+

WO1991009422A1 - Procede de fabrication de films isolants sans craquelures avec couche intermediaire en verre sog - Google Patents

Procede de fabrication de films isolants sans craquelures avec couche intermediaire en verre sog Download PDF

Info

Publication number
WO1991009422A1
WO1991009422A1 PCT/CA1990/000448 CA9000448W WO9109422A1 WO 1991009422 A1 WO1991009422 A1 WO 1991009422A1 CA 9000448 W CA9000448 W CA 9000448W WO 9109422 A1 WO9109422 A1 WO 9109422A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
deposited
sog
dielectric
spin
Prior art date
Application number
PCT/CA1990/000448
Other languages
English (en)
Inventor
Luc Ouellet
Abdellah Azelmad
Original Assignee
Mitel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitel Corporation filed Critical Mitel Corporation
Publication of WO1991009422A1 publication Critical patent/WO1991009422A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This invention relates to method of making crack-free insulating films comprising a Spin-on glass (SOG) layer, and insulating films made thereby.
  • SOG Spin-on glass
  • SOG Spin-on glasses
  • monomers are polymerized by condensation and release water, solvent, and alcohol.
  • the condensed material is a thin solid film having mechanical, chemical and electrical properties which depend on the starting composition, and the coating and curing process. A good starting solution can give bad results if the coating and curing sequence is not optimized.
  • Siloxanes methyl-, ethyl-, phenyl-, butyl-, doped or undoped
  • Planarization is the filling in of the trenches and crevices formed when a plurality of layers, some of which might be subsequently etched back, are deposited on a substrate. Planarization is used over polysilicon, refractory metals, polycides, suicides, aluminum and aluminum alloys, copper, and gold or otehr conductive materials. The main goal is to smooth/eliminate steps and enhance step coverage by the dielectrics and interconnects. Planarization technology becomes increasingly important when the scale of integrated circuits is in the micron and submicron region. Of the many dielectric planarization techniques, SOG planarization is a particularly attractive method; it is relatively simple, economical and is capable of high throughput.
  • the quasi-inorganic siloxane SOGs have a more flexible structure due to the presence of organic radicals, which prevent complete cross-linking of the SiOxCyHz matrix under condensation, the organic radicals are not stable at high temperatures and are not compatible with oxygen plasma photoresist strippers (which tend to transform the quasi- inorganic SOG to a purely inorganic SOG by burning the organic bonds and producing volatile species like H 2 0, C ⁇ OyH z , and silanol Si-OH) .
  • These two drawbacks limit the use of the quasi-inorganic siloxanes as an alternative to the silicates.
  • SOG planarization can take three forms:
  • Total etchback and partial etchback processes for planarization of dielectrics over aluminum use photoresist, polyimide, or flexible quasi-inorganic SOGs. In those two cases, cracking of the dielectric sandwich does not occur since most of the planarizing material is removed from the wafer.
  • Non-etchback silicate SOG planarization of dielectrics over polysilicon, polycides, refractory metals or silicides has been used for about three years. This technique is not particularly demanding on the dielectric sandwich because the coefficient of thermal expansion of the materials is much lower than for aluminum and aluminum alloys. The dielectric sandwich does not normally crack over those materials.
  • Non-etchback SOG planarization of dielectrics over aluminum alloys is an extremely new process in the semiconductor industry.
  • purely inorganic SOG form dielectric sandwiches which are prone to very bad cracking. Consequently, more flexible quasi-organic SOGs have been tried, but this approach has proved to be questionable because of a serious field inversion problem due to the effect of the hydrogen contained in the organic bonds of the quasi-inorganic SOGs on the characteristics of CMOS semiconductor devices.
  • SOG film properties are of prime importance. Since SQG is generally a more porous material, when compared to LPCVD, APCVD, LACVD, PACVD or PECVD oxides, it is more prone to water absorption. This water absorption reduces the bulk resistivity of the SOG and increases the power consumption of the semiconductor device due to current leakage between adjacent tracks of interconnect. For this reason, among others, SOG must not come into direct contact with the tracks and must be sandwiched between two denser LPCVD, APCVD, LACVD, PACVD or PECVD dielectric films.
  • the present invention provides in a method of fabricating a composite insulating film comprising first and second layers with intermediate spin-on glass zones acting as a planarization interlayer for said first layer, at least said first layer being a dielectric layer, the improvement wherein the first layer is formed under compression to prevent cracking in the composite film during subsequent heat treatment.
  • the second layer can either be a second dielectric layer, or where, in the case of semiconductor fabrication, an interconnect layer is applied directly over the first and SOG layers, the second layer can be the interconnect layer.
  • the method may be applied to the fabrication of a semiconductor device wherein a first dielectric layer is applied over an interconnect layer having tracks defining a conductive pattern and made of material having a high coefficient of expansion, the first dielectric layer forming valleys between the tracks of the interconnect layer, spin-on glass is applied over said first layer to planarize it by forming spin-on glass zones in the valleys defined by the first dielectric layer, and a second layer is applied to the planarized first layer, whereby said first and second layers and said spin-on glass zones form a composite multi-layer film.
  • the first layer is formed under compression to prevent cracking in the composite multi ⁇ layer film during subsequent heat treatment.
  • Figures la to lh illustrate the steps in the manufacture of a composite insulating film with a SOG interlayer.
  • a layer of aluminum interconnect material 1 (Fig. la) is deposited on a substrate and then patterned using photolithography (Fig. lb) .
  • a first layer of dielectric 2 is deposited over the etched interconnect tracks (Fig. lc) and a an inorganic (silicate) spin-on glass (SOG) layer 3 is applied (with or without etchback) to fill the valleys and crevices (Fig. Id) .
  • the SOG is a proprietary composition and can be obtained from a number of sources such as Allied Signal Inc, Milpitas, California. Being liquid, the SOG is almost absent over the peaks la and provides good planarization for the first dielectric layer 2.
  • a second dielectric layer 4 is then applied over the first layer 2 and SOG interlayer 3 (Fig., le) . Contacts holes are then etched away to reach the tracks of the first layer of interconnect material 1 (fig. If) .
  • a second level of interconnect material 5 is deposited over the etched second layer 4 (fig If) and is patterned using photolithography to form the desired conductive tracks 5a (Fig. lh) .
  • Such dielectric sandwiches containing dense purely inorganic (silicate) SOG crack during the subsequenet heat treatments which are needed to cure and stabilize the SOG and the aluminum alloys.
  • Thin film stress can be compressive or tensile.
  • a compressive stress when too excessive, results in delamination, formation of waves and ripples.
  • a film in compression does not crack. In fact, a film in compression stops the propagation of cracks.
  • a tensile stress when too excessive, results in crack formation and propagation.
  • a stressed film When a stressed film is deposited on a substrate, it induces a mechanical bow of that substrate.
  • the bow direction and its magnitude is related to the stress type (tensile or compressive) , and its intensity. If the film is in tension, the substrate bows in such a way that the film is present on the concave face. Similarly, if the film is under compression the substrate bows in such a way that the film is present on the convex face.
  • the stress nature of a given thin film can then be measured by the change of curvature induced in a (100) Si single crystal wafer, due to the deposited film.
  • the wafer can be scanned before and after the deposition to obtain the net change or wafer radius of curvature.
  • the film stress " ⁇ " is calculated using the following expression:
  • M E is the Young's modulus of Si (100) wafer
  • rr is its Poisson's ratio
  • t is the wafer thickness
  • r is the measured net radius of curvature
  • r is the film thickness
  • the SOG stress obtained is not excessively high but the obtained material is very rigid. Although it was not possible to measure the actual coefficient of thermal expansion of the obtained SOG, the appearance of cracks at high temperature in the dielectric sandwich PSG/SOG/PSG (PSG stands for a 4.0 wt% phosphorus doped LPCVD Si0 film which is under a tensile stress of 0.5 - 3.0 x 10 9 dyne/cm 2 , up to four times higher than SOG), deposited over metal tracks of the first level of interconnect, and the absence of cracks in the dielectric sandwich PSG/PSG deposited over equivalent metal tracks, indicates that the SOG has a much smaller coefficient of thermal expansion than PSG.
  • the dielectric sandwich cracking has been substantially eliminated with a special combination of film stresses.
  • the first dielectric layer 1 deposited over the aluminum and under the SOG film must be under compressive stress. In this case, the heat treatments that cause expansion of the aluminum will tend to bring the dielectric under tension. But since the dielectric is already in compression, its stress will stabilize at an almost negligible value. A stress of about 5 x 10 8 to 3 x 10 9 dyne/cm 2 is preferred and its exact value depends on the difference of the coefficient of thermal expansion between the aluminum alloy and the dielectrics used in the sandwich.
  • the SOG layer has a stress that is slightly tensile at about 6 - 8 x 10 8 dynes/cm 2 .
  • the last dielectric layer 4 deposited over the SOG layer 3 and under the second interconnect layer 5 can be under compressive or tensile stress, but a tensile stress is preferred to compensate for the wafer bow generated by the first dielectric.
  • a stress of about 5 x 10 8 to 3 x 10 9 dyne/cm 2 is preferred.
  • the described method is very important because it permits a non-etchback high quality purely inorganic SOG process to be applied to high coefficient of thermal expansion materials, such as aluminum alloys.
  • PECVD Plasma Enhanced Chemical Vapour Deposition
  • LACVD Laser Assisted Chemical Vapour Deposition
  • the deposited compressive material under the SOG can be:
  • the layer 4 over the SOG layer 3 need not be under tension but also can be under compression.
  • the SOG can be of many types.
  • the crack prevention effect is much more pronounced with low coefficient of thermal expansion inorganic (silicates) SOGs.
  • the interconnect material under the SOG can be other than aluminum or aluminum alloy.
  • it can be a metal such as W, Mo, Ta, Co, Ti; or a reacted metal such as Ti x Ny, Ti x Wy, Ti x 0 v Z 2 , Ti x W v N 2 .
  • It can also be a suicide of W, Mo, Ta, Co, Ti, Pt.
  • the upper part of the dielectric sandwich can be omitted and the second metal layer 5 directly deposited over the SOG layer 3 and first dielectric layer 2.
  • the described process has many applications. In particular, it can be applied to other steps in the manufacture of integrated circuits, such as:
  • the process may be useful in the fabrication of:

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Le procédé décrit, qui sert à la fabrication de dispositifs à semi-conducteurs, consiste à appliquer une première couche diélectrique sur une couche d'interconnexion comportant des sillons définissant une structure conductrice, la première couche diélectrique formant des vallées entre les sillons de la couche d'interconnexion, à appliquer du verre de dépôt par rotation (verre SOG) sur cette première couche pour la rendre plane par la formation de zones en verre SOG dans les vallées définies par la première couche diélectrique, et à appliquer une seconde couche sur la première couche rendue plane, de façon à ce que les première et seconde couches et les zones en verre SOG forment un film multicouche composite. La première couche est conçue de façon à exercer des contraintes de compression à la température ambiante, de façon à empêcher toute apparition de craquelures dans le film multicouche composite lors d'un traitement thermique ultérieur. La seconde couche peut être constituée par une autre couche diélectrique ou par une autre couche d'interconnexion appliquée directement sur la première couche et sur la couche d'aplanissement en verre SOG. Ce procédé peut également s'appliquer dans d'autres domaines, tels que la fabrication de fibres optiques, de diodes électroluminescentes et similaires.
PCT/CA1990/000448 1989-12-20 1990-12-19 Procede de fabrication de films isolants sans craquelures avec couche intermediaire en verre sog WO1991009422A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA 2006174 CA2006174A1 (fr) 1989-12-20 1989-12-20 Methode de fabrication de films isolants sans craquelures au moyen de couches intermediaires de verre de spin
CA2,006,174 1989-12-20

Publications (1)

Publication Number Publication Date
WO1991009422A1 true WO1991009422A1 (fr) 1991-06-27

Family

ID=4143846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1990/000448 WO1991009422A1 (fr) 1989-12-20 1990-12-19 Procede de fabrication de films isolants sans craquelures avec couche intermediaire en verre sog

Country Status (2)

Country Link
CA (1) CA2006174A1 (fr)
WO (1) WO1991009422A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004501A1 (fr) * 1991-08-14 1993-03-04 Mitel Corporation Procede performant de passivation pour dispositifs a semi-conducteur
US5364818A (en) * 1990-05-29 1994-11-15 Mitel Corporation Sog with moisture resistant protective capping layer
US5371046A (en) * 1993-07-22 1994-12-06 Taiwan Semiconductor Manufacturing Company Method to solve sog non-uniformity in the VLSI process
EP0655776A1 (fr) * 1993-11-30 1995-05-31 STMicroelectronics S.r.l. Procédé d'autoplanarisation pour la passivation d'un circuit intégré
EP0678914A3 (fr) * 1994-04-18 1997-02-19 Advanced Micro Devices Inc Procédé de planarization d'un circuit intégré.
EP0851480A3 (fr) * 1996-12-25 1998-07-29 Canon Sales Co., Inc. Procédé de fabrication d'un film isolant à tension réglée, dispositif semiconducteur et son procédé de fabrication
KR100914443B1 (ko) * 2007-09-04 2009-08-28 후지쯔 마이크로일렉트로닉스 가부시키가이샤 반도체 장치 및 그 제조 방법
JP2016061718A (ja) * 2014-09-19 2016-04-25 株式会社デンソー 半導体物理量センサおよびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0046059A2 (fr) * 1980-08-08 1982-02-17 Fujitsu Limited Procédé de dépôt chimique de films, en phase vapeur, à l'aide d'un plasma
WO1987002828A1 (fr) * 1985-11-04 1987-05-07 Motorola, Inc. Dielectrique intermetallique en verre

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0046059A2 (fr) * 1980-08-08 1982-02-17 Fujitsu Limited Procédé de dépôt chimique de films, en phase vapeur, à l'aide d'un plasma
WO1987002828A1 (fr) * 1985-11-04 1987-05-07 Motorola, Inc. Dielectrique intermetallique en verre

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364818A (en) * 1990-05-29 1994-11-15 Mitel Corporation Sog with moisture resistant protective capping layer
WO1993004501A1 (fr) * 1991-08-14 1993-03-04 Mitel Corporation Procede performant de passivation pour dispositifs a semi-conducteur
US5541445A (en) * 1991-08-14 1996-07-30 Mitel Corporation High performance passivation for semiconductor devices
US5371046A (en) * 1993-07-22 1994-12-06 Taiwan Semiconductor Manufacturing Company Method to solve sog non-uniformity in the VLSI process
EP0655776A1 (fr) * 1993-11-30 1995-05-31 STMicroelectronics S.r.l. Procédé d'autoplanarisation pour la passivation d'un circuit intégré
EP0678914A3 (fr) * 1994-04-18 1997-02-19 Advanced Micro Devices Inc Procédé de planarization d'un circuit intégré.
EP0851480A3 (fr) * 1996-12-25 1998-07-29 Canon Sales Co., Inc. Procédé de fabrication d'un film isolant à tension réglée, dispositif semiconducteur et son procédé de fabrication
KR100914443B1 (ko) * 2007-09-04 2009-08-28 후지쯔 마이크로일렉트로닉스 가부시키가이샤 반도체 장치 및 그 제조 방법
JP2016061718A (ja) * 2014-09-19 2016-04-25 株式会社デンソー 半導体物理量センサおよびその製造方法

Also Published As

Publication number Publication date
CA2006174A1 (fr) 1991-06-20

Similar Documents

Publication Publication Date Title
US5506177A (en) Fabrication process for multilevel interconnections in a semiconductor device
US5607773A (en) Method of forming a multilevel dielectric
EP1109221B1 (fr) Structure d'interconnexions de type damascène et son procédé de réalisation
US6734562B1 (en) Integrated circuit device structure including foamed polymeric material
KR100358545B1 (ko) 반도체 장치 및 그 제조 공정
US5753967A (en) Damascene process for reduced feature size
KR900004264B1 (ko) 스핀-온 그라스를 쎄크리휘셜층으로 사용하는 2중금속층 mos의 평탄화 방법
US6040628A (en) Interconnect structure using a combination of hard dielectric and polymer as interlayer dielectrics
KR100354649B1 (ko) 저유전율 층간절연막을 갖는 반도체장치 및 그 제조방법
EP0822586A2 (fr) Améliorations relatives aux circuits intégrés
WO1991012630A1 (fr) Technique de traitement de verre depose par rotation utile pour fabriquer des dispositifs semi-conducteurs
CN1672250A (zh) 改进的beol互连结构中的双层hdpcvd/pe cvd帽层及其方法
JPH07312368A (ja) 絶縁膜の平坦化構造を形成するための方法
CN1114943C (zh) 半导体器件及其制造方法
US20090166817A1 (en) Extreme low-k dielectric film scheme for advanced interconnects
US5898221A (en) Semiconductor device having upper and lower wiring layers
KR20050013492A (ko) 구리/낮은 k 상호 접속 구조를 위해 개선된 화학적평탄화 성능
US6054769A (en) Low capacitance interconnect structures in integrated circuits having an adhesion and protective overlayer for low dielectric materials
US5716888A (en) Stress released VLSI structure by void formation
WO1991009422A1 (fr) Procede de fabrication de films isolants sans craquelures avec couche intermediaire en verre sog
JP3054637B2 (ja) 集積回路のパッシベーション方法
US5930677A (en) Method for reducing microloading in an etchback of spin-on-glass or polymer
US5942801A (en) Borderless vias with HSQ gap filled metal patterns having high etching resistance
JP2000223573A (ja) 平坦なレベル間誘電体層を有する集積回路素子
US5821162A (en) Method of forming multi-layer wiring utilizing SOG

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): GB JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PAT.BUL.14/91,UNDER INID (30) PRIORITY DATA REPLACE "006174" BY "2006174"

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载