WO1992001867A1 - Vorrichtung zur absorption von druckpulsationen - Google Patents
Vorrichtung zur absorption von druckpulsationen Download PDFInfo
- Publication number
- WO1992001867A1 WO1992001867A1 PCT/EP1991/001040 EP9101040W WO9201867A1 WO 1992001867 A1 WO1992001867 A1 WO 1992001867A1 EP 9101040 W EP9101040 W EP 9101040W WO 9201867 A1 WO9201867 A1 WO 9201867A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arrangement according
- damping
- inlet
- pulsation
- chamber
- Prior art date
Links
- 230000010349 pulsation Effects 0.000 title claims abstract description 34
- 239000006096 absorbing agent Substances 0.000 title 1
- 238000013016 damping Methods 0.000 claims description 28
- 238000007789 sealing Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 206010040007 Sense of oppression Diseases 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 9
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
- B60T8/4068—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system the additional fluid circuit comprising means for attenuating pressure pulsations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B11/00—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
- F04B11/0091—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using a special shape of fluid pass, e.g. throttles, ducts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/04—Devices damping pulsations or vibrations in fluids
Definitions
- the invention relates to an arrangement for absorbing pressure pulsations and other vibrations in pressurized, in particular hydraulic, systems, with at least one damping chamber arranged in the pressurized consumer inflow with inlet and outlet bores.
- Such an arrangement is known from DE 38 08 901 AI and DE 39 15 781 AI in hydraulic radial piston pump systems for motor vehicles. It is used to measure the pump-related pressure fluctuations in the output circuit of the pump, i.e. to reduce the degree of non-uniformity of the feed current to the consumer. These pressure fluctuations are ultimately transferred to the actuator, e.g. on the brake pedal of a motor vehicle when used in a power steering system.
- the damping chambers of the known arrangements essentially have a cylindrical interior, which, due to its relatively large volume, serves as a collecting space for the hydraulic fluid and dampens the pressure fluctuations.
- the invention is based on the object, starting from the arrangement described at the outset, of creating a damping chamber which can be used universally, possibly also be retrofitted and which ensures good and inexpensive noise and pulsation reduction.
- the damping chamber has a substantially spherical or egg-shaped interior and a sound-absorbing multi-layer casing, and that the inlet and outlet bores are arranged opposite one another offset.
- the cavity with a spherical to ovoid shape and offset inlet and outlet bores causes penetrating pulsations to be constantly reflected and broken and wipe each other out.
- a multi-layer coating of the damping chamber is provided so that airborne and structure-borne noise cannot propagate freely from the pressure inlet side to the consumer side.
- a particularly effective reduction in pulsation can be achieved according to a design feature of the invention in that three damping chambers are axially aligned in series and the inlet and outlet bores are each axially offset.
- the arrangement is expediently such that the inlet bore of the damping chamber associated with the pressure generator has a relatively large cross section.
- a particularly effective sheathing of the damping chambers results from the fact that the damping chambers are formed in axially successive blocks which are connected to one another via sealing arrangements, of which the two outer ones each have a pot-like extension running coaxially to one another.
- To reinforce the radial Sound reduction is expediently provided between the pot-like extensions at least one axially extending annular space in which a negative pressure can be produced.
- the only figure in the patent drawing shows three spherical cavities connected in series, the spherical chambers 1, 2, 3 of a damping body in a hydraulic system, which are surrounded by a multi-layer casing.
- the ball chamber 1 is connected via a relatively large inlet bore 4 to a pressurized line via which the pressure pulsations or vibrations are transmitted. Due to the large inlet hole, the pressure connection from the pressure generator (e.g. pump) to the ball chamber 1 can be seen as a one-piece pressure supply chamber.
- the pressure generator e.g. pump
- the pulsating pressure medium therefore enters the damping body via the inlet bore 4, as indicated by the arrow.
- the ball chamber 1 is connected via the output bore 5 to the input bore 6 of the ball chamber 2.
- the ball chamber 2 is connected via the output bore 7 to the input bore 8 of the ball chamber 3.
- the low-pulsation pressure medium emerges from the outlet 9 of the ball chamber 3 Damping body out and in the consumer inlet.
- each ball chamber is - as can also be seen in the drawing - arranged axially offset from one another.
- Pressure pulsations which are caused by a pressure generator (not shown), are introduced into the ball chamber 1 provided with the large inlet bore 4. A partial reduction of the incoming pressure pulsations takes place in this spherical chamber.
- the effect of the spherical cavity consists in the fact that pressure pulsations that occur propagate on all sides. When they hit the cavity shell, they are reflected and reflected back according to their angle of incidence. This process is repeated continuously. It can be assumed that the majority of pulsation peaks meet pulsation troughs and thus cancel each other out.
- the pressure pulsation from the pressure generator into the ball chamber 1 is already greatly reduced as a result of feedback, ie ' . also due to the reduced pressure pulsation in the pressure supply system itself, the breathing work is reduced backwards into the pressure generator. The airborne noise generated in this way is also reduced.
- the ball chamber 1 therefore already results in a reduction in noise due to reduced breathing work inside and on the surface of the pressure generator.
- the inlet and outlet bores 4 and 5 of the ball chamber 1 are staggered. This should also increase the absorption behavior.
- the already damped, but still pulsating pressure medium enters the ball chamber 2 via the inlet bore 6.
- the inlet and outlet bores 6 and 7 of this ball chamber 2 are also arranged offset for the reasons mentioned above.
- this spherical chamber 3 primarily serves to largely eliminate direct pulsations (eg from hydraulic motors, cylinders, valves, etc.) coming from the consumer or indirectly caused pulsations (such as external forces acting on the aforementioned hydraulic components) .
- the mode of operation is corresponding to that of the spherical chambers 1 and 2.
- the multi-stage ball chamber arrangement according to the figure of the patent drawing therefore causes a very strong damping of the pressure pulsations in the pressure medium.
- the embodiment shown in the patent drawing is to be understood as an exemplary embodiment.
- the embodiment of the pulsation damping body according to the invention can also consist of a single ball in its simplest form. This ball can, if necessary, be designed somewhat modified in accordance with the specific requirements.
- the spherical chambers do not necessarily have to be arranged axially one behind the other if, for example, specific requirements (installation conditions) only allow a different body contour.
- the spherical chambers 1 to 3 are formed in four blocks of the damping body, which are connected to one another via sealing rings 13.
- the ball chamber 1 is contained in the head part 10, which preferably consists of light metal, and the inner block 11, which is preferably formed by a multilayer plastic material.
- the ball chamber 2 is formed in a corresponding manner in the blocks 11 and 12, the latter also preferably being constructed from a multilayer plastic.
- the spherical chamber 3 is finally located in the blocks 12 and 15, the latter being pot-shaped and preferably also consisting of a multilayer plastic.
- the blocks are held in a pot-shaped receptacle 16 made of light metal, which is connected to the block 15 via an adhesive 17.
- ring channels 18 which can be connected to a vacuum generator via a connection 14.
- the vacuum generator can be, for example, the intake manifold or the carburetor of a motor vehicle or the intake constriction of a pump, etc.
- the described sheathing of the ball chamber serves to ensure that it comes from the pulsation generator Structure-borne noise is not passed on via the damping body.
- the housing of the damping body has a multilayer structure both in the direction of flow and radially outward. In the case of an axial pass, for example, the structure-borne noise must first pass through a metal layer.
- the rate of propagation of the pulsations being greatly reduced or changed.
- the structure-borne noise that still penetrates into the spherical chambers or the structure-borne noise that is still indirectly caused here by pulsation / breathing work is also reduced in the radial direction.
- the airborne noise occurring is primarily absorbed by the vacuum chamber 18, which surrounds the spherical chambers in a ring.
- This vacuum chamber also has a dampening effect on structure-borne noise.
- the structure-borne sound pressure waves must penetrate a total of five different layers (including the spherical chamber shells). The number and sequence of the layers is to be determined and determined specifically by the person skilled in the art in a corresponding investigation for the respective application.
- the basic principle of the multi-layer cladding therefore consists in the fact that structure-borne and airborne noise that occurs has to change its speed of sound propagation as the different layers pass through; it is also broken at the interfaces. He therefore loses energy. This effect is supported by the substantial absence of air in the vacuum chamber 18. In addition, the stratification can influence the frequency of the sound, which nevertheless penetrates outwards, in such a way that it is more bearable for the user.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Transportation (AREA)
- Liquid Crystal (AREA)
- Pipe Accessories (AREA)
Abstract
In druckmittelbeaufschlagten, insbesondere hydraulischen Systemen, entstehen systembedingt Druckschwankungen im Verbraucherzulaufstrom bzw. Geräusche, die sich für den Benutzer des Systems störend bemerkbar machen. Zur Dämpfung dieser Druckpulsationen und Geräusche sieht die Erfindung einen Hohlraum (1, 2, 3) mit kugel- bis eiförmiger Gestalt und mit einer schalldämpfenden, mehrschichtigen Ummantelung (11) sowie mit versetzten Ein- und Ausgangsbohrungen (4-9) als Dämpfungskammer vor. Diese Dämpfungskammer ist universell einsetzbar, ggf. auch nachrüstbar, und gewährleistet eine gute und preiswerte Geräusch- und Pulsationsminderung. Vorteilhafte Weiterbildungen der Erfindung beschäftigen sich mit einer geeigneten Ausgestaltung der Dämpfungskammer und der sie umgebenden Ummantelung.
Description
Vorrichtung zur Absorption von Druckpulsationen
Die Erfindung betrifft eine Anordnung zur Absorption von Druckpulsationen und anderen Schwingungen in druckmittelbe¬ aufschlagten, insbesondere hydraulischen Systemen, mit min¬ destens einer im druckbeaufschlagten Verbraucherzulaufstrom angeordneten Dämpfungskammer mit Eingangs- und Ausgangs¬ bohrungen.
Eine derartige Anordnung ist durch die DE 38 08 901 AI und DE 39 15 781 AI bei hydraulischen Radialkolbenpumpensystemen für Kraftfahrzeuge bekannt geworden. Sie dient dazu, die pumpenbedingten Druckschwankungen im Ausgangskreis der Pumpe, d.h. den Ungleichförmigkeitsgrad des ZulaufStromes zum Verbraucher, zu verringern. Diese Druckschwankungen übertragen sich letztlich auf das Stellglied, z.B. auf das Bremspedal eines Kfz bei Anwendung in einem Lenkhilfsystem (Servolenkung). Die Dämpfungskammern der bekannten Anordnun¬ gen besitzen im wesentlichen einen zylindrischen Innenraum, der durch sein verhältnismäßig großes Volumen als Sammelraum für die Hydraulikflüssigkeit dient und die Druckschwankungen dämpft.
Neben den vom Druckerzeuger (meist eine Pumpe) prinzipbe¬ dingt erzeugten Pulsationen bewirken - generell gesehen - auch Schalt-, Steuer- und Regelvorgänge Druckpulsationen in pneumatischen bzw. hydraulischen Systemen. Ferner wirken über die Verbraucher von außen Kräfte auf Baugruppen des Druckmittelkreises ein, z.B. auf hydraulische Motoren, Zylinder, Ventile, die, umgewandelt als Pulsationen, im Druckmittelkreis wirksam werden. Es treten daher generell in pneumatischen und hydraulischen Systemen Pulsationen, Schwingugen, Luft- und Körperschall mit unangenehmen Fre¬ quenzen und erheblichen Amplituden, erzeugt von Pumpen oder
von anderen Pulsations- oder Schwingungserzeugern, auf. Sie können Zerstörungen, Defekte, Funktionseinbußen und Ge- brauchsrainderungen infolge störender Geräusche und Schwin¬ gungen an Meßmitteln sowie Funktionsüberwachungselementen und eine verkürzte Lebensdauer der Aggregate sowie auch eine Geräusch- und Schwingungsbelästigung in Maschinenhallen, Werkstätten, Büros und Fahrzeugen bewirken.
Die Probleme wurden bisher speziell für die einzelnen Produkte gelöst, beispielsweise für Radialkolbenpumpen- systeme in Kfz-Anlagen gem. den eingangs genannten Schrif¬ ten. Diese zumeist primären und individuellen Maßnahmen sind technisch und kostenmäßig unbefriedigend und führen in der Regel auch nur zu einer Teillösung.
Der Erfindung liegt die Aufgabe zugrunde, ausgehend von der eingangs bezeichneten Anordnung eine Dämpfungskammer zu schaffen, die universell einsetzbar, ggf. auch nachrüstbar ist und die eine gute und preiswerte Geräusch- und Pulsationsminderung gewährleistet.
Die Lösung der Aufgabe gelingt gemäß der Erfindung dadurch, daß die Dämpfungskammer einen im wesentlichen kugel- oder eiförmigen Innenraum und eine schalldämpfende mehrschichtige Ummantelung besitzt, und daß die Ein- und Ausgangsbohrungen gegenüberliegend versetzt zueinander angeordnet sind.
Der Hohlraum mit kugel- bis eiförmiger Gestalt und versetz¬ ten Ein- und Ausgangsbohrungen bewirkt, daß eindringende Pulsationen ständig reflektiert sowie gebrochen werden und
sich gegenseitig auslöschen.
Damit sich Luft- und Körperschall nicht ungehindert von der Druck-Eingangsseite auf die Verbraucherseite fortpflanzen kann, ist eine mehrschichtige Ummantelung der Dämpfungs- kammer vorgesehen.
Mit der erfindungsgemäßen Anordnung ist damit eine wirksame und preiswerte Pulsationsminderung möglich, eine Anordnung, die universell einsetzbar und auch in bestehende Anlagen nachrüstbar ist.
Eine besonders wirksame Pulsationsminderung läßt sich nach einem ausgestaltenden Merkmal der Erfindung daduch erzielen, daß drei Dämpfungskammern axial fluchtend hintereinander geschaltet und die Ein- bzw. Ausgangsbohrungen jeweils axial versetzt angeordnet sind.
Zur Verminderung der Druckpulsationen des Druckerzeugers durch Rückkopplung in der Dämpfungskammer ist die Anordnung zweckmäßig so getroffen, daß die dem Druckerzeuger zugeord¬ nete Eingangsbohrung der Dämpfungskammer einen verhältnis¬ mäßig großen Querschnitt aufweist.
Eine besonders wirksame Ummantelung der Dämpfungskammern er¬ gibt sich dadurch, daß die Dämpfungskammern in axial auf¬ einanderfolgenden Blöcken ausgeformt sind, die über Dichtan¬ ordnungen miteinander verbunden sind, von denen die beiden äußeren jeweils einen koaxial zueinander verlaufenden topf- artigen Fortsatz besitzen. Zur Verstärkung der radialen
SchallVerminderung ist zweckmäßig zwischen den topfartigen Fortsätzen mindestens ein sich axial erstreckener Ringraum vorgesehen, in dem ein Unterdruck herstellbar ist.
Weitere Ausgestaltungen der erfindungsgemäßen Anordnung so¬ wie Vorteile ergeben sich anhand eines in der Zeichnung dar¬ gestellten Ausführungsbeispieles in Form einer mehrstufigen Dämpfungskammer in einem hydraulischen System.
Die einzige Figur der Patentzeichnung zeigt drei kugelför¬ mige, hintereinandergeschaltete Hohlräume, die Kugelkammern 1,2,3 eines Dämpfungskörpers in einem hydraulischen System, die mit einer mehrschichtigen Ummantelung umgeben sind. Die Kugelkammer 1 steht über eine verhältnismäßig große Ein¬ gangsbohrung 4 mit einer druckbeaufschlagten Leitung in Ver¬ bindung, über die die Druckpulsationen bzw. Schwingungen übertragen werden. Aufgrund der großen Eingangsbohrung ist die Druckverbindung vom Druckerzeuger (z.B. Pumpe) bis zur Kugelkammer 1 als einteiliger Druckzuführraum zu sehen.
Ober die Eingangsbohrung 4 tritt daher - wie mit dem Pfeil gekennzeichnet - das pulsierende Druckmedium in den Dämpfungskörper ein. Die Kugelkammer 1 steht über die Aus¬ gangsbohrung 5 mit der Eingangsbohrung 6 der Kugelkammer 2 in Verbindung. Entsprechend ist die Kugelkammer 2 über die Ausgangsbohrung 7 mit der Eingangsbohrung 8 der Kugelkammer 3 verbunden. Im Übergangsbereich der Bohrungen befindet sich jeweils eine QuerSchnittsVerengung, die zu einer Bedämpfung der Schwingungsfronten beiträgt. Am Ausgang 9 der Kugel¬ kammer 3 tritt das pulsationsarme Druckmedium aus dem
Dämpfungskörper aus und in den Verbraucherzulauf ein.
Die Eingangs- und Ausgangsbohrungen jeder Kugelkammer sind - wie auch in der Zeichnung zu erkennen ist - axial versetzt zueinander angeordnet.
Druckpulsationen, welche von einem (nicht dargestellten) Druckerzeuger verursacht werden, werden in die mit der großen Eingangsbohrung 4 versehene Kugelkammer 1 hineinge¬ führt. In dieser Kugelkammer erfolgt ein Teilabbau der ein¬ treffenden Druckpulsationen. Die Wirkung des kugelförmigen Hohlraums besteht nämlich darin, daß eintretende Druck¬ pulsationen sich nach allen Seiten fortpflanzen. Beim Auf- treffen auf den Hohlraummantel werden sie entsprechend ihres Einfallwinkels reflektiert und zurückgeworfen. Dieser Vor¬ gang wiederholt sich ständig. Dabei ist davon auszugehen, daß in der Mehrzahl Pulsationsspitzen auf Pulsationstäler treffen und sich somit gegenseitig aufheben. Aufgrund der großen Eingangsbohrung 4, die den einteiligen Druckzuführ¬ raum zum Druckerzeuger herstellt, wird auch die Druck¬ pulsation vom Druckerzeuger in die Kugelkammer 1 infolge Rückkopplung bereits stark vermindert, d.h'. auch durch die verminderte Druckpulsation im Druckzuführsystem selbst wird die Atmungsarbeit bis rückwärts in den Druckerzeuger hinein vermindert. Der hierdurch erzeugte Luftschall reduziert sich ebenfalls. Durch die Kugelkammer 1 tritt daher bereits eine Geräuschreduzierung durch verminderte Atmungsarbeit im Inneren und an der Oberfläche des Druckerzeugers ein.
Um den direkten Durchgang von Druckpulsationen zu vermeiden,
sind Eingangs- und Ausgangsbohrung 4 bzw. 5 der Kugelkammer 1 gegeneinander versetzt angeordnet. Dies dürfte außerdem das Absorptionsverhalten noch verstärken.
Über die Eingangsbohrung 6 tritt das bereits gedämpfte, je¬ doch noch pulsierende Druckmedium in die Kugelkammer 2 ein. Hierbei erfolgt entsprechend dem erläuterten Prinzip ein weitergehender Pulsationsabbau infolge Todlaufens der Druck¬ wellen im Zentrum der Kugel. Die Ein- und Ausgangsbohrung 6 bzw. 7 dieser Kugelkammer 2 sind aus den zuvor erwähnten Gründen ebenfalls versetzt angeordnet.
Ein restlicher Pulsationsabbau der die Kugelkammer 2 noch passierenden Schwingungen, erfolgt in der Kugelkammer 3, in die das Druckmedium über die Eingangsbohrung 8 eintritt. Diese Kugelkammer 3 dient allerdings primär dazu, vom Ver¬ braucher kommende direkte Pulsationen (z.B. von hy¬ draulischen Motoren, Zylindern, Ventilen usw.) bzw. indirekt verursachte Pulsationen (so z.B. auf vorgenannte hy¬ draulische Bauelemente wirkende äußere Kräfte) weitgehend zu eliminieren. Die Wirkungsweise ist dabei entsprechend der¬ jenigen der Kugelkammern 1 und 2.
Die mehrstufige Kugelkammeranordnung nach der Figur der Pa¬ tentzeichnung bewirkt daher eine sehr starke Dämpfung der Druckpulsationen im Druckmedium.
Dennoch ist die in der Patentzeichnung dargestellte Ausfüh¬ rungsform als ein Ausführungsbeispiel zu verstehen. Die Aus¬ führung des erfindungsgemäßen Pulsations-Dämpfungskörpers
kann auch in seiner einfachsten Form aus einer einzigen Ku¬ gel bestehen. Diese Kugel kann ggf. den spezifischen Anfor¬ derungen entsprechend etwas modifiziert ausgeführt sein. Ebenso müssen die Kugelkammern nicht unbedingt axial hin¬ tereinander angeordnet sein, wenn z.B. spezifische Anfor¬ derungen (Einbauverhältnisse) nur eine andere Körperkontur zulassen.
Die Kugelkammern 1 bis 3 sind in vier Blöcken des Dämpfungs¬ körpers, die untereinander über Dichtringe 13 verbunden sind, ausgeformt. So ist die Kugelkammer 1 in dem Kopfteil 10, welches vorzugsweise aus Leichtmetall besteht, und dem inneren Block 11, der vorzugsweise durch ein mehrschichtiges Kunststoffmaterial gebildet wird, enthalten. Die Kugelkammer 2 ist in entsprechender Weise in den Blöcken 11 und 12 aus¬ geformt, wobei letzterer ebenfalls vorzugsweise aus einem mehrschichtigen Kunststoff aufgebaut ist. Die Kugelkammer 3 schließlich befindet sich in den Blöcken 12 und 15, wobei letzterer topfartig ausgebildet ist und vorzugsweise eben¬ falls aus einem mehrschichtigen Kunststoff besteht. Die Blöcke sind in einer topfförmigen Aufnahme 16 aus Leichtme¬ tall gehaltert, die über eine Klebung 17 mit dem Block 15 verbunden ist. Zwischen dem kopfseitigen Block 10 und den inneren Blöcken 11 bzw. 12 einerseits und dem topfartigen Block 15 andererseits bestehen Ringkanäle 18, die über einen Anschluß 14 mit einem ünterdruckerzeuger verbindbar sind. Der Unterdruckerzeuger kann beispielsweise der Ansaugkrümmer bzw. der Vergaser eines Kfz-Motors oder die Ansaugverengung einer Pumpe usw. sein. Die beschriebene Ummantelung der Ku¬ gelkammer dient dazu, daß vom Pulsationserzeuger kommender
Körperschall nicht über den Dämpfungskörper weitergeleitet wird. Deshalb ist das Gehäuse des Dämpfungskörpers sowohl in Durchflußrichtung als auch radial nach außen hin mehr¬ schichtig aufgebaut. Beim axialen Durchlauf z.B. muß der Körperschall zuerst eine Metallschicht durcheilen. Als nächstes wird er durch einen Kunststoffteil geleitet, wobei die Ausbreitungsgeschwindigkeit der Pulsationen stark re¬ duziert bzw. verändert wird. Der in die Kugelkammern noch eindringende Körperschall bzw. der hier noch indirekt über Pulsations-/Atmungsarbeit verursachte Körperschall wird, ebenso auch in radialer Richtung, vermindert. Hierbei wird der auftretende Luftschall primär durch den die Kugelkammern ringförmig umschließenden Unterdruckraum 18 absorbiert. Ebenso wirkt dieser Unterdruckraum dämpfend auf den Körper¬ schall. Im dargestellten Ausführungsbeispiel müssen z.B. die Körperschalldruckwellen insgesamt fünf verschiedne Schichten (die Kugelkammerschalen mitgerechnet) durchdringen. Die An¬ zahl und Reihenfolge der Schichten ist vom Fachmann jeweils in einer entsprechenden Untersuchung für den jeweiligen An¬ wendungsfall spezifisch zu ermitteln und festzulegen.
Das Grundprinzip der mehrschichtigen Ummantelung besteht da¬ her darin, daß auftretener Körper- und Luftschall beim Durcheilen der unterschiedlichen Schichten jeweils seine Schallausbreitungsgeschwindigkeit ändern muß; zudem wird er an den Grenzflächen gebrochen. Er verliert somit Energie. Unterstützt wird dieser Effekt durch das weitgehende Fehlen von Luft im Unterdruckraum 18. Außerdem kann über die Schichtung die Frequenz des dennoch nach außen dringenden Schalls beeinflußt werden, derart, daß sie für den Benutzer erträglicher ist.
Claims
1. Anordnung zur Absorption von Druckpulsationen und an¬ deren Schwingungen in druckmittelbeaufschlagten, insbe¬ sondere hydraulischen Systeme , mit mindestens einer im druckbeaufschlagten Verbraucherlaufström eingeschalteten Dämpfungskammer mit Eingangs- und Ausgangsbohrungen, da¬ durch g e k e n n z e i c h n e t, daß die Dämpfungskam¬ mer (1,2,3) einen im wesentlichen kugel- oder eiförmigen Innenraum und eine schalldämpfende mehrschichtige um¬ mantelung (10,11,12,15) besitzt, und daß die Ein- und Ausgangsbohrungen (4 bis 9) gegenüberliegend versetzt zueinander angeordnet sind.
2. Anordnung nach Anspruch 1, dadurch g e k e n n ¬ z e i c h n e t, daß drei Dämpfungskammern (1 bis 3) axial fluchtend hintereinander geschaltet und die
Ein- bzw. Ausgangsbohrungen (4 bis 9) jeweils axial ver¬ setzt angeordnet aind.
3. Anordnung nach Anspruch 1 oder 2, dadurch g e k e n n ¬ z e i c h n e t, daß die dem Druckerzeuger zugeordnete Eingangsbohrung (4) der Dämpfungskammer (1) einen ver¬ hältnismäßig großen Querschnitt aufweist.
4. Anordnung nach Anspruch 1 oder 3, dadurch g e k e n n ¬ z e i c h n e t, daß die Dämpfungskammern (1 bis 3) in axial aufeinanderfolgenden Blöcken (10,11,15) ausgeformt sind, die über Dichtanordnungen (13) miteinander verbun¬ den sind, von denen die beiden äußeren (10,15) jeweils einen koaxial zueinander verlaufenden topfartigen Fort¬ satz besitzen.
5. Anordnung nach Anspruch 4, dadurch g e e n n ¬ z e i c h n e t, daß die Blöcke einen mehrschichtigen Aufbau aus Kunststoffmaterial besitzen und der äußere, von der Eingangsbohrung (4) der Dämpfungskammer durch¬ drungene Block (10) einen metallischen kappenförmigen Abschluß aufweist.
6. Anordnung nach Anspruch 4 oder 5, dadurch g e k e n n ¬ z e i c h n e t, daß die Blöcke in einer metallischen Topfanordnung (16) aufgenommen sind, die von der Aus¬ gangsbohrung (9) der Dämpfungskammer durchdrungen ist.
7. Anordnung nach einem der Ansprüche 4 bis 6, dadurch g e k e n n z e i c h n e t, daß zwischen den topfarti¬ gen Fortsätzen mindestens ein sich axial erstreckener Ringraum (18) vorgesehen ist, in dem ein Unterdr ck her¬ stellbar ist.
8. Anordnung nach Anspruch 5 oder einem der folgenden, da¬ durch g e k e n n z e i c h n e t, daß die Dämpfungskam¬ mern (1 bis 3) aus Kunststoff oder metallisch sind bzw. eine metallische Innenauskleidung haben.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4023709.5 | 1990-07-26 | ||
DE19904023709 DE4023709A1 (de) | 1990-07-26 | 1990-07-26 | Vorrichtung zur absorption von druckpulsationen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1992001867A1 true WO1992001867A1 (de) | 1992-02-06 |
Family
ID=6411029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1991/001040 WO1992001867A1 (de) | 1990-07-26 | 1991-06-06 | Vorrichtung zur absorption von druckpulsationen |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0494275A1 (de) |
JP (1) | JPH05501142A (de) |
DE (1) | DE4023709A1 (de) |
WO (1) | WO1992001867A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2686955A1 (fr) * | 1992-02-04 | 1993-08-06 | Automotive Prod France | Dispositif d'amortissement pour mecanisme d'actionnement hydraulique. |
US20160001754A1 (en) * | 2014-07-02 | 2016-01-07 | Mando Corporation | High pressure accumulator of brake system |
CN108731871A (zh) * | 2017-10-26 | 2018-11-02 | 江苏核电有限公司 | 一种大气压取压装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19508096A1 (de) * | 1995-03-08 | 1996-09-12 | Trw Fahrwerksyst Gmbh & Co | Lenkventil |
DE59600773D1 (de) * | 1996-02-22 | 1998-12-10 | Trw Fahrwerksyst Gmbh & Co | Lenkventil |
DE102004049512B4 (de) * | 2004-10-11 | 2013-11-28 | Bürkert Werke GmbH | Modulares Gehäusesystem für fluidische Steuer- und Regelgeräte |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1170212A (fr) * | 1955-11-14 | 1959-01-12 | Dowty Equipment Ltd | Atténuateur de pulsations hydrauliques |
DE1242420B (de) * | 1962-07-18 | 1967-06-15 | Wilhelm S Everett | Pulsationsdaempfer und Fluessigkeitsabscheider fuer stroemende Gase |
US3731709A (en) * | 1971-06-01 | 1973-05-08 | Fluid Kinetics Corp | Liquid pulsation dampener |
DE3209296A1 (de) * | 1982-03-13 | 1983-09-29 | Balcke-Dürr AG, 4030 Ratingen | Anordnung mit einem pulsationsdaempfer |
DE3807954A1 (de) * | 1988-03-10 | 1989-09-21 | Kugelfischer G Schaefer & Co | Daempfungselement |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1221061B (de) * | 1958-04-21 | 1966-07-14 | Applic Mach Motrices | Einrichtung zum Daempfen von Druckstoessen in Fluessigkeitsleitungen mit einer ein Gasvolumen einschliessenden elastischen Blase |
DE1956254A1 (de) * | 1969-11-08 | 1971-05-13 | Daimler Benz Ag | Mit einem Druckregler ausgestattete Druckluftanlage fuer Fahrzeuge |
US3621882A (en) * | 1970-02-25 | 1971-11-23 | Harry P Kupiec | Inline, through-flow pressure compensator and accumulator |
DE2254032A1 (de) * | 1972-11-04 | 1974-05-16 | Bosch Gmbh Robert | Druckspeicher |
DE2902995A1 (de) * | 1979-01-26 | 1980-09-04 | Sperry Vickers | Fluessigkeitsschalldaempfer |
DE2910025A1 (de) * | 1979-03-14 | 1980-09-18 | Wagner Gmbh J | Druckspitzenkompensator fuer pulsierende fluessigkeitsstroeme |
DE3146454A1 (de) * | 1981-11-24 | 1983-06-01 | Robert Bosch Gmbh, 7000 Stuttgart | Element zum daempfen von druckschwingungen in hydraulischen systemen |
DE3147000A1 (de) * | 1981-11-27 | 1983-06-30 | Wabco Westinghouse Fahrzeugbremsen GmbH, 3000 Hannover | Wegeventil |
DE3326802C2 (de) * | 1983-07-26 | 1986-03-20 | Festo KG, 7300 Esslingen | Anschlußblock |
DE3808901C2 (de) * | 1988-03-17 | 1997-03-13 | Teves Gmbh Alfred | Radialkolbenpumpe, insbesondere für Kraftfahrzeug-Bremsanlagen mit ABS |
DE3915781A1 (de) * | 1988-05-18 | 1989-11-30 | Zahnradfabrik Friedrichshafen | Radialkolbenpumpe |
KR900702262A (ko) * | 1988-12-17 | 1990-12-06 | 우.그라우 | 유압 펌프 |
-
1990
- 1990-07-26 DE DE19904023709 patent/DE4023709A1/de not_active Withdrawn
-
1991
- 1991-06-06 JP JP3510039A patent/JPH05501142A/ja active Pending
- 1991-06-06 WO PCT/EP1991/001040 patent/WO1992001867A1/de not_active Application Discontinuation
- 1991-06-06 EP EP19910911453 patent/EP0494275A1/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1170212A (fr) * | 1955-11-14 | 1959-01-12 | Dowty Equipment Ltd | Atténuateur de pulsations hydrauliques |
DE1242420B (de) * | 1962-07-18 | 1967-06-15 | Wilhelm S Everett | Pulsationsdaempfer und Fluessigkeitsabscheider fuer stroemende Gase |
US3731709A (en) * | 1971-06-01 | 1973-05-08 | Fluid Kinetics Corp | Liquid pulsation dampener |
DE3209296A1 (de) * | 1982-03-13 | 1983-09-29 | Balcke-Dürr AG, 4030 Ratingen | Anordnung mit einem pulsationsdaempfer |
DE3807954A1 (de) * | 1988-03-10 | 1989-09-21 | Kugelfischer G Schaefer & Co | Daempfungselement |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2686955A1 (fr) * | 1992-02-04 | 1993-08-06 | Automotive Prod France | Dispositif d'amortissement pour mecanisme d'actionnement hydraulique. |
US20160001754A1 (en) * | 2014-07-02 | 2016-01-07 | Mando Corporation | High pressure accumulator of brake system |
CN105270373A (zh) * | 2014-07-02 | 2016-01-27 | 株式会社万都 | 制动系统的高压蓄能器 |
US9522660B2 (en) * | 2014-07-02 | 2016-12-20 | Mando Corporation | High pressure accumulator of brake system |
CN108731871A (zh) * | 2017-10-26 | 2018-11-02 | 江苏核电有限公司 | 一种大气压取压装置 |
CN108731871B (zh) * | 2017-10-26 | 2024-04-09 | 江苏核电有限公司 | 一种大气压取压装置 |
Also Published As
Publication number | Publication date |
---|---|
DE4023709A1 (de) | 1992-01-30 |
EP0494275A1 (de) | 1992-07-15 |
JPH05501142A (ja) | 1993-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0387506B1 (de) | Hydraulische Hochdruckpumpe für eine Bremsanlage eines Fahrzeugs | |
EP1370450B1 (de) | Kolbenpumpe | |
EP0401320B1 (de) | Hydraulikpumpe | |
EP0420949B1 (de) | Schlupfgeregelte bremsanlage, insbesondere für kraftfahrzeuge | |
EP1715189A1 (de) | Schalldämpfer ausgebildet und bestimmt für einen Kompressor | |
DE102008002740A1 (de) | Kolbenpumpe | |
DE2129981A1 (de) | Luftauslassschalldaempfer | |
DE10305310B4 (de) | Vorrichtung zur Dämpfung von Druckpulsationen | |
DE19520229A1 (de) | Schalldämpfer für Motorkompressoren von Kühlgeräten | |
DE102009046958A1 (de) | Ventil mit einem Ventilschließkörper | |
WO1992001867A1 (de) | Vorrichtung zur absorption von druckpulsationen | |
EP3388678B1 (de) | Pulsations-schalldämpfer für kompressoren | |
DE2852882A1 (de) | Ventil, insbesondere druckventil fuer eine kolbenpumpe | |
DE3234634C2 (de) | ||
DE2852852B1 (de) | Kolbenpumpe,insbesondere Radialkolbenpumpe | |
DE2824239C3 (de) | Radialkolbenpumpe | |
DE69308478T2 (de) | Flüssigkeitsdruck-Quelle für Flüssigkeitsbetätigten Verstärker | |
DE2461085A1 (de) | Auspuffanlage fuer einen verbrennungsmotor | |
DE102006039540A1 (de) | Druckpulsationsdämpfer für ein hydraulisches Hilfskraft-Lenksystem eines Kraftfahrzeugs | |
DE3522796A1 (de) | Radialkolbenpumpe | |
DE3623392C2 (de) | Pumpenkombination | |
EP0925453A1 (de) | Flügelzellenpumpe | |
EP0050337A1 (de) | Schalldämpfeinrichtung für Lufterzeuger | |
DD240966A1 (de) | Schalldaempfer | |
DE639845C (de) | Umlaufmaschine mit sichelfoermigem Arbeitsraum und schalldaempfendem, ringfoermigem Entspannungsraum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991911453 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1991911453 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1991911453 Country of ref document: EP |