr) 1990-08-01 1991-08-01 Rectifieuse de planchers, mobile
GB9303545A GB2263426B (en) 1990-08-01 1993-02-22 A mobile floor grinding vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB909016897A GB9016897D0 (en) 1990-08-01 1990-08-01 A mobile floor grinding machine
GB9016897.2 1990-08-01

Publications (1)

Publication Number Publication Date
WO1992002334A1 true WO1992002334A1 (fr) 1992-02-20

Family

ID=10680003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1991/001317 WO1992002334A1 (fr) 1990-08-01 1991-08-01 Vehicule mobile de meulage de surface

Country Status (7)

Country Link
EP (1) EP0541657B1 (fr)
AT (1) ATE136485T1 (fr)
AU (1) AU662488B2 (fr)
CA (1) CA2088512C (fr)
DE (1) DE69118698T2 (fr)
GB (2) GB9016897D0 (fr)
WO (1) WO1992002334A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995014140A1 (fr) * 1993-11-16 1995-05-26 Byggrobotik I Göteborg Ab Dispositif pour entrainer et commander un vehicule de traitement des surfaces
US5533790A (en) * 1991-10-22 1996-07-09 Raymond F. Weiland Floor milling machines
KR20020035421A (ko) * 2000-11-04 2002-05-11 신현갑 고성능 유중수적형 에멀젼 폭약 및 그 제조 방법
WO2003076131A1 (fr) * 2002-03-12 2003-09-18 Htc Sweden Ab Dispositif d'une machine a meuler mobile permettant de meuler les surfaces de sol
WO2004030862A1 (fr) * 2002-10-04 2004-04-15 Hans Voet Dispositif pour niveler des sols
WO2005077599A1 (fr) 2004-02-13 2005-08-25 Htc Sweden Ab Machine de traitement de sol
US7435160B2 (en) 2006-03-10 2008-10-14 Marrs Iii Glenn L Automated floor sander
CN108098534A (zh) * 2017-12-12 2018-06-01 上海永玺环境科技有限公司 一种切削、研磨、抛光一体机
CN109434590A (zh) * 2018-12-24 2019-03-08 福建兴翼机械有限公司 驾驶式地坪研磨机及其操作方法
CN111604805A (zh) * 2020-05-26 2020-09-01 福建兴翼机械有限公司 一种驾驶型研磨机
SE2150219A1 (en) * 2020-12-18 2022-06-19 Husqvarna Ab Concrete surface mapping robots, systems, and methods for processing concrete surface
WO2022132019A1 (fr) * 2020-12-18 2022-06-23 Husqvarna Ab Robots de cartographie de surface en béton, systèmes et procédés de traitement de surfaces en béton

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271931B (zh) * 2016-08-19 2018-10-26 钱望雁 一种板材表面处理的加工装置
CN108818299B (zh) * 2018-06-06 2023-08-18 太仓鉴崧实业有限公司 一种交叉运转的磨盘结构及其工作方法
CN111745486B (zh) * 2020-06-02 2022-02-18 上海建工四建集团有限公司 一种精准控制墙面打磨深度的施工方法
DE202023106236U1 (de) 2023-10-27 2023-12-13 HD Kottmeyer Beteiligungs-GmbH & Co. KG Verfahrbare Bodenschleifmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1243288A (en) * 1969-02-03 1971-08-18 Steel Co Of Wales Ltd Concrete grinding machine
US3820903A (en) * 1971-09-01 1974-06-28 Siemens Ag Device for producing a light plane
FR2270380A1 (en) * 1974-05-09 1975-12-05 Stime Self-levelling levelling machine - has rotating laser beam sweeping to detectors controlling blade levelling jacks
EP0090098A1 (fr) * 1982-03-31 1983-10-05 Les Fils D'auguste Scheuchzer S.A. Dispositif pour la commande d'une machine pour la construction ou réfection d'une voie de chemin de fer
WO1987002281A1 (fr) * 1985-10-10 1987-04-23 Rautio, Maire Dispositif pour l'usinage des cylindres de sechage de machines a papier
EP0353997A2 (fr) * 1988-08-03 1990-02-07 B A Power Tools Ltd. Machine à meuler
WO1990008012A1 (fr) * 1989-01-11 1990-07-26 Loram Maintenance Of Way, Inc. Appareil et procede de mesure et de maintien du profile d'un rail de voie de chemin de fer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1243288A (en) * 1969-02-03 1971-08-18 Steel Co Of Wales Ltd Concrete grinding machine
US3820903A (en) * 1971-09-01 1974-06-28 Siemens Ag Device for producing a light plane
FR2270380A1 (en) * 1974-05-09 1975-12-05 Stime Self-levelling levelling machine - has rotating laser beam sweeping to detectors controlling blade levelling jacks
EP0090098A1 (fr) * 1982-03-31 1983-10-05 Les Fils D'auguste Scheuchzer S.A. Dispositif pour la commande d'une machine pour la construction ou réfection d'une voie de chemin de fer
WO1987002281A1 (fr) * 1985-10-10 1987-04-23 Rautio, Maire Dispositif pour l'usinage des cylindres de sechage de machines a papier
EP0353997A2 (fr) * 1988-08-03 1990-02-07 B A Power Tools Ltd. Machine à meuler
WO1990008012A1 (fr) * 1989-01-11 1990-07-26 Loram Maintenance Of Way, Inc. Appareil et procede de mesure et de maintien du profile d'un rail de voie de chemin de fer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533790A (en) * 1991-10-22 1996-07-09 Raymond F. Weiland Floor milling machines
WO1995014140A1 (fr) * 1993-11-16 1995-05-26 Byggrobotik I Göteborg Ab Dispositif pour entrainer et commander un vehicule de traitement des surfaces
KR20020035421A (ko) * 2000-11-04 2002-05-11 신현갑 고성능 유중수적형 에멀젼 폭약 및 그 제조 방법
WO2003076131A1 (fr) * 2002-03-12 2003-09-18 Htc Sweden Ab Dispositif d'une machine a meuler mobile permettant de meuler les surfaces de sol
WO2004030862A1 (fr) * 2002-10-04 2004-04-15 Hans Voet Dispositif pour niveler des sols
WO2005077599A1 (fr) 2004-02-13 2005-08-25 Htc Sweden Ab Machine de traitement de sol
US7435160B2 (en) 2006-03-10 2008-10-14 Marrs Iii Glenn L Automated floor sander
CN108098534A (zh) * 2017-12-12 2018-06-01 上海永玺环境科技有限公司 一种切削、研磨、抛光一体机
CN109434590A (zh) * 2018-12-24 2019-03-08 福建兴翼机械有限公司 驾驶式地坪研磨机及其操作方法
CN111604805A (zh) * 2020-05-26 2020-09-01 福建兴翼机械有限公司 一种驾驶型研磨机
SE2150219A1 (en) * 2020-12-18 2022-06-19 Husqvarna Ab Concrete surface mapping robots, systems, and methods for processing concrete surface
WO2022132019A1 (fr) * 2020-12-18 2022-06-23 Husqvarna Ab Robots de cartographie de surface en béton, systèmes et procédés de traitement de surfaces en béton
SE544758C2 (en) * 2020-12-18 2022-11-01 Husqvarna Ab Concrete surface mapping robots, systems, and methods for processing concrete surface

Also Published As

Publication number Publication date
AU662488B2 (en) 1995-09-07
GB2263426A (en) 1993-07-28
DE69118698D1 (de) 1996-05-15
DE69118698T2 (de) 1996-11-28
GB9016897D0 (en) 1990-09-12
AU8311491A (en) 1992-03-02
ATE136485T1 (de) 1996-04-15
EP0541657B1 (fr) 1996-04-10
CA2088512C (fr) 2001-02-13
GB2263426B (en) 1994-06-08
CA2088512A1 (fr) 1992-02-02
EP0541657A1 (fr) 1993-05-19
GB9303545D0 (en) 1993-04-28

Similar Documents

Publication Publication Date Title
US5643047A (en) Mobile floor grinding vehicle
EP0541657B1 (fr) Vehicule mobile de meulage de surface
US12179535B2 (en) Automotive construction machine, as well as lifting column for a construction machine
US3704896A (en) Auxiliary steerable wheels for vehicles
US5711139A (en) Self-leveling hillside mower with remote control
US5238323A (en) Riding trowel for concrete finishing
EP0132271B1 (fr) Appareil permettant de modifier et regler la friction entre les roues d'une voiture et une sous-structure telle qu'une route
US4618016A (en) Motor vehicle such as a tractor
US5533790A (en) Floor milling machines
AU2005212142B2 (en) Floor processing machine
US20080111327A1 (en) Transport device capable of adjustment to maintain load planarity
US3606468A (en) Machines for planing road-like surfaces
GB1373590A (en) Pavement cutting machine
EP1567729A1 (fr) Systeme de commande de verrouillage sur machine a travailler a roues
CA1145989A (fr) Machine a egaliser la surface des voies carrossables
EP0389478B1 (fr) Procede de commande d'un element transporteur et element transporteur permettant d'appliquer ce procede
CA1100346A (fr) Traduction non-disponible
US20070068691A1 (en) Motor grader with adjustable front wheel structure
US3697135A (en) Concrete pavement cutting machine
EP0414325B1 (fr) Véhicule utilisable sur route et hors route
US4588231A (en) Pavement surfacing machine
EP0976878B1 (fr) Chargeur
EP0092952A1 (fr) Véhicule terrestre
JP2558754B2 (ja) 歩行型水田作業機
JPH0745611Y2 (ja) 舗装機械の懸架装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA GB JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 2088512

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1991914154

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991914154

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991914154

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载