+

WO1991010151A1 - Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore - Google Patents

Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore Download PDF

Info

Publication number
WO1991010151A1
WO1991010151A1 PCT/US1990/007640 US9007640W WO9110151A1 WO 1991010151 A1 WO1991010151 A1 WO 1991010151A1 US 9007640 W US9007640 W US 9007640W WO 9110151 A1 WO9110151 A1 WO 9110151A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
temperature
longitudinal
fiber
core
Prior art date
Application number
PCT/US1990/007640
Other languages
English (en)
Inventor
William W. Morey
Walter L. Glomb
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Priority to EP91903135A priority Critical patent/EP0507877B1/fr
Priority to JP50331191A priority patent/JP3187417B2/ja
Priority to DE69020167T priority patent/DE69020167T2/de
Publication of WO1991010151A1 publication Critical patent/WO1991010151A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • G02B6/29322Diffractive elements of the tunable type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/0218Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29398Temperature insensitivity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02195Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
    • G02B6/022Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper

Definitions

  • the present invention relates to optical filters in general, and more particularly to improved accuracy filtering devices including Bragg filters incorporated in optical waveguides, especially in optical fibers.
  • the grating is oriented normal to the fiber axis so that it reflects, of the light launched into the fiber core for guided propagation therein in a propagation direction, only that having a wavelength within a very narrow range, back along the fiber axis opposite to the original propagation direction so that such reflected light is guided in the core to the point at which the original light had been launched into the fiber core.
  • this grating is substantially transparent to light at wavelengths outside the aforementioned narrow band so that it does not affect the further propagation of such other light.
  • the incorporated periodic grating of this kind thus produces a narrow transmission notch and a commensurately narrow reflection peak in the spectrum of the light propagating in the optical fiber in one or the other of its longitudinal directions.
  • the frequency of the light affected in this manner by the incorporated periodic grating is related to the periodicity of the grating in a manner explained in the above patent.
  • the optical fiber with the incorporated grating filter obtained in the above manner is well suited for use as a strain or temperature sensor because the frequency of the light reflected by the grating varies either with the strain to which the grating region is subjected, or with the temperature of the grating region, in a clearly defined relationship, which is substantially linear at least within the range of interest, to either one of these parameters.
  • Still another object of the present invention is so to develop the filter device of the type here under consideration as to substantially eliminate the influence of temperature changes on the filter wavelength. It is yet another object of the present invention to devise a device of the above type which maintains its operation at a selected wavelength, or which can be tuned to different wavelengths, without the ambient temperature affecting the result.
  • a concomitant object of the present invention is design the device of the above type in such a manner as to be relatively simple in construction, inexpensive to manufacture, easy to use, and yet reliable in operation.
  • a temperature compensated embedded grating optical waveguide light filtering device which includes an optical waveguide including an elongated core having two longitudinally spaced end portions, and means for guiding light in an elongated path along a longitudinal axis of the core.
  • the core includes a portion of a predetermined limited length at a location remote from its end portions and has embedded therein a multitude of grating elements extending with a substantially equal longitudinal spacing substantially normal to the longitudinal axis and collectively constituting a grating that reflects, of the light propagating in the path toward and reaching the grating elements, that of a wavelength within a narrow range about a central wavelength determined by the spacing of the grating elements and by the index of refraction of the material of the core as influenced by the temperature of and longitudinal strains applied to the grating, back into the path for longitudinal propagation therein opposite to the original propagation direction.
  • the device further includes means for applying to the fiber longitudinal strains the magnitude of which varies with temperature in such a manner that the changes in the central wavelength that are attributable to the changes in the longitudinal strains substantially compensate for those attributable to the changes in the temperature of the grating.
  • Figure 1 is an axial sectional view of an optical fiber having a wavelength selective grating region embedded in its core;
  • Figure 2 is a graphic representation of the dependency of transmissivity of the grating region of the optical fiber of Figure 1 on wavelength under selected temperature and strain conditions;
  • Figure 3 is a partially sectioned side elevational view of a temperature compensated filter device of the present invention which includes, in addition to the optical fiber of Figure 1, two compensating members that cooperate with one another and with the fiber in such a manner that tensile stresses applied thereby to the fiber cause the wavelength at which the grating region is reflective to be substantially independent of temperature;
  • Figure 4 is a view similar to that of Figure 3 but showing a modified construction of the device in which the fiber is subjected to compressive rather than tensile stresses.
  • the waveguide 10 has been used therein to identify an optical waveguide.
  • the waveguide 10 is shown to be configured as an optical fiber of which only a relatively short longitudinal portion is depicted and which includes a fiber core 11 and a fiber cladding 12 surrounding the fiber core 11.
  • the fiber core 11 incorporates a grating region 13 that includes a multitude of grating elements 14 each extending substantially normal to the longitudinal axis of the core 11.
  • the grating elements 14 are equidistantly spaced from one another as considered in the longitudinal direction of the optical fiber 10.
  • the grating elements 14 are advantageously formed in the core 11 by the method disclosed in the aforementioned U. S. Patent No. 4,725,110 the disclosure of which is incorporated herein by reference to the extent needed for understanding how the grating elements 14 of the optical waveguide of the present invention can be produced in the core 11.
  • the grating region 13 is produced in this manner, consecutive ones of the grating elements 14 are present at the same periodic spacings throughout the grating region 13 but not in regions of the fiber core 11 that longitudinally adjoin the respective ends of the grating region 14.
  • 576.2 nanometers.
  • the wavelength ⁇ changes with temperature, on the one hand, and with optical fiber strain, on the other hand. So, for instance, as far as the temperature dependency is concerned, a frequency shift of approximately 5.37 GHz/°C has been measured when using optical fiber incorporated grating region 13 the spacing of the grating elements 14 of which is selected to have the stopband 16 at an operating wavelength of about 580 nm.
  • the Bragg filter frequency is dependent on the length change and the attendant strain optic effect when the grating region 13 is subjected to tension or compression; so, for instance, measurements made on Bragg gratings subjected to tension have given frequency shifts of approximately 40.1 GHz/psi or .418 GHz/microstrain.
  • a fiber optic filter device 20 of the present invention is shown to include as its main components, in addition to a portion 17 of the optical fiber 10 that includes the embedded grating 13, a first compensating member 21 and a second compensating member 22.
  • the optical fiber 10 is connected, at the respective ends of the fiber portion 17, to a bridge portion 25 of the compensating member 21 and to the projection 24 of the compensating member 22, respectively, by respective connecting members 26 and 27.
  • the connecting members 26 and 27 may be of the mechanical type, such as clamps or the like, or they may be constituted by respective bodies, layers or pads of adhesive, solder or the like. In this configuration the fiber is advantageously either coated with a metal or ceramic protective buffer or bonded inside a small tube made of, for instance, silica.
  • the connecting members 26 and 27 define the length (L 3 ) of the fiber section 17 that spans the distance between the attachment points of the optical fiber 10 to the compensating members 21 and 22 and rigidly connect the fiber section 17 with the compensating members 21 and 22.
  • the compensating members 21 and 22 further have respective cooperating portions 28 and 29 which are rigidly connected or integral with the bridging portion 25 and with the projection 26, respectively, and are juxtaposed with one another in the assembled condition of the device 20.
  • the compensating members 21 and 22 are connected with one another by respective preloading members 30, such as, as illustrated, screws with fine pitch threads which pass through respective unthreaded bores in the portions 29 and are threaded into corresponding threaded bores of the portions 28.
  • one of the portions 28 of the compensating member 21 is shown to be provided, at its region that is juxtaposed with the corresponding portion 29 of the compensating member 22, with integral spring contacts 31 that are in contact with the portion 29 in the operating condition of the device 20.
  • the spring contacts 31 are caused to resiliently yield with the result that the forces exerted on the compensating member 22 by the preloading members 30 and by the optical fiber 10, on the one hand, and by the spring contacts 31, on the other hand, establish an equilibrium, and thus hold the compensating member 22, in any selected position in an operating range with respect to the compensating member 21. It may be seen that, inasmuch as the fiber attachment points constituted by the connecting members 26 and 27 are spaced from a contact plane between the compensating members 21 and 22 by respective distances L 1 and L 2 and the distance L 3 is the difference between the distances L 1 and L 2 , it is possible to change the distance L 3 by simply tightening or loosening the preloading members 30.
  • the section 17 of the optical fiber 10 can be subjected to tensile preloading stresses simply by first tightening the preloading members 30 to the extent needed for the compensating member 22 to reach its position at the end of the desired operating range relative to the compensating member 21, followed by connecting the optical fiber 10 in a substantially taut condition between the aforementioned attachment points to the compensating members 21 and 22 by means of the connecting members 26 and 27, and then to loosen the preloading members 30 to the extent needed for the grating region 13 to be reflective to light in the narrow range around the desired wavelength ⁇ .
  • the effect of differential thermal expansions between the materials of the compensating members 21 and 22 is being used to partially relieve the tension applied to the fiber portion 17 with a temperature increase (and vice versa on a temperature decrease) , to thus balance out or compensate the change in the frequency of the filter 13 with the changing temperature.
  • the rate of relieving tension can be chosen in such a manner, by choosing materials with appropriate thermal expansion coefficients for the compensating members 21 and 22 and by adjusting the geometry, as to hold the frequency of the Bragg filter 13 constant.
  • the material of the compensating member 22 has a larger temperature coefficient of expansion than the material of the compensating member 21.
  • the tensile stress of the fiber portion 17 containing the filter or grating region 13 will be relieved on a temperature increase and increased on a temperature drop.
  • the attached fiber portion 17 is preloaded in tension with a mechanical adjustment at the junction between the two compensating members 21 and 22.
  • the mechanical tension adjustment could be used to set or tune the filter 13 to any desired or standard frequency.
  • the material expansion constants and lengths required to cancel the temperature effect can be calculated as follows:
  • the free space Bragg wavelength is given by:
  • ⁇ L 3 ( ⁇ 1 L 1 - ⁇ 2 L 2 - ⁇ f L 3 ) ⁇ T
  • ⁇ / ⁇ T ⁇ f + ⁇ + (1 - p e ) ⁇ 1 L 1 /L 3 - ⁇ 2 L 2 /L 3 - ⁇ f ⁇
  • the compensating members 21 and 22 could be cylindrical, in which case they would be provided with internal passages for the passage of the optical fiber 10 therethrough.
  • the compensating or preloading device 20' is constructed to place the fiber portion 17' containing the grating 13' under compression.
  • the Bragg filter portion 17' is confined in the interior of, and advantageously is bonded along its length to the inside of, a small tube 32' made of, for instance, silica.
  • the tube 32' is placed between the compensating members 21' and 22' that or made of two different materials, so that compressive stresses are applied to the filter region
  • the filter region 13' is advantageously preloaded, this time in compression, to handle both positive and negative ambient temperature changes.
  • Preloading accomplished in the same manner as described in conjunction with the first embodiment, could also be used to tune, scan, or adjust the frequency of the filter region 13'.
  • the temperature compensation rate would be set by choosing materials with the appropriate expansion coefficients for the compensating members 21' and 22' and the inside and outside diameter of the silica tube 32' to which the fiber portion 17' may be bonded.
  • the compensating members 21 and 22, or 21' and 22' could be made cylindrical.
  • the silica tube 32'containing the bonded fiber portion 17' preferably lies along the center line of the device 20'.
  • the fiber 10 or 10' provided with the Bragg filter grating 13 or 13' enters and exits through respective holes situated in the centers of the cylindrical preloading members 21 and 22 or 21' and 22'.
  • fiber optic connectors 33' and 34' could be placed on the ends of the cylindrical compensator 20' (or 20), making it an independent device that can be assembled with other components of an optical system.
  • the thermally compensated optical filter arrangements of the present invention are capable of a wide variety of uses in the optical field.
  • they could be used as wavelength standards, and in stabilizing the emission frequency of laser diodes used as light sources or as local oscillators for coherent communcations or multiplexed data links.
  • Such filter arrangements could also be used in fiber optic sensor systems to measure changes in sensor signals or for sensor stabilized emission sources.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

Un dispositif de filtrage de lumière pour guide d'ondes optique (10) à réseau de diffraction (13) intégré à compensation thermique, comprend une fibre optique ayant une âme allongée (11), dans laquelle de la lumière est guidée vers une partie d'âme d'une longueur limitée prédéterminée, dans laquelle est intégrée une multitude d'éléments de diffraction (14) s'étendant avec un espacement longitudinal égal, sensiblement vertical par rapport à l'axe longitudinal, et constituant collectivement un réseau de diffraction réfléchissant la lumière se propageant dans le chemin conduisant vers les éléments de diffraction et atteignant ces derniers, dont la longueur d'ondes se situe dans une plage étroite autour d'une longueur d'ondes centrale déterminée par l'espacement des éléments de diffraction et par l'indice de réfraction du matériau de l'âme, selon l'influence exercée par la température du réseau de diffraction et selon les contraintes longitudinales appliquées à ce dernier, en retour dans le chemin, afin d'y effectuer une propagation longitudinale opposée au sens de propagation d'origine. Chaque extrémité de la partie de fibre est fixée à un élément différent de deux éléments de compensation réalisés en matériaux dont les coefficients de dilatation thermique, l'un par rapport à l'autre et par rapport à celui du matériau fibreux, sont tels qu'ils soumettent la fibre à des contraintes longitudinales dont l'ampleur varie avec la température, de manière que les changements se produisant dans la longueur d'ondes centrale, imputables aux changements se produisant dans les contraintes longitudinales, compensent sensiblement ceux imputables aux changements se produisant dans la température du réseau de diffraction.
PCT/US1990/007640 1989-12-26 1990-12-21 Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore WO1991010151A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP91903135A EP0507877B1 (fr) 1989-12-26 1990-12-21 Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore
JP50331191A JP3187417B2 (ja) 1989-12-26 1990-12-21 温度補償埋設回折格子光導波路光フィルタ装置
DE69020167T DE69020167T2 (de) 1989-12-26 1990-12-21 Optische wellenleitervorrichtung mit eingebautem temperaturkompensiertem braggfilter.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/456,440 US5042898A (en) 1989-12-26 1989-12-26 Incorporated Bragg filter temperature compensated optical waveguide device
US456,440 1989-12-26

Publications (1)

Publication Number Publication Date
WO1991010151A1 true WO1991010151A1 (fr) 1991-07-11

Family

ID=23812777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/007640 WO1991010151A1 (fr) 1989-12-26 1990-12-21 Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore

Country Status (5)

Country Link
US (1) US5042898A (fr)
EP (1) EP0507877B1 (fr)
JP (1) JP3187417B2 (fr)
DE (1) DE69020167T2 (fr)
WO (1) WO1991010151A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650083A3 (fr) * 1993-10-22 1995-08-23 At & T Corp Empaquetage pour fibre optique.
WO1996010854A1 (fr) * 1994-09-30 1996-04-11 United Technologies Corporation Laser a fibre accorde par compression
WO1996010765A1 (fr) * 1994-09-30 1996-04-11 United Technologies Corporation Reseau de bragg accordable par compression
EP0736783A3 (fr) * 1995-04-07 1998-06-10 Sumitomo Electric Industries, Ltd. Procédé pour créer une répartition de l'indice de réfraction dans une voie optique filtre optique, et méthode pour l'utiliser
WO1998059267A1 (fr) * 1997-06-19 1998-12-30 Uniphase Fibre Components Pty, Limited Boitier pour reseau de bragg, stable en temperature et a post-reglage permettant un ajustement precis de la frequence centrale
FR2772488A1 (fr) * 1997-12-16 1999-06-18 France Telecom Dispositif de stabilisation d'un reseau de bragg vis a vis de la temperature, comportant deux materiaux de coefficients de dilatation thermique eloignes l'un de l'autre
WO2000054082A1 (fr) * 1999-03-10 2000-09-14 Jds Uniphase Corporation Mecanisme de commande de tension pour dispositifs a reseaux de bragg
AU725267B2 (en) * 1997-06-19 2000-10-12 Jds Uniphase Corporation Temperature stable bragg grating package with post tuning for accurate setting of center frequency
JP2000292620A (ja) * 1999-04-06 2000-10-20 Fujikura Ltd 温度補償型光ファイバブラッググレーティング
WO2001001174A1 (fr) * 1999-06-29 2001-01-04 Mitsubishi Cable Industries, Ltd. Procede de fabrication de reseau de fibres, composant pour communication optique et capteur de temperature
JP3378203B2 (ja) 1997-10-03 2003-02-17 ルーセント テクノロジーズ インコーポレイテッド 光学装置

Families Citing this family (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123070A (en) * 1990-09-10 1992-06-16 Tacan Corporation Method of monolithic temperature-stabilization of a laser diode by evanescent coupling to a temperature stable grating
US5367588A (en) * 1992-10-29 1994-11-22 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Communications Method of fabricating Bragg gratings using a silica glass phase grating mask and mask used by same
US5104209A (en) * 1991-02-19 1992-04-14 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Communications Method of creating an index grating in an optical fiber and a mode converter using the index grating
US5237576A (en) * 1992-05-05 1993-08-17 At&T Bell Laboratories Article comprising an optical fiber laser
US5703978A (en) * 1995-10-04 1997-12-30 Lucent Technologies Inc. Temperature insensitive long-period fiber grating devices
KR100357247B1 (ko) * 1995-10-16 2003-01-24 스미토모덴키고교가부시키가이샤 광파이버회절격자및그제조방법및레이저광원
AU711790B2 (en) * 1995-11-20 1999-10-21 Nippon Telegraph & Telephone Corporation Optical connector
US5647039A (en) * 1995-12-14 1997-07-08 Lucent Technologies Inc. Optical switching system and devices using a long period grating
SE9504601L (sv) * 1995-12-22 1997-04-21 Flygtekniska Foersoeksanstalte En fiberoptisk sensor i form av en Fabry-Pérot-interferometer med det ena eller båda strålreflekterande elementen utförda som ett Bragg-gitter
US7254297B1 (en) 1996-01-16 2007-08-07 Corning Incorporated Athermal optical devices employing negative expansion substrates
US6490394B1 (en) 1996-01-16 2002-12-03 Corning Incorporated Athermal optical device
JP2000503415A (ja) * 1996-01-16 2000-03-21 コーニング インコーポレイテッド 非感熱性光学素子
US6209352B1 (en) 1997-01-16 2001-04-03 Corning Incorporated Methods of making negative thermal expansion glass-ceramic and articles made thereby
US5673129A (en) * 1996-02-23 1997-09-30 Ciena Corporation WDM optical communication systems with wavelength stabilized optical selectors
US5943152A (en) * 1996-02-23 1999-08-24 Ciena Corporation Laser wavelength control device
US6111681A (en) 1996-02-23 2000-08-29 Ciena Corporation WDM optical communication systems with wavelength-stabilized optical selectors
US5699377A (en) * 1996-04-30 1997-12-16 E-Tek Dynamics, Inc. Narrow linewidth, stabilized semiconductor laser source
US5926599A (en) * 1996-06-13 1999-07-20 Corning Incorporated Optical device and fusion seal
US5857043A (en) * 1996-08-12 1999-01-05 Corning Incorporated Variable period amplitude grating mask and method for use
US5757540A (en) * 1996-09-06 1998-05-26 Lucent Technologies Inc. Long-period fiber grating devices packaged for temperature stability
US5694503A (en) * 1996-09-09 1997-12-02 Lucent Technologies Inc. Article comprising a temperature compensated optical fiber refractive index grating
US5892582A (en) * 1996-10-18 1999-04-06 Micron Optics, Inc. Fabry Perot/fiber Bragg grating multi-wavelength reference
WO1998027446A2 (fr) * 1996-12-03 1998-06-25 Micron Optics, Inc. Reseaux de bragg a fibre thermocompenses
US6044189A (en) * 1996-12-03 2000-03-28 Micron Optics, Inc. Temperature compensated fiber Bragg gratings
US5892860A (en) * 1997-01-21 1999-04-06 Cidra Corporation Multi-parameter fiber optic sensor for use in harsh environments
US5841920A (en) * 1997-03-18 1998-11-24 Lucent Technologies Inc. Fiber grating package
US5914972A (en) * 1997-03-24 1999-06-22 Sdl, Inc. Thermal compensators for waveguide DBR laser sources
CA2229958A1 (fr) * 1997-03-26 1998-09-26 Jds Fitel Inc. Methode et dispositif de reglage de la longueur d'onde et de la largeur de bande d'un reseau optique
US6188705B1 (en) 1997-05-16 2001-02-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber grating coupled light source capable of tunable, single frequency operation
US6181851B1 (en) 1997-05-29 2001-01-30 E-Tek Dynamics, Inc. Temperature-compensated optical fiber package
DE19724528B4 (de) * 1997-06-11 2005-09-15 Institut für Physikalische Hochtechnologie e.V. Temperaturkompensiertes faseroptisches Bragg-Gitter
US5877426A (en) * 1997-06-27 1999-03-02 Cidra Corporation Bourdon tube pressure gauge with integral optical strain sensors for measuring tension or compressive strain
US5915052A (en) * 1997-06-30 1999-06-22 Uniphase Telecommunications Products, Inc. Loop status monitor for determining the amplitude of the signal components of a multi-wavelength optical beam
US6151157A (en) * 1997-06-30 2000-11-21 Uniphase Telecommunications Products, Inc. Dynamic optical amplifier
US5982964A (en) * 1997-06-30 1999-11-09 Uniphase Corporation Process for fabrication and independent tuning of multiple integrated optical directional couplers on a single substrate
FR2765972B1 (fr) * 1997-07-11 1999-09-24 Instruments Sa Systeme optique a dispersion en longueur d'onde
US6016702A (en) * 1997-09-08 2000-01-25 Cidra Corporation High sensitivity fiber optic pressure sensor for use in harsh environments
US6011886A (en) * 1997-10-16 2000-01-04 Lucent Technologies Inc. Recoatable temperature-insensitive long-period gratings
US5987200A (en) * 1997-10-27 1999-11-16 Lucent Technologies Inc. Device for tuning wavelength response of an optical fiber grating
FR2772487B1 (fr) * 1997-12-16 2002-02-01 France Telecom Procede de realisation d'un dispositif de stabilisation de reseau de bragg vis a vis de la temperature
US6137927A (en) * 1998-01-16 2000-10-24 Corning Incorporated N-port reconfigurable DWDM multiplexer and demultiplexer
DE19808222A1 (de) 1998-02-27 1999-09-02 Abb Research Ltd Faser-Bragg-Gitter Drucksensor mit integrierbarem Faser-Bragg-Gitter Temperatursensor
WO1999047955A1 (fr) 1998-03-17 1999-09-23 Minnesota Mining And Manufacturing Company Fibres optiques a compensation passive
US6507693B2 (en) 1998-05-06 2003-01-14 Cidra Corporation Optical filter device having creep-resistant optical fiber attachments
KR100274807B1 (ko) * 1998-06-24 2000-12-15 김효근 브래그격자 필터용 광섬유 및 그를 이용한 브래그 격자 필터
US6240220B1 (en) 1998-07-29 2001-05-29 E-Tek Dynamics, Inc. Tunable optical fiber package
US6275629B1 (en) * 1998-09-11 2001-08-14 Lucent Technologies Inc. Optical grating devices with adjustable chirp
DE19940302A1 (de) * 1998-10-09 2000-04-27 Siemens Ag Optische Filter, abstimmbarer Add-Drop-Continue-Modul und Schaltungsanordnung für gebündelte Cross-Connect-Funktionalität
CA2349422A1 (fr) 1998-11-06 2000-05-18 Corning Incorporated Dispositif athermique de reseau de guide d'ondes optique
US6049414A (en) * 1998-11-20 2000-04-11 Lucent Technologies Inc. Temperature-compensated rare earth doped optical waveguide amplifiers
US6249624B1 (en) 1998-12-04 2001-06-19 Cidra Corporation Method and apparatus for forming a Bragg grating with high intensity light
EP1137920B1 (fr) * 1998-12-04 2005-02-16 Weatherford/Lamb, Inc. Sonde manometrique a reseau de bragg
US6810178B2 (en) * 1998-12-04 2004-10-26 Cidra Corporation Large diameter optical waveguide having blazed grating therein
US6298184B1 (en) 1998-12-04 2001-10-02 Cidra Corporation Method and apparatus for forming a tube-encased bragg grating
US6865194B1 (en) 1998-12-04 2005-03-08 Cidra Corporation Strain-isolated Bragg grating temperature sensor
JP4522588B2 (ja) * 1998-12-04 2010-08-11 シドラ コーポレイション 圧縮同調式のブラッグ回折格子およびレーザ
CA2353504C (fr) * 1998-12-04 2007-09-11 Cidra Corporation Selecteur de mode de bragg et laser accordes par compression
US6229827B1 (en) 1998-12-04 2001-05-08 Cidra Corporation Compression-tuned bragg grating and laser
US6278811B1 (en) 1998-12-04 2001-08-21 Arthur D. Hay Fiber optic bragg grating pressure sensor
US6519388B1 (en) 1998-12-04 2003-02-11 Cidra Corporation Tube-encased fiber grating
US6310990B1 (en) 2000-03-16 2001-10-30 Cidra Corporation Tunable optical structure featuring feedback control
US6490931B1 (en) 1998-12-04 2002-12-10 Weatherford/Lamb, Inc. Fused tension-based fiber grating pressure sensor
CA2353408C (fr) * 1998-12-04 2008-10-07 Cidra Corporation Capteur de temperature a reseau de diffraction de bragg, isole vis a vis des contraintes
US6452667B1 (en) 1998-12-04 2002-09-17 Weatherford/Lamb Inc. Pressure-isolated bragg grating temperature sensor
CN1153054C (zh) 1998-12-04 2004-06-09 塞德拉公司 布拉格光栅压力传感器
US6982996B1 (en) 1999-12-06 2006-01-03 Weatherford/Lamb, Inc. Large diameter optical waveguide, grating, and laser
US6792009B2 (en) 1998-12-04 2004-09-14 Cidra Corporation Tunable grating-based channel filter parking device
US6621957B1 (en) 2000-03-16 2003-09-16 Cidra Corporation Temperature compensated optical device
US6763043B2 (en) * 1998-12-04 2004-07-13 Cidra Corporation Tunable grating-based dispersion compensator
EP1077544A1 (fr) * 1998-12-11 2001-02-21 Alcatel Amplificateur à fibre optique avec compensation du comportement en température
US6271766B1 (en) 1998-12-23 2001-08-07 Cidra Corporation Distributed selectable latent fiber optic sensors
GB9828584D0 (en) 1998-12-23 1999-02-17 Qps Technology Inc Method for nonlinear, post tunable, temperature compensation package of fiber bragg gratings
DE19860409A1 (de) 1998-12-28 2000-06-29 Abb Research Ltd Faser-Bragg-Gitter Sensor zur Messung differentieller Drücke und von Strömungsgeschwindigkeiten
KR100322136B1 (ko) 1999-03-12 2002-02-04 윤종용 온도 보상 장주기 광섬유 격자 필터
JP2000266943A (ja) * 1999-03-12 2000-09-29 Nippon Electric Glass Co Ltd 光通信用温度補償デバイス
WO2000064827A1 (fr) * 1999-04-23 2000-11-02 Corning Incorporated Procede de fabrication de substrat stabilises a expansion thermique negative pour guide d'onde optique et substrat en vitro-ceramique
US6477299B1 (en) 1999-04-23 2002-11-05 Corning Incorporated Environmentally stable athermalizes optical fiber grating device and method of making a stabilized device
US6377727B1 (en) 1999-05-25 2002-04-23 Thomas & Betts International, Inc. Passive temperature-compensating package for fiber Bragg grating devices
FR2795528B1 (fr) * 1999-06-22 2002-07-26 Highwave Optical Tech Procede de stabilisation et d'accordabilite de la longueur d'onde de reseaux de bragg
CA2378077A1 (fr) * 1999-07-07 2001-01-18 Nippon Electric Glass Co., Ltd. Materiau de compensation de temperature et dispositif de communication optique
US6246511B1 (en) * 1999-08-12 2001-06-12 Agere Systems Optoelectronics Guardian Corp. Apparatus and method to compensate for optical fiber amplifier gain variation
JP4585091B2 (ja) 1999-08-19 2010-11-24 三菱電機株式会社 導波路グレーティングデバイス
US6317528B1 (en) 1999-08-23 2001-11-13 Corning Incorporated Temperature compensated integrated planar bragg grating, and method of formation
US6996316B2 (en) * 1999-09-20 2006-02-07 Cidra Corporation Large diameter D-shaped optical waveguide and coupler
US6324204B1 (en) 1999-10-19 2001-11-27 Sparkolor Corporation Channel-switched tunable laser for DWDM communications
US6934313B1 (en) 1999-11-04 2005-08-23 Intel Corporation Method of making channel-aligned resonator devices
US6243517B1 (en) 1999-11-04 2001-06-05 Sparkolor Corporation Channel-switched cross-connect
WO2001035133A1 (fr) * 1999-11-11 2001-05-17 Koheras A/S Guide d'ondes optique athermique compact utilisant l'amplification par dilatation thermique
US6341189B1 (en) 1999-11-12 2002-01-22 Sparkolor Corporation Lenticular structure for integrated waveguides
US6293688B1 (en) 1999-11-12 2001-09-25 Sparkolor Corporation Tapered optical waveguide coupler
US6439055B1 (en) 1999-11-15 2002-08-27 Weatherford/Lamb, Inc. Pressure sensor assembly structure to insulate a pressure sensing device from harsh environments
US6449402B1 (en) 1999-11-19 2002-09-10 Finisar Corporation Method and apparatus for compensating an optical filter
US6403949B1 (en) 1999-11-23 2002-06-11 Cidra Corporation Method and apparatus for correcting systematic error in a wavelength measuring device
US6462329B1 (en) * 1999-11-23 2002-10-08 Cidra Corporation Fiber bragg grating reference sensor for precise reference temperature measurement
US6346702B1 (en) 1999-12-10 2002-02-12 Cidra Corporation Fiber bragg grating peak detection system and method
US6233382B1 (en) 2000-01-27 2001-05-15 3M Innovative Properties Company Package for an optical bragg grating fiber for reducing the temperature dependence of its reflection wavelength
US6626043B1 (en) 2000-01-31 2003-09-30 Weatherford/Lamb, Inc. Fluid diffusion resistant glass-encased fiber optic sensor
JP3519333B2 (ja) * 2000-02-10 2004-04-12 エヌ・ティ・ティ・アドバンステクノロジ株式会社 光ファイバセンサ
US6493486B1 (en) 2000-02-17 2002-12-10 Finisar Corporation Thermal compensated compact bragg grating filter
EP1261888A2 (fr) * 2000-03-06 2002-12-04 CiDRA Corporation Multiplexeur optique a insertion-extraction et reseau de diffraction accorde par compression
US6301423B1 (en) 2000-03-14 2001-10-09 3M Innovative Properties Company Method for reducing strain on bragg gratings
US6226438B1 (en) 2000-03-14 2001-05-01 3M Innovative Properties Company Thermally managed package for fiber optic bragg gratings
USRE42407E1 (en) * 2000-03-16 2011-05-31 Steyphi Services De Llc Distributed optical structures with improved diffraction efficiency and/or improved optical coupling
USRE41570E1 (en) 2000-03-16 2010-08-24 Greiner Christoph M Distributed optical structures in a planar waveguide coupling in-plane and out-of-plane optical signals
USRE42206E1 (en) 2000-03-16 2011-03-08 Steyphi Services De Llc Multiple wavelength optical source
US6987911B2 (en) * 2000-03-16 2006-01-17 Lightsmyth Technologies, Inc. Multimode planar waveguide spectral filter
US6515599B1 (en) 2000-03-22 2003-02-04 Lucent Technologies Inc. High-power selective signal attenuator and method of attenuation
FR2809500B1 (fr) * 2000-05-29 2003-09-26 Highwave Optical Tech Procede et dispositif de conditionnement de composant a fibres optiques
DE10032060C2 (de) * 2000-07-05 2002-11-21 Advanced Optics Solutions Gmbh Faser-Bragg-Gitter-Anordnung
WO2002007273A2 (fr) * 2000-07-17 2002-01-24 Calmar Optcom, Inc. Stabilisation active d'un laser de faible puissance
US6374015B1 (en) * 2000-08-01 2002-04-16 Rich Key Technologies Limited Temperature-compensating device with tunable mechanism for optical fiber gratings
JP2002055234A (ja) * 2000-08-07 2002-02-20 Sumitomo Electric Ind Ltd 光学装置
TW476013B (en) * 2000-08-07 2002-02-11 Ind Tech Res Inst Electric fiber grating filter with switchable central wavelength
US6594410B2 (en) 2000-08-26 2003-07-15 Cidra Corporation Wide range tunable optical filter
US7386204B1 (en) 2000-08-26 2008-06-10 Cidra Corporation Optical filter having a shaped filter function
US6510272B1 (en) 2000-08-28 2003-01-21 3M Innovative Properties Company Temperature compensated fiber bragg grating
US6453108B1 (en) * 2000-09-30 2002-09-17 Cidra Corporation Athermal bragg grating package with course and fine mechanical tuning
US6704143B1 (en) 2000-10-23 2004-03-09 Adc Telecommunications, Inc. Method and apparatus for adjusting an optical element to achieve a precise length
WO2002037156A1 (fr) * 2000-11-01 2002-05-10 Corning Incorporated Utilisation de polymeres a cristaux liquides tres orientes dans des materiaux polymeres a expansion thermique negative economiques destines a des applications de photonique
US6594288B1 (en) 2000-11-06 2003-07-15 Cidra Corporation Tunable raman laser and amplifier
WO2002039160A1 (fr) * 2000-11-09 2002-05-16 Cambridge University Technical Services Ltd. Plate-forme a coefficient de dilatation thermique regule
US6453092B1 (en) 2000-12-22 2002-09-17 Corning Incorporated Temperature compensated optical device
US6594081B2 (en) 2000-12-29 2003-07-15 Cidra Corporation Actuator mechanism for tuning an optical device
US20040105618A1 (en) * 2000-12-29 2004-06-03 Lee Nicholas A. Apparatus and method for making temperature compensated optical fiber diffraction gratings
ATE235701T1 (de) 2001-01-08 2003-04-15 Cit Alcatel Fasergitterfilter und verfahren zu deren herstellung
CA2357242A1 (fr) * 2001-02-22 2002-08-22 Teraxion Inc. Enveloppe athermique reglable pour dispositifs a fibres optiques
EP1243949A1 (fr) * 2001-03-14 2002-09-25 Alcatel Dispositif à filtre optique, méthode d'accordage et système de communication
WO2002075873A1 (fr) * 2001-03-16 2002-09-26 Calmar Optcom, Inc. Commande numerique de lasers a modes bloques activement
US6778735B2 (en) * 2001-03-19 2004-08-17 Micron Optics, Inc. Tunable fiber Bragg gratings
CA2342098C (fr) * 2001-03-23 2008-08-26 Itf Optical Technologies Inc.-Technologies Optiques Itf Inc. Dispositif a filtre optique assurant une commande en temperature
US6591054B2 (en) * 2001-04-05 2003-07-08 3M Innovative Properties Company Filament organizer with accessory positioner
US6545798B2 (en) * 2001-04-09 2003-04-08 Corning Incorporated Thermal ripple-compensating, gain-flattening filter for an optical amplifier
EP1255140A1 (fr) * 2001-04-23 2002-11-06 Alcatel Dispositif pour compenser la temperature pour des réseaux de diffraction dans des fibres optiques
US6845108B1 (en) 2001-05-14 2005-01-18 Calmar Optcom, Inc. Tuning of laser wavelength in actively mode-locked lasers
JP4369634B2 (ja) * 2001-05-15 2009-11-25 古河電気工業株式会社 光モジュール
US6961484B2 (en) * 2001-05-25 2005-11-01 Intel Corporation Apparatus and methods for stabilization and control of fiber devices and fiber devices including the same
GB0119033D0 (en) * 2001-08-03 2001-09-26 Southampton Photonics Ltd An optical fibre thermal compensation device
TWI234554B (en) 2001-08-16 2005-06-21 Broptics Technology Inc Process for preparation of zirconium tungstate ceramic body, zirconium tungstate ceramic body prepared thereby, and fiber bragg grating temperature compensated device
DE10140482B4 (de) * 2001-08-17 2008-11-13 Siemens Ag Verfahren und Vorrichtung zur Störgrößenkompensation eines optischen Sensors
FR2828938B1 (fr) * 2001-08-23 2004-02-27 Highwave Optical Tech Dispositif athermique a fibre optique a flexion controlee
US6584248B2 (en) 2001-10-09 2003-06-24 Corning Incorporated Temperature-compensated optical grating device
US20030076568A1 (en) * 2001-10-22 2003-04-24 Adc Telecommunications, Inc. Light frequency stabilizer
US6987909B1 (en) 2001-11-30 2006-01-17 Corvis Corporation Optical systems and athermalized optical component apparatuses and methods for use therein
US7027469B2 (en) 2001-11-30 2006-04-11 Optitune Plc Tunable filter
US20030108286A1 (en) * 2001-12-06 2003-06-12 Jacques Albert Adjustable temperature compensating package for optical fiber devices
US6636667B2 (en) * 2001-12-06 2003-10-21 Oplink Communications Inc. Tunable optical fiber grating package with low temperature dependency
US6738536B2 (en) * 2001-12-20 2004-05-18 Optinel Systems, Inc. Wavelength tunable filter device for fiber optic systems
US6856730B2 (en) * 2002-07-22 2005-02-15 Intel Corporation Athermal package for fiber Bragg gratings with two or more bonding regions
RU2241211C2 (ru) * 2002-09-10 2004-11-27 Общество с ограниченной ответственностью Центр по изготовлению медицинской техники "Экстратерм" Датчик температуры и устройство для измерения температуры
CA2404093C (fr) * 2002-09-18 2009-02-24 Itf Technologies Optiques Inc.- Itf Optical Technologies Inc. Dispositif de conditionnement de composants optiques
US6904206B2 (en) * 2002-10-15 2005-06-07 Micron Optics, Inc. Waferless fiber Fabry-Perot filters
US6920159B2 (en) * 2002-11-29 2005-07-19 Optitune Plc Tunable optical source
EP1583989A4 (fr) * 2002-12-20 2006-07-05 Micron Optics Inc Support de ferrule a compensation thermique pour un filtre fabry-perot a fibre
US7095910B2 (en) * 2003-01-31 2006-08-22 Honeywell International, Inc. Wavelength division multiplexing coupling device
US20040191637A1 (en) * 2003-03-25 2004-09-30 Gregory Steckman Method for packaging thermally compensated filters
US7177499B2 (en) * 2003-03-28 2007-02-13 Intel Corporation Athermal package for fiber bragg gratings with compensation for non-linear thermal response
US7171077B2 (en) * 2003-04-03 2007-01-30 Lxsix Photonics Inc. Package for temperature sensitive optical device
US20040234200A1 (en) * 2003-05-21 2004-11-25 Jennings Robert M. Apparatus and method for non-linear thermal compensation of optical waveguide gratings
US7180590B2 (en) * 2003-07-09 2007-02-20 Ibsen Photonics A/S Transmission spectrometer with improved spectral and temperature characteristics
CA2440952C (fr) * 2003-09-15 2006-06-06 Itf Technologies Optiques Inc./Itf Optical Technologies Inc. Structure d'emballage de composant optique a compensation thermique
US20060245692A1 (en) * 2004-04-01 2006-11-02 Lxsix Photonics Inc. Package for temperature sensitive optical device
US7319803B2 (en) * 2004-09-30 2008-01-15 Totoku Electric Co., Ltd. Heat-resistant optical fiber, a method of manufacturing the same, a method of fixing an optical fiber, and a heat-resistant optical fiber using a protective tube
US7068869B1 (en) * 2005-01-10 2006-06-27 Francisco Manuel Moita Araujo Passive athermal fiber bragg grating strain gage
US20060272713A1 (en) * 2005-05-31 2006-12-07 Garner Sean M Microfluidic devices with integrated tubular structures
CA2753398A1 (fr) * 2005-11-10 2007-07-26 Optical Air Data Systems, Llc Emetteur-recepteur a mutliples guides d'ondes optiques a ouverture unique
JP5312346B2 (ja) * 2007-01-24 2013-10-09 ジーケイエヌ エアロスペース サービシイズ リミテッド 温度検出
US8049885B1 (en) * 2008-05-15 2011-11-01 Ondax, Inc. Method and apparatus for large spectral coverage measurement of volume holographic gratings
DE102008027931A1 (de) 2008-06-12 2010-01-07 Hottinger Baldwin Messtechnik Gmbh Optischer Dehnungssensor
US7986407B2 (en) 2008-08-04 2011-07-26 Ondax, Inc. Method and apparatus using volume holographic wavelength blockers
US8369017B2 (en) 2008-10-27 2013-02-05 Ondax, Inc. Optical pulse shaping method and apparatus
US8098967B1 (en) * 2010-10-08 2012-01-17 Michael Louis Bazzone Generator protection system
US8139905B1 (en) * 2010-10-08 2012-03-20 Michael Louis Bazzone Generator protection system
US9479280B2 (en) 2011-07-14 2016-10-25 Applied Optoelectronics, Inc. Extended cavity fabry-perot laser assembly capable of high speed optical modulation with narrow mode spacing and WDM optical system including same
US9160455B2 (en) 2011-07-14 2015-10-13 Applied Optoelectronics, Inc. External cavity laser array system and WDM optical system including same
US9306671B2 (en) 2012-12-07 2016-04-05 Applied Optoelectronics, Inc. Thermally isolated multi-channel transmitter optical subassembly and optical transceiver module including same
US9236945B2 (en) 2012-12-07 2016-01-12 Applied Optoelectronics, Inc. Thermally shielded multi-channel transmitter optical subassembly and optical transceiver module including same
US8831433B2 (en) 2012-12-07 2014-09-09 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US9614620B2 (en) 2013-02-06 2017-04-04 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
US10230471B2 (en) 2013-02-06 2019-03-12 Applied Optoelectronics, Inc. Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same
US8995484B2 (en) 2013-02-22 2015-03-31 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US9599565B1 (en) 2013-10-02 2017-03-21 Ondax, Inc. Identification and analysis of materials and molecular structures
US9964720B2 (en) 2014-06-04 2018-05-08 Applied Optoelectronics, Inc. Monitoring and controlling temperature across a laser array in a transmitter optical subassembly (TOSA) package
TWI554797B (zh) 2015-04-30 2016-10-21 晉禾企業股份有限公司 溫度補償的光纖布拉格光柵濾波裝置
US9587983B1 (en) 2015-09-21 2017-03-07 Ondax, Inc. Thermally compensated optical probe
US9876576B2 (en) 2016-03-17 2018-01-23 Applied Optoelectronics, Inc. Layered coaxial transmitter optical subassemblies with support bridge therebetween
WO2019237170A1 (fr) * 2018-06-11 2019-12-19 Faculdades Católicas Ensemble et procédé de mesure d'écoulement de fluide dans des tubulures
US11125936B2 (en) 2019-02-26 2021-09-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Thermal insulator for fiber optic components
CN114859473B (zh) * 2022-05-06 2022-12-23 天津大学 一种基于dfb的自匹配滤波装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2025081A (en) * 1978-04-14 1980-01-16 Cit Alcatel Fixed optical attenuator for optical fibres
EP0119727A2 (fr) * 1983-02-23 1984-09-26 Plessey Overseas Limited Connecteurs optiques
DE3411595A1 (de) * 1984-03-29 1985-11-21 kabelmetal electro GmbH, 3000 Hannover Vorrichtung zum verbinden von zwei lichtwellenleitern und verfahren zur herstellung der vorrichtung
WO1986001303A1 (fr) * 1984-08-13 1986-02-27 United Technologies Corporation Procede d'impression de reseaux dans des fibres optiques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2025081A (en) * 1978-04-14 1980-01-16 Cit Alcatel Fixed optical attenuator for optical fibres
EP0119727A2 (fr) * 1983-02-23 1984-09-26 Plessey Overseas Limited Connecteurs optiques
DE3411595A1 (de) * 1984-03-29 1985-11-21 kabelmetal electro GmbH, 3000 Hannover Vorrichtung zum verbinden von zwei lichtwellenleitern und verfahren zur herstellung der vorrichtung
WO1986001303A1 (fr) * 1984-08-13 1986-02-27 United Technologies Corporation Procede d'impression de reseaux dans des fibres optiques

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0650083A3 (fr) * 1993-10-22 1995-08-23 At & T Corp Empaquetage pour fibre optique.
WO1996010854A1 (fr) * 1994-09-30 1996-04-11 United Technologies Corporation Laser a fibre accorde par compression
WO1996010765A1 (fr) * 1994-09-30 1996-04-11 United Technologies Corporation Reseau de bragg accordable par compression
US5691999A (en) * 1994-09-30 1997-11-25 United Technologies Corporation Compression-tuned fiber laser
EP0736783A3 (fr) * 1995-04-07 1998-06-10 Sumitomo Electric Industries, Ltd. Procédé pour créer une répartition de l'indice de réfraction dans une voie optique filtre optique, et méthode pour l'utiliser
US6393181B1 (en) 1997-06-19 2002-05-21 Jds Uniphase Pty. Ltd. Temperature stable Bragg grating package with post tuning for accurate setting of centre frequency
WO1998059267A1 (fr) * 1997-06-19 1998-12-30 Uniphase Fibre Components Pty, Limited Boitier pour reseau de bragg, stable en temperature et a post-reglage permettant un ajustement precis de la frequence centrale
AU725267B2 (en) * 1997-06-19 2000-10-12 Jds Uniphase Corporation Temperature stable bragg grating package with post tuning for accurate setting of center frequency
JP3378203B2 (ja) 1997-10-03 2003-02-17 ルーセント テクノロジーズ インコーポレイテッド 光学装置
FR2772488A1 (fr) * 1997-12-16 1999-06-18 France Telecom Dispositif de stabilisation d'un reseau de bragg vis a vis de la temperature, comportant deux materiaux de coefficients de dilatation thermique eloignes l'un de l'autre
WO2000054082A1 (fr) * 1999-03-10 2000-09-14 Jds Uniphase Corporation Mecanisme de commande de tension pour dispositifs a reseaux de bragg
JP2000292620A (ja) * 1999-04-06 2000-10-20 Fujikura Ltd 温度補償型光ファイバブラッググレーティング
WO2001001174A1 (fr) * 1999-06-29 2001-01-04 Mitsubishi Cable Industries, Ltd. Procede de fabrication de reseau de fibres, composant pour communication optique et capteur de temperature

Also Published As

Publication number Publication date
DE69020167D1 (de) 1995-07-20
JP3187417B2 (ja) 2001-07-11
DE69020167T2 (de) 1995-10-26
JPH05503170A (ja) 1993-05-27
EP0507877B1 (fr) 1995-06-14
US5042898A (en) 1991-08-27
EP0507877A1 (fr) 1992-10-14

Similar Documents

Publication Publication Date Title
US5042898A (en) Incorporated Bragg filter temperature compensated optical waveguide device
Mohammad et al. Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression
US6859583B2 (en) Fine-tuning assembly for optical gratings
US6370310B1 (en) Fiber optic grating temperature compensation device and method
US5844667A (en) Fiber optic pressure sensor with passive temperature compensation
US6327036B1 (en) Fabry Perot/fiber Bragg grating multi-wavelength reference
US6374015B1 (en) Temperature-compensating device with tunable mechanism for optical fiber gratings
KR20010080688A (ko) 압축 조정된 브래그 격자 및 레이저
US20020146226A1 (en) Multi-core waveguide
US6327405B1 (en) Devices and methods for temperature stabilization of Bragg grating structures
US9341770B2 (en) Thermal compensation composition of optical fiber connector containing a fiber Bragg grating
WO1995030926A1 (fr) Dispositif dont on peut faire varier les proprietes de transmission de la lumiere
US6396982B1 (en) Bimetal-based temperature stabilized multi-FBG package with tunable mechanism
US20040234200A1 (en) Apparatus and method for non-linear thermal compensation of optical waveguide gratings
US6377727B1 (en) Passive temperature-compensating package for fiber Bragg grating devices
JP2016212392A (ja) 温度補償のファイバブラッググレイティングフィルタ装置
US6493486B1 (en) Thermal compensated compact bragg grating filter
US6834142B2 (en) Optical grating-based filter
US6850654B2 (en) Passive thermal compensation of all-fiber Mach-Zehnder interferometer
US7212707B2 (en) Temperature-compensated fiber grating packaging arrangement
US6636667B2 (en) Tunable optical fiber grating package with low temperature dependency
US6763043B2 (en) Tunable grating-based dispersion compensator
US6810178B2 (en) Large diameter optical waveguide having blazed grating therein
KR101900743B1 (ko) 광섬유 브라그 격자 내장 파장 가변 모듈
US6757462B2 (en) Bragg grating filter optical waveguide device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991903135

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991903135

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991903135

Country of ref document: EP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载