WO1991010151A1 - Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore - Google Patents
Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore Download PDFInfo
- Publication number
- WO1991010151A1 WO1991010151A1 PCT/US1990/007640 US9007640W WO9110151A1 WO 1991010151 A1 WO1991010151 A1 WO 1991010151A1 US 9007640 W US9007640 W US 9007640W WO 9110151 A1 WO9110151 A1 WO 9110151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grating
- temperature
- longitudinal
- fiber
- core
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims abstract description 5
- 230000001902 propagating effect Effects 0.000 claims abstract description 5
- 239000013307 optical fiber Substances 0.000 abstract description 23
- 239000002657 fibrous material Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002277 temperature effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29316—Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
- G02B6/29317—Light guides of the optical fibre type
- G02B6/29322—Diffractive elements of the tunable type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02171—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
- G02B6/02176—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
- G02B6/0218—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29398—Temperature insensitivity
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0128—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-mechanical, magneto-mechanical, elasto-optic effects
- G02F1/0131—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
- G02F1/0134—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
- G02B6/02195—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating
- G02B6/022—Refractive index modulation gratings, e.g. Bragg gratings characterised by means for tuning the grating using mechanical stress, e.g. tuning by compression or elongation, special geometrical shapes such as "dog-bone" or taper
Definitions
- the present invention relates to optical filters in general, and more particularly to improved accuracy filtering devices including Bragg filters incorporated in optical waveguides, especially in optical fibers.
- the grating is oriented normal to the fiber axis so that it reflects, of the light launched into the fiber core for guided propagation therein in a propagation direction, only that having a wavelength within a very narrow range, back along the fiber axis opposite to the original propagation direction so that such reflected light is guided in the core to the point at which the original light had been launched into the fiber core.
- this grating is substantially transparent to light at wavelengths outside the aforementioned narrow band so that it does not affect the further propagation of such other light.
- the incorporated periodic grating of this kind thus produces a narrow transmission notch and a commensurately narrow reflection peak in the spectrum of the light propagating in the optical fiber in one or the other of its longitudinal directions.
- the frequency of the light affected in this manner by the incorporated periodic grating is related to the periodicity of the grating in a manner explained in the above patent.
- the optical fiber with the incorporated grating filter obtained in the above manner is well suited for use as a strain or temperature sensor because the frequency of the light reflected by the grating varies either with the strain to which the grating region is subjected, or with the temperature of the grating region, in a clearly defined relationship, which is substantially linear at least within the range of interest, to either one of these parameters.
- Still another object of the present invention is so to develop the filter device of the type here under consideration as to substantially eliminate the influence of temperature changes on the filter wavelength. It is yet another object of the present invention to devise a device of the above type which maintains its operation at a selected wavelength, or which can be tuned to different wavelengths, without the ambient temperature affecting the result.
- a concomitant object of the present invention is design the device of the above type in such a manner as to be relatively simple in construction, inexpensive to manufacture, easy to use, and yet reliable in operation.
- a temperature compensated embedded grating optical waveguide light filtering device which includes an optical waveguide including an elongated core having two longitudinally spaced end portions, and means for guiding light in an elongated path along a longitudinal axis of the core.
- the core includes a portion of a predetermined limited length at a location remote from its end portions and has embedded therein a multitude of grating elements extending with a substantially equal longitudinal spacing substantially normal to the longitudinal axis and collectively constituting a grating that reflects, of the light propagating in the path toward and reaching the grating elements, that of a wavelength within a narrow range about a central wavelength determined by the spacing of the grating elements and by the index of refraction of the material of the core as influenced by the temperature of and longitudinal strains applied to the grating, back into the path for longitudinal propagation therein opposite to the original propagation direction.
- the device further includes means for applying to the fiber longitudinal strains the magnitude of which varies with temperature in such a manner that the changes in the central wavelength that are attributable to the changes in the longitudinal strains substantially compensate for those attributable to the changes in the temperature of the grating.
- Figure 1 is an axial sectional view of an optical fiber having a wavelength selective grating region embedded in its core;
- Figure 2 is a graphic representation of the dependency of transmissivity of the grating region of the optical fiber of Figure 1 on wavelength under selected temperature and strain conditions;
- Figure 3 is a partially sectioned side elevational view of a temperature compensated filter device of the present invention which includes, in addition to the optical fiber of Figure 1, two compensating members that cooperate with one another and with the fiber in such a manner that tensile stresses applied thereby to the fiber cause the wavelength at which the grating region is reflective to be substantially independent of temperature;
- Figure 4 is a view similar to that of Figure 3 but showing a modified construction of the device in which the fiber is subjected to compressive rather than tensile stresses.
- the waveguide 10 has been used therein to identify an optical waveguide.
- the waveguide 10 is shown to be configured as an optical fiber of which only a relatively short longitudinal portion is depicted and which includes a fiber core 11 and a fiber cladding 12 surrounding the fiber core 11.
- the fiber core 11 incorporates a grating region 13 that includes a multitude of grating elements 14 each extending substantially normal to the longitudinal axis of the core 11.
- the grating elements 14 are equidistantly spaced from one another as considered in the longitudinal direction of the optical fiber 10.
- the grating elements 14 are advantageously formed in the core 11 by the method disclosed in the aforementioned U. S. Patent No. 4,725,110 the disclosure of which is incorporated herein by reference to the extent needed for understanding how the grating elements 14 of the optical waveguide of the present invention can be produced in the core 11.
- the grating region 13 is produced in this manner, consecutive ones of the grating elements 14 are present at the same periodic spacings throughout the grating region 13 but not in regions of the fiber core 11 that longitudinally adjoin the respective ends of the grating region 14.
- ⁇ 576.2 nanometers.
- the wavelength ⁇ changes with temperature, on the one hand, and with optical fiber strain, on the other hand. So, for instance, as far as the temperature dependency is concerned, a frequency shift of approximately 5.37 GHz/°C has been measured when using optical fiber incorporated grating region 13 the spacing of the grating elements 14 of which is selected to have the stopband 16 at an operating wavelength of about 580 nm.
- the Bragg filter frequency is dependent on the length change and the attendant strain optic effect when the grating region 13 is subjected to tension or compression; so, for instance, measurements made on Bragg gratings subjected to tension have given frequency shifts of approximately 40.1 GHz/psi or .418 GHz/microstrain.
- a fiber optic filter device 20 of the present invention is shown to include as its main components, in addition to a portion 17 of the optical fiber 10 that includes the embedded grating 13, a first compensating member 21 and a second compensating member 22.
- the optical fiber 10 is connected, at the respective ends of the fiber portion 17, to a bridge portion 25 of the compensating member 21 and to the projection 24 of the compensating member 22, respectively, by respective connecting members 26 and 27.
- the connecting members 26 and 27 may be of the mechanical type, such as clamps or the like, or they may be constituted by respective bodies, layers or pads of adhesive, solder or the like. In this configuration the fiber is advantageously either coated with a metal or ceramic protective buffer or bonded inside a small tube made of, for instance, silica.
- the connecting members 26 and 27 define the length (L 3 ) of the fiber section 17 that spans the distance between the attachment points of the optical fiber 10 to the compensating members 21 and 22 and rigidly connect the fiber section 17 with the compensating members 21 and 22.
- the compensating members 21 and 22 further have respective cooperating portions 28 and 29 which are rigidly connected or integral with the bridging portion 25 and with the projection 26, respectively, and are juxtaposed with one another in the assembled condition of the device 20.
- the compensating members 21 and 22 are connected with one another by respective preloading members 30, such as, as illustrated, screws with fine pitch threads which pass through respective unthreaded bores in the portions 29 and are threaded into corresponding threaded bores of the portions 28.
- one of the portions 28 of the compensating member 21 is shown to be provided, at its region that is juxtaposed with the corresponding portion 29 of the compensating member 22, with integral spring contacts 31 that are in contact with the portion 29 in the operating condition of the device 20.
- the spring contacts 31 are caused to resiliently yield with the result that the forces exerted on the compensating member 22 by the preloading members 30 and by the optical fiber 10, on the one hand, and by the spring contacts 31, on the other hand, establish an equilibrium, and thus hold the compensating member 22, in any selected position in an operating range with respect to the compensating member 21. It may be seen that, inasmuch as the fiber attachment points constituted by the connecting members 26 and 27 are spaced from a contact plane between the compensating members 21 and 22 by respective distances L 1 and L 2 and the distance L 3 is the difference between the distances L 1 and L 2 , it is possible to change the distance L 3 by simply tightening or loosening the preloading members 30.
- the section 17 of the optical fiber 10 can be subjected to tensile preloading stresses simply by first tightening the preloading members 30 to the extent needed for the compensating member 22 to reach its position at the end of the desired operating range relative to the compensating member 21, followed by connecting the optical fiber 10 in a substantially taut condition between the aforementioned attachment points to the compensating members 21 and 22 by means of the connecting members 26 and 27, and then to loosen the preloading members 30 to the extent needed for the grating region 13 to be reflective to light in the narrow range around the desired wavelength ⁇ .
- the effect of differential thermal expansions between the materials of the compensating members 21 and 22 is being used to partially relieve the tension applied to the fiber portion 17 with a temperature increase (and vice versa on a temperature decrease) , to thus balance out or compensate the change in the frequency of the filter 13 with the changing temperature.
- the rate of relieving tension can be chosen in such a manner, by choosing materials with appropriate thermal expansion coefficients for the compensating members 21 and 22 and by adjusting the geometry, as to hold the frequency of the Bragg filter 13 constant.
- the material of the compensating member 22 has a larger temperature coefficient of expansion than the material of the compensating member 21.
- the tensile stress of the fiber portion 17 containing the filter or grating region 13 will be relieved on a temperature increase and increased on a temperature drop.
- the attached fiber portion 17 is preloaded in tension with a mechanical adjustment at the junction between the two compensating members 21 and 22.
- the mechanical tension adjustment could be used to set or tune the filter 13 to any desired or standard frequency.
- the material expansion constants and lengths required to cancel the temperature effect can be calculated as follows:
- the free space Bragg wavelength is given by:
- ⁇ L 3 ( ⁇ 1 L 1 - ⁇ 2 L 2 - ⁇ f L 3 ) ⁇ T
- ⁇ / ⁇ T ⁇ f + ⁇ + (1 - p e ) ⁇ 1 L 1 /L 3 - ⁇ 2 L 2 /L 3 - ⁇ f ⁇
- the compensating members 21 and 22 could be cylindrical, in which case they would be provided with internal passages for the passage of the optical fiber 10 therethrough.
- the compensating or preloading device 20' is constructed to place the fiber portion 17' containing the grating 13' under compression.
- the Bragg filter portion 17' is confined in the interior of, and advantageously is bonded along its length to the inside of, a small tube 32' made of, for instance, silica.
- the tube 32' is placed between the compensating members 21' and 22' that or made of two different materials, so that compressive stresses are applied to the filter region
- the filter region 13' is advantageously preloaded, this time in compression, to handle both positive and negative ambient temperature changes.
- Preloading accomplished in the same manner as described in conjunction with the first embodiment, could also be used to tune, scan, or adjust the frequency of the filter region 13'.
- the temperature compensation rate would be set by choosing materials with the appropriate expansion coefficients for the compensating members 21' and 22' and the inside and outside diameter of the silica tube 32' to which the fiber portion 17' may be bonded.
- the compensating members 21 and 22, or 21' and 22' could be made cylindrical.
- the silica tube 32'containing the bonded fiber portion 17' preferably lies along the center line of the device 20'.
- the fiber 10 or 10' provided with the Bragg filter grating 13 or 13' enters and exits through respective holes situated in the centers of the cylindrical preloading members 21 and 22 or 21' and 22'.
- fiber optic connectors 33' and 34' could be placed on the ends of the cylindrical compensator 20' (or 20), making it an independent device that can be assembled with other components of an optical system.
- the thermally compensated optical filter arrangements of the present invention are capable of a wide variety of uses in the optical field.
- they could be used as wavelength standards, and in stabilizing the emission frequency of laser diodes used as light sources or as local oscillators for coherent communcations or multiplexed data links.
- Such filter arrangements could also be used in fiber optic sensor systems to measure changes in sensor signals or for sensor stabilized emission sources.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Un dispositif de filtrage de lumière pour guide d'ondes optique (10) à réseau de diffraction (13) intégré à compensation thermique, comprend une fibre optique ayant une âme allongée (11), dans laquelle de la lumière est guidée vers une partie d'âme d'une longueur limitée prédéterminée, dans laquelle est intégrée une multitude d'éléments de diffraction (14) s'étendant avec un espacement longitudinal égal, sensiblement vertical par rapport à l'axe longitudinal, et constituant collectivement un réseau de diffraction réfléchissant la lumière se propageant dans le chemin conduisant vers les éléments de diffraction et atteignant ces derniers, dont la longueur d'ondes se situe dans une plage étroite autour d'une longueur d'ondes centrale déterminée par l'espacement des éléments de diffraction et par l'indice de réfraction du matériau de l'âme, selon l'influence exercée par la température du réseau de diffraction et selon les contraintes longitudinales appliquées à ce dernier, en retour dans le chemin, afin d'y effectuer une propagation longitudinale opposée au sens de propagation d'origine. Chaque extrémité de la partie de fibre est fixée à un élément différent de deux éléments de compensation réalisés en matériaux dont les coefficients de dilatation thermique, l'un par rapport à l'autre et par rapport à celui du matériau fibreux, sont tels qu'ils soumettent la fibre à des contraintes longitudinales dont l'ampleur varie avec la température, de manière que les changements se produisant dans la longueur d'ondes centrale, imputables aux changements se produisant dans les contraintes longitudinales, compensent sensiblement ceux imputables aux changements se produisant dans la température du réseau de diffraction.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP91903135A EP0507877B1 (fr) | 1989-12-26 | 1990-12-21 | Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore |
JP50331191A JP3187417B2 (ja) | 1989-12-26 | 1990-12-21 | 温度補償埋設回折格子光導波路光フィルタ装置 |
DE69020167T DE69020167T2 (de) | 1989-12-26 | 1990-12-21 | Optische wellenleitervorrichtung mit eingebautem temperaturkompensiertem braggfilter. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/456,440 US5042898A (en) | 1989-12-26 | 1989-12-26 | Incorporated Bragg filter temperature compensated optical waveguide device |
US456,440 | 1989-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991010151A1 true WO1991010151A1 (fr) | 1991-07-11 |
Family
ID=23812777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1990/007640 WO1991010151A1 (fr) | 1989-12-26 | 1990-12-21 | Dispositif pour guide d'ondes optique a compensation thermique, a filtre de bragg incorpore |
Country Status (5)
Country | Link |
---|---|
US (1) | US5042898A (fr) |
EP (1) | EP0507877B1 (fr) |
JP (1) | JP3187417B2 (fr) |
DE (1) | DE69020167T2 (fr) |
WO (1) | WO1991010151A1 (fr) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0650083A3 (fr) * | 1993-10-22 | 1995-08-23 | At & T Corp | Empaquetage pour fibre optique. |
WO1996010854A1 (fr) * | 1994-09-30 | 1996-04-11 | United Technologies Corporation | Laser a fibre accorde par compression |
WO1996010765A1 (fr) * | 1994-09-30 | 1996-04-11 | United Technologies Corporation | Reseau de bragg accordable par compression |
EP0736783A3 (fr) * | 1995-04-07 | 1998-06-10 | Sumitomo Electric Industries, Ltd. | Procédé pour créer une répartition de l'indice de réfraction dans une voie optique filtre optique, et méthode pour l'utiliser |
WO1998059267A1 (fr) * | 1997-06-19 | 1998-12-30 | Uniphase Fibre Components Pty, Limited | Boitier pour reseau de bragg, stable en temperature et a post-reglage permettant un ajustement precis de la frequence centrale |
FR2772488A1 (fr) * | 1997-12-16 | 1999-06-18 | France Telecom | Dispositif de stabilisation d'un reseau de bragg vis a vis de la temperature, comportant deux materiaux de coefficients de dilatation thermique eloignes l'un de l'autre |
WO2000054082A1 (fr) * | 1999-03-10 | 2000-09-14 | Jds Uniphase Corporation | Mecanisme de commande de tension pour dispositifs a reseaux de bragg |
AU725267B2 (en) * | 1997-06-19 | 2000-10-12 | Jds Uniphase Corporation | Temperature stable bragg grating package with post tuning for accurate setting of center frequency |
JP2000292620A (ja) * | 1999-04-06 | 2000-10-20 | Fujikura Ltd | 温度補償型光ファイバブラッググレーティング |
WO2001001174A1 (fr) * | 1999-06-29 | 2001-01-04 | Mitsubishi Cable Industries, Ltd. | Procede de fabrication de reseau de fibres, composant pour communication optique et capteur de temperature |
JP3378203B2 (ja) | 1997-10-03 | 2003-02-17 | ルーセント テクノロジーズ インコーポレイテッド | 光学装置 |
Families Citing this family (188)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123070A (en) * | 1990-09-10 | 1992-06-16 | Tacan Corporation | Method of monolithic temperature-stabilization of a laser diode by evanescent coupling to a temperature stable grating |
US5367588A (en) * | 1992-10-29 | 1994-11-22 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Communications | Method of fabricating Bragg gratings using a silica glass phase grating mask and mask used by same |
US5104209A (en) * | 1991-02-19 | 1992-04-14 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Communications | Method of creating an index grating in an optical fiber and a mode converter using the index grating |
US5237576A (en) * | 1992-05-05 | 1993-08-17 | At&T Bell Laboratories | Article comprising an optical fiber laser |
US5703978A (en) * | 1995-10-04 | 1997-12-30 | Lucent Technologies Inc. | Temperature insensitive long-period fiber grating devices |
KR100357247B1 (ko) * | 1995-10-16 | 2003-01-24 | 스미토모덴키고교가부시키가이샤 | 광파이버회절격자및그제조방법및레이저광원 |
AU711790B2 (en) * | 1995-11-20 | 1999-10-21 | Nippon Telegraph & Telephone Corporation | Optical connector |
US5647039A (en) * | 1995-12-14 | 1997-07-08 | Lucent Technologies Inc. | Optical switching system and devices using a long period grating |
SE9504601L (sv) * | 1995-12-22 | 1997-04-21 | Flygtekniska Foersoeksanstalte | En fiberoptisk sensor i form av en Fabry-Pérot-interferometer med det ena eller båda strålreflekterande elementen utförda som ett Bragg-gitter |
US7254297B1 (en) | 1996-01-16 | 2007-08-07 | Corning Incorporated | Athermal optical devices employing negative expansion substrates |
US6490394B1 (en) | 1996-01-16 | 2002-12-03 | Corning Incorporated | Athermal optical device |
JP2000503415A (ja) * | 1996-01-16 | 2000-03-21 | コーニング インコーポレイテッド | 非感熱性光学素子 |
US6209352B1 (en) | 1997-01-16 | 2001-04-03 | Corning Incorporated | Methods of making negative thermal expansion glass-ceramic and articles made thereby |
US5673129A (en) * | 1996-02-23 | 1997-09-30 | Ciena Corporation | WDM optical communication systems with wavelength stabilized optical selectors |
US5943152A (en) * | 1996-02-23 | 1999-08-24 | Ciena Corporation | Laser wavelength control device |
US6111681A (en) | 1996-02-23 | 2000-08-29 | Ciena Corporation | WDM optical communication systems with wavelength-stabilized optical selectors |
US5699377A (en) * | 1996-04-30 | 1997-12-16 | E-Tek Dynamics, Inc. | Narrow linewidth, stabilized semiconductor laser source |
US5926599A (en) * | 1996-06-13 | 1999-07-20 | Corning Incorporated | Optical device and fusion seal |
US5857043A (en) * | 1996-08-12 | 1999-01-05 | Corning Incorporated | Variable period amplitude grating mask and method for use |
US5757540A (en) * | 1996-09-06 | 1998-05-26 | Lucent Technologies Inc. | Long-period fiber grating devices packaged for temperature stability |
US5694503A (en) * | 1996-09-09 | 1997-12-02 | Lucent Technologies Inc. | Article comprising a temperature compensated optical fiber refractive index grating |
US5892582A (en) * | 1996-10-18 | 1999-04-06 | Micron Optics, Inc. | Fabry Perot/fiber Bragg grating multi-wavelength reference |
WO1998027446A2 (fr) * | 1996-12-03 | 1998-06-25 | Micron Optics, Inc. | Reseaux de bragg a fibre thermocompenses |
US6044189A (en) * | 1996-12-03 | 2000-03-28 | Micron Optics, Inc. | Temperature compensated fiber Bragg gratings |
US5892860A (en) * | 1997-01-21 | 1999-04-06 | Cidra Corporation | Multi-parameter fiber optic sensor for use in harsh environments |
US5841920A (en) * | 1997-03-18 | 1998-11-24 | Lucent Technologies Inc. | Fiber grating package |
US5914972A (en) * | 1997-03-24 | 1999-06-22 | Sdl, Inc. | Thermal compensators for waveguide DBR laser sources |
CA2229958A1 (fr) * | 1997-03-26 | 1998-09-26 | Jds Fitel Inc. | Methode et dispositif de reglage de la longueur d'onde et de la largeur de bande d'un reseau optique |
US6188705B1 (en) | 1997-05-16 | 2001-02-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Fiber grating coupled light source capable of tunable, single frequency operation |
US6181851B1 (en) | 1997-05-29 | 2001-01-30 | E-Tek Dynamics, Inc. | Temperature-compensated optical fiber package |
DE19724528B4 (de) * | 1997-06-11 | 2005-09-15 | Institut für Physikalische Hochtechnologie e.V. | Temperaturkompensiertes faseroptisches Bragg-Gitter |
US5877426A (en) * | 1997-06-27 | 1999-03-02 | Cidra Corporation | Bourdon tube pressure gauge with integral optical strain sensors for measuring tension or compressive strain |
US5915052A (en) * | 1997-06-30 | 1999-06-22 | Uniphase Telecommunications Products, Inc. | Loop status monitor for determining the amplitude of the signal components of a multi-wavelength optical beam |
US6151157A (en) * | 1997-06-30 | 2000-11-21 | Uniphase Telecommunications Products, Inc. | Dynamic optical amplifier |
US5982964A (en) * | 1997-06-30 | 1999-11-09 | Uniphase Corporation | Process for fabrication and independent tuning of multiple integrated optical directional couplers on a single substrate |
FR2765972B1 (fr) * | 1997-07-11 | 1999-09-24 | Instruments Sa | Systeme optique a dispersion en longueur d'onde |
US6016702A (en) * | 1997-09-08 | 2000-01-25 | Cidra Corporation | High sensitivity fiber optic pressure sensor for use in harsh environments |
US6011886A (en) * | 1997-10-16 | 2000-01-04 | Lucent Technologies Inc. | Recoatable temperature-insensitive long-period gratings |
US5987200A (en) * | 1997-10-27 | 1999-11-16 | Lucent Technologies Inc. | Device for tuning wavelength response of an optical fiber grating |
FR2772487B1 (fr) * | 1997-12-16 | 2002-02-01 | France Telecom | Procede de realisation d'un dispositif de stabilisation de reseau de bragg vis a vis de la temperature |
US6137927A (en) * | 1998-01-16 | 2000-10-24 | Corning Incorporated | N-port reconfigurable DWDM multiplexer and demultiplexer |
DE19808222A1 (de) | 1998-02-27 | 1999-09-02 | Abb Research Ltd | Faser-Bragg-Gitter Drucksensor mit integrierbarem Faser-Bragg-Gitter Temperatursensor |
WO1999047955A1 (fr) | 1998-03-17 | 1999-09-23 | Minnesota Mining And Manufacturing Company | Fibres optiques a compensation passive |
US6507693B2 (en) | 1998-05-06 | 2003-01-14 | Cidra Corporation | Optical filter device having creep-resistant optical fiber attachments |
KR100274807B1 (ko) * | 1998-06-24 | 2000-12-15 | 김효근 | 브래그격자 필터용 광섬유 및 그를 이용한 브래그 격자 필터 |
US6240220B1 (en) | 1998-07-29 | 2001-05-29 | E-Tek Dynamics, Inc. | Tunable optical fiber package |
US6275629B1 (en) * | 1998-09-11 | 2001-08-14 | Lucent Technologies Inc. | Optical grating devices with adjustable chirp |
DE19940302A1 (de) * | 1998-10-09 | 2000-04-27 | Siemens Ag | Optische Filter, abstimmbarer Add-Drop-Continue-Modul und Schaltungsanordnung für gebündelte Cross-Connect-Funktionalität |
CA2349422A1 (fr) | 1998-11-06 | 2000-05-18 | Corning Incorporated | Dispositif athermique de reseau de guide d'ondes optique |
US6049414A (en) * | 1998-11-20 | 2000-04-11 | Lucent Technologies Inc. | Temperature-compensated rare earth doped optical waveguide amplifiers |
US6249624B1 (en) | 1998-12-04 | 2001-06-19 | Cidra Corporation | Method and apparatus for forming a Bragg grating with high intensity light |
EP1137920B1 (fr) * | 1998-12-04 | 2005-02-16 | Weatherford/Lamb, Inc. | Sonde manometrique a reseau de bragg |
US6810178B2 (en) * | 1998-12-04 | 2004-10-26 | Cidra Corporation | Large diameter optical waveguide having blazed grating therein |
US6298184B1 (en) | 1998-12-04 | 2001-10-02 | Cidra Corporation | Method and apparatus for forming a tube-encased bragg grating |
US6865194B1 (en) | 1998-12-04 | 2005-03-08 | Cidra Corporation | Strain-isolated Bragg grating temperature sensor |
JP4522588B2 (ja) * | 1998-12-04 | 2010-08-11 | シドラ コーポレイション | 圧縮同調式のブラッグ回折格子およびレーザ |
CA2353504C (fr) * | 1998-12-04 | 2007-09-11 | Cidra Corporation | Selecteur de mode de bragg et laser accordes par compression |
US6229827B1 (en) | 1998-12-04 | 2001-05-08 | Cidra Corporation | Compression-tuned bragg grating and laser |
US6278811B1 (en) | 1998-12-04 | 2001-08-21 | Arthur D. Hay | Fiber optic bragg grating pressure sensor |
US6519388B1 (en) | 1998-12-04 | 2003-02-11 | Cidra Corporation | Tube-encased fiber grating |
US6310990B1 (en) | 2000-03-16 | 2001-10-30 | Cidra Corporation | Tunable optical structure featuring feedback control |
US6490931B1 (en) | 1998-12-04 | 2002-12-10 | Weatherford/Lamb, Inc. | Fused tension-based fiber grating pressure sensor |
CA2353408C (fr) * | 1998-12-04 | 2008-10-07 | Cidra Corporation | Capteur de temperature a reseau de diffraction de bragg, isole vis a vis des contraintes |
US6452667B1 (en) | 1998-12-04 | 2002-09-17 | Weatherford/Lamb Inc. | Pressure-isolated bragg grating temperature sensor |
CN1153054C (zh) | 1998-12-04 | 2004-06-09 | 塞德拉公司 | 布拉格光栅压力传感器 |
US6982996B1 (en) | 1999-12-06 | 2006-01-03 | Weatherford/Lamb, Inc. | Large diameter optical waveguide, grating, and laser |
US6792009B2 (en) | 1998-12-04 | 2004-09-14 | Cidra Corporation | Tunable grating-based channel filter parking device |
US6621957B1 (en) | 2000-03-16 | 2003-09-16 | Cidra Corporation | Temperature compensated optical device |
US6763043B2 (en) * | 1998-12-04 | 2004-07-13 | Cidra Corporation | Tunable grating-based dispersion compensator |
EP1077544A1 (fr) * | 1998-12-11 | 2001-02-21 | Alcatel | Amplificateur à fibre optique avec compensation du comportement en température |
US6271766B1 (en) | 1998-12-23 | 2001-08-07 | Cidra Corporation | Distributed selectable latent fiber optic sensors |
GB9828584D0 (en) | 1998-12-23 | 1999-02-17 | Qps Technology Inc | Method for nonlinear, post tunable, temperature compensation package of fiber bragg gratings |
DE19860409A1 (de) | 1998-12-28 | 2000-06-29 | Abb Research Ltd | Faser-Bragg-Gitter Sensor zur Messung differentieller Drücke und von Strömungsgeschwindigkeiten |
KR100322136B1 (ko) | 1999-03-12 | 2002-02-04 | 윤종용 | 온도 보상 장주기 광섬유 격자 필터 |
JP2000266943A (ja) * | 1999-03-12 | 2000-09-29 | Nippon Electric Glass Co Ltd | 光通信用温度補償デバイス |
WO2000064827A1 (fr) * | 1999-04-23 | 2000-11-02 | Corning Incorporated | Procede de fabrication de substrat stabilises a expansion thermique negative pour guide d'onde optique et substrat en vitro-ceramique |
US6477299B1 (en) | 1999-04-23 | 2002-11-05 | Corning Incorporated | Environmentally stable athermalizes optical fiber grating device and method of making a stabilized device |
US6377727B1 (en) | 1999-05-25 | 2002-04-23 | Thomas & Betts International, Inc. | Passive temperature-compensating package for fiber Bragg grating devices |
FR2795528B1 (fr) * | 1999-06-22 | 2002-07-26 | Highwave Optical Tech | Procede de stabilisation et d'accordabilite de la longueur d'onde de reseaux de bragg |
CA2378077A1 (fr) * | 1999-07-07 | 2001-01-18 | Nippon Electric Glass Co., Ltd. | Materiau de compensation de temperature et dispositif de communication optique |
US6246511B1 (en) * | 1999-08-12 | 2001-06-12 | Agere Systems Optoelectronics Guardian Corp. | Apparatus and method to compensate for optical fiber amplifier gain variation |
JP4585091B2 (ja) | 1999-08-19 | 2010-11-24 | 三菱電機株式会社 | 導波路グレーティングデバイス |
US6317528B1 (en) | 1999-08-23 | 2001-11-13 | Corning Incorporated | Temperature compensated integrated planar bragg grating, and method of formation |
US6996316B2 (en) * | 1999-09-20 | 2006-02-07 | Cidra Corporation | Large diameter D-shaped optical waveguide and coupler |
US6324204B1 (en) | 1999-10-19 | 2001-11-27 | Sparkolor Corporation | Channel-switched tunable laser for DWDM communications |
US6934313B1 (en) | 1999-11-04 | 2005-08-23 | Intel Corporation | Method of making channel-aligned resonator devices |
US6243517B1 (en) | 1999-11-04 | 2001-06-05 | Sparkolor Corporation | Channel-switched cross-connect |
WO2001035133A1 (fr) * | 1999-11-11 | 2001-05-17 | Koheras A/S | Guide d'ondes optique athermique compact utilisant l'amplification par dilatation thermique |
US6341189B1 (en) | 1999-11-12 | 2002-01-22 | Sparkolor Corporation | Lenticular structure for integrated waveguides |
US6293688B1 (en) | 1999-11-12 | 2001-09-25 | Sparkolor Corporation | Tapered optical waveguide coupler |
US6439055B1 (en) | 1999-11-15 | 2002-08-27 | Weatherford/Lamb, Inc. | Pressure sensor assembly structure to insulate a pressure sensing device from harsh environments |
US6449402B1 (en) | 1999-11-19 | 2002-09-10 | Finisar Corporation | Method and apparatus for compensating an optical filter |
US6403949B1 (en) | 1999-11-23 | 2002-06-11 | Cidra Corporation | Method and apparatus for correcting systematic error in a wavelength measuring device |
US6462329B1 (en) * | 1999-11-23 | 2002-10-08 | Cidra Corporation | Fiber bragg grating reference sensor for precise reference temperature measurement |
US6346702B1 (en) | 1999-12-10 | 2002-02-12 | Cidra Corporation | Fiber bragg grating peak detection system and method |
US6233382B1 (en) | 2000-01-27 | 2001-05-15 | 3M Innovative Properties Company | Package for an optical bragg grating fiber for reducing the temperature dependence of its reflection wavelength |
US6626043B1 (en) | 2000-01-31 | 2003-09-30 | Weatherford/Lamb, Inc. | Fluid diffusion resistant glass-encased fiber optic sensor |
JP3519333B2 (ja) * | 2000-02-10 | 2004-04-12 | エヌ・ティ・ティ・アドバンステクノロジ株式会社 | 光ファイバセンサ |
US6493486B1 (en) | 2000-02-17 | 2002-12-10 | Finisar Corporation | Thermal compensated compact bragg grating filter |
EP1261888A2 (fr) * | 2000-03-06 | 2002-12-04 | CiDRA Corporation | Multiplexeur optique a insertion-extraction et reseau de diffraction accorde par compression |
US6301423B1 (en) | 2000-03-14 | 2001-10-09 | 3M Innovative Properties Company | Method for reducing strain on bragg gratings |
US6226438B1 (en) | 2000-03-14 | 2001-05-01 | 3M Innovative Properties Company | Thermally managed package for fiber optic bragg gratings |
USRE42407E1 (en) * | 2000-03-16 | 2011-05-31 | Steyphi Services De Llc | Distributed optical structures with improved diffraction efficiency and/or improved optical coupling |
USRE41570E1 (en) | 2000-03-16 | 2010-08-24 | Greiner Christoph M | Distributed optical structures in a planar waveguide coupling in-plane and out-of-plane optical signals |
USRE42206E1 (en) | 2000-03-16 | 2011-03-08 | Steyphi Services De Llc | Multiple wavelength optical source |
US6987911B2 (en) * | 2000-03-16 | 2006-01-17 | Lightsmyth Technologies, Inc. | Multimode planar waveguide spectral filter |
US6515599B1 (en) | 2000-03-22 | 2003-02-04 | Lucent Technologies Inc. | High-power selective signal attenuator and method of attenuation |
FR2809500B1 (fr) * | 2000-05-29 | 2003-09-26 | Highwave Optical Tech | Procede et dispositif de conditionnement de composant a fibres optiques |
DE10032060C2 (de) * | 2000-07-05 | 2002-11-21 | Advanced Optics Solutions Gmbh | Faser-Bragg-Gitter-Anordnung |
WO2002007273A2 (fr) * | 2000-07-17 | 2002-01-24 | Calmar Optcom, Inc. | Stabilisation active d'un laser de faible puissance |
US6374015B1 (en) * | 2000-08-01 | 2002-04-16 | Rich Key Technologies Limited | Temperature-compensating device with tunable mechanism for optical fiber gratings |
JP2002055234A (ja) * | 2000-08-07 | 2002-02-20 | Sumitomo Electric Ind Ltd | 光学装置 |
TW476013B (en) * | 2000-08-07 | 2002-02-11 | Ind Tech Res Inst | Electric fiber grating filter with switchable central wavelength |
US6594410B2 (en) | 2000-08-26 | 2003-07-15 | Cidra Corporation | Wide range tunable optical filter |
US7386204B1 (en) | 2000-08-26 | 2008-06-10 | Cidra Corporation | Optical filter having a shaped filter function |
US6510272B1 (en) | 2000-08-28 | 2003-01-21 | 3M Innovative Properties Company | Temperature compensated fiber bragg grating |
US6453108B1 (en) * | 2000-09-30 | 2002-09-17 | Cidra Corporation | Athermal bragg grating package with course and fine mechanical tuning |
US6704143B1 (en) | 2000-10-23 | 2004-03-09 | Adc Telecommunications, Inc. | Method and apparatus for adjusting an optical element to achieve a precise length |
WO2002037156A1 (fr) * | 2000-11-01 | 2002-05-10 | Corning Incorporated | Utilisation de polymeres a cristaux liquides tres orientes dans des materiaux polymeres a expansion thermique negative economiques destines a des applications de photonique |
US6594288B1 (en) | 2000-11-06 | 2003-07-15 | Cidra Corporation | Tunable raman laser and amplifier |
WO2002039160A1 (fr) * | 2000-11-09 | 2002-05-16 | Cambridge University Technical Services Ltd. | Plate-forme a coefficient de dilatation thermique regule |
US6453092B1 (en) | 2000-12-22 | 2002-09-17 | Corning Incorporated | Temperature compensated optical device |
US6594081B2 (en) | 2000-12-29 | 2003-07-15 | Cidra Corporation | Actuator mechanism for tuning an optical device |
US20040105618A1 (en) * | 2000-12-29 | 2004-06-03 | Lee Nicholas A. | Apparatus and method for making temperature compensated optical fiber diffraction gratings |
ATE235701T1 (de) | 2001-01-08 | 2003-04-15 | Cit Alcatel | Fasergitterfilter und verfahren zu deren herstellung |
CA2357242A1 (fr) * | 2001-02-22 | 2002-08-22 | Teraxion Inc. | Enveloppe athermique reglable pour dispositifs a fibres optiques |
EP1243949A1 (fr) * | 2001-03-14 | 2002-09-25 | Alcatel | Dispositif à filtre optique, méthode d'accordage et système de communication |
WO2002075873A1 (fr) * | 2001-03-16 | 2002-09-26 | Calmar Optcom, Inc. | Commande numerique de lasers a modes bloques activement |
US6778735B2 (en) * | 2001-03-19 | 2004-08-17 | Micron Optics, Inc. | Tunable fiber Bragg gratings |
CA2342098C (fr) * | 2001-03-23 | 2008-08-26 | Itf Optical Technologies Inc.-Technologies Optiques Itf Inc. | Dispositif a filtre optique assurant une commande en temperature |
US6591054B2 (en) * | 2001-04-05 | 2003-07-08 | 3M Innovative Properties Company | Filament organizer with accessory positioner |
US6545798B2 (en) * | 2001-04-09 | 2003-04-08 | Corning Incorporated | Thermal ripple-compensating, gain-flattening filter for an optical amplifier |
EP1255140A1 (fr) * | 2001-04-23 | 2002-11-06 | Alcatel | Dispositif pour compenser la temperature pour des réseaux de diffraction dans des fibres optiques |
US6845108B1 (en) | 2001-05-14 | 2005-01-18 | Calmar Optcom, Inc. | Tuning of laser wavelength in actively mode-locked lasers |
JP4369634B2 (ja) * | 2001-05-15 | 2009-11-25 | 古河電気工業株式会社 | 光モジュール |
US6961484B2 (en) * | 2001-05-25 | 2005-11-01 | Intel Corporation | Apparatus and methods for stabilization and control of fiber devices and fiber devices including the same |
GB0119033D0 (en) * | 2001-08-03 | 2001-09-26 | Southampton Photonics Ltd | An optical fibre thermal compensation device |
TWI234554B (en) | 2001-08-16 | 2005-06-21 | Broptics Technology Inc | Process for preparation of zirconium tungstate ceramic body, zirconium tungstate ceramic body prepared thereby, and fiber bragg grating temperature compensated device |
DE10140482B4 (de) * | 2001-08-17 | 2008-11-13 | Siemens Ag | Verfahren und Vorrichtung zur Störgrößenkompensation eines optischen Sensors |
FR2828938B1 (fr) * | 2001-08-23 | 2004-02-27 | Highwave Optical Tech | Dispositif athermique a fibre optique a flexion controlee |
US6584248B2 (en) | 2001-10-09 | 2003-06-24 | Corning Incorporated | Temperature-compensated optical grating device |
US20030076568A1 (en) * | 2001-10-22 | 2003-04-24 | Adc Telecommunications, Inc. | Light frequency stabilizer |
US6987909B1 (en) | 2001-11-30 | 2006-01-17 | Corvis Corporation | Optical systems and athermalized optical component apparatuses and methods for use therein |
US7027469B2 (en) | 2001-11-30 | 2006-04-11 | Optitune Plc | Tunable filter |
US20030108286A1 (en) * | 2001-12-06 | 2003-06-12 | Jacques Albert | Adjustable temperature compensating package for optical fiber devices |
US6636667B2 (en) * | 2001-12-06 | 2003-10-21 | Oplink Communications Inc. | Tunable optical fiber grating package with low temperature dependency |
US6738536B2 (en) * | 2001-12-20 | 2004-05-18 | Optinel Systems, Inc. | Wavelength tunable filter device for fiber optic systems |
US6856730B2 (en) * | 2002-07-22 | 2005-02-15 | Intel Corporation | Athermal package for fiber Bragg gratings with two or more bonding regions |
RU2241211C2 (ru) * | 2002-09-10 | 2004-11-27 | Общество с ограниченной ответственностью Центр по изготовлению медицинской техники "Экстратерм" | Датчик температуры и устройство для измерения температуры |
CA2404093C (fr) * | 2002-09-18 | 2009-02-24 | Itf Technologies Optiques Inc.- Itf Optical Technologies Inc. | Dispositif de conditionnement de composants optiques |
US6904206B2 (en) * | 2002-10-15 | 2005-06-07 | Micron Optics, Inc. | Waferless fiber Fabry-Perot filters |
US6920159B2 (en) * | 2002-11-29 | 2005-07-19 | Optitune Plc | Tunable optical source |
EP1583989A4 (fr) * | 2002-12-20 | 2006-07-05 | Micron Optics Inc | Support de ferrule a compensation thermique pour un filtre fabry-perot a fibre |
US7095910B2 (en) * | 2003-01-31 | 2006-08-22 | Honeywell International, Inc. | Wavelength division multiplexing coupling device |
US20040191637A1 (en) * | 2003-03-25 | 2004-09-30 | Gregory Steckman | Method for packaging thermally compensated filters |
US7177499B2 (en) * | 2003-03-28 | 2007-02-13 | Intel Corporation | Athermal package for fiber bragg gratings with compensation for non-linear thermal response |
US7171077B2 (en) * | 2003-04-03 | 2007-01-30 | Lxsix Photonics Inc. | Package for temperature sensitive optical device |
US20040234200A1 (en) * | 2003-05-21 | 2004-11-25 | Jennings Robert M. | Apparatus and method for non-linear thermal compensation of optical waveguide gratings |
US7180590B2 (en) * | 2003-07-09 | 2007-02-20 | Ibsen Photonics A/S | Transmission spectrometer with improved spectral and temperature characteristics |
CA2440952C (fr) * | 2003-09-15 | 2006-06-06 | Itf Technologies Optiques Inc./Itf Optical Technologies Inc. | Structure d'emballage de composant optique a compensation thermique |
US20060245692A1 (en) * | 2004-04-01 | 2006-11-02 | Lxsix Photonics Inc. | Package for temperature sensitive optical device |
US7319803B2 (en) * | 2004-09-30 | 2008-01-15 | Totoku Electric Co., Ltd. | Heat-resistant optical fiber, a method of manufacturing the same, a method of fixing an optical fiber, and a heat-resistant optical fiber using a protective tube |
US7068869B1 (en) * | 2005-01-10 | 2006-06-27 | Francisco Manuel Moita Araujo | Passive athermal fiber bragg grating strain gage |
US20060272713A1 (en) * | 2005-05-31 | 2006-12-07 | Garner Sean M | Microfluidic devices with integrated tubular structures |
CA2753398A1 (fr) * | 2005-11-10 | 2007-07-26 | Optical Air Data Systems, Llc | Emetteur-recepteur a mutliples guides d'ondes optiques a ouverture unique |
JP5312346B2 (ja) * | 2007-01-24 | 2013-10-09 | ジーケイエヌ エアロスペース サービシイズ リミテッド | 温度検出 |
US8049885B1 (en) * | 2008-05-15 | 2011-11-01 | Ondax, Inc. | Method and apparatus for large spectral coverage measurement of volume holographic gratings |
DE102008027931A1 (de) | 2008-06-12 | 2010-01-07 | Hottinger Baldwin Messtechnik Gmbh | Optischer Dehnungssensor |
US7986407B2 (en) | 2008-08-04 | 2011-07-26 | Ondax, Inc. | Method and apparatus using volume holographic wavelength blockers |
US8369017B2 (en) | 2008-10-27 | 2013-02-05 | Ondax, Inc. | Optical pulse shaping method and apparatus |
US8098967B1 (en) * | 2010-10-08 | 2012-01-17 | Michael Louis Bazzone | Generator protection system |
US8139905B1 (en) * | 2010-10-08 | 2012-03-20 | Michael Louis Bazzone | Generator protection system |
US9479280B2 (en) | 2011-07-14 | 2016-10-25 | Applied Optoelectronics, Inc. | Extended cavity fabry-perot laser assembly capable of high speed optical modulation with narrow mode spacing and WDM optical system including same |
US9160455B2 (en) | 2011-07-14 | 2015-10-13 | Applied Optoelectronics, Inc. | External cavity laser array system and WDM optical system including same |
US9306671B2 (en) | 2012-12-07 | 2016-04-05 | Applied Optoelectronics, Inc. | Thermally isolated multi-channel transmitter optical subassembly and optical transceiver module including same |
US9236945B2 (en) | 2012-12-07 | 2016-01-12 | Applied Optoelectronics, Inc. | Thermally shielded multi-channel transmitter optical subassembly and optical transceiver module including same |
US8831433B2 (en) | 2012-12-07 | 2014-09-09 | Applied Optoelectronics, Inc. | Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same |
US9614620B2 (en) | 2013-02-06 | 2017-04-04 | Applied Optoelectronics, Inc. | Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same |
US10230471B2 (en) | 2013-02-06 | 2019-03-12 | Applied Optoelectronics, Inc. | Coaxial transmitter optical subassembly (TOSA) with cuboid type to laser package and optical transceiver including same |
US8995484B2 (en) | 2013-02-22 | 2015-03-31 | Applied Optoelectronics, Inc. | Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same |
US9599565B1 (en) | 2013-10-02 | 2017-03-21 | Ondax, Inc. | Identification and analysis of materials and molecular structures |
US9964720B2 (en) | 2014-06-04 | 2018-05-08 | Applied Optoelectronics, Inc. | Monitoring and controlling temperature across a laser array in a transmitter optical subassembly (TOSA) package |
TWI554797B (zh) | 2015-04-30 | 2016-10-21 | 晉禾企業股份有限公司 | 溫度補償的光纖布拉格光柵濾波裝置 |
US9587983B1 (en) | 2015-09-21 | 2017-03-07 | Ondax, Inc. | Thermally compensated optical probe |
US9876576B2 (en) | 2016-03-17 | 2018-01-23 | Applied Optoelectronics, Inc. | Layered coaxial transmitter optical subassemblies with support bridge therebetween |
WO2019237170A1 (fr) * | 2018-06-11 | 2019-12-19 | Faculdades Católicas | Ensemble et procédé de mesure d'écoulement de fluide dans des tubulures |
US11125936B2 (en) | 2019-02-26 | 2021-09-21 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Thermal insulator for fiber optic components |
CN114859473B (zh) * | 2022-05-06 | 2022-12-23 | 天津大学 | 一种基于dfb的自匹配滤波装置及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2025081A (en) * | 1978-04-14 | 1980-01-16 | Cit Alcatel | Fixed optical attenuator for optical fibres |
EP0119727A2 (fr) * | 1983-02-23 | 1984-09-26 | Plessey Overseas Limited | Connecteurs optiques |
DE3411595A1 (de) * | 1984-03-29 | 1985-11-21 | kabelmetal electro GmbH, 3000 Hannover | Vorrichtung zum verbinden von zwei lichtwellenleitern und verfahren zur herstellung der vorrichtung |
WO1986001303A1 (fr) * | 1984-08-13 | 1986-02-27 | United Technologies Corporation | Procede d'impression de reseaux dans des fibres optiques |
-
1989
- 1989-12-26 US US07/456,440 patent/US5042898A/en not_active Expired - Lifetime
-
1990
- 1990-12-21 EP EP91903135A patent/EP0507877B1/fr not_active Expired - Lifetime
- 1990-12-21 DE DE69020167T patent/DE69020167T2/de not_active Expired - Lifetime
- 1990-12-21 JP JP50331191A patent/JP3187417B2/ja not_active Expired - Lifetime
- 1990-12-21 WO PCT/US1990/007640 patent/WO1991010151A1/fr active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2025081A (en) * | 1978-04-14 | 1980-01-16 | Cit Alcatel | Fixed optical attenuator for optical fibres |
EP0119727A2 (fr) * | 1983-02-23 | 1984-09-26 | Plessey Overseas Limited | Connecteurs optiques |
DE3411595A1 (de) * | 1984-03-29 | 1985-11-21 | kabelmetal electro GmbH, 3000 Hannover | Vorrichtung zum verbinden von zwei lichtwellenleitern und verfahren zur herstellung der vorrichtung |
WO1986001303A1 (fr) * | 1984-08-13 | 1986-02-27 | United Technologies Corporation | Procede d'impression de reseaux dans des fibres optiques |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0650083A3 (fr) * | 1993-10-22 | 1995-08-23 | At & T Corp | Empaquetage pour fibre optique. |
WO1996010854A1 (fr) * | 1994-09-30 | 1996-04-11 | United Technologies Corporation | Laser a fibre accorde par compression |
WO1996010765A1 (fr) * | 1994-09-30 | 1996-04-11 | United Technologies Corporation | Reseau de bragg accordable par compression |
US5691999A (en) * | 1994-09-30 | 1997-11-25 | United Technologies Corporation | Compression-tuned fiber laser |
EP0736783A3 (fr) * | 1995-04-07 | 1998-06-10 | Sumitomo Electric Industries, Ltd. | Procédé pour créer une répartition de l'indice de réfraction dans une voie optique filtre optique, et méthode pour l'utiliser |
US6393181B1 (en) | 1997-06-19 | 2002-05-21 | Jds Uniphase Pty. Ltd. | Temperature stable Bragg grating package with post tuning for accurate setting of centre frequency |
WO1998059267A1 (fr) * | 1997-06-19 | 1998-12-30 | Uniphase Fibre Components Pty, Limited | Boitier pour reseau de bragg, stable en temperature et a post-reglage permettant un ajustement precis de la frequence centrale |
AU725267B2 (en) * | 1997-06-19 | 2000-10-12 | Jds Uniphase Corporation | Temperature stable bragg grating package with post tuning for accurate setting of center frequency |
JP3378203B2 (ja) | 1997-10-03 | 2003-02-17 | ルーセント テクノロジーズ インコーポレイテッド | 光学装置 |
FR2772488A1 (fr) * | 1997-12-16 | 1999-06-18 | France Telecom | Dispositif de stabilisation d'un reseau de bragg vis a vis de la temperature, comportant deux materiaux de coefficients de dilatation thermique eloignes l'un de l'autre |
WO2000054082A1 (fr) * | 1999-03-10 | 2000-09-14 | Jds Uniphase Corporation | Mecanisme de commande de tension pour dispositifs a reseaux de bragg |
JP2000292620A (ja) * | 1999-04-06 | 2000-10-20 | Fujikura Ltd | 温度補償型光ファイバブラッググレーティング |
WO2001001174A1 (fr) * | 1999-06-29 | 2001-01-04 | Mitsubishi Cable Industries, Ltd. | Procede de fabrication de reseau de fibres, composant pour communication optique et capteur de temperature |
Also Published As
Publication number | Publication date |
---|---|
DE69020167D1 (de) | 1995-07-20 |
JP3187417B2 (ja) | 2001-07-11 |
DE69020167T2 (de) | 1995-10-26 |
JPH05503170A (ja) | 1993-05-27 |
EP0507877B1 (fr) | 1995-06-14 |
US5042898A (en) | 1991-08-27 |
EP0507877A1 (fr) | 1992-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5042898A (en) | Incorporated Bragg filter temperature compensated optical waveguide device | |
Mohammad et al. | Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression | |
US6859583B2 (en) | Fine-tuning assembly for optical gratings | |
US6370310B1 (en) | Fiber optic grating temperature compensation device and method | |
US5844667A (en) | Fiber optic pressure sensor with passive temperature compensation | |
US6327036B1 (en) | Fabry Perot/fiber Bragg grating multi-wavelength reference | |
US6374015B1 (en) | Temperature-compensating device with tunable mechanism for optical fiber gratings | |
KR20010080688A (ko) | 압축 조정된 브래그 격자 및 레이저 | |
US20020146226A1 (en) | Multi-core waveguide | |
US6327405B1 (en) | Devices and methods for temperature stabilization of Bragg grating structures | |
US9341770B2 (en) | Thermal compensation composition of optical fiber connector containing a fiber Bragg grating | |
WO1995030926A1 (fr) | Dispositif dont on peut faire varier les proprietes de transmission de la lumiere | |
US6396982B1 (en) | Bimetal-based temperature stabilized multi-FBG package with tunable mechanism | |
US20040234200A1 (en) | Apparatus and method for non-linear thermal compensation of optical waveguide gratings | |
US6377727B1 (en) | Passive temperature-compensating package for fiber Bragg grating devices | |
JP2016212392A (ja) | 温度補償のファイバブラッググレイティングフィルタ装置 | |
US6493486B1 (en) | Thermal compensated compact bragg grating filter | |
US6834142B2 (en) | Optical grating-based filter | |
US6850654B2 (en) | Passive thermal compensation of all-fiber Mach-Zehnder interferometer | |
US7212707B2 (en) | Temperature-compensated fiber grating packaging arrangement | |
US6636667B2 (en) | Tunable optical fiber grating package with low temperature dependency | |
US6763043B2 (en) | Tunable grating-based dispersion compensator | |
US6810178B2 (en) | Large diameter optical waveguide having blazed grating therein | |
KR101900743B1 (ko) | 광섬유 브라그 격자 내장 파장 가변 모듈 | |
US6757462B2 (en) | Bragg grating filter optical waveguide device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1991903135 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1991903135 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1991903135 Country of ref document: EP |