WO1992001782A2 - Sucrose phosphate synthetase (sps), son procede de preparation, son adn complementaire et l'utilisation de l'adn complementaire pour modifier l'expression de la sps dans les cellules vegetales - Google Patents
Sucrose phosphate synthetase (sps), son procede de preparation, son adn complementaire et l'utilisation de l'adn complementaire pour modifier l'expression de la sps dans les cellules vegetales Download PDFInfo
- Publication number
- WO1992001782A2 WO1992001782A2 PCT/FR1991/000593 FR9100593W WO9201782A2 WO 1992001782 A2 WO1992001782 A2 WO 1992001782A2 FR 9100593 W FR9100593 W FR 9100593W WO 9201782 A2 WO9201782 A2 WO 9201782A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sps
- proteins
- protein
- cdna
- expression
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 37
- 230000014509 gene expression Effects 0.000 title claims abstract description 17
- 102000003960 Ligases Human genes 0.000 title claims description 19
- 108090000364 Ligases Proteins 0.000 title claims description 19
- 238000000034 method Methods 0.000 claims abstract description 42
- 239000002299 complementary DNA Substances 0.000 claims abstract description 34
- 230000008569 process Effects 0.000 claims abstract description 7
- 108090000623 proteins and genes Proteins 0.000 claims description 126
- 102000004169 proteins and genes Human genes 0.000 claims description 106
- 108020004635 Complementary DNA Proteins 0.000 claims description 33
- 230000000694 effects Effects 0.000 claims description 33
- 241000196324 Embryophyta Species 0.000 claims description 30
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 30
- 238000004587 chromatography analysis Methods 0.000 claims description 23
- 240000008042 Zea mays Species 0.000 claims description 21
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 21
- 210000004408 hybridoma Anatomy 0.000 claims description 19
- 108020004414 DNA Proteins 0.000 claims description 18
- 210000004027 cell Anatomy 0.000 claims description 17
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 16
- 235000005822 corn Nutrition 0.000 claims description 16
- 238000005119 centrifugation Methods 0.000 claims description 13
- 239000000284 extract Substances 0.000 claims description 13
- 238000001556 precipitation Methods 0.000 claims description 13
- 239000002202 Polyethylene glycol Substances 0.000 claims description 12
- 229920001223 polyethylene glycol Polymers 0.000 claims description 12
- 229920002684 Sepharose Polymers 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 11
- 239000013598 vector Substances 0.000 claims description 9
- 241001057636 Dracaena deremensis Species 0.000 claims description 7
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 7
- 229920000669 heparin Polymers 0.000 claims description 7
- 229960002897 heparin Drugs 0.000 claims description 7
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- 230000000890 antigenic effect Effects 0.000 claims description 5
- 230000033228 biological regulation Effects 0.000 claims description 5
- 239000013604 expression vector Substances 0.000 claims description 5
- 238000005571 anion exchange chromatography Methods 0.000 claims description 4
- 239000007853 buffer solution Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 230000007928 solubilization Effects 0.000 claims description 4
- 238000005063 solubilization Methods 0.000 claims description 4
- 239000000539 dimer Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000010353 genetic engineering Methods 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 230000002018 overexpression Effects 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000013518 transcription Methods 0.000 claims description 2
- 230000035897 transcription Effects 0.000 claims description 2
- 125000003275 alpha amino acid group Chemical group 0.000 claims 2
- 150000001721 carbon Chemical class 0.000 claims 1
- 108700006291 Sucrose-phosphate synthases Proteins 0.000 abstract 3
- 235000018102 proteins Nutrition 0.000 description 82
- 239000012634 fragment Substances 0.000 description 71
- 239000000872 buffer Substances 0.000 description 36
- 238000010804 cDNA synthesis Methods 0.000 description 32
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 27
- 239000013612 plasmid Substances 0.000 description 25
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 24
- 102000004196 processed proteins & peptides Human genes 0.000 description 24
- 238000000746 purification Methods 0.000 description 23
- 230000029087 digestion Effects 0.000 description 16
- 238000003752 polymerase chain reaction Methods 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000010276 construction Methods 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 15
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 14
- 239000000499 gel Substances 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 239000011780 sodium chloride Substances 0.000 description 12
- 229910019142 PO4 Inorganic materials 0.000 description 11
- 229930006000 Sucrose Natural products 0.000 description 11
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 239000010452 phosphate Substances 0.000 description 11
- 210000002966 serum Anatomy 0.000 description 11
- 229960004793 sucrose Drugs 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 10
- 108091034117 Oligonucleotide Proteins 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 229930027917 kanamycin Natural products 0.000 description 9
- 229960000318 kanamycin Drugs 0.000 description 9
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 9
- 229930182823 kanamycin A Natural products 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 239000005720 sucrose Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 102100034343 Integrase Human genes 0.000 description 8
- 241000283973 Oryctolagus cuniculus Species 0.000 description 8
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 8
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000010828 elution Methods 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 7
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 7
- 239000002565 heparin fraction Substances 0.000 description 7
- 239000001103 potassium chloride Substances 0.000 description 7
- 235000011164 potassium chloride Nutrition 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 6
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- 102000004594 DNA Polymerase I Human genes 0.000 description 6
- 108010017826 DNA Polymerase I Proteins 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 239000007995 HEPES buffer Substances 0.000 description 6
- 241001672648 Vieira Species 0.000 description 6
- 238000012512 characterization method Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 238000001962 electrophoresis Methods 0.000 description 5
- 230000003053 immunization Effects 0.000 description 5
- 238000002649 immunization Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 235000009973 maize Nutrition 0.000 description 5
- 108091008146 restriction endonucleases Proteins 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 4
- 239000002671 adjuvant Substances 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 3
- 241000701489 Cauliflower mosaic virus Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 3
- BGWGXPAPYGQALX-ARQDHWQXSA-N beta-D-fructofuranose 6-phosphate Chemical compound OC[C@@]1(O)O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O BGWGXPAPYGQALX-ARQDHWQXSA-N 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 3
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 3
- 230000029553 photosynthesis Effects 0.000 description 3
- 238000010672 photosynthesis Methods 0.000 description 3
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 3
- 229920000053 polysorbate 80 Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 229920002271 DEAE-Sepharose Polymers 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 240000005979 Hordeum vulgare Species 0.000 description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- -1 MgC12 10 mM Chemical compound 0.000 description 2
- 108010086093 Mung Bean Nuclease Proteins 0.000 description 2
- 244000061176 Nicotiana tabacum Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 244000300264 Spinacia oleracea Species 0.000 description 2
- 235000009337 Spinacia oleracea Nutrition 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 239000007857 degradation product Substances 0.000 description 2
- 235000013681 dietary sucrose Nutrition 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000011536 extraction buffer Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000012160 loading buffer Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- QYSGYZVSCZSLHT-UHFFFAOYSA-N octafluoropropane Chemical compound FC(F)(F)C(F)(F)C(F)(F)F QYSGYZVSCZSLHT-UHFFFAOYSA-N 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 1
- IUNJCFABHJZSKB-UHFFFAOYSA-N 2,4-dihydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C(O)=C1 IUNJCFABHJZSKB-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 239000008001 CAPS buffer Substances 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- GSXOAOHZAIYLCY-UHFFFAOYSA-N D-F6P Natural products OCC(=O)C(O)C(O)C(O)COP(O)(O)=O GSXOAOHZAIYLCY-UHFFFAOYSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-NQXXGFSBSA-N D-ribulose Chemical compound OC[C@@H](O)[C@@H](O)C(=O)CO ZAQJHHRNXZUBTE-NQXXGFSBSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-UHFFFAOYSA-N D-threo-2-Pentulose Natural products OCC(O)C(O)C(=O)CO ZAQJHHRNXZUBTE-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 241000976806 Genea <ascomycete fungus> Species 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 102000000340 Glucosyltransferases Human genes 0.000 description 1
- 108010055629 Glucosyltransferases Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 102000004407 Lactalbumin Human genes 0.000 description 1
- 108090000942 Lactalbumin Proteins 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 244000070406 Malus silvestris Species 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 101000687378 Nicotiana tabacum Ribulose bisphosphate carboxylase small subunit, chloroplastic Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 101150012812 SPA2 gene Proteins 0.000 description 1
- 101150059145 SPS3 gene Proteins 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- WQQSIXKPRAUZJL-UGDNZRGBSA-N Sucrose 6-phosphate Natural products O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 WQQSIXKPRAUZJL-UGDNZRGBSA-N 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- DVKFVGVMPLXLKC-PUGXJXRHSA-N [(2s,3r,4s,5s,6r)-2-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(CO)[C@@]1(OP(O)(O)=O)[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DVKFVGVMPLXLKC-PUGXJXRHSA-N 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- 229950011321 azaserine Drugs 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 235000021015 bananas Nutrition 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011210 chromatographic step Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 239000012133 immunoprecipitate Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- XMBWDFGMSWQBCA-YPZZEJLDSA-N iodane Chemical compound [125IH] XMBWDFGMSWQBCA-YPZZEJLDSA-N 0.000 description 1
- 229940044173 iodine-125 Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- GSXOAOHZAIYLCY-HSUXUTPPSA-N keto-D-fructose 6-phosphate Chemical compound OCC(=O)[C@@H](O)[C@H](O)[C@H](O)COP(O)(O)=O GSXOAOHZAIYLCY-HSUXUTPPSA-N 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229940093430 polyethylene glycol 1500 Drugs 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 239000013037 reversible inhibitor Substances 0.000 description 1
- 101150116497 sacm1l gene Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- PJTTXANTBQDXME-UGDNZRGBSA-N sucrose 6(F)-phosphate Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@]1(CO)[C@@H](O)[C@H](O)[C@@H](COP(O)(O)=O)O1 PJTTXANTBQDXME-UGDNZRGBSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 235000021241 α-lactalbumin Nutrition 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
- C12N9/1066—Sucrose phosphate synthase (2.4.1.14)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- Sucrose phosphate synthetase SPS
- SPS sucrose phosphate synthetase
- the present invention relates to sucrose phosphate synthetase (SPS), its preparation process, its complementary DNA and the use of the latter to modify the expression level of SPS in plant cells.
- the present invention relates to proteins having the activity of sucrose phosphate synthetase (SPS).
- SPS sucrose phosphate synthetase
- plant cell any plant cell capable of forming undifferentiated tissues such as calluses or differentiated tissues such as embryos, certain parts of plants, whole plants or even seeds.
- plant is understood to mean in particular plants producing seeds, for example grasses such as straw cereals such as wheat, barley, corn or oats, legumes such as soybeans, oil plants such as sunflowers, tubers such as potatoes, root crops such as beets or fruits such as tomatoes.
- the invention more particularly relates to saccha ⁇ rose phosphate synthetase and in particular sucrose phosphate synthetase from plants.
- plants is meant, for example, grasses such as, for example, wheat, barley, corn, sugarcane, vegetables such as tomatoes and soybeans, fruits such as apples and bananas.
- Sucrose phosphate synthetase is a key enzyme in the mechanisms of regulation of sucrose, but also in the mechanisms of regulation of carbon sharing between starch and sucrose in photosynthesis (see Jack's article on this subject).
- SPS seems specific to the species concerned; Joan L- alker and Steven C. Huber who purified and produced a 2 preliminary characterization of sucrose phosphate from spinach clearly indicates that the antibodies obtained exclusively recognize SPS from spinach (cf. PLANT PHYSIO (1989) 89, 518-524).
- a more specific subject of the invention is the SPS of maize.
- the SPS of maize can exist in a pure or practically pure form.
- a more specific subject of the invention is the proteins defined above with a molecular weight of the order of 110 130 kD in the form of a monomer, dimer or tetramer and their derivatives having at least one peptide whose amino acid sequence is the following: ThrTrpIleLys TyrValValGluLeuAlaArg SerMetProProIleTrpAlaGluValMetArg
- the invention particularly relates to the proteins defined above having the amino acid sequence described in FIG. 7.
- a subject of the invention is also the derivatives of the proteins defined previously modified by the techniques of genetic engineering and exhibiting the activity of SPS.
- a subject of the invention is also a preparation process characterized in that: a) an extract is made from parts of the plants stored at low temperature by grinding, centrifugation and filtration, b) it is enriched with SPS protein the extract obtained by precipitation in an appropriate solvent, centrifugation and solubilization of the precipitate obtained in a buffer solution, c) the active protein thus obtained is purified by chromatography and if desired, d) hybridomas and monoclonal antibodies from an antigenic solution obtained from one of the preparations obtained in paragraphs a), b), and c) above, e) screen the hybridomas and selects the monoclonal antibody or antibodies specifically directed against SPS, f) purifies the SPS obtained using the antibodies thus prepared.
- the invention more specifically relates to a process characterized in that: a) an extract is made from parts of corn plants preserved at low temperature by grinding, centrifugation and filtration, b) the extract obtained is enriched in proteins by precipitation in polyethylene glycol, centrifugation and solubilization of the precipitate obtained in a buffer solution, c) the SPS protein thus obtained is purified by low pressure anion exchange chromatography, then by heparin Sepharose chromatography, then by exchange chromatography of high pressure anions, d) the active fractions are purified by passage through 2 columns of high pressure chromatography, and, if desired, e) hybridomas and monoclonal antibodies are prepared from an antigenic solution obtained from a preparation a), b), c), f) screens the hybridomas and selects the antibodies directed specifically against SPS, g) purifies the SPS obtained before cedently by means of the antibodies thus prepared.
- the corn used is a corn of the PIONEER 3184 strain
- the parts of the corn plants used are leaves kept at low temperature, for example between -50 ° C. and -90 ° C.
- PEG polyethylene glycol
- the measurement of the SPS activity is preferably carried out using two different methods: a) a method based on a colorimetric test or resorcinal test, b) a method based on the determination of one of the products formed during the transformation reactions involving S These two methods are detailed in the experimental part set out below.
- mice are immunized with several injections of purified enzyme preparation.
- mice Different species of mice can be used, eg BALB / C mice.
- the antigen is used in Freun's complete adjuvant and then in Freund's incomplete adjuvant.
- Several injections of the antigen are carried out on the mice: good results have been obtained with three injections of the mono Q fractions followed by three injections of the final fractions (on days 0, 14, 27, 60, 90 and 105 by example).
- the first injections take place subcutaneously, for example in the pads of the legs, the last injection is carried out intravenously in the tail for example.
- the subject of the invention is also the cell lines of hybridomas obtained and in particular the following cell lines of hybridomas:
- the invention also relates to monoclonal antibodies directed specifically against SPS.
- the subject of the invention is also a process for the preparation of proteins, characterized in that a preparation containing the said proteins is passed through a chromatography column containing monoclonal antibodies directed specifically against the said proteins and thus obtains the proteins wanted.
- the subject of the invention is also the DNA sequences coding for the proteins defined above and in particular the corn SPS, the sequence of which appears in FIG. 7.
- the complementary DNA (cDNA) coding for the sucrose enzyme Phosphate Synthethase (SPS) was prepared as follows:
- Total RNA is isolated according to the method of TURPEN and GRIFFITH (1986, Biotechniques vol 4 pp 11-15).
- the polyA + RNA is prepared by passage through an oligodT cellulose column according to known techniques.
- the synthesis of the cDNA is carried out using the "PROMEGA” ® synthesis kit. MMLV reverse transcriptase is used in place of AMV reverse transcriptase. The size of the cDNAs obtained is between 500 base pairs and several thousand base pairs. EcoRI adapters are added to the ends of the cDNA before cloning into a lambda gtll expression vector. The cDNA library contains approximately 1.5 ⁇ 10 6 transformants.
- the oligonucleotides derived from the sequences of the B11 peptides (from the 30 kd) and 4K (from the 90 kd) described in FIG. 3 are used as a primer in PCR-type reactions.
- the initial hypothesis is that the 30 and 90 kd polypeptides are the degradation products of the 120 kd SPS protein. Therefore, the peptides derived from the SPS 30 and SPS 90 fragments must come from the translation of the same messenger RNA.
- An oligonucleotide complementary to the 5 ′ sequence of the clone SPS61 is used as a primer for the synthesis of the cDNA.
- the cDNA was cloned into the phage lambda.
- the bank contains approximately 1 million clones.
- the SPS 90 and SPS 77 clones were obtained when this library was sorted with SPS 61 (FIG. 6). The sequence of these clones made it possible to determine the region of overlap with the clone SPS 61.
- the clone SPS 90 makes it possible to reach the 5 ′ part of the SPS.
- Verification of the ordering of the different sequences making it possible to obtain the complete sequence of the cDNA could be done using the PCR technique.
- the primers used belong to the SPS 3 and SPS 90 clones. Obtaining a 750 base pair fragment of the exact size predicted by the complete sequence makes it possible to state that the SPS 3 and SPS 90 clones are derived from the same Messenger ARN.
- the invention also relates to genomic DNA comprising the codc.:t part for the proteins defined previously and the sequences necessary for the expression and regulation of this protein in plants.
- the subject of the invention is also a method for modifying the level of expression of SPS in a plant, characterized in that the cells of said plant are transformed by means of an expression vector containing the cDNA defined above.
- the subject of the invention is also a vector allowing the expression of the SPS protein under the control of a promoter capable of directing the expression and preferably the overexpression of said SPS in a plant cell and of a 3 'region containing the transcriptional regulatory signals for the expression of the gene coding for SPS.
- the invention further relates to the plants obtained by the implementation of this process.
- the subject of the invention is also the seeds obtained
- Sucrose Phosphate Synthetase or UDP glucose - D Fructose - Phosphate Glucosyltransferase catalyzes the reaction:
- UDPG - Fructose 6-P ⁇ > Sucrose 6-P + UDP UDPG: Uridine Di-Phospho Glucose Fructose 6-P or F6P: Fructose 6-Phosphate Sucrose 6-P: Sucrose 6-Phosphate
- the 6-P sucrose formed reacts with resorcinol to give a compound of red coloration quantifiable in spectrophoto etrie at 520 nm (OD 520 nm).
- the disappearance of the NADH is measured at 340 nm and 1 mole of NAD formed or 1 mole of NADH consumed corresponds to 1 mole of 6 P sucrose formed.
- the starting material for the purification is made up of young corn leaves (Pioneer strain 3184) cut, deveined, frozen in liquid nitrogen and stored at -70 ⁇ C.
- leaves 250 g are suspended in 1 1 of HEPES buffer 5 ⁇ m MgCl 2 10 mM EDTA ImM DTT 5 mM pH 7.5 (extraction buffer) supplemented with 11 g of Polyvinylpyrrolidone with nitrogen bubbling and cooling to O'C.
- the leaves are ground until a homogeneous suspension is obtained. This ground material is filtered. The ground material is then centrifuged at 14000 g for 20 min at 4 ⁇ C.
- the final extract is chromatographed on a DEAE Sepharose Fast-Flow column balanced in recovery buffer.
- the proteins adsorbed on the support are eluted by means of a linear gradient of increasing ionic strength between 0.08 M KCl and 0.35 M KCl in the 50 mM HEPES buffer, MgC12 10 mM, EDTA 1 m DTT 5 mM, EG 10% pH 7.5 (buffer A).
- the flow rate applied during this experiment is 180 ml / h and the chromatography is carried out at 4 ° C.
- the SPS activity is eluted at approximately 0.17 M KCl.
- 1.2.3 - Chromatography on Heparin Sepharose The fractions containing the SPS activity are pooled and diluted to 1/5 in buffer A then placed in the presence of 12 ml of Heparin Sepharose previously equilibrated in buffer A. After 1 h d 'incubation with slow shaking at 4 "C, the gel is washed with approximately 10 volumes of buffer A + 0.05 M KCl and then repackaged in a chromatographic column.
- the adsorbed proteins are eluted isocratically using a 10 mM CAPS buffer, 10 mM MgCl2, 1 M EDTA, 5 mM DTT, 10% EG, 0.01% Tween 80, Heparin 1 mg / ml , 1% fructose, 0.25M KCl pH 10 delivered at 60 ml / h. Chromatography is performed at 4 ⁇ C.
- the fractions containing 1 * SPS activity are collected (heparin fraction) and kept in ice until the next purification step.
- the enzyme at this stage is stable for at least a week.
- the heparin fraction is diluted 2/3 in 20 mM Triethanolamine buffer, 10 mM MgCl2, 1 M EDTA, 10 mM DTT, 3% EG, 0.3% Tween 80 pH 7.5 (buffer A) and loaded onto a FPLC Mono Q HR10 / 10 column previously equilibrated with the same buffer added with NaCl (final concentration 0.18 M). After returning to 0 of A280, the proteins adsorbed on the chromatographic support are eluted using a complex salt gradient composed as follows: buffer A: see above buffer B: buffer A + 1 M NaCl
- the flow rate applied to the column is 180 ml / h.
- the SPS activity is eluted between 0.26 and 0.31 M NaCl.
- the active fractions are combined (Mono Q fraction). 1.2.5 - HPLC on Hydroxyapatite
- the Mono Q fraction is cha. eed on an HPLC column of hydroxyapatite balanced in KH2PO4 / K2HPO4 buffer 20 mM, EG 3%, Tween 80 0.3%, DTT 5 mM pH 7.5.
- the adsorbed proteins are eluted using the following phosphate gradient: buffer A: see above buffer B: same as buffer A but 500 M Phosphate of K 12 beats (minutes)% B
- the applied flow rate is 60 ml / h. It should be noted at this stage that phosphate is a partial inhibitor of SPS activity and that it is therefore difficult to calculate a specific activity as well as a purification factor (see Table 1) The SPS activity is eluted under these conditions at about 15 60 mM phosphate.
- the active fractions are combined and constitute the HAC fraction.
- the SPS activity is eluted at approximately 0.3M NaCl. 1.2.7 - Obtaining the final preparation: concentration
- the final preparation is concentrated by HPLC chromatography on a Mono Q HR5 / 5 exchanger (5 X 50 mm, Pharmacia) and rapid elution.
- the DEAE 5P fraction (or the G200 fraction) is diluted 2/3 in buffer A (idem 6) and loaded onto the column previously balanced in buffer A + 0.18 M NaCl. The following gradient is then applied to the column: buffers A & B: same 6) time (minutes)% B
- the flow rate used is 60 ml / h.
- the SPS activity is eluted at approximately 30% B (0.3 M NaCl).
- the final preparation is stored at -20 ° C until use.
- Table 1 summarizes the results obtained at the various purification stages in terms of quantities of proteins and SPS activity. TABLE 1 Volume Concentration As ** Fp ** R * proteins (mg / ml) (ml) (U) (%) Crushed 1 1000 0.05 0 100
- a profile (SDS-PAGE) illustrating the purification process and the quality of the final preparation is given in Figure 1.
- the presence of proteins 120, 95, and 35 Kd (Kilodaltons) is correlated with SPS activity.
- Sucrose phosphate synthetase therefore seems to be a di or tetrameric protein having as base subunit a protein of 120 Kd (ho o-dimer or homo-tetra er).
- Figure 1 legend
- EF Final Extract, 7.5 micrograms of protein per well.
- D DEAE Fast-Flow fraction, 7.5 micrograms of protein per well.
- the protein bands visible at around 120 Kd (1), 95 Kd (2) and 35 Kd (3) are correlated, during the chromatography steps, with the presence of SPS activity in the fractions . .
- mice are immunized by injecting subcutaneously (pads and legs) according to the following method:
- the fusion is performed 3 days after the IV immunization.
- the sera are taken on D34, D67, D98 and D159 in order to measure the immune response (see screening). 2.1.1 - Screening method
- This screening method makes it possible to detect the antibodies which bind at the level of the active site of the SPS or at the level of a site close to it, and therefore preventing access to the substrates.
- 70 ⁇ l of serum or hybridoma culture supernatant diluted in an appropriate manner is placed in the presence of 70 ⁇ l of SPS preparation (heparin fraction). After 1 hour of incubation at room temperature, the residual activity is determined using the coupled enzymatic assay (Cf 1-1). The results are expressed as a percentage of inhibition by comparison with the same preparation of SPS treated in the same way without antibody.
- This method is based on the precipitation of the antibody-SPS complex using a coaching system (anti mouse Ig Ig coupled to Sepharose beads: Goat- anti mouse-Sepharose or GAM Sepharose).
- a coaching system anti mouse Ig Ig coupled to Sepharose beads: Goat- anti mouse-Sepharose or GAM Sepharose.
- 60 micro-liters of serum or hybridoma culture supernatant diluted in an appropriate manner is placed in the presence of 60 microliters of SPS preparation (heparin fraction). After 2 h of incubation at room temperature, the mixture is placed in the presence of 50 microliters of GAM-Sepharose at 25% previously washed 3 times with a 50 mM HEPES buffer, 10 mM MgCl 2, 1 mM EDTA, EG 10 %, DTT 5 mM pH 7.5.
- mice were immunized according to the protocol described above.
- the following table gives the results of the precipitation assays carried out with the hetero-antisera of the 10 mice at D159.
- the serums are diluted to 1/200.
- Spleens from mice 1 and 4 are used for fusion.
- mice splenocytes are fused with mouse myeloma cells SP2 / 0-Agl4 according to a 2/1 ratio in the presence of polyethylene glycol 1500 at 45%.
- the selection of hybridomas is carried out by adding hypoxanthine and azaserine to the culture medium 24 and 48 hours after the fusion.
- Hybridomas are cloned and subcloned by the limit dilution method. 2.2.1 - Results of the screening of hybrids and clones
- MOUSE 4 (SPA fusion)
- SPB fusion MOUSE 1
- the hybridomas are injected intraperitoneally into female BALB / c mice previously treated with pristane.
- the monoclonal antibodies are partially purified from the ascites liquids thus produced by precipitation with 18% sodium sulfate.
- the precipitated proteins are dissolved and then dialyzed against PBS (F18).
- Antibody concentration% Inhibition (micrograms / ml)
- This characterization is carried out using SPB3-2-19 and SPB13-2-2 anti ⁇ bodies by the i muno-detection technique after transfer of the proteins from an electrophoresis gel under denaturing conditions (SDS PAGE) on nitrocellulose membrane.
- SDS PAGE electrophoresis gel under denaturing conditions
- the proteins After migration to 12.5% acrylamide gel (Nature 227 (1970) 680-685), the proteins are transferred onto 0.22um nitrocellulose membrane (Schleicher and Schuell) by means of a transfer tank for 30 min. , the initial amperage being 1 Ampere.
- the buffer used is the conventional electrophoresis buffer (TRIS base 3.03 g / 1. Glycine 14.4 g / 1, SDS 0.1% pH 8.3) to which 20% ethanol is added.
- the membrane After transfer, the membrane is saturated (Casein 0.5% in PBS) in order to saturate the regions not occupied by the proteins coming from the gel.
- the membrane is washed 3 to 4 times in washing buffer (Casein 0.1%, Tween 20 0.5%, in PBS) and then incubated with a 10 microgram solution / ml of the onoclonal antibody to be tested. Part of the membrane is incubated in parallel with a non-immune antibody (negative control). After 1 h of incubation at room temperature followed by 9 to 10 washes, the membrane is incubated in the presence of an anti-mouse antibody labeled with Iodine 125 diluted in washing buffer (50,000 cpm per cm 2 of membrane). After 1 h of incubation at room temperature followed by 9 to 10 washes, the membrane is dried and then autoradiographed
- F18 (see 2.2.2) corresponding to the antibody SPB13 1-7 or to the antibody SPB13-2-2 is placed in the presence of CH- Sepharosis activated, at a rate of 1 mg of antibodies per ml of gel. After incubation for 2 h at room temperature, the sites not occupied by the antibodies are saturated with 1 * ethanolamine 1 M pH 9. The support is then washed alternately with the 0.1 M acetate buffers 0.5 M NaCl pH 4 and TRIS 0 , 1 M NaCl 0.5 M pH 8. The immunoaffinity support thus prepared is stored at 4 ° C.
- This step élimi ⁇ dinner before the buffer that is incompatible with the chromato ⁇ spelling of "immuno and concentrate proteins.
- the yield in SPS activity is 80 to 90%.
- the solution obtained is applied with a flow rate of 0.1 ml / min to 1 ml of immunoaffinity support conditioned in a column and to which has been fixed an antibody not directed against SPS (CNBr-activated Sepharose, to which is fixed an anti-neomycin antibody).
- This first step makes it possible to remove certain contaminants which are fixed in an aspecific manner on the chromatography support.
- the effluent from the non-specific column is in turn applied to the anti-SPS immuno-affinity support (2 ml in an 11 X 20 mm column) with a flow rate of 0.1 ml / min.
- These two steps are carried out at laboratory temperature.
- washing buffer loading buffer with 0.25 M NaCl and 0.3% Twenn 20
- the proteins adsorbed on the support are eluted with a 50 mM triethylamine solution pH 11. This elution is carried out at 4 ° C. and the immuno-affinity column is inverted to obtain optimum performance.
- the SDS PAGE profile of the final preparation obtained corresponds to what is obtained using the conventional protocol (see 1). It should be noted that the method of elution of the proteins adsorbed on the immunoaffinity support is a non-reversible inhibitor of 1 • SPS activity but the recovery yield of the SPS-linked proteins is optimal by comparison with tests carried out. under native elution conditions.
- the eluate from the immunoaffinity column is desalted using the G25 column against a 0.14% glycerol, 0.07% B-mercaptoethanol, 0.04% SDS, 0.9 mM buffer. TRIS pH 6.8 (electrophoresis buffer under reducing conditions diluted 70 times). After desalting, the protein preparation is concentrated 70 times using a vacuum concentrator and the SPS proteins are purified by SDS-PAGE (see below).
- the amounts of protein recovered are determined by comparison with a solution of known concentration of serum bovine albumin (BSA) by staining with Coomassie Blue. Approximately 30 micrograms of 30 kD protein and 75 micrograms of 90 kD protein are obtained.
- BSA serum bovine albumin
- the proteins are concentrated by acetonide precipitation and resuspended in a 50 mM buffer of ammonium carbonate, pH 8. Tryptic digestion ⁇ and HPLC purification are carried out as described by Sturm and Chrispeels (Day. Biol. Chem (1987) 2_62_, 13392-13403). Quickly, the digestion is carried out by the addition of trypsin, and a two hour incubation at 37 ° C. The digestion is then repeated.
- the proteins are concentrated by lyophilization and resuspended in a 50 M buffer of sudium phosphate, pH 2.2. This mixture is subjected to an HPLC reverse phase chromatography by application to a C18 column. Elution is carried out using an increasing gradient of acetonitrile.
- the elution produced by the phosphate buffer / acetonitrile gradient mixture is monitored spectrophotometrically at 214 nm.
- the fractions corresponding to the absorption peaks at 214 nm are collected, lyophilized, resuspended in 0.1% trifluoroacetic acid, applied again to column C18, and eluted using a gradient of acetonitrile.
- the elution carried out by the trifluoroacetic acid / acetonitrile gradient mixture is followed spectrophotometrically at 214 nm.
- RNA is isolated according to the method of Turpen and Griffith (Biotechniques (1986) 4., 11-15). Briefly, 250 g of material are homogenized in 4 M of guanidine thiocyanate and 2% of sarcosyl. The mixture is then centrifuged and the supernatant called clear Lysat is placed on a 5.7 M CsCl cushion and centrifuged for 5.5 hours at 50,000 rpm.
- RNA pellet is dissolved in water, extracted with phenol and chloroform, and precipitated with ethanol. The resulting pellet is resuspended in water.
- the final yield of RNA isolation is quantified by UV spectrophotometry.
- a saturated suspension of cellulose powder / water is added to the RNA / water mixture, at 10 of the total volume, to remove the residual polysaccharides.
- the supernatant containing the RNA is applied to an oligo (dT) -cellulose column as described in Maniatis et al. (Molecular Cloning, A. Laboratory Manual, (1982) Cold Spring Harbor, New York).
- the fraction containing poly RNA (A) is then applied again to the column.
- the eluted fraction containing the poly RNA (A) is extracted with phenol and the RNA is precipitated with ethanol.
- the synthesis of the cDNA is carried out according to the manufacturer's recommendations (RiboClone TM cDNA Synthesis System by Promega, Madison, Wisconsin), using five micrograms of poly (A) RNA as template for the reverse transcriptase M-MLV (BRL; Bethesda, Maryland) is substituted for the AMV reverse transcriptase.
- EcoRI adapter oligonucleotides are added to the blunt-ended cDNA and the resulting fragments are cloned into an expression vector (LambdaZAP, Stratagen; La Jolla, California) according to the manufacturer's recommendations.
- the library obtained contains approximately 1.5 x 10 6 transformants.
- a 1200 bp fragment corresponding to the SP cDNA is generated.
- the total cDNA obtained from RNA from corn leaf is used as template and degenerate degenerate oligonucleotides, synthesized from the sequence data of the peptides of the proteins 30 kD and 90 kD, are used as primer.
- These sets of primers are called CD3 and CD4. (Fig. 4).
- the PCR reaction using the other set of primers, CD4, does not result in the synthesis of a fragment.
- the PCR reaction is carried out according to the manufacturer's recommendations (GeneA p TM DNA Amplification Reagent Kit and DNA Thermal Cycler of Perkin Elmer Cetus; Norwalk, Connecticut) except the reaction which is continued for 30 cycles, and the rehybridization steps which are carried out at 50 ° C for 1 minute.
- the analysis Southern confirms that the PCR band is not an artifact, as shown in Figure 5.
- the 4K5 probe is used because the sequence corresponding to this probe is assumed to be in the 1200 bp fragment if this fragment corresponds to the SPS sequence .
- the hybrid probe to the 1200 bp band generated by PCR using the DC3 primer series but not to the PCR products generated using the CD4 primer series. (Fig. 5).
- the insertions of positive clones are analyzed by restriction analysis with EcoRI. and the clones with the longest SPS # 3 and SPS # 18 insertions are chosen for further analysis.
- Fig. 6 A 400 bp HindIII / EcoRI fragment from the 5 ′ terminal part of SPS # 3 is isolated, then labeled with 32 P by random labeling (Random Primed DNA Labeling Kit) and used as probe to sort the library.
- SPS # 61 which goes much further upstream than SPS # 3, is isolated.
- cDNA clones which comprise more of the 5 'region than SPS # 3 or SPS # 61
- a new cDNA library is prepared (following the RiboClone TM cDNA Synthesis System by Promega; Madison, Wisconsin) using the reverse transcriptase M-MLV instead of reverse transcriptase AMV.
- oligo (dT) instead of using oligo (dT) as a primer
- a synthetic primer, 23B synthesized from the 5 'sequence of the SPS # 61 clone, is used. This results in obtaining cDNAs which contain only the regions upstream of the 5 'region of SPS # 61.
- the library is sorted using as probe the EcoRI fragment of SPS # 61 labeled with 32 P, and 16 plates are positive in hybridization.
- the clones with the longest insertions, SPS # 77 and SPS # 90, are chosen for further analysis.
- the study of the DNA sequence of SPS # 77 and SPS # 90 shows that the overlap region (larger than 100 bp) with SPS # 61 is identical, and that both go up higher. upstream in the region 5 '. (Fig. 6).
- PCR carried out using a single-stranded cDNA (obtained by reaction of reverse transcriptase on mRNA using an oligo (dT) to produce the double-stranded primer necessary for reverse transcriptase) as template and primers chosen from the sequences of SPS # 90 and SPS # 3, confirm that SPS # 90 and SPS # 3 come from the transcription of the same mRNA.
- the fragment resulting from this PCR reaction is 750 bp in length, compatible with the size expected by studying the DNA sequence. This 750 bp fragment is subcloned into a vector derived from Bluescript in the form of a SALI / HinlII fragment. Four of the resulting subclones were partially sequenced and the sequence obtained is identical to the sequence of the DNA previously determined. 15
- the two strands of ⁇ 90, # 61, and # 3 are sequenced by the method of Sanger and aJ fPNAS (1977) 74.; 5463-5467).
- the reading phase of the SPS determined by the knowledge of the peptide sequences shows that the first ethinin codons are placed at positions 112 bp and 250 bp.
- the 112 bp codon corresponds to an encaryotic consensus sequence for starting translation (Kozak, Cell (1986) 4_4: 283 292) and is placed 54 bp downstream of a TAG stop codon (bp 25 58 ).
- a translational stop is found in the clone SPS # 3, at bp 1603.
- SPS # 18 another cDNA clone, obtained during the initial sorting of the cDNA library (see Example 2), called SPS # 18, does not present a stop codon at position 1603. Therefore the bp 1603 region of SPS # 18 is used to make the final construction of full length (see below).
- the complete sequence coding for SPS can be prepared by combining the 529 bp BamHI / HindIII fragment from SPS # 90, the 705 bp HindIII fragment from SPS # 61, the 686 bp HindIII fragment from SPS # 18, and the 1476 bp 5 HindIII / EcoRI fragment from SPS # 3.
- Total protein is extracted from the leaves of a 30-day corn plant, picked at 11 a.m., by boiling in SDS buffer.
- the protein extracts are deposited on SDS acrylamide gels, in two replicas.
- One gel is stained with Coomassie Blue, while the other is subjected to Western analysis, using a mixture of antisera anti SPS30 and anti SPS90 as probe. (Fig. 9).
- the most intense bands appearing on the gel colored with Coomassie Blue are identified as being the phosphoenolpyruvate carboxylase (PEPcase), an enzyme involved in photosynthesis.
- PEPcase phosphoenolpyruvate carboxylase
- SPS proteins The appearance profile of SPS proteins is very similar to the appearance profile of PEPcase proteins not present in the roots, and not present in the leaf section closest to the stem, nor in very young leaves. This profile corresponds to the expression of proteins associated with photosynthesis, and is the expected diagram for SPS.
- An SPS # 90 clone (FIG. 6) is digested with HindIII and linked to the 705 bp HindIII fragment of the SPS # 61 clone to create a plasmid containing the 5 'terminal region of the part coding for SPS.
- the resulting plasmid is digested with BamHI and partially digested with HindIII, resulting in a 1340 bp fragment of BamHI / HindIII containing the 5 * terminal region of SPS.
- the 3 ′ terminal region of the part coding for SPS is obtained by replacing the 686 bp HindIII fragment (positions 1340-2036) of the SPS # 3 clone with the 646 bp HindIII fragment from SPS # 18 (to remove the stop codon).
- the entire 3 ′ terminal region is then recovered by EcoRI digestion and partial HindIII digestion, resulting in an 1172 bp HindiII / EDTRI fragment.
- This HindIII / EcoRI fragment, carrying the 3 'terminal region is linked to the BamHI / EcoRI fragment carrying the 5' terminal region in a vector derived from pUC digested with BanHI / EcoRI. to create a plasmid carrying the entire region coding for SPS, namely 3406 bp.
- the SPS coding region can be conveniently cloned as a Ba HI / EcoRI fragment (bp 106 - bp 3506) in a tobacco small subunit promoter cassette (SSU).
- SSU tobacco small subunit promoter cassette
- An SSU promoter cassette for expression of SPS can be prepared as follows.
- the SSU promoter region is taken out of PCGN627 (described below) in the form of an Asp718 / SalI fragment. and linked in a plasmid pCGN1431 digested with Asp718 / Sall (described below), resulting in a cassette containing the promoter SSU and the 3 'tml region separated by a DNA fragment carrying restriction sites.
- the region SSU / SPS / tml3' can be linked in a binary vector and integrated into a plant genome by transformation via Agrobacterium tumefaciens.
- the single-stranded DNA of this phage M13 8B is used as a template to extend the oligonucleotide primer "Probe 1", the structure of which is defined in the article by O'Neal (O'Neal et al. , Nucleic Acids Research (1987) 15.; 8661-8677) using the Klenow fragment of DNA polymerase I.
- the products of this polymerase reaction are treated with mung bean nuclease (Mung Bean Nuclease) and then digested with HindIII to produce a 1450 bp fragment containing the SSU promoter region.
- pCGN1431 contains the CAMV 35S double promoter and the 3 'tml region with a multiple cloning site between them.
- This promoter / terminator cassette is contained in a pUC-derived vector which contains a chloramphenicol resistance gene instead of the ampicillin resistance gene.
- the cassette is lined with multiple restriction sites for ease of use.
- A) Construction of PCGN98 pCGN986 contains the cauliflower mosaic virus (CaMV35) 35S promoter and a tml-3 'region of T-DNA with multiple restriction sites between them.
- the plasmid pCGN986 is derived from another cassette, pCGN206, containing the promoter of CaMV35S and a different 3 ′ region, the 3 ′ terminal region VI of the CaMV region.
- the promoter of CaMV35S is clone in the form of an AluI fragment (bp 7144-7734) (Gardner e al., Nucl. Acids Res. (1981) £: 2871-2888) in a HincII site of M13mp7 (Messing et al .., Nucl. Acids Res (1981) £: 309-321) to create C614.
- pCGN148a containing a promoter region, a marker allowing selection (Kanamycin with 2 ATG's), and a 3 'region, is prepared by digestion of the plasmid pCGN528 with BglII and insertion of the promoter fragment Ba Hi-BglII from pCGN147. This fragment is cloned into the BglII site of pCGN528 by ensuring that the BglII site is close to the Kanamycin gene of pCGN528.
- pCGN535 is obtained by digestion of a plasmid containing Tn5, (which carries a gene for resistance to Kanamycin) (Jorgensen et al., Mol. Gen. Genêt . (1979) 177: 65), with HindIII-BamHI and by insertion of the HindIII-BamHI fragment containing the Kanamycin resistance gene into the HindIII-BamHI sites of the tetracycline resistance gene of pACYC184 (Chang and Cohen, J Bacteriol. (1978) 134: 1141-1156).
- pCGN526 is obtained by inserting the BamHI 19 fragment of pTiA6 (Thomashow et al., Cell (1980) £: 729-739) modified with Xhol adapters at the Smal site, in the BamHI site of pCGN525.
- pCGN528 is obtained by removing the small Xhol fragment followed by a new ligation.
- the plasmid pCGN149a is obtained by cloning the BamHI fragment from pMB9KanXXI carrying the Kanamycin resistance gene in the BamHI site of pCGN148a.
- pMB9KanXXI is a vector derived from the plasmid pUC4K (Vieira and Messing, Gene (1982) 1 £: 259-268) which lacks the Xhol restriction site but which contains the Kanamycin resistance gene of Tn903 allowing efficient selection in Agrobacterium.
- pCGN149a is digested with HindIII and BamHI and linked with pUC8 (Vieira and Messing, supra) digested with HindIII and BamHI to produce pCGN169. This removes the Kanamycin marker from Tn903.
- pCGN565 and pCGN169 are both digested with HindIII and PstI and religated to form pCGN203, a plasmid containing the CaMV 35S promoter and part of the 5 'terminal region of the Kanamycin Tn5 gene (to the PstI site) (Jorgensen et al., Mol. Gen. Genêt. (1979) 177: 65).
- a 3 'regulatory region is added to pCGN203 from the plasmid pCGN204 (an EcoRI fragment of CaMV (pb 408-6105) containing the 3' terminal VI region cloned in pUC18 (Gardner et al., Nucl.Acids Res. ( 1981) £: 2871-2888) by digestion with HindIII and PstI and ligation
- the resulting cassette, pCGN206 is the basic plasmid for the construction of pCGN986.
- the tl 3 * sequences of the T-DNA of pTiA6 are subcloned from the BamHI19 fragment of the T-DNA (Thomashow et al .., Cell (1980) 1 £: 729-739) in the form of a BamHI fragment EcoRI (nucleotides 9062 to 12823, following the numbering of Barker (Barker et al., Plant Mo. Biol. (1983) 2: 335-350).
- This sequence is combined with the origin of replication of pACYC184 (EcoRI-HindII fragment ) (Chang and Cohen, J. Bacteriol. (1978) 134: 1141-1156) and a gentamycin resistance marker from the plasmid pLB41, (BamHI-HindII fragment) (D. Figurski) to produce pCGN417.
- the unique SmaI site of pCGN417 (nucleotide 11207 of the BamHI19 fragment) is changed to a SacI site using adapters and the BamHI-SacI fragment is subcloned in pCGN565 to give pCGN971.
- the BamHI site of pCGN971 is changed to an EcoRI site using adapters to produce pCGN971E.
- the EcoRI-SacI fragment of the plasmid pCGN971E, containing the tml 3 'regulatory region is joined to the plasmid pCGN206 after digestion with EcoRI and SacI to give pCGN975.
- the small part of the Kanamycin Tn5 resistance gene is removed from the 3 'terminal region of the CaMV 35S promoter by digestion with Sali and BglII, making the ends blunt and adding Sali adapters.
- the final expression cassette pCGN986 contains the CaMV 35s promoter followed by two SalI sites, an Xbal site, BamHI, Smal, Kpnl and the 3 'tml region (nucleotides 11207-9023 of T-DNA).
- the AluI fragment of CaMV (bp 7144-7735) (Gardner et al., Nucl.Acids Res. (1981 " ) £: 2871-2888) is obtained by digestio with AluI and cloning in the HincII site of M13mp7 (Vieira and Messing, Gene (1982) 19. • 259-268) to create C614.
- a digestion of C614 by the restriction enzyme EcoRI produces the EcoRI fragment containing the 35S promoter. This fragment is cloned into the EcoRI site of pUC8 (Vieira and Messing, supra) to produce pCGN146.
- the BglII site (bp 7670) is treated with BglII and Bal31 and thereafter a BglII adapter is attached to the DNA treated with Bal31 to produce pCGN147 pCGN147 is digested with EcoRI / HphI and the resulting EcoRI-HphI fragment containing the 35S promoter is transferred into a vector M13mp8 digested with EcoRI and Smal (Vieira and Messing, supra) to create PCGN164.
- the plasmid pCGN638 is digested with HindIII and EcoRV to release a HindIII-ElickRV fragment containing a different portion of the 35S promoter (bp 6493-7340). These two fragments are linked in pCGN986 previously digested with HindIII and BamHI to remove the HindIII-BamHI fragment containing the 35S promoter; this ligation produces pCGN639, which contains the backbone of the plasmid and the tml-3 'region of pCGN986 and the two fragments of the 35S promoter from pCGN164 and PCGN638.
- pCGN638 is digested with EcoRV and Ddel to release a fragment of the 35S promoter (bp 7070-7340). The fragment is treated with the Klenow fragment of DNA polymerase I to create blunt terminal regions and is linked in the EcoRV site of pCGN639 to produce pCGN2113 having the fragment in the correct orientation.
- the plasmid pCGN2113 was deposited at the ATCC (American Type Culture Collection) on March 22, 1989, Accession Number 40587.
- pCGN1761 pCGN2113 is digested with the restriction enzyme EcoRI the plasmid is linked in the presence of a synthetic adapter containing an Xbal site and a BamHI site (the adapter contains the EcoRI cohesive ends of each side, but the adjacent bottoms are such that an EcoRI site is not reconstructed at this location) to produce pCGN2113M.
- pCGN2113M is fully digested with Sac1 and then subjected to partial digestion with BamHI. This DNA is then treated with T4 DNA polymerase to create blunt ends and an EcoRI adapter is linked in the blunt ended plasmid. After transformation, a clone carrying a plasmid having an EcoRI site between the promoter and the intact tml-3 'region is chosen and designated pCGN1761.
- Plasmid pCGN565 is a cloning vector based on a pUC8-Cm vector carrying the chloramphenicol resistance gene (K. Buckley, Ph.D. Thesis, UC San Diego 1985), but containing multi-site restriction of pUC18 (Yanisch- Perron et al., Gene (1985) 53: 103-119).
- pCGN2120 is digested completely before tl and then linked again.
- a clone having eliminated only the PstI-PstI fragment of 858 bp (9207-10065, Barker et al. 1983 above) from the tml 3 'region is called pCGN1431.
- Figure 3 Sequences of peptides derived from the SPS protein. All peptides are oriented N-> C terminal.
- Figure 4 structure of the oligonucleotides used for the CD3 and CD4 PCR reactions in relation to the peptides (the antisense sequences are presented in bold). The arrows indicate the direction in which the oligonucleotides will initiate the polymerase catalyzed reaction.
- FIG. 5 A the agarose gel electrophoresis of the CD3 and CD4 PCR reactions. Dimensions are given in kb.
- FIG. 5B shows an autoradiography of the Southern blot of the CD3 and CD4 reactions recorded using the 4K5 oligonucleotic probe.
- Figure 6 restriction map of the cDNA coding for SPS.
- the upper part represents the restriction map of the total DNA fragment coding for SPS.
- the lower parts represent the structure of the different clones which have made it possible by combination to achieve this restriction map. Start and end translation codons are indicated.
- Figure 7 cDNA sequence encoding SPS.
- the sequences of the SPS 90, PSP 61 and SPS 3 clones are merged at the points indicated in FIG. 4.
- the three reading phases have been translated. Only the open reading phase corresponding to the SPS is indicated under the nucleotic sequence. All the peptide sequences obtained during the purification and sequencing of the SPS (peptides of FIG. 3) are indicated in the sequence.
- Figure 8 Western technique characterization of rabbit anti-SPS 90 and anti-SPS 30 sera.
- pAS * non-immune serum, rabbit SPS 90;
- AS * • * anti SPS 90 immune serum.
- Figure 9A Total protein gel isolated from a 30-day corn plant, stained with Coomassie Blue.
- Sheet 5 was cut into 5 segments from the end of the sheet (5a) to the end of the sheath (5e).
- PEP phosphoenolpyruvate carboxylase.
- Figure 9B shows the results of a Western analysis using a mixture of sera anti-SPS 30 and anti-SPS 90 directed against the total proteins isolated from a 30-day corn plant.
- the signal corresponding to the SPS appears at the 120-140kd level.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Nutrition Science (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Peptides Or Proteins (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Saccharide Compounds (AREA)
Abstract
L'invention a pour objet les protéines ayant l'activité de la saccharose phosphate synthétase (SPS), comportant notamment au moins un peptide dont la séquence en acides aminés est la suivante: ThvTrpIleLys, TyrValValGluLeuAlaArg, SerMetProProIleTrpAlaGluValMetArg, LeuArgProAspGlnAspTyrLeuMetHisIleSerHisArg, TrpSerHisAspGlyAlaArg, leur procédé de préparation, les lignées cellulaires obtenues par ce procédé, les anticorps monoclonaux dirigés spécifiquement contre ces protéines, l'ADN complémentaire de ces protéines, l'utilisation de cet ADN complémentaire pour modifier l'expression et la régulation de ces protéines dans les plantes, les vecteurs d'expression renfermant cet ADN complémentaire ainsi que les plantes et semences obtenues au moyen de ces vecteurs.
Description
Sucrose phosphate synthetase (SPS) , son procédé de prépa¬ ration, son ADN complémentaire et l'utilisation de l'ADN complémentaire pour modifier l'expression de la SPS dans les cellules végétales. La présente invention concerne la saccharose phosphate synthetase (SPS) , son procédé de préparation, son ADN complé¬ mentaire et l'utilisation de ce dernier pour modifier le tau d'expression de SPS dans des cellules végétales.
La présente invention a pour objet les protéines ayant l'activité de la saccharose phosphate synthetase (SPS).
Par cellule végétale, on entend toute cellule de plantes pouvant former des tissus indifférenciés comme des cals ou des tissus différenciés comme des embryons, certaines parties de plantes, des plantes entières ou encore des semences. Par plante, on entend notamment les plantes produisant des graines, par exemple les graminées comme les céréales à paille telles que le blé, l'orge, le mais ou l'avoine, les légumineuses comme le soja, les plantes oléagineuses comme le tournesol, les plantes à tubercules comme les pommes de terre, les plantes à racines comme la betterave ou les fruits comme la tomate.
L'invention a plus particulièrement pour objet la saccha¬ rose phosphate synthetase et notamment la saccharose phosphate synthetase de plantes. Par plantes on entend par exemple les graminées comme par exemple le blé, l'orge, le maïs, la canne à sucre, les légumes comme la tomate et le soja, les fruits, comme les pommes et les bananes.
La saccharose phosphate synthetase est une enzyme clé dans les mécanismes de régulation du saccharose, mais éga¬ lement dans les mécanismes de la régulation du partage du carbone entre l'amidon et le saccharose dans la photosynthèse (voir à ce sujet l'article de Jack PREISS dans TIBS janvier 1984, pages 24 et suivantes, ou encore l'article de Mark STITT et Coll. dans Biochemistry of Plants vol. 10, 1987 pages 327 et suivantes) .
La SPS semble spécifique de l'espèce concernée ; Joan L- alker et Steven C. Huber qui ont purifié et réalisé une
2 caractérisation préliminaire de la saccharose phosphate d'épinard indiquent clairement que les anticorps obtenus reconnaissent exclusivement la SPS d'épinard (cf PLANT PHYSIO (1989) 89, 518-524) . L'invention a plus précisément pour objet la SPS de mais La SPS de maïs pouvant exister sous une forme pure ou pratiquement pure.
L'invention a plus précisément pour objet les protéines définies précédemment de poids moléculaire de l'ordre de 110 130 kD se présentant sous forme de monomère, dimère ou tétra- mère et leurs dérivés ayant au moins un peptide dont la séquence en acides aminés est la suivante : ThrTrpIleLys TyrValValGluLeuAlaArg SerMetProProIleTrpAlaGluValMetArg
LeuArgProAspGlnAspTyrLeuMetHisIleSerHisArg TrpSerHisAspGlyAlaArg
L'invention a notamment pour objet les protéines définies précédemment ayant la séquence en acides aminés décrite à la figure 7.
L'invention a également pour objet les dérivés des pro¬ téines définies précédemment modifiés par les techniques du génie génétique et présentant l'activité de la SPS.
L'invention a également pour objet un procédé de prépara- tion caractérisé en ce que : a) on fait un extrait à partir de parties des plantes concer- vées à basse température par broyage, centrifugation et fil- tration, b) on enrichit en protéine SPS l'extrait obtenu par précipita- tion dans un solvant approprié, centrifugation et solubilisa- tion du précipité obtenu dans une solution tampon, c) on purifie la protéine active ainsi obtenue par chromato- graphie et si désiré, d) on prépare des hybridomes et des anticorps monoclonaux à partir d'une solution antigénique obtenue à partir d'une des préparations obtenues aux paragraphes a) , b) , et c) ci-dessus, e) crible les hybridomes et sélectionne le ou les anticorps monoclonaux dirigés spécifiquement contre la SPS,
f) purifie la SPS obtenue au moyen des anticorps ainsi préparés.
L'invention a plus précisément pour objet un procédé caractérisé en ce que : a) on fait un extrait à partir de parties de plantes de maïs conservées à basse température par broyage, centrifugation et filtration, b) on enrichit en protéines l'extrait obtenu par précipitation dans le polyéthylèneglycol, centrifugation et solubilisation du précipité obtenu dans une solution tampon, c) on purifie la protéine SPS ainsi obtenu par chromatographie d'échange d'anions basse pression, puis par chromatographie sur héparine Sépharose, puis par chromatographie d'échange d'anions haute pression, d) on purifie les fractions actives par passage sur 2 colonnes de chromatographie haute pression, et, si désiré, e) on prépare des hybridomes et des anticorps monoclonaux à partir d'une solution antigénique obtenue à partir d'une préparation a) , b) , c) , f) crible les hybridomes et sélectionne les anticorps dirigés spécifiquement contre la SPS, g) purifie la SPS obtenue précédemment au moyen des anticorps ainsi préparés.
Dans un mode de réalisation préféré : - le maïs utilisé est un maïs de souche PIONEER 3184,
- les parties de plantes de maïs utilisées sont des feuilles conservées à basse température par exemple entre -50°C et - 90°C,
- la purification dans le polyéthylèneglycol (PEG) se fait en deux temps :
. une première précipitation où la concentration finale en PEG est voisine ≈. 6 %,
. une deuxième précipitation où la concentration finale en PEG est voisine de 12 %. - les différentes chro atographies sont réalisées comme suit : 1ère chromatographie : DEAE Sépharose,
2ème chromatographie : héparine Sépharose : on peut noter que la préparation ainsi obtenue peut être conservée
plusieurs jours, sans perte majeure d'activité, 3ème chromatographie CLHP : chromatographie Mono Q, 4ème chromatographie CLHP : hydroxylapatite, 5ème chromatographie CLHP : DEAE. - au cours de ces différentes étapes de purification et des suivantes, la mesure de l'activité SPS est effectuée de préf rence à l'aide de deux méthodes différentes : a) une méthode basée sur un test colorimétrique ou test au résorcinal, b) une méthode basée sur le dosage de l'un des produits form au cours des réactions de transformation mettant en jeu la S Ces deux méthodes sont détaillées dans la partie expérimenta exposée ci-après.
- les souris sont immunisées avec plusieurs injections de préparation enzymatique purifiée.
On peut utiliser différentes espèces de souris, par exe ple des souris BALB/C.
L'antigène est utilisé dans l'adjuvant complet de Freun puis dans l'adjuvant incomplet de Freund. On -effectue sur les souris plusieurs injections de l'antigène : on a obtenu de bons résultats avec trois injec¬ tions des fractions mono Q suivies de trois injections des fractions finales (aux jours 0, 14, 27, 60, 90 et 105 par exemple) . Les premières injections ont lieu par voie sous cutanée, par exemple dans les coussinets des pattes, la dernière injec tion est effectuée par voie intra-veineuse dans la queue par exemple.
- la préparation des suspensions cellulaires de rate ainsi immunisées est traitée de façon clonique.
Les étapes de fusion avec des cellules de myélome, de conservation des hybridomes, de clonage et de production des anticorps sont réalisées selon les méthodes connues.
Pour détecter les hybridomes sécrétant les anticorps dirigés contre l'antigène, on utilise deux méthodes pour sélectionner les anticorps de détection des hybridomes sécré¬ tant dirigés contre 1'antigène d•immunisation :
- une méthode de détection des anticorps inhibiteurs de
1'activité SPS,
- une méthode de 1'activité des anticorps dirigés contre
1'activité SPS.
Ces méthodes sont de préférence celles décrites dans la partie expérimentale.
L'invention a également pour objet les lignées cellu¬ laires d'hybridomes obtenues et notamment les lignées cellu¬ laires hybridomes suivantes :
SPA 2-2-3 1-971 SPA 2-2-22 1-970
SPA 2-2-25 1-972 SPB 3-2-19 1-973 SPB 5-2-10 1-974 SPB 5-4-2 1-975 SPB 13-1-7 1-976 SPB 13-2-2 1-977 qui ont été déposées le 11 juin 1990 auprès de la Collection Nationale de Culture de Microorganismes (CNCM-Institut Pas¬ teur) sous les numéros mentionnés. L'invention a également pour objet les anticorps monoclo¬ naux dirigés spécifiquement contre la SPS.
L'invention a également pour objet un procédé de prépara¬ tion de protéines caractérisé en ce que l'on fait passer une préparation contenant les dites protéines sur une colonne de chromatographie renfermant des anticorps monoclonaux dirigés spécifiquement contre les dites protéines et obtient ainsi les protéines recherchées.
L'invention a également pour objet les séquences d'ADN codant pour les protéines définies précédemment et notamment la SPS de maïs, dont la séquence apparait figure 7.
L'ADN complémentaire (ADNc) codant pour l'enzyme saccharose Phosphate Synthéthase (SPS) a été préparé comme suit :
1 - Séquençage des fragments peptidiques de SPS purifiée. Les préparations purifiées de SPS de maïs obtenues précé¬ demment donnent, lors de la séparation sur" gel d'acrylamide, une bande minoritaire à 120 kd (correspondant à la séquence protéique totale) et deux bandes majoritaires de 90 et 30 kd.
Ces deux polypeptides sont séparés par électrophorèse puis électroélués. Une digestion trypsique suivie du séquençage de fragments obtenus a permis de déterminer la séquence en acide aminés de 5 peptides (fig. 3) . La connaissance de la séquence en acides aminés de ces peptides permet de déterminer la séquence nucléotidique correspondante.
2 - Isolement de 1'ARN de feuilles de maïs.
L'ARN total est isolé selon la méthode de TURPEN et GRIFFITH (1986, Biotechniques vol 4 pp 11-15). L'ARN polyA+ est préparé par passage sur colonne d'oligodT cellulose selon les techniques connues.
3 - Construction d'une banque d'ADNc.
La synthèse de l'ADNc est réalisée en utilisant le kit d synthèse "PROMEGA"® . La transcriptase inverse de MMLV est utilisée à la place de la transcriptase inverse AMV. La taill des ADNc obtenus est comprise entre 500 paires de bases et plusieurs milliers de paires de bases. Des adaptateurs EcoRI sont ajoutés aux extrémités de l'ADNc avant clonage dans un vecteur d'expression lambda gtll. La banque d'ADNc contient environ 1,5.106 transformants.
4 - Utilisation de la PCR pour la synthèse d'une sonde nucléo tidique spécifique de la SPS.
Les oligonucléotides dérivés des séquences des peptides Bll (provenant de la 30 kd) et 4 K (provenant de la 90 kd) décrits dans la fig. 3 sont utilisés comme amorce dans des réactions de type PCR. L'hypothèse de départ est que les polypeptides de 30 et 90 kd sont les produits de dégradation de la protéine SPS de 120 kd. De ce fait les peptides issus des fragments SPS 30 et SPS 90 doivent provenir de la traduc- tion du même ARN messager. Dans cette hypothèse l'utilisation d'un couple d'oligonucléotides correspondant aux séquences des peptides dans une réaction de type PCR doit aboutir à la synthèse d'un fragment d'ADN de taille déterminée si ces oligonucléotides sont complémentaires d'une même séquence d'ADN. Ne connaissant pas la position respective de ces pepti¬ des dans la protéine SPS, les différents cas de figure sont expérimentés. Seul le couple d'oligonucléotides CD3 (fig. 4) donne un fragment d'ADN de taille déterminée (1200 paires de
bases) .
5 - Tri de la banque d'ADNc :
250 000 transformants lambda gtll ont été triés en utili¬ sant le fragment d'ADN de 1200 paires bases obtenu par réac- tion PCR (décrite précédemment) . 16 clones positifs ont été obtenus. La taille des insertions varie de 0,3 kb à 2,8 kb. La séquence obtenue n'est pas complète coté R' . Un deuxième tri de la banque à l'aide d'un fragment d'ADN de 400 pb correspon¬ dant à la partie 5' du clone SPS3 permet d'obtenir un clone (SPS 61) allant plus loin dans la partie 5' (fig. 6) sans pour autant avoir 1'extrémité 5' .
6 - Réalisation et tri d'une deuxième banque d'ADNc permettant de cloner la partie 5' de l'ADNc codant pour la SPS.
Un oligonucléotide complémentaire de la séquence 5' du clone SPS61 est utilisé comme amorce pour la synthèse de l'ADNc. Après synthèse du deuxième brin, l'ADNc a été clone dans le phage lambda. La banque contient environ 1 million de clones. Les clones SPS 90 et SPS 77 ont été obtenus lors du tri de cette banque avec SPS 61 (fig. 6) . La séquence de ces clones a permis de déterminer la région de recouvrement avec le clone SPS 61. Le clone SPS 90 permet d'atteindre la partie 5' de la SPS.
La vérification de l'ordonnancement des différentes séquences (fig. 6) permettant d'obtenir la séquence complète de l'ADNc a pu être faite en utilisant la technique de PCR. Les amorces utilisées appartiennent aux clones SPS 3 et SPS 90. L'obtention d'un fragment de 750 paires de bases de la taille exacte prédite par la séquence complète permet d'affir¬ mer que les clones SPS 3 et SPS 90 dérivent du même ARN mes- sager.
7 - Assemblage de l'ADNc complet.
L'invention a également pour objet l'ADN génomique comprenant la partie codc.:t pour les protéines définies précé¬ demment et les séquences nécessaires à l'expression et la régulation de cette protéine dans les plantes.
L'invention a également pour objet un procédé pour modi¬ fier le taux d'expression de la SPS dans une plante, caracté¬ risé en ce que l'on transforme les cellules de la dite plante
au moyen d'un vecteur d'expression renfermant l'ADNc défini précédemmen .
L'invention a aussi pour objet un vecteur permettant l'expression de la protéine SPS sous le contrôle d'un promo- teur capable de diriger l'expression et de préférence la surexpression de la dite SPS dans une cellule de plante et d'une région 3' comportant les signaux de régulation de trans cription pour l'expression du gène codant pour la SPS.
L'invention a en outre pour objet les plantes obtenues par la mise en oeuvre de ce procédé.
L'invention a également pour objet les semences obtenues
Les exemples suivants illustrent 1'invention sans toute¬ fois la limiter.
1 - PURIFICATION DE LA SACCHAROSE PHOSPHATE DE MAÏS
1.1 - Méthode de dosage de l'activité enzymatique CSPS)
Le suivi de l'activité SPS au cours de la purification est effectué de 2 façons :
a) soit au moyen d'un test colorimétrique (P.S. Kerr et al., Planta, 1987, 170 : 515-519) dit test au résorci- nol.
La saccharose Phosphate Synthetase ou UDP glucose - D Fructose - Phosphate Glucosyltransferase catalyse la réaction :
UDPG - Fructose 6-P <=> Saccharose 6-P + UDP UDPG : Uridine Di-Phospho Glucose Fructose 6-P ou F6P : Fructose 6-Phosphate Saccharose 6-P : Saccharose 6-Phosphate Le saccharose 6-P formé réagit avec le résorcinol pour donner un composé de coloration rouge quantifiable en spectrophoto étrie à 520 nm (D.O. 520 nm) .
b) soit au moyen d'un système enzymatique couplé (S. Harbron et al., Anal. Biochem. 1980, 107 : 56-59) s composant de la façon suivante :
UDPG + F6P <=> SACCHAROSE 6 P + UDP
SPS
UDP + ATP <=> ADP + UTP
Nucléoside Diphosphokinase NP2K
ADP + PEP <=> Pyruvate + ATP
Pyruvate kinase PK
pyruvate + NADH <=> NAD + lactate
Lactate déshydrogénase LDH
On mesure la disparition du NADH à 340 nm et 1 mole de NAD formé ou 1 mole de NADH consommé correspond à 1 mole de saccharose 6 P formé.
1.2 - Purification de la SPS (préparation de l'immunoqène) 1.2.1 - Extraction
Le matériel de départ pour la purification est consti¬ tué de jeunes feuilles de maïs ( souche Pioneer 3184 ) décou¬ pées, déveinées, congelées dans l'azote liquide et stockées à -70βC.
250 g de feuilles sont mises en suspension dans 1 1 de tampon HEPES 5ûmM MgCl2 lOmM EDTA ImM DTT 5mM pH 7,5 (tampon d'extraction) additionné de 11g de Polyvinylpyrrolidone avec barbotage d'azote et refroidissement à O'C. Les feuilles sont broyées, jusqu'à obtention d'une suspension homogène. Ce broyât est filtré. Le broyât est alors centrifugé à 14000 g pendant 20 mn à 4βC.
Tout en maintenant un barbotage d'azote, on additionne au surnageant une solution de Poly Ethylène Glycol à 50 % (PEG 8000 "Breox" à 50 % p/v en tampon d'extraction) jusqu'à une concentration finale en PEG de 6 %. Après centrifugation, 20 mn à 14000 g le surnageant est additionné de PEG 50 % jus¬ qu'à concentration finale en PEG de 12 %. Après une nouvelle
centrifugation, 1-e surnageant est éliminé et le culot est solubilisé par 60 ml de tampon HEPES 50 mM, MgC12 10 mM, EDT 1 mM, DTT 5 mM, Ethylène Glycol (EG) 10 %, KCl 0,08 M pH 7,5 (tampon de reprise) . Cette solution est clarifiée par centri fugation 10 mn à 40000 g. Le surnageant constitue l'extrait final.
1.2.2 - Chromatographie d'échange d'anion basse pression : échangeur DEAE Sépharose fast-flow
L'extrait final est chromatographie sur une colonne DEAE Sépharose Fast-Flow équilibrée en tampon de reprise.
Après lavage de la colonne avec le même tampon, les protéine adsorbées sur le support sont éluées au moyen d'un gradient linéaire de force ionique croissante entre 0,08 M KCl et 0,35 M KCl dans le tampon HEPES 50 mM, MgC12 10 mM, EDTA 1 m DTT 5 mM, EG 10 % pH 7,5 (tampon A). Le débit appliqué au cours de cette expérience est de 180 ml/h et la chromatogra¬ phie est effectuée à 4°C.
L'activité SPS est éluée à environ 0,17 M KCl. 1.2.3 - Chromatographie sur Héparine sépharose Les fractions contenant l'activité SPS sont rassem¬ blées et diluées au l/5ème dans le tampon A puis mises en présence de 12 ml d'Héparine Sépharose préalablement équilibr en tampon A. Après 1 h d'incubation avec agitation lente à 4"C, le gel est lavé avec environ 10 volumes de tampon A + 0,05 M KCl puis reconditionné dans une colonne chromatogra- phique.
Les protéines adsorbées sont éluées d'une façon iso- cratique au moyen d'un tampon CAPS 10 mM, MgCl2 10 mM, EDTA 1 M, DTT 5 mM, EG 10 %, Tween 80 0,01 %, Héparine 1 mg/ml, Fructose 1 %, KCl 0,25M pH 10 délivré à 60 ml/h. La chromatographie est effectuée à 4βC.
Les fractions contenant 1*activité SPS sont rassem¬ blées (fraction héparine) et conservées dans la glace jusqu'à l'étape suivante de purification. L'enzyme à ce stade est stable au moins une semaine.
Les étapes de purifications suivantes sont effectuées à l'aide d'un système de Chromatographie Liquide Haute Performance (CLHP) , et on suit la purification au moyen d'un
détecteur équipé d'un filtre permettant de mesurer l'absor- bance dans l'ultra-violet à 280 nm (A280) . Les tampons et les fractions récupérées sont maintenus à basse température. 1.2.4 - Chromatographie d'échange d'εiion haute performance : Mono Q
La fraction héparine est diluée au 2/3 en tampon Trié- thanolamine 20 mM, MgCl2 10 mM, EDTA 1 M, DTT 10 mM, EG 3 %, Tween 80 0,3 % pH 7,5 (tampon A) et chargée sur une colonne FPLC Mono Q HR10/10 préalablement équilibrée avec le même tampon additionné de NaCl (concentration finale 0,18 M). Après retour à 0 de la A280 les protéines adsorbées sur le support chromatographique sont éluées au moyen d'un gradient de sel complexe composé comme suit : tampon A : cf ci-dessus tampon B : tampon A + NaCl 1 M
Le débit appliqué sur la colonne est de 180 ml/h.
L'activité SPS est éluée entre 0,26 et 0,31 M NaCl. Les fractions actives sont rassemblées (fraction Mono Q) . 1.2.5 - CLHP sur Hydroxyapatite
La fraction Mono Q est cha. ée sur une colonne CLHP d'hydroxyapatite équilibrée en tampon KH2P04/K2HP04 20 mM, EG 3 %, Tween 80 0,3 %, DTT 5 mM pH 7,5. Après retour à 0 de la A280 les protéines adsorbées sont éluées au moyen du gradient de phosphate suivant : tampon A : cf ci-dessus tampon B : idem tampon A mais 500 M Phosphate de K
12 temps (minutes) % B
0 2
5 11
9 13
5 14 13
29 40
31 100
32 100 35 2
10 Le débit appliqué est 60 ml/h. Il faut noter à ce stade que le phosphate est inhibiteur partiel de l'activité SPS et qu'il est donc difficile de calculer une activité spécifique ainsi qu'un facteur de purification (cf tableau 1) L'activité SPS est éluée dans ces conditions à envir 15 60 mM phosphate.
Les fractions actives sont rassemblées et constituen la fraction HAC.
1.2.6 - CLHP sur DEAE 5P 0 La fraction HAC est chargée sur une colonne CLHP d'échange d'anion de type Di Ethyl Amino Ethyl (DEAE-5P ) préalablement équilibrée en tampon Triéthanolamine 20 mM, MgC12 10 mM, EDTA 1 mM, EG 3 %, DTT 2,5 mM, Bétaïne 2 % pH 7, (Tampon A) + 0,15 M NaCl. 5 Après retour à 0 de la A280 les protéines adsorbées sont éluées au moyen du gradient de NaCl suivant : tampon A : cf ci-dessus tampon B : idem tampon A avec NaCl 1 M
0
5
L'activité SPS est éluée à environ 0,3M NaCl. 1.2.7 - Obtention de la préparation finale : concentration
La préparation finale est concentrée par chromatogra¬ phie CLHP sur echangeur Mono Q HR5/5 (5 X 50 mm, Pharmacia) et élution rapide.
La fraction DEAE 5P (ou la fraction G200) est diluée au 2/3 en tampon A (idem 6) et chargée sur la colonne préala¬ blement équilibrée en tampon A + 0,18 M NaCl. Le gradient suivant est alors appliqué sur la colonne : tampons A & B : idem 6) temps (minutes) % B
0 18
10 40
12 100 13 18
Le débit utilisé est de 60 ml/h.
L'activité SPS est éluée à environ 30 % B (0,3 M NaCl) .
La préparation finale est stockée à -20*C jusqu'à utilisation.
Le tableau 1 résume les résultats obtenus aux diffé¬ rentes étapes de purification en terme de quantités de pro¬ téines et d'activité SPS. TABLEAU 1 Concentration en Volume As** Fp** R* protéines (mg/ml) (ml) (U) (%) Broyât 1 1000 0,05 0 100
Extrait final 4< <8 60 0,30 6 144
Frac. DEAE FF 0,4< <0,8 70 3 60 168 Frac. Héparine 0,2< <0,4 25 9 180 90 Frac. Mono Q (0,02) 30 - Frac. HAC (0,03) 8 -
Prep. final 0,05 2 25 500 5
Légende As = Activité enzymatique Spécifique : 1 U correspond à
1 micromole de saccharose formé par minute par mg de protéine à 37'C Fp = Facteur de purification
R = Rendement
( ) = valeur approximative
= non déterminé Remarques : ** la mesure de la quantité de protéines est effectuée en utilisant la méthode de Bradford. Le Tween inter¬ férant énormément dans cette méthode, il n'est pas possible de doser les protéines et donc de calculer une As au niveau des étapes en contenant. De plus le phosphate étant inhibiteur de' l'activité SPS, le dosage au cours de l'étape HAC donne un résultat sous-estimé.
* le rendement croissant au cours des premières étapes peut s'expliquer par l'élimination au cours de la purification de certains inhibiteurs de l'activité SPS.
Un profil (SDS-PAGE) illustrant le procédé de purifi- cation et la qualité de la préparation finale est donné figure 1. La présence des protéines 120, 95, et 35 Kd (Kilo- daltons) est corrélée à l'activité SPS.
Les études de séquence des protéines 35 et 95 Kd faites par la suite, semblent montrer que ces protéines sont vraisem- blablement des produits de dégradation de la protéine 120 Kd. De plus les anticorps dirigés contre les protéines 35 et 95 Kd reconnaissent également la protéine 120 Kd en immuno-détection après transfert sur membrane, ce qui démontre une communauté antigénique entre ces trois protéines (voir plus loin) . Il faut signaler cependant que l'ajout d'inhibiteurs de protéases dans les tampons durant la purification n'a pas permis d'obtenir une protéine 120 Kd unique.
La saccharose phosphate synthetase semble donc être une protéine di ou tétramèrique ayant comme sous-unité de base une protéine de 120 Kd (ho o-dimère ou homo-tétra ère) . Légende de la figure 1
Profil SDS-PAGE illustrant la purification de la saccharose- phosphate synthetase de maïs : gel d'acrylamide à 8,5 %, conditions réductrices et coloration au nitrate d'argent M : Standard de poids moléculaires β-Galactosidase (116 Kd) , Albumine bovine (68 Kd) , Ovalbumine (45 Kd)-", Anhydrase carbo¬ nique (29 Kd) . H : Fraction Héparine, 30 microgrammes de protéines par puits.
PF : Préparation Finale, 7,5 microgrammes de protéines par puits.
EF : Extrait Final, 7,5 microgrammes de protéines par puits. D : Fraction DEAE Fast-Flow, 7,5 microgrammes de protéines par puits.
Les bandes de protéines visibles à environ 120 Kd (1) , 95 Kd (2) et 35 Kd (3) sont corrélées, au cours des étapes de chro¬ matographie, à la présence d'une activité SPS dans les frac-' tions.
2 - PROCEDE DE PREPARATION DES ANTICORPS MONOCLONAUX DIRIGES CONTRE LA SACCHAROSE PHOSPHATE SYNTHETASE 2.1 - Immunisations
Les souris BALB/C sont immunisées en injectant par voie sous-cutanée (coussinets et pattes) selon la méthodo¬ logie suivante :
Jour 0 Injection d'environ 5 microgrammes de protéines (soit environ 0,3 USPS par souris) : pool Mono Q émul- sifié volume à volume avec de l'Adjuvant Complet de Freund (ACF) .
Jour 14 Injection d'environ 5 microgrammes de protéines (soit environ 0,3 Usps par souris) : pool Mono Q émul- sifié volume à volume avec de l'Adjuvant Incomplet de Freund (AIF) . Jour 27 Idem J14
Jour 0 + 2 mois Injection d'environ 20 microgrammes de protéines : préparation finale en AIF Jour 0 + 3 mois Injection d'environ 12 microgrammes de protéines : préparation finale en AIF Jour 0 + 4,5 mois Injection par voie intra-veineuse (IV) dans la queue d'environ 20 microgrammes de protéines : pool final tel que.
La fusion est réalisée 3 jours après l'immunisation IV. Les sérums sont prélevés à J34, J67, J98 et J159 afin de mesurer la réponse immunitaire (cf screening) . 2.1.1 - Méthode de screening
La SPS utilisée pour les immunisations n'étant pas parfaitement homogène, il est nécessaire de mettre au point un
test de screening spécifique de cette enzyme. En effet un tes de type ELISA révélerait aussi les anticorps dirigés contre les impuretés SPS non-reliées présentes dans les préparations ayant servies aux immunisations. Deux méthodes de détection des anticorps sont utili¬ sées :
- méthode de détection des anticorps inhibiteurs de 1'activit SPS
- méthode de détection des anticorps dirigés contre la SPS (inhibiteurs ou non) . a) Méthode de détection des anticorps inhibiteurs de l'acti¬ vité SPS
Cette méthode de screening permet de détecter les anticorps se fixant au niveau du site actif de la SPS ou au niveau d'un site proche de celui-ci, et donc empêchant l'accès des substrats. En pratique 70 ul de sérum ou de surnageant de culture d'hybridomes dilué de façon approprié est mis en présence de 70 ul de préparation de SPS (fraction Héparine) . Après 1 heure d'incubation à température ambiante, l'activité résiduelle est déterminée à l'aide du dosage enzymatique couplé (Cf 1-1) . Les résultats sont exprimés en pourcentage d'inhibition par comparaison avec la même préparation de SPS traitée de la même façon sans anticorps. b) Méthode de détection des anticorps dirigés contre la SPS (inhibiteurs ou non)
Cette méthode est basée sur la précipitation du complexe anticorps-SPS à l'aide d'un système entraîneur (Ig anti Ig de souris couplée à des billes de Sépharose : Goat- anti mouse-Sépharose ou GAM Sépharose) . En pratique 60 micro- litres de sérum ou de surnageant de culture d'hybridomes dilué de façon approprié est mis en présence de 60 microlitres de préparation de SPS (fraction Héparine). Après 2 h d'incubation à température ambiante, le mélange est mis en présence de 50 microlitres de GAM-Sépharose à 25 % préalablement lavé 3 fois au moyen d'un tampon HEPES 50 mM, MgCl2 10 mM, EDTA 1 mM, EG 10 %, DTT 5 mM pH 7,5. Le mélange est incubé la nuit à 4"C sous agitation vibrante. Après centrifugation 5 minutes à 3000 t/mn l'activité SPS résiduelle dans le surnageant est
déterminée à l'aide du dosage enzymatique couplé (Cf 1.1). Les résultats sont exprimés en pourcentage de précipitation (% préc.) par comparaison avec la même préparation de SPS traitée de la même façon sans anticorps. 2.1.2 - Résultats
10 souris ont été immunisées selon le protocole décrit plus haut. Le tableau suivant donne les résultats des dosages de précipitation effectués avec les hétéro-antiséra des 10 souris à J159. Les sérums sont dilués au 1/200. SOURIS 1 2 3 4 5 6 7 8 9 10 % PREC. 45 22 32 64 36 30 22 16 39 37
Des dilutions supplémentaires du sérum de la souris 4 donnent les résultats suivants :
DILUTION % PRECIPITATION
1/200 67
1/400 48
1/600 29 1/1000 20
Les rates des souris 1 et 4 sont utilisées pour la fusion.
2.2 - Fusion cellulaire Les splenocytes des souris sont fusionnées avec des cellules de myélome de souris SP2/0-Agl4 selon un ratio 2/1 en présence de polyéthylène glycol 1500 à 45 %. La sélection des hybridomes est effectuée en ajoutant de 1'hypoxanthine et de l'azaserine au milieu de culture 24 et 48 heure après le fusion.
Les hybridomes sont clones et sous-clonés par la méthode de dilution limite. 2.2.1 - Résultats du criblage des hybrides et des clones
HYBRIDES
SOURIS 4 (fusion SPA) SOURIS 1(fusion SPB)
2 Hybrides positifs sur 45 6 Hybrides positifs sur 52
SPA2 : 38 prec. SPA19 : 7 préc.
FUSION SPB 7 clones retenus sur 46
SOUS-CLONES
FUSION SPA FUSION SPB
3 sous-clones retenus sur 48 5 sous-clones retenus sur 72
SPA2-2-3 60 % préc. SPB3-2-19 21 % préc. SPA2-2-22 33 % préc. SPB5-2-10 86 % préc. SPA2-2-25 92 % préc. SPB5-4-2 46 % préc.
SPB13-1-7 87 % préc.
SPB13-2-2 93 % préc.
2.2.2 - Production des anticorps monoclonaux anti-SPS
Les hybridomes sont injectés par voie intra- péritonéale à des souris BALB/c femmelles préalablement traitées par du pristane. Les anticorps monoclonaux sont partiellement purifiés à partir des liquides d'ascites ainsi produits par précipitation par du sulfate de sodium à 18 %. Les protéines précipitées sont dissoutes puis dialysees contre du PBS (F18) . 2.2.3 - Caractérisation des anticorps monoclonaux anti-SPS
a) type
Le typage est fait à l'aide d'un test ELISA. Des anti¬ corps de lapin anti-IgG et anti-IgM de souris (ZYMED) sont fixés au fond des puits de plaques 96 puits. Après une nuit à température ambiante les sites non occupés sont saturés avec une solution d'albumine sérique bovine à 3 % dans du PBS. Après une heure d'incubation à 37"C et plusieurs lavages, les différents F18 sont déposées dans les puits. Après incubation et plusieurs lavages, des anti-corps de chèvre ou de lapin, anti-classe et anti-sous classe d' immunoglobulines de souris, couplés à peroxydase, sont ajoutés. Après une heure à 37"C, on révèle les anti-corps à l'aide du système H202/ABTS.
Tous les anticorps monoclonaux anti-SPS sont du type Ig G . b) Inhibition de l'activité SPS
La détermination de la capacité des anticorps à inhiber l'activité SPS est faite à l'aide de la technique citée plus haut (Cf 2.1.1 a) en utilisant les F18.
Concentration en anticorps % Inhibition (microgrammes/ml)
Anticorps
20
La détermination de la capacité des anticorps à immuno-précipiter l'activité SPS est faite à l'aide de la technique citée plus haut (Cf 2.1.1 b) en utilisant les F18. Concentration en anticorps % Précipitation (microgrammes/ml)
Anticorps
SPA2-2-3 50 95
25 92
5 80 2,5 40
1 20
SPA2-2-22 50 95,7
25 95
10 51 5 48,2
2,5 25
1 10 Anticorps
SPA2-2-25 50 91,3 25 95,3
5 90,4
2,5 22,8
1 12,5
SPB3-2-19 50 95 25 95
5 27,8
2,5 17,8 1 9,3
SPB5-2-10 50 95 25 95
5 81,1
2,5 41,4
1 22,6
SPB5-4-2 50 95 25 95
5 86,1
2,5 57,2
1 26,1
SPB13-1-7 50 95
25 95
10 65,4
5 48,1 2,5 15
1 10
SPB13-2-2 50 95
25 95
5 71,8 2,5 43,5
3 - UTILISATION DES ANTICORPS MONOCLONAUX POUR LA CARACTERISA- TION ET LA PURIFICATION DE LA SACCHAROSE PHOSPHATE SYNTHETASE
3.1 - Caractérisation de la Saccharose Phosphate Synthetase de Maïs
Cette caractérisation est effectuée à l'aide des anti¬ corps SPB3-2-19 et SPB13-2-2 par la technique d'i muno- détection après transfert des protéines à partir d'un gel d'électrophorèse en conditions dénaturantes (SDS PAGE) sur membrane de nitrocellulose.
Après migration en gel d'acrylamide à 12,5 % (Nature 227 (1970) 680-685) , les protéines sont transférées sur membrane de nitrocellulose 0,22um (Schleicher et Schuell) au moyen d'une cuve de transfert pendant 30 mn, l'ampérage initial étant de 1 Ampère. Le tampon utilisé est le tampon d'électrophorèse classique (TRIS base 3,03 g/1. Glycine 14,4 g/1, SDS 0,1 % pH 8,3) auquel est ajouté 20 % de éthanol. Après transfert, la membrane est mise en bain de satura- tion (Caséine 0,5 % en PBS) afin de saturer les ites non occupés par les protéines provenant du gel. ,»près 1 h à 37"C sous agitation douce, la membrane est lavée 3 à 4 fois en tampon de lavage (Caséine 0,1 %, Tween 20 0,5 %, en PBS) puis incubées avec une solution à 10 microgrammes/ml de l'anticorps onoclonal à tester. On incube une partie de la membrane en parallèle avec un anticorps non-immun (témoin négatif). Après 1 h d'incu¬ bation à température ambiante suivie de 9 à 10 lavages,
la membrane est incubée en présence d'un anticorps ant anticorps de souris marqué à l'Iode 125 dilué en tampo de lavage (50000 cpm par cm2 de membrane) . Après 1 h d'incubation à température ambiante suivie de 9 à 10 lavages, la membrane est séchée puis autoradiographiée
(film X-OMAT AR KODAK et écran amplificateur Cronex XT Life DUPONT) .
Une autoradiographie est présentée figure 2. Un fort signal est observé au niveau des bandes protéiques 120 Kd, 95 Kd et 35 Kd ce qui est en corrélation avec les résultats précédents (voir première partie) .
Légende de la figure 2
A : membrane incubée en présence de l'anticorps SPB3-2-19 B : membrane incubée en présence d'un anticorps non dirigé contre la SPS (anticorps monoclonal anti-néomycine Témoin négatif)
C : membane incubée en présence de l'anticorps SPB13-2-2 M : standards de poids moléculaires radio-marqués par l'I125 (NEX-188 NEN) B-Galactosidase (116 Kd) , Albumine bovine (68 Kd) , Anhydrase carbonique (29 Kd) , Inhibiteur trypsique (20,1 Kd) , Alpha-Lactalbumine ' (14,4 Kd) , 150000 cpm par dépôt PA : dépôt des protéines obtenues après chromatographie d'immunoaffinité (voir plus loin) avec l'anticorps monoclonal SPB13-2-2, environ 40 microgrammes de protéines par dépôt. H : dépôt de la fraction Héparine, environ 40 microgrammes de protéines par dépôt.
3.2 - Purification de la Saccharose Phosphate Synthetase par immunoaffinité
Une méthodologie de purification de la Saccharose Phos¬ phate Synthetase de maïs sur support d'immunoaffinité a été mise au point afin d'augmenter la quantité de pro¬ téine récupérée en réduisant le nombre d'étapes de puri fication et de permettre ainsi des études de séquençage. 3.2.1 - Préparation de l'im uno-adsorbant
La F18 (voir 2.2.2) correspondant à l'anticorps SPB13 1-7 ou à l'anticorps SPB13-2-2 est mis en présence de CH-
Sépharose activé, à raison de 1 mg d'anticorps par ml de gel. Après incubation 2 h à température ambiante, les sites non occupés par les anticorps sont saturés par 1*éthanolamine 1 M pH 9. Le support est ensuite lavé alternativement avec les tampons acétate 0,1 M NaCl 0,5 M pH 4 et TRIS 0,1 M NaCl 0,5 M pH 8. Le support d'immunoaffinité ainsi préparé est conservé à 4*C en tampon HEPES 50 mM, MgCl2 10 mM, EDTA 1 mM, PMSF 1 mM, Azoture de sodium (azide) 0,01 % pH 7,5. 3.2.2 - Chromatographie â'immunoaffinité La fraction Héparine correspondant à la purification de la SPS est additionnée de PEG 50 % (voir 1.2.1) jusqu'à une concentration finale en PEG de 20 %. Après incubation 30 mn à 4βC avec agitation lente, le mélange est centrifugé à 1600 g pendant 30 mn. Le culot protéique est repris dans la moitié du volume de départ de tampon 50 mM HEPES, 10 mM MgC12, 1 mM
EDTA, 10 % éthylène glycol pH 7,5. Cette étape permet d'élimi¬ ner le tampon précédant qui est incompatible avec la chromato¬ graphie d»immunoaffinité et de concentrer les protéines. Le rendement en activité SPS est de 80 à 90 %. La solution obtenue est appliquée avec un débit de 0,1 ml/mn sur 1 ml de support d'immunoaffinité conditionné dans une colonne et sur lequel a été fixé un anticorps non dirigé contre la SPS (CNBr-Sépharose activé, sur lequel est fixé un anti-corps anti-néomycine) . Cette première étape permet d'éliminer certains contaminants se fixant de façon aspécifique sur le support de chromatographie. L'effluent de la colonne non-spécifique est à son tour appliqué sur le support d'immuno-affinité anti-SPS (2 ml dans une colonne de 11 X 20 mm) avec un débit de 0,1 ml/mn. Ces deux étapes sont effectuées à la température du laboratoire. Après lavage de la colonne avec 10 ml de tampon de charge puis avec un tampon de lavage (Tampon de charge additionné de NaCl 0,25 M et Twenn 20 0,3 %) jusqu'à ce que l'absorbance dans l'ultra-violet à 280 nm soit proche du niveau de base, les protéines adsorbées sur le support sont éluées avec une solution de triéthylamine 50 mM pH 11. Cette élution s'effectue à 4°C et la colonne d'immuno-affinité est renversée pour obtenir un rendement optimum. Le profil SDS PAGE de la préparation finale obtenue
correspond à ce qui est obtenu à l'aide du protocole classique (voir 1). Il faut noter que la méthode d'élution des protéines adsorbées sur le support d'immuno-affinité est inhibitrice non-réversible de 1•activité SPS mais le rendement de récupé- ration des protéines SPS-reliées est optimal par comparaison avec des essais faits en conditions d'élution native. L'éluat de la colonne d'immuno-affinité est dessalé à l'aide de la colonne de G25, contre un tampon 0,14 % Glycérol, 0,07 % B-mercaptoéthanol, 0,04 % SDS, 0,9 mM TRIS pH 6,8 (tampon d'électrophorèse en conditions réductrices dilué 70 fois) . Après dessalage, la préparation protéique est concentrée 70 fois à l'aide d'un concentrateur sous vide et les protéines SPS sont purifiées par SDS-PAGE (voir plus loin) .
EXEMPLE 1 : Construction d'un ADNc complet codant pour la SPS A) Séquence des polypeptides SPS
Des échantillons d'une préparation de protéine purifiée obtenue comme il est décrit précédemment sont soumis à une électrophorèse en gel d'acrylamide SDS. Après électrophorèse, les bandes de protéines sont détec¬ tées par traitement au chlorure de potassium comme l'ont décrit Bergman et Joernvàll (Eur. Jour. Biochem. (1978) 169, 9-12) et les bandes observées correspondant à des poids molé¬ culaires de 90 kD et 30 kD sont excisées. Les protéines sont électro-éluées de ces fragments de gel à l'aide d'un Concen¬ trateur Electrophorétique selon les recommandations du fabri¬ quant (ISCO ; Lincoln, Nebraska) dans 4 M d'acétate de sodium, pH 8. Après électro-élution, les quantités de pro¬ téines récupérées sont déterminées par comparaison avec une solution de concentration connue d'albumine bovine sérique (BSA) par coloration au Bleu Coomassie. On obtient approxima¬ tivement 30 microgrammes de protéines 30 kD et 75 microgrammes de protéines 90 kD.
Les protéines sont concentrées par précipitation acétoni- que et remises en suspension dans un tampon de 50 mM de carbo¬ nate d'ammonium, pH 8. Digestion tryptique~et purification HPLC sont effectuées comme le décrivent Sturm et Chrispeels (Jour. Biol. Chem. (1987) 2_62_, 13392-13403). Rapidement, la
digestion est effectuée par l'addition de trypsine, et une incubation de deux heures à 37°C. La digestion est ensuite répétée. Les protéines sont concentrées par lyophilisation et remises en suspension dans un tampon de 50 M de phosphate de soudium, pH 2,2. Ce mélange est soumis à une chromatographie phase inverse HPLC par application sur une colonne C18. L'élu- tion est effectuée en utilisant un gradient croissant d'acéto- nitrile. L'élution réalisée par le mélange tampon de phosphate/gradient acétonitrile est suivie spectrophotométri- quement à 214 nm. Les fractions correspondant aux pics d'absorption à 214 nm sont recueillies, lyophilisées, remises en suspension dans de l'acide trifluoroacétique à 0,1 %, appliquées à nouveau à la colonne C18, et éluées en utilisant un gradient d'acétonitrile. L'élution réalisée par le mélange acide trifluoroacétique/gradient acétonitrile est suivie spectrophotométriquement à 214 nm. Les fractions correspondant aux pics d'absorption à 214 nm sont recueillies, lyophilisées, et soumises à une dégradation de protéines de type Edman au moyen d'un séquenceur automatique de protéines (Applied Bio- Systems ; Foster City, California) . Des séquences de 5 pepti¬ des sont obtenues. (Voir figure 3) .
B) Isolation d'ARN de feuilles de maïs
Des feuilles entières et complètement développées sont cueillies sur des plants végétatifs d'hybride 3184 de maïs Pioneer de deux pieds de haut (60,96 cm). Les feuilles sont cueillies tard dans la matinée, congelées dans un bain d'azote liquide, et gardées à -70°C. L'ARN total est isolé selon la méthode de Turpen et Griffith (Biotechniques (1986) 4., 11-15) . Brièvement, 250 g de matériel sont homogénéisés dans 4 M de thiocyanate de guanidine et 2 % de sarcosyl. Le mélange est ensuite centrifugé et le surnageant appelé Lysat clair est déposé sur un coussin de 5,7 M CsCl et centrifugé pendant 5,5 heures à 50.000 tr/min. Le culot d'ARN est dissous dans l'eau, extrait avec du phénol et du chloroforme, et précipité avec de l'éthanol. Le culot résultant est remis en suspension dans l'eau. Le rendement final de l'isolation d'ARN est quan¬ tifié par spectrophotométrie UV. Une suspension saturée de
poudre de cellulose/eau est ajoutée au mélange ARN/eau, à 10 du volume total, pour enlever les polysaccharides résiduels. Après centrifugation, le surnageant contenant l'ARN est appli qué à une colonne d'oligo (dT)-cellulose comme décrit dans Maniatis et al. (Molecular Cloning, A. Laboratory Manual, (1982) Cold Spring Harbor, New-York) . La fraction contenant l'ARN poly(A) est ensuite appliquée à nouveau à la colonne. L fraction éluée contenant l'ARN poly(A) est extraite avec du phénol et l'ARN est précipité avec de l'éthanol. C) Construction et tri d'une banque d'ADNc
La synthèse de l'ADNc est effectuée selon les recommanda tions du fabricant (Système de Synthèse RiboClone™ cDNA par Promega, Madison, Wisconsin) , utilisant cinq microgrammes d'ARN poly(A) comme matrice la transcriptase inverse M-MLV (BRL ; Bethesda, Maryland) est substituée à la transcriptase inverse AMV. Des oligonucléotides adaptateurs EcoRI sont ajoutés à l'ADNc à bouts francs et les fragments résultants sont clones dans un vecteur d'expression (LambdaZAP, Strata- gene ; La Jolla, California) selon les recommandations du fabricant. La banque obtenue contient approximativement 1,5 x 106 transformants.
En utilisant l'information donnée par la séquence des peptides du stade A et la réaction en chaîne de polymérase (PCR), un fragment de 1200 pb correspondant à l'ADNc de la SP est généré. L'ADNc total obtenu à partir d'ARN de feuille de maïs est utilisé comme matrice et des oligonucléotides dégéné rés, synthétisés à partir des données de séquences des pepti¬ des des protéines 30 kD et 90 kD, sont utilisés comme amorce. Ces séries d'amorces sont appelées CD3 et CD4. (Fig. 4). L'utilisation de la série correcte d'amorces, qui est CD3, résulte en un fragment créé par réaction PCR. La réaction de PCR utilisant l'autre série d'amorces, CD4, ne résulte pas en la synthèse d'un fragment. Fig. 5 . La réaction de PCR est effectuée selon les recommandations du fabricant (GeneA p™ DNA Amplification Reagent Kit and DNA Thermal Cycler of Perkin Elmer Cetus ; Norwalk, Connecticut) excepté la réaction qui est poursuivie pendant 30 cycles, et les étapes de réhybrida¬ tion qui sont effectuées à 50°C pendant 1 minute. L'analyse
Southern confirme que la bande de PCR n'est pas un artefact, comme démontré sur la figure 5. La sonde 4K5 est utilisée car la séquence correspondant à cette sonde est supposée être dans le fragment de 1200 pb si ce fragment correspond à la séquence SPS. La sonde hybride à la bande 1200 pb générée par PCR en utilisant la série d'amorces DC3 mais non aux produits PCR générés en utilisant la série d'amorces CD4. (Fig. 5).
Le fragment 1200 pb généré par PCR est marqué avec 32P [32P=phosphore radioactif] (suivant le Random Pri ed DNA Labeling Kit, Boehringer Mannheim, Indianapolis, Indiana) et utilisé comme sonde pour trier approximativement 250.000 plaques d'une banque d'ADNc. Les insertions de clones positifs sont analysées par analyse de restriction avec EcoRI. et les clones possédant les plus longues insertions SPS#3 et SPS#18, sont choisis pour une analyse plus poussée. (Fig. 6) . Un frag¬ ment de 400 pb HindIII/EcoRI de la partie terminale 5' du SPS#3 est isolé, puis marqué avec 32P par marquage au hasard (Random Primed DNA Labeling Kit) et utilisé comme sonde pour retrier la banque. Un nouveau clone, appelé SPS#61, qui remonte beaucoup plus loin en amont que le SPS#3, est isolé. (Fig. 6) .
Pour isoler les clones d'ADNc qui comprennent davantage de région 5' que le SPS#3 ou le SPS#61, une nouvelle banque d'ADNc est préparée (suivant le RiboClone™ cDNA Synthesis System by Promega ; Madison, Wisconsin) utilisant la trans¬ criptase inverse M-MLV au lieu de la transcriptase inverse AMV. Cependant, au lieu d'utiliser l'oligo (dT) comme amorce, une amorce synthétique, 23B, synthétisée à partir de la séquence 5' du clone SPS#61, est utilisée. Ceci résulte en l'obtention d'ADNc qui contiennent seulement les régions en amont de la région 5' du SPS#61. La banque est triée en utili¬ sant comme sonde le fragment EcoRI de SPS#61 marquée au 32P, et 16 plaques sont positives en hybridation. Les clones avec les insertions les plus longues, SPS#77 et SPS#90, sont choisis pour une analyse plus poussée. L'étude de la séquence des ADN de SPS#77 et SPS#90 montre que la région de recouvre¬ ment (de taille supérieure à 100 pb) avec SPS#61 est identi¬ que, et que tous les deux remontent plus haut en amont dans la
région 5 ' . (Fig . 6 ) .
La PCR effectuée en utilisant un ADNc simple brin (obtenue par réaction de la transcriptase inverse sur l'ARNm en utilisant un oligo (dT) pour réaliser l'amorce bicaténaire 5 nécessaire à la transcriptase inverse) comme matrice et des amorces choisies parmi les séquences de SPS#90 et SPS#3, confirment que SPS#90 et SPS#3 viennent de la transcription d même ARNm. Le fragment résultant de cette réaction PCR est de 750 pb de longueur, compatible avec la taille attendue par 10 l'étude de la séquence du ADN. Ce fragment de 750 pb est sous cloné dans un vecteur dérivé de Bluescript sous forme d'un fragment SALI/HinlII. Quatre des sous-clones résultants ont été partiellement séquences et la séquence obtenue est identi que à la séquence du ADN préalablement déterminé. 15
D) Assemblage de la séguence codante de la SPS
Les deux brins de §90, #61, et #3 sont séquences par la méthode de Sanger et aJ fPNAS (1977) 74. ; 5463-5467). La phase de lecture de la SPS déterminé par la connaissance des 20 séquences de peptides, montre que les premiers codons éthio- nine sont placés aux positions 112 pb et 250 pb. Fig. 7. Le codon à 112 pb correspond à une séquence consensus encaryo- tique de démarrage de traduction (Kozak, Cell (1986) 4_4 : 283 292) et est placé 54 pb en aval d'un codon d'arrêt TAG (pb 25 58). Un arrêt traductionnel est trouvé dans le clone SPS#3, à pb 1603. Cependant, un autre clone d'ADNc, obtenu lors du tri initial de la banque d'ADNc (voir Exemple 2), appelé SPS#18, ne présente pas un codon d'arrêt à la position 1603. De ce fait la région pb 1603 du SPS#18 est utilisée pour réaliser l 30 construction finale de longueur complète (voir plus bas) .
La séquence complète codant pour la SPS peut être prépa¬ rée en combinant le fragment de 529 pb BamHI/HindIII du SPS#90, le fragment de 705 pb HindIII du SPS#61, le fragment de 686 pb HindIII du SPS#18, et le fragment de 1476 pb 5 HindIII/EcoRI du SPS#3.
Les cinq séquences des peptides dérivés de SPS 30 kD- et SPS 90 kD- (voir Stade A) sont retrouvées dans la séquence de protéine déduite de 1'étude de la phase ouverte de lecture de
l 'ADNC . (Fig. 7) .
EXEMPLE 2 : Détection de Polypeptides SPS par Antiséra
Spécifiques
Des échantillons de préparations de protéines purifiées obtenus par la méthode décrite précédemment sont soumis à l'électrophorèse en gel d'acrylamide SDS. Les protéines du gel d'acylamides sont fixées et révélées par coloration. Les bandes correspondant aux polypeptides 90 kD et 30 kD sont excisées, broyées et injectées dans des lapins. L'analyse Western (comme décrite par Oberfelder, Focus (1989) 11 (1) : 1-5) montre que les anticorps isolés à partir du sérum du lapin injecté avec le peptide SPS 30 reconnaissent les bandes correspondant aux peptides SPS 30 et SPS 120 sur du gel d'acrylamide SDS. Les anticorps isolés à partir du sérum du lapin injecté avec le peptide SPS 90 reconnaissent les bandes correspondant aux polypeptides SPS 90 et SPS 120. (Fig. 8) . Localisation Immunologique de SPS dans la plante de maïs
Les protéines totales sont extraites de feuilles d'une plante de maïs de 30 jours, cueillies à 11 heures du matin, en les portant à ébullition dans un tampon SDS. Les extraits de protéines sont déposés sur des gels d'acrylamide SDS, en deux répliques. Un gel est coloré au Bleu de Coomassie, alors que l'autre est soumis à l'analyse Western, en utilisant un mélange d'antisera anti SPS30 et anti SPS90 comme sonde. (Fig. 9) . Les bandes les plus intenses apparaissant sur le gel coloré au Bleu de Coomassie sont identifiées comme étant la phosphoénolpyruvate carboxylase (PEPcase) , une enzyme inter¬ venant dans la photosynthèse. La tache Western met en évidence la présence de la SPS. Le profil d'apparition des protéines SPS est très semblable au profil d'apparition des protéines PEPcase pas présent dans les racines, et pas présent dans la section de feuille le plus près de la tige, ni dans les feuilles très jeunes. Ce profil correspond à l'expression de protéines associées à la photosynthèse, et est le diagramme attendu pour la SPS.
EXEMPLE 3 : Construction de vecteurs d'expression
Construction d'un système de relevé de SPS de longueur complète
Un clone SPS#90 (Fig. 6) , est digéré avec HindIII et lié au fragment de 705 pb HindIII du clone SPS#61 pour créer un plasmide contenant la région 5' terminale de la partie codant pour la SPS. Le plasmide résultant est digéré avec BamHI et digéré partiellement avec HindIII, résultant en un fragment de 1340 pb BamHI/HindIII contenant la région 5* terminale de la SPS. La région 3 ' terminale de la partie codant pour la SPS est obtenue en remplaçant le fragment de 686 pb HindIII (posi¬ tions 1340-2036) du clone SPS#3 avec le fragment de 646 pb HindIII du SPS#18 (pour enlever le codon d'arrêt) . Toute la région 3 ' terminale est ensuite récupérée par digestion EcoRI et digestion partielle HindIII, résultant en un fragment 1172 pb HindiII/EçoRI. Ce fragment HindlII/EcoRI, portant la région 3' terminale, est lié au fragment BamHI/EcoRI portant la région 5 ' terminale dans un vecteur dérivé de pUC digéré par BanHI/EcoRI. pour créer un plasmide portant toute la région codant pour la SPS, soit 3406 pb. Construction de la Cassette Promoteur Petite Sous-Unité de la ribulose-l,5-bisphosphate carboxylase de tabac [*2]
La région codant pour la SPS peut être clonée d'une manière commode sous forme d'un fragment Ba HI/EcoRI (pb 106 - pb 3506) dans une cassette promoteur petite sous-unité de tabac (SSU) .
Une cassette promoteur SSU, pour l'expression de la SPS, peut être préparée comme suit. La région promoteur SSU est sortie du PCGN627 (décrit plus bas) sous forme d'un fragment Asp718/Sall. et liée dans un plasmide pCGN1431 digéré par Asp718/Sall (décrit plus bas) , résultant en une cassette contenant le promoteur SSU et la région 3 ' tml séparés par un fragment d'ADN portant des sites de restriction.
Après ligation du fragment d'ADN codant pour la SPS dans la cassette promoteur SSU/tml3 ' , la région SSU/SPS/tml3 ' peut être liée dans un vecteur binaire et intégrée dans un génome de plante par transformation via Agrobacterium tumefaciens.
[*3] PCGN627
Le fragment 3,4 kb ΞcoRI du TSSU3-8 (O'Neal et al.. Nucleic Acids Res (1987) 15. ; 9661-8677) , contenant la région promoteur de la petite sous-unité de la ribulose 1,5-bisphos- phate carboxylase, est clone dans le site EcoRI du M13mpl8 (Yanisch-Perron et _\1. , Gène (1985) 53 : 103-119) pour pro¬ duire un clone M13 8B. L'ADN simple brin de ce phage M13 8B est utilisé comme matrice pour prolonger l'amorce d'oligonu- cléotide "Probe 1" dont la structure est définie dans l'arti¬ cle de O'Neal (O'Neal et al., Nucleic Acids Research (1987) 15. ; 8661-8677) en utilisant le fragment Klenow de l'ADN polymé- rase I. Les produits de cette réaction à la polymérase sont traités avec de la nucléase de haricot mung (Mung Bean Nuclease) et ensuite digérés avec HindIII pour produire un fragment 1450 pb contenant la région promoteur SSU. Ce frag- ment est clone dans PUC18 digéré par HindIII-Smal (Yanisch- Perron et al.., Gène (1985) 5J3. : 103-119) pour produire PCGN625. pCGN625 est digéré par l'enzyme de restriction HindIII, les régions terminales sont remplies avec le fragment Klenow de l'ADN polymérase I et le plasmide ainsi obtenu est re¬ digéré avec 1'enzyme de restriction EcoRI. Le fragment EçoRI/HindIII-rempli contenant la région promoteur SSU est lié par ligation au plasmide pUC18 digéré par Smal/EcoRI pour produire pCGN627. pCGN1431 contient le promoteur double CAMV 35S et la région tml 3 ' avec un site de clonage multiple entre eux. Cette cassette promoteur/terminateur est contenue dans un vecteur dérivé de pUC qui contient un gène de résistance au chloramphénicol au lieu du gène de résistance à 1'ampicilline. La cassette est bordée de sites multiples de restriction pour être d'utilisation aisée. A) Construction de PCGN98 pCGN986 contient le promoteur 35S du virus de la mosaïque de choux fleur (CaMV35) et une région tml-3' du T-DNA avec des sites multiples de restriction entre eux. Le plasmide pCGN986 est dérivé d'une autre cassette, pCGN206, contenant le promo¬ teur de CaMV35S et une région 3' différente, la région 3' terminale VI de la région CaMV. Le promoteur de CaMV35S est
clone sous forme d'un fragment AluI (pb 7144-7734) (Gardner e al. , Nucl. Acids Res. (1981) £ : 2871-2888) dans un site HincII de M13mp7 (Messing et al.. , Nucl. Acids Res (1981) £ : 309-321) pour créer C614. La digestion par l'enzyme de res- triction EcoRI du C614 produit le fragment EcoRI contenant le promoteur 35S qui est clone dans un site de restriction de pUC8 (Vieira et Messing, Gène (1982) £ : 259-268) pour pro¬ duire pCGN147. pCGN148a contenant une région promoteur, un marqueur permettant une sélection (Kanamycine avec 2 ATG's), et une région 3', est préparé par digestion du plasmide pCGN528 avec BglII et insertion du fragment promoteur Ba Hi-BglII du pCGN147. Ce fragment est clone dans le site BglII du pCGN528 en faisant en sorte que le site BglII soit proche du gène de Kanamycine du pCGN528.
Le vecteur navette utilisé pour cette construction de pCGN528, est réalisé comme suit : pCGN535 est obtenu par digestion d'un plasmide contenant Tn5, (qui porte un gène de résistance à la Kanamycine) (Jorgensen et al.. , Mol. Gen. Genêt. (1979) 177 : 65) , avec HindIII-BamHI et par insertion du fragment HindIII-BamHI contenant le gène de résistance à l Kanamycine dans les sites HindIII-BamHI du gène de résistance à la tétracycline de pACYC184 (Chang et Cohen, J. Bacteriol. (1978) 134 : 1141-1156) . pCGN526 est obtenu en inserrant le fragment BamHI 19 du pTiA6 (Thomashow et al. , Cell (1980) £ : 729-739) modifié avec des adaptateurs Xhol au niveau du site Smal, dans le site BamHI du pCGN525. pCGN528 est obtenu en enlevant le petit fragment Xhol suivi d'une nouvelle ligation. Le plasmide pCGN149a est obtenu en clonant le fragment BamHI du pMB9KanXXI portant le gène de résistance à la Kanamy¬ cine dans le site BamHI du pCGN148a. pMB9KanXXI est un vecteur dérivé du plasmide pUC4K (Vieira and Messing, Gène (1982) 1£ : 259-268) auquel il manque le site de restriction Xhol mais qui contient le gène de résistance à la Kanamycine de Tn903 per- mettant une sélection efficace dans Agrobacterium. [*4] pCGN149a est digéré avec HindIII et BamHI et lié avec pUC8 (Vieira and Messing, supra) digéré avec HindIII et BamHI pour produire pCGN169. Ceci élimine le marqueur Kanamycine de
Tn903. pCGN565 et pCGN169 sont tous deux digérés avec HindIII et PstI et religués pour former pCGN203, un plasmide contenant le promoteur de CaMV 35S et une partie de la région 5' termi¬ nale du gène de Kanamycine Tn5 (jusqu'au site PstI) (Jorgensen et al., Mol.Gen. Genêt. (1979) 177 : 65). Une région régula¬ trice 3' est ajoutée au pCGN203 à partir du plasmide pCGN204 (un fragment EcoRI de CaMV (pb 408-6105) contenant la région 3 ' terminale VI clonée dans pUC18 (Gardner et al., Nucl.Acids Res. (1981) £ : 2871-2888) par digestion avec HindIII et PstI et ligation. La cassette résultante, pCGN206, est le plasmide de base pour la construction du pCGN986.
Les séquences t l 3 * du T-DNA de pTiA6 sont sous-clonées à partir du fragment BamHI19 du T-DNA (Thomashow et al.. , Cell (1980) 1£ : 729-739) sous forme d'un fragment BamHI-EcoRI (nucléotides 9062 à 12823, suivant la numérotation de Barker (Barker et al. , Plant Mo. Biol. (1983) 2 : 335-350). Cette séquence est combinée avec l'origine de réplication de pACYC184 (fragment EcoRI-HindII) (Chang and Cohen, J.Bacte- riol. (1978) 134 : 1141-1156) et un marqueur de résistance à la gentamycine du plasmide pLB41, (fragment BamHI-HindII) (D. Figurski) pour produire pCGN417.
Le site unique Smal du pCGN417 (nucléotide 11207 du fragment BamHI19) est changé en un site Sacl en utilisant des adaptateurs et le fragment BamHI-SacI est sous-cloné dans pCGN565 pour donner pCGN971. Le site BamHI du pCGN971 est changé en un site EcoRI en utilisant des adaptateurs pour pro¬ duire pCGN971E. Le fragment EcoRI-SacI du plasmide pCGN971E, contenant la région régulatrice tml 3' est joint au plasmide pCGN206 après digestion par EcoRI et Sacl pour donner pCGN975. La petite partie du gène de résistance à la Kanamycine Tn5 est enlevée de la région terminale 3' du promoteur de CaMV 35S par digestion avec Sali et BglII, en rendant franches les extré¬ mités et en ajoutant des adaptateurs Sali. La cassette finale d'expression pCGN986 contient le promoteur du CaMV 35s suivi de deux sites Sali, d'un site Xbal, BamHI, Smal, Kpnl et de la région tml 3' (nucléotides 11207-9023 du T-DNA). B) Construction de PCGN164
Le fragment AluI du CaMV (pb 7144-7735) (Gardner et al. ,
Nucl.Acids Res. (1981") £ : 2871-2888) est obtenu par digestio avec AluI et clonage dans le site HincII du M13mp7 (Vieira et Messing, Gène (1982) 19. • 259-268) pour créer C614. Une diges tion de C614 par l'enzyme de restriction EcoRI produit le fragment EcoRI contenant le promoteur 35S. Ce fragment est clone dans le site EcoRI du pUC8 (Vieira and Messing, supra) pour produire pCGN146. Pour diminuer légèrement la région promoteur, le site BglII (pb 7670) est traité avec BglII et Bal31 et par la suite un adaptateur BglII est attaché au DNA traité par Bal31 pour produire pCGN147. pCGN147 est digéré avec EcoRI/HphI et le fragment résultant EcoRI-HphI contenant le promoteur 35S est transféré dans un vecteur M13mp8 digéré par EcoRI et Smal (Vieira and Messing, supra) pour créer PCGN164. C) Construction de PCGN638
La digestion de CaMVIO (Gardner, et al., Nucl.Acids Res. (1981) £ : 2871-2888) avec BglII produit un fragment BglII contenant une région promoteur 35S (pb 6493-7670) qui est liée dans le site BamHI du pUC19 (Norrander et al., Gène (1983) 2J5 : 101-106) pour créer pCGN638. D) Construction de pCGN2113 pCGN164 est digéré avec EcoRV et BamHI pour libérer le fragment EcoRV-BamHI contenant une portion du promoteur 35S (pb 7340-7433). Le plasmide pCGN638 est digéré avec HindIII et EcoRV pour libérer un fragment HindiII-EçoRV contenant une portion différente du promoteur 35S (pb 6493-7340) . Ces deux fragments sont liés dans pCGN986 préalablement digéré avec HindIII et BamHI pour enlever le fragment HindIII-BamHI conte¬ nant le promoteur 35S ; cette ligation produit pCGN639, qui contient le squelette du plasmide et la région tml-3' du pCGN986 et les deux fragments du promoteur 35S de pCGN164 et PCGN638. pCGN638 est digéré avec EcoRV et Ddel pour libérer un fragment du promoteur 35S (pb 7070-7340) . Le fragment est traité avec le fragment Klenow de l'ADN polymérase I pour créer des régions terminales franches et est lié dans le site EcoRV du pCGN639 pour produire pCGN2113 ayant le fragment dans la bonne orientation. Le plasmide pCGN2113 a été déposé à l'ATCC (American Type Culture Collection) le 22 mars 1989,
Numéro d'Accession 40587. E) Construction de pCGN1761 pCGN2113 est digéré par l'enzyme de restriction EcoRI le plasmide est lié en présence d'un adapteur synthétique contenant un site Xbal et un site BamHI (l'adapteur contena les extrémités cohésives EcoRI de chaque côté, mais les bas adjacentes sont telles qu'un site EcoRI n'est pas reconstru à cet emplacement) pour produire pCGN2113M. pCGN2113M est digéré totalement par Sacl et ensuite assujetti à une diges tion partielle par BamHI. Cet ADN est ensuite traité avec l'ADN polymérase de T4 pour créer des extrémités franches et un adaptateur EcoRI est lié dans le plasmide à extrémités franches. Après transformation un clone portant un plasmide ayant un site EcoRI entre le promoteur et la région intacte tml-3' est choisi et désigné pCGN1761. F) Construction de pCGN1431
Le fragment SalI-EcoRI de pCGN2113, qui contient la cassette complète promoteur site multiple de restriction - tml 3 » est récupéré par digestion SalI-EcoRI et clone dans l plasmide pCGN565 digéré par SalI-EcoRI pour créer pCGN2120. plasmide pCGN565 est un vecteur de clonage basé sur un vecte pUC8-Cm portant le gène de résistance au chloramphénicol (K.Buckley, Ph.D.Thesis, UC San Diego 1985), mais contenant multi-site de restriction du pUC18 (Yanisch-Perron et al. , Gène (1985) 53 : 103-119) . pCGN2120 est digéré totalement av tl et ensuite lié à nouveau. Un clone ayant éliminé seule¬ ment le fragment PstI-PstI de 858 pb (9207-10065, Barker et al.. 1983 supra) de la région tml 3' est appelé pCGN1431.
Figure 3 : séquences des peptides dérivées de la protéine SPS. Tous les peptides sont orientés N->C terminal.
Figure 4 : structure des oligonucléotides utilisés pour les réactions PCR CD3 et CD4 en relation avec les peptides (les séquences antisens sont présentées en gras) . Les flèches indiquent la direction vers laquelle les oligonucléotides amorceront la réaction catalysée par la polymérase.
Figure 5 A : 1'électrophorèse en gel agarose des réactions PCR CD3 et CD4. Les dimensions sont données en kb.
Figure 5 B : montre une autoradiographie de la tache Southern des réactions CD3 et CD4 relevées à l'aide de la sonde oligo- nucléotique 4K5.
Figure 6 : carte de restriction de l'ADNc codant pour la SPS. La partie supérieure représente la carte de restriction du fragment total d'ADN codant pour la SPS. Les parties infé- rieures représentent la structure des différents clones ayant permis par combinaison d'aboutir à cette carte de restriction. Les codons de début et de fin de traduction sont indiqués.
Figure 7 : séquence de l'ADNc codant pour la SPS. Les séquen- ces des clones SPS 90, PSP 61 et SPS 3 sont fusionnés aux points indiqués sur la figure 4. Les trois phases de lecture ont été traduites. Seule la phase ouverte de lecture cor¬ respondant à la SPS est indiquée sous la séquence nucléotique. Toutes les séquences peptidiques obtenues lors de la purifica- tion et du séquençage de la SPS (peptides de la fig. 3) sont indiquées dans la séquence.
Figure 8 : caractérisation par la technique Western des sera anti-SPS 90 et anti-SPS 30 de lapin. pAS** = sérum non immun, SPS 30 de lapin ; AS** = sérum immunisé, SPS 30 ; pAS* = sérum non immun, SPS 90 de lapin ; AS* •*= sérum immunisé anti SPS 90. Marqueurs de poids moléculaire à gauche,
FEUILLEDEREMPLACEMENT
S = SPS120kd polypeptide ; S* = SPS 90kd polypeptide ; S** -= SPS 30kd polypeptide.
Figure 9 A : gel de protéines totales isolées d'une plante de maïs de 30 jours, coloré au Bleu de Coomassie.
M = marqueur de taille ; R = racines ; 1-8 = nombre de feuilles en comptant à partir du pied de la plante. La feuille 5 a été coupée en 5 segments à partir du bout de la feuille (5a) jusqu'à l'extrémité de la gaine (5e). PEP = carboxylase phosphoénolpyruvate.
Figure 9 B : montre les résultats d'une analyse Western utili¬ sant un mélange de sera anti-SPS 30 et anti-SPS 90 dirigé contre les protéines totales isolées d'une plante de maïs de 30 jours. Le signal correspondant à la SPS apparait au niveau 120-140kd.
Claims
REVENDICATIONS
1) Les protéines ayant l'activité de la saccharose phosphate synthetase (SPS) .
2) En tant que protéine définie à la revendication 1, la saccharose phosphate synthetase.
3) En tant que protéine définie à la revendication 2, la saccharose phosphate synthetase de plante.
4) La saccharose phosphate synthetase de maïs.
5) Les protéines selon l'une quelconque des revendications précédentes de poids moléculaire de l'ordre de 110 à 130 kD se présentant sous forme de monomère, dimère ou tétramère et leurs dérivés ayant au moins un peptide dont la séquence en acides aminés est la suivante :
ThvTrpI1eL s TyrValValGluLeuAlaArg
SerMetProProIleTrpAlaGluValMetArg
LeuArgProAspGlnAspTyrLeuMetHis11eserHisArg
TrpSerHisAspGlyAlaArg
6) Protéines selon la revendication 5 ayant la séquence en acides aminés décrite figure 7.
7) Dérivés des protéines selon les revendications 1 à 6, modifiés par les techniques du génie génétique et présentant l'activité de la SPS.
8) Procédé de préparation de protéines selon l'un quelconque des revendications 1 à 7 caractérisé en ce que : a) on fait un extrait à partir de parties des plantes concer¬ nées à basse température par broyage, centrifugation et fil- tration. b) on enrichit en protéine SPS l'extrait obtenu par précipita- tion dans un solvant approprié, centrifugation et solubilisa- tion du précipité obtenu dans une solution tampon. c) on purifie la protéine active ainsi obtenue par chromato¬ graphie et si désiré, d) on prépare des hybridomes et des anticorps monoclonaux à partir d'une solution antigenique obtenue à partir d'une des préparations obtenues aux paragraphes a) , b) , et c) ci-dessus. e) crible les hybridomes et sélectionne le ou les anticorps monoclonaux dirigés spécifiquement contre la SPS.
g) purifie la SPS obtenue au moyen des anticorps ainsi préparés.
9) Procédé de préparation de la SPS de maïs selon la revendi¬ cation 8, caractérisé en ce que : a) on fait un extrait à partir de parties de plantes de maïs conservées à basse température par broyage, centrifugation et filtration. b) on enrichit en protéine l'extrait obtenu par précipitation dans le polyéthylèneglycol, centrifugation et solubilisation du précipité obtenu dans une solution tampon. c) on purifie la protéine SPS ainsi obtenu par chromatographie d'échange d'anion basse pression, puis par chromatographie sur héparine Sépharose, puis par chromatographie d'échange d'anion haute pression. d) on purifie les fractions actives par passage sur 2 colonnes de chromatographie haute pression, et, si désiré, e) on prépare des hybridomes et des anticorps monoclonaux à partir d'une solution antigenique obtenue à partir d'une préparation a) , b) , c) . f) crible les hybridomes et sélectionne les anticorps dirigés spécifiquement contre la SPS. g) purifie la SPS obtenue précédemment au moyen des anticorps ainsi préparés.
10) Lignées cellulaires d1hybridomes obtenus selon la revendi- cation 8 ou 9.
11) Lignées cellulaires d' ybridomes selon la revendication 10, désignés par :
SPA2-2-3 SPB3-2-19
SPA2-2-22 SPB5-2-10 SPA2-2-25 SPB5-4-2
SPB13-1-7 SPB13-2-2
12) Anticorps monoclonaux dirigés spécifiquement conrre les protéines définies selon l'une quelconque des revendications 1 à 7.
13) Anticorps selon la revendication 12 dirigés spécifiquement contre la SPS de maïs.
14) Procédé de préparation des protéines selon l'une quel-
40 conque des revendications l à 7, caractérisé en ce que 1'on fait passer une préparation contenant les dites protéines sur une colonne de chromatographie renfermant des anticorps mono¬ clonaux selon les revendications 12 ou 13 dirigés spécifique- 5 ment contre les dites protéines et obtient ainsi les pro¬ téines recherchées.
15) Les ADNc codant pour protéines des revendications 1 à 7.
16) L'ADNC selon la revendication 15 codant pour la SPS de maïs.
10 17) L'ADNc selon la revendication 16 ayant la séquence en nucléotides, décrite figure 7.
18) L'ADN génomique comprenant la partie codant pour les pro¬ téines définies précédemment et les séquences nécessaires à l'expression et la régulation de cette protéine dans les
15 plantes.
19) Procédé pour modifier le taux d'expression de la SPS dans une plante, caractérisé en ce que l'on transforme les cellules de la dite plante au moyen d'un vecteur d'expression renfer¬ mant l'ADNc défini aux revendications 16 et 17.
20 20) Vecteur permettant l'expression de la protéine SPS sous le contrôle d'un promoteur capable de diriger l'expression et de préférence la surexpression de la dite SPS dans une cellule de plante et d'une région 3' comportant les signaux de régulation de transcription pour l'expression du gène codant pour la SPS.
25 21) Plantes obtenues selon le procédé 19 ayant un schéma de partage du carbone modifié. 22) Semences des plantes de la revendication 21.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR919105843A BR9105843A (pt) | 1990-07-20 | 1991-07-18 | Sacarose fosfato sintetase (sps),seu processo de preparacao,seu adn complementar e a utilizacao do adn complementar para modificar a expressao da sps nas celulas vegetais |
AU83945/91A AU653165B2 (en) | 1990-07-20 | 1991-07-18 | Sucrose phosphate synthetase (SPS), a preparation method and cDNA therefor, and use of the cDNA for modifying SPS expression in plant cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP90402084A EP0466995B1 (fr) | 1990-07-20 | 1990-07-20 | Saccharose phosphate Synthétase (SPS), son procédé de préparation, son ADNc et utilisation de l'ADNc pour modifier l'expression de la SPS dans les cellules végétales |
EP90402084.9 | 1990-07-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO1992001782A2 true WO1992001782A2 (fr) | 1992-02-06 |
WO1992001782A3 WO1992001782A3 (fr) | 1992-08-20 |
Family
ID=8205740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR1991/000593 WO1992001782A2 (fr) | 1990-07-20 | 1991-07-18 | Sucrose phosphate synthetase (sps), son procede de preparation, son adn complementaire et l'utilisation de l'adn complementaire pour modifier l'expression de la sps dans les cellules vegetales |
Country Status (8)
Country | Link |
---|---|
US (1) | US5917126A (fr) |
EP (2) | EP0807685A3 (fr) |
JP (1) | JP3481939B2 (fr) |
AT (1) | ATE258223T1 (fr) |
AU (1) | AU653165B2 (fr) |
BR (1) | BR9105843A (fr) |
DE (1) | DE69034128D1 (fr) |
WO (1) | WO1992001782A2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0530978A3 (en) * | 1991-08-08 | 1993-04-14 | Advanced Technologies (Cambridge) Limited | Modification of sucrose accumulation |
US7012171B2 (en) | 1989-12-21 | 2006-03-14 | Advanced Technologies Cambridge Limited | Modification of plant metabolism |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE38446E1 (en) | 1990-07-20 | 2004-02-24 | Calgene, Llc. | Sucrose phosphate synthase (SPS), its process for preparation its cDNA, and utilization of cDNA to modify the expression of SPS in plant cells |
BR9106688A (pt) * | 1991-03-18 | 1993-07-20 | Roussel Uclaf | Sintase de fosfato de sacarose (sps),seu processo de preparacao,seu cdna,e utilizacao do cdna para modificar a expressao da sps em celulas vegetais |
DE4220758A1 (de) * | 1992-06-24 | 1994-01-05 | Inst Genbiologische Forschung | DNA-Sequenz und Plasmide zur Herstellung von Pflanzen mit veränderter Saccharose-Konzentration |
DE4317596A1 (de) * | 1993-05-24 | 1994-12-01 | Schering Ag | DNA-Sequenzen und Plasmide zur Herstellung von Zuckerrüben mit veränderter Saccharose-Konzentration |
WO1994028146A2 (fr) * | 1993-05-24 | 1994-12-08 | Hoechst Schering Agrevo Gmbh | Sequences d'adn et plasmides destines a la production d'une betterave a concentration de sucre modifiee |
CN1155713C (zh) * | 1995-04-06 | 2004-06-30 | 塞迷尼思蔬菜种子公司 | 选择转基因植物细胞的方法 |
DE19632121C2 (de) * | 1996-08-08 | 1998-08-27 | Max Planck Gesellschaft | Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung |
AU3788099A (en) * | 1998-05-07 | 1999-11-23 | E.I. Du Pont De Nemours And Company | Sucrose phosphate synthase |
US20040215322A1 (en) * | 2001-07-06 | 2004-10-28 | Andrew Kerr | Stent/graft assembly |
CN113604414A (zh) * | 2021-08-23 | 2021-11-05 | 新乡医学院 | 生产天麻素的重组基因工程菌、构建方法及应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU544160B2 (en) * | 1981-03-18 | 1985-05-16 | Amp Incorporated | Electrical connector assembly |
AU644619B2 (en) * | 1989-12-21 | 1993-12-16 | Advanced Technologies (Cambridge) Limited | Modification of plant metabolism |
GB9023480D0 (en) * | 1990-10-29 | 1990-12-12 | Cambridge Technology & Science | Assay |
-
1990
- 1990-07-20 EP EP97201062A patent/EP0807685A3/fr not_active Withdrawn
- 1990-07-20 EP EP90402084A patent/EP0466995B1/fr not_active Expired - Lifetime
- 1990-07-20 AT AT90402084T patent/ATE258223T1/de active
- 1990-07-20 DE DE69034128T patent/DE69034128D1/de not_active Expired - Lifetime
-
1991
- 1991-07-18 AU AU83945/91A patent/AU653165B2/en not_active Ceased
- 1991-07-18 WO PCT/FR1991/000593 patent/WO1992001782A2/fr unknown
- 1991-07-18 BR BR919105843A patent/BR9105843A/pt not_active IP Right Cessation
- 1991-07-18 JP JP51421291A patent/JP3481939B2/ja not_active Expired - Fee Related
-
1995
- 1995-04-26 US US08/429,054 patent/US5917126A/en not_active Expired - Lifetime
Non-Patent Citations (8)
Title |
---|
Biotechnology, vol. 5, juillet 1987, (New York, US), J.J. FILLATTI et al.: "Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector", pages 726-730, voir l'article en entier (citée dans la demande) * |
Journal of Cellular Biochemistry, supplement 15A, janvier 1991, (New York, US), T.A. VOELKER et al.: "Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants: Protein purification and cloning of its cDNA", page 84, résumé no. A 361, voir le résumé en entier * |
Physiologica Plantarium, vol. 77, 1989, (Copenhagen, DK), M. STITT et al.: "Photosynthetic carbon partitioning: its regulation and possibilities for manipulation", pages 633-641, voir l'article en entier, particulierement page 641 * |
Physiology Plantarium, vol. 70, 1987, (Copenhagen, DK), W. KALT-TORRES et al.: "Isolation and characterization of multiple forms of maize leaf sucrose-phosphate synthase", pages 653-658, voir l'article en entier * |
Plant Molecular Biology, vol. 14, no. 2, février 1990, (Dordrecht, NL), K.E. McBRIDE et al.: "Improved binary vectors for Agrobacterium-mediated plant transformation", pages 269-276, voir l'article en entier (citée dans la demande) * |
Plant Physiology, vol. 89, no. 1989, American Society of Plant Physiologists, (Rockville, MD, US), J.L. WALKER et al.: "Purification and preliminary characterization of sucrose-phosphate synthase using monoclonal antibodies", pages 518-524, voir l'article en entier (citée dans la demande) * |
Plant Physiology, vol. 96, no. 2, juin 1991, American Society of Plant Physiologists, (Rockville, MD, US), J.-M. BRUNEAU et al.: "Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants", pages 473-478, voir l'article en entier * |
Planta, vol. 170, 1987, (Berlin, DE), P.S. KERR et al.: "Resolution of two molecular forms of sucrose-phosphate synthase from maize, soybean and spinach leaves", pages 515-519, voir l'article en entier (citée dans la demande) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7012171B2 (en) | 1989-12-21 | 2006-03-14 | Advanced Technologies Cambridge Limited | Modification of plant metabolism |
EP0530978A3 (en) * | 1991-08-08 | 1993-04-14 | Advanced Technologies (Cambridge) Limited | Modification of sucrose accumulation |
US6294713B1 (en) | 1991-08-08 | 2001-09-25 | Advanced Technologies (Cambridge) Limited | Modification of sucrose accumulation in the tubers of potatoes |
Also Published As
Publication number | Publication date |
---|---|
DE69034128D1 (de) | 2004-02-26 |
EP0807685A2 (fr) | 1997-11-19 |
JP3481939B2 (ja) | 2003-12-22 |
US5917126A (en) | 1999-06-29 |
EP0466995B1 (fr) | 2004-01-21 |
WO1992001782A3 (fr) | 1992-08-20 |
EP0807685A3 (fr) | 1998-06-17 |
ATE258223T1 (de) | 2004-02-15 |
EP0466995A2 (fr) | 1992-01-22 |
BR9105843A (pt) | 1992-11-03 |
JPH05502169A (ja) | 1993-04-22 |
EP0466995A3 (en) | 1992-04-08 |
AU8394591A (en) | 1992-02-18 |
AU653165B2 (en) | 1994-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE38446E1 (en) | Sucrose phosphate synthase (SPS), its process for preparation its cDNA, and utilization of cDNA to modify the expression of SPS in plant cells | |
Schuster et al. | Chloroplast mRNA 3′ end processing requires a nuclear‐encoded RNA‐binding protein. | |
EP0728213B2 (fr) | Cultures transgeniques a accumulation de fructosane et procedes pour leur production | |
Rottmann et al. | 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence | |
AU685065B2 (en) | Novel plants and processes for obtaining them | |
CA2104123C (fr) | Plasmides contenant des sequences d'adn qui modifient la concentration et la composition des carbohydrates chez les plantes, cellules de plantes et plantes contenant ces plasmides | |
US6124528A (en) | Modification of soluble solids in fruit using sucrose phosphate synthase encoding sequence | |
WO1992001782A2 (fr) | Sucrose phosphate synthetase (sps), son procede de preparation, son adn complementaire et l'utilisation de l'adn complementaire pour modifier l'expression de la sps dans les cellules vegetales | |
WO1998005785A1 (fr) | Phytases de plantes et applications biotechnologiques | |
US5792920A (en) | Plants with altered ability to synthesize starch and process for obtaining them | |
US20030074695A1 (en) | Plant diacylglycerol O-acyltransferase and uses thereof | |
JPH05236971A (ja) | 習性及び収量において変更されたトランスジェニック植物を作製するプラスミド | |
WO1997015678A2 (fr) | Modification de solides solubles a l'aide d'une sequence codant la phosphate synthase de saccharose | |
EP0533849B1 (fr) | SYNTHASE DE PHOSPHATE DE SUCROSE (SPS), PROCEDE DE PREPARATION, SON ADNc ET UTILISATION DE L'ADNc POUR MODIFIER L'EXPRESSION DE SPS DANS LES CELLULES VEGETALES | |
US5665892A (en) | Sucrose phosphate synthase (SPS), its process for preparation its cDNA, and utilization of cDNA to modify the expression of SPS in plant cells | |
US5714365A (en) | Sucrose phosphate synthetase isolated from maize | |
US10006039B2 (en) | Production of oil in vegetative tissues | |
EP0917564A2 (fr) | Proteines pouvant etre induites en cas de privation de phosphate | |
US6815580B1 (en) | Expression of the Chlorella sorokiniana sedoheptulose 1,7-bisphosphatase in transgenic plants | |
CN107529762A (zh) | 新型黄曲霉毒素和真菌感染控制方法 | |
JP2001526042A (ja) | 遺伝学的方法 | |
US6783986B1 (en) | Sucrose phosphate synthetase (SPS), a preparation method and cDNA therefor, and use of the cDNA for modifying SPS expression in plant cells | |
AU726010B2 (en) | Modification of soluble solids using sucrose phosphate synthase encoding sequence | |
JP2003500060A (ja) | 目的の組換えポリペプチドを含有するデンプン顆粒、それを得る方法、及びその用途 | |
AU1668101A (en) | Modification of soluble solids using sucrose phosphate synthase encoding sequence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AU BR JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AU BR JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |