WO1991002059A1 - Activateurs transcriptionnels de biosynthese d'anthocyanine utilises comme marqueurs visuels pour la transformation de plantes - Google Patents
Activateurs transcriptionnels de biosynthese d'anthocyanine utilises comme marqueurs visuels pour la transformation de plantes Download PDFInfo
- Publication number
- WO1991002059A1 WO1991002059A1 PCT/US1990/004281 US9004281W WO9102059A1 WO 1991002059 A1 WO1991002059 A1 WO 1991002059A1 US 9004281 W US9004281 W US 9004281W WO 9102059 A1 WO9102059 A1 WO 9102059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- expression cassette
- plant
- dna sequence
- expression
- Prior art date
Links
- 229930002877 anthocyanin Natural products 0.000 title abstract description 24
- 235000010208 anthocyanin Nutrition 0.000 title abstract description 24
- 239000004410 anthocyanin Substances 0.000 title abstract description 24
- 150000004636 anthocyanins Chemical class 0.000 title abstract description 23
- 108091006106 transcriptional activators Proteins 0.000 title abstract description 12
- 230000015572 biosynthetic process Effects 0.000 title abstract description 10
- 230000009466 transformation Effects 0.000 title description 11
- 230000000007 visual effect Effects 0.000 title description 3
- 241000196324 Embryophyta Species 0.000 abstract description 50
- 230000014509 gene expression Effects 0.000 abstract description 33
- 108090000623 proteins and genes Proteins 0.000 abstract description 27
- 240000008042 Zea mays Species 0.000 abstract description 17
- 230000019612 pigmentation Effects 0.000 abstract description 15
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 abstract description 14
- 235000002017 Zea mays subsp mays Nutrition 0.000 abstract description 14
- 235000009973 maize Nutrition 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 11
- 231100001184 nonphytotoxic Toxicity 0.000 abstract description 5
- 238000011426 transformation method Methods 0.000 abstract description 3
- 230000010307 cell transformation Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 75
- 210000001519 tissue Anatomy 0.000 description 28
- 239000002299 complementary DNA Substances 0.000 description 23
- 239000012634 fragment Substances 0.000 description 13
- 239000003550 marker Substances 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 9
- 108091028043 Nucleic acid sequence Proteins 0.000 description 8
- 108010050181 aleurone Proteins 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 150000001413 amino acids Chemical group 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000000049 pigment Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 108091034057 RNA (poly(A)) Proteins 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 230000002363 herbicidal effect Effects 0.000 description 4
- 239000004009 herbicide Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 241000193388 Bacillus thuringiensis Species 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 108010083644 Ribonucleases Proteins 0.000 description 3
- 102000006382 Ribonucleases Human genes 0.000 description 3
- 229940097012 bacillus thuringiensis Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001744 histochemical effect Effects 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 108091092195 Intron Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 231100000673 dose–response relationship Toxicity 0.000 description 2
- 210000001339 epidermal cell Anatomy 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 210000001938 protoplast Anatomy 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000003053 toxin Substances 0.000 description 2
- 231100000765 toxin Toxicity 0.000 description 2
- 108700026215 vpr Genes Proteins 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 241001677738 Aleuron Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101000658547 Escherichia coli (strain K12) Type I restriction enzyme EcoKI endonuclease subunit Proteins 0.000 description 1
- 101000658543 Escherichia coli Type I restriction enzyme EcoAI endonuclease subunit Proteins 0.000 description 1
- 101000658546 Escherichia coli Type I restriction enzyme EcoEI endonuclease subunit Proteins 0.000 description 1
- 101000658530 Escherichia coli Type I restriction enzyme EcoR124II endonuclease subunit Proteins 0.000 description 1
- 101000658540 Escherichia coli Type I restriction enzyme EcoprrI endonuclease subunit Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 101000658545 Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) Type I restriction enyme HindI endonuclease subunit Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 101000658548 Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) Putative type I restriction enzyme MjaIXP endonuclease subunit Proteins 0.000 description 1
- 101000658542 Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) Putative type I restriction enzyme MjaVIIIP endonuclease subunit Proteins 0.000 description 1
- 101000658529 Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) Putative type I restriction enzyme MjaVIIP endonuclease subunit Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 102100040329 Ribonuclease 8 Human genes 0.000 description 1
- 101710192190 Ribonuclease 8 Proteins 0.000 description 1
- 101150010882 S gene Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 101001042773 Staphylococcus aureus (strain COL) Type I restriction enzyme SauCOLORF180P endonuclease subunit Proteins 0.000 description 1
- 101000838760 Staphylococcus aureus (strain MRSA252) Type I restriction enzyme SauMRSORF196P endonuclease subunit Proteins 0.000 description 1
- 101000838761 Staphylococcus aureus (strain MSSA476) Type I restriction enzyme SauMSSORF170P endonuclease subunit Proteins 0.000 description 1
- 101000838758 Staphylococcus aureus (strain MW2) Type I restriction enzyme SauMW2ORF169P endonuclease subunit Proteins 0.000 description 1
- 101001042566 Staphylococcus aureus (strain Mu50 / ATCC 700699) Type I restriction enzyme SauMu50ORF195P endonuclease subunit Proteins 0.000 description 1
- 101000838763 Staphylococcus aureus (strain N315) Type I restriction enzyme SauN315I endonuclease subunit Proteins 0.000 description 1
- 101000838759 Staphylococcus epidermidis (strain ATCC 35984 / RP62A) Type I restriction enzyme SepRPIP endonuclease subunit Proteins 0.000 description 1
- 101000838756 Staphylococcus saprophyticus subsp. saprophyticus (strain ATCC 15305 / DSM 20229 / NCIMB 8711 / NCTC 7292 / S-41) Type I restriction enzyme SsaAORF53P endonuclease subunit Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000010310 bacterial transformation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000000453 cell autonomous effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 108010079502 exoribonuclease T Proteins 0.000 description 1
- NWKFECICNXDNOQ-UHFFFAOYSA-N flavylium Chemical compound C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=[O+]1 NWKFECICNXDNOQ-UHFFFAOYSA-N 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000000749 insecticidal effect Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/64—General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8209—Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/825—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis
Definitions
- This invention relates to the use of anthocyanin pigmentation as a non-phytotoxic marker for transformation of plant cells.
- the DNA sequence which is being incorporated into the plant cell genome codes for a protein which does not produce an immediately identifiable result.
- a gene which codes for the insecticidal toxin of Bacillus thuringiensis (BT) does not produce any immediately identifiable change in the characteristics of cells transformed by that gene, unless the cells are destructively analyzed for their content of BT toxin.
- BT Bacillus thuringiensis
- Fig. 1 shows a typical dose response curve in maize using the expression cassette of this invention.
- Fig. 2 shows a plasmid map of pPHI443.
- Fig. 3 shows the sequence of the Lc cDNA from maize.
- At least five genes in maize are known to encode enzymes which are, required for the synthesis of anthocyanin pigments.
- loci including R, B, and Lc, determine the pattern and timing of anthocyanin biosynthesis in the maize plant and seed.
- the expression of these regulatory genes is complex. For example, more than 50 naturally occurring alleles of R that condition unique patterns of pigmentation have been described.
- One allele, R-nj has been cloned by tagging with the transposable element Ac.
- R-nj is approximately 90% homologous with the R genes P, S, Lc and B and has been used to isolate an Lc cDNA clone.
- the protein encoded by the Lc cDNA has been shown to have features, characteristic of a transcriptional activator. From these, data and previous genetic analyses, it has been determined that all R genes encode functionally equivalent proteins and that developmental specificity of pigmentation is determined by differences in the R promoter regions. Thus, it has now been determined that transcriptional activators of anthocyanin biosynthesis, operatively linked to a suitable promoter in an expression cassette, have widespread utility as non-phytotoxic markers for plant cell transformation. Accordingly, a clone encoding for one of these genes (for example, the Lc gene or a translational equivalent thereof in maize) can be fused to appropriate expression sequences to provide an expression cassette which can be introduced into plant cells by any desired transformation method, such as microprojectile bombardment.
- any desired transformation method such as microprojectile bombardment.
- Red cells accumulating anthocyanin can be readily detected in epidermal and sub-epidermal layers of most tissues tested. Since this expression, indicated by accumulation of anthocyanin, can be followed in living tissue, the expression cassettes of this invention, comprising a genomic or cDNA clone ("clone") or translational equivalent thereof coding for a plant transcriptional activator gene for anthocyanin biosynthesis operably linked to plant regulatory sequences which cause expression of the clone in plant cells, provides a useful reporter/marker gene and transformation vector for maize and other plant cells.
- the ability to follow expression in living tissue by use of a non-toxic marker provides the ability to select cell lineages which can give rise to stably transformed plants. 1/02059
- this expression cassette can be incorporated into a bacterial transformation vector which causes expression or replication of the expression cassette in living bacterial cells as an intermediate step prior to introduction into plant cells.
- the present invention also provides bacterial cells containing as a foreign plasmid at least one copy of the foregoing bacterial expression vector.
- the plant expression cassette preferably includes a strong constitutive promoter sequence at one end to cause the gene to be transcribed at a high frequency, and a poly-A recognition sequence at the other end for proper processing and transport of the messenger RNA.
- An example of such a preferred (empty) expression cassette into which the cDNA of the Lc gene can be inserted is the pPHl414 plasmid developed by Beach, et al. of Pioneer Hi-Bred International, Inc., Johnston, Iowa.
- tissue-specific promoters can be employed to monitor transformation in selected tissues of the plant.
- An example of a tissue-specific promoter is the widely used RuBP carboxylase small subunit promoter.
- Highly preferred plant expression cassettes will be designed to include one or more structural genes conferring the desired transformation trait, such as insect resistance or increased yield. It is important that the cloned Lc gene have a start codon in the correct reading frame for the structural sequence.
- the plant expression vectors of this invention can be introduced into plant cells using any convenient technique, including electroporation (in protoplasts), microprojectile bombardment, and microinjection, into cells from monocotyledonous or dicotyledonous plants, in cell or tissue culture, to provide transformed plant cells containing as foreign DNA at least one copy of the DNA sequence of the plant expression cassette.
- the monocotyledonous species will be selected from maize, sorghum, triticale, wheat and rice, and ' the dicotyledonous species will be selected from soybean, alfalfa, tobacco, canola and tomato.
- protoplasts can be regenerated and cell or tissue cultures can be regenerated to form whole fertile plants which carry and express the desired marker gene.
- a highly preferred embodiment of the present invention is a transformed maize plant, the cells of which contain as foreign DNA at least one copy of the DNA sequence of an expression cassette of this invention.
- this invention provides transformation methods which use anthocyanin as a non-phytotoxic marker, comprising the steps of: a) culturing cells or tissues from a selected target plant; b) introducing into the cells the cell or tissue culture at least one copy of an expression cassette comprising a sequence coding for a plant transcriptional activator for anthocyanin biosynthesis, operably linked to plant regulatory sequences which cause the expression of the sequence in the cells, and c) identifying transformed cells by their anthocyanin pigmentation.
- the sequence can be a genomic or cDNA clone, or a sequence which is translationally equivalent to a genomic or cDNA clone for the transcriptional activator.
- translationally equivalent is meant that the DNA sequence in proper reading frame forms codons which translate to an amino acid sequence which is functionally equivalent to the amino acid sequence of the transcriptional activator produced by the genomic or cDNA clone, or is complementary (using normal C-G and A-T pairing) to a DNA sequence which in proper reading frame forms codons which translate to an amino acid sequence which is functionally equivalent to the amino acid sequence of the transcriptional activator produced by the genomic or cDNA cxone.
- Translation tables which show codon equivalences are found in most textbooks of molecular biology.
- this marker gene which uses pigmentation to provide visual evidence of transformation in plant cells, readily lends itself to use in combination with any of a variety of cell sorters which are capable of sorting cells on the basis of color, since accumulation of anthocyanin imparts a distinctive red or purple color to transformed cells.
- this invention also provides a method as described above, in which transformed cells are additionally separated from non- transformed cells by a cell sorter which sorts on the basis of color.
- the plant vectors provided herein can be incorporated into Agrobacteriu tumefaciens, which can then be used to ⁇ transfer the vector into susceptible plant cells, primarily from dicotyledonous species.
- this invention provides a method for transformation of Agrobacterium tumefaciens- susceptible dicotyledonous plants in which the expression cassette is introduced into the cells by infecting the cells with an Agrobacterium tumefaciens, a plasmid of which has been modified to include the expression cassette provided herein. Since the marker expression cassette provided by this invention causes " accumulation of a naturally occurring pigment, no enzyme assay or substrate is needed to determine activity of the gene.
- the expression cassettes of this invention because they employ transcriptional activator sequences for anthocyanin biosynthesis, have many potential applications in studying the molecular genetics and developmental biology of plants such as maize.
- domains of the R protein thought to be important for DNA binding and transcriptional activation can be altered by site-directed mutagenesis of the Lc cDNA coding sequence in pPHI443.
- the sequence of maize Lc cDNA is shown in Figure 2. By reintroducing mutant constructs into maize tissues of the appropriate genotype, the contribution of these domains to R function can be addressed.
- the Lc cDNA can also be used as a reporter gene for the analysis of promoters and other cis-acting control regions in maize.
- the library was screened with the 3.7 kb Hindlll genomic Lc clone using standard methods, as described in Maniatis, T., Fritsch, F., and Sambrook, J., (1982) Molecular Cloning; A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor ⁇ ' ew York). Of 3 x 10 5 recombinant oheqe screened with the 3.7 kb Hindlll fragment, one phage contained a 2.5 kb insert. The 6 kb Malawi genomic fragment was isolated by ligating 5 to 7 kb Hindlll genomic fragments into the Spel site of lambda Zap (Stratagene) , packaged and plated. Of 2 x 10 5 recombinant phage screened with the 3' end of the cDNA (position 880-1772), twelve phage contained the 6 kb Hindlll fragment.
- Genomic and cDNA inserts were subcloned into pUCll9. Overlapping subclones and unidirectional deletion clones were isolated and sequenced by the dideoxy method of Sanger et al., Proc. Natl. Acad. Sci . USA, l ⁇ , 5463-5467 (1977).
- the start of transcription was determined by primer extension using the method of Dunsmuir et al., Plant Molecular Biology Manual (Kluwer Academic Publishers, Hingham, Massachussetts) Chapter Cl, pp. 1-17.
- Five ug of poly(A) + RNA and 0.1 pmol (7.5 x 10 5 cpm) of the 32 P-labelled oligonucleotide 5' CGTGAACCGGCGGACGAGGG 3' were hybridized at 55°C for 3 hrs.
- the primer was extended for 45 min at 37°C with AMV reverse transcriptase.
- RNase protection experiments were performed according to Promega Biotech.
- RNA 1.5 x 10 5 cpm was added to 5 ug poly(A) + RNA isolated from female spikelets and hybridized overnight at 45°C.
- the unhybridized RNA was digested for 1 hr at 30°C with 40 ug/mL RNase A and 8 U/mL RNase T .
- the primer- extended and RNase protection products were each separated on an 8% acrylaraide sequencing gel.
- the cDNA clone was sub ⁇ cloned into pGEM-7Z (Promega). This plasmid (p266) was linearized with Xhol and i vitro transcribed with SP6 polymerase according to the manufacturer (Promega). The RNA was in vitro translated for 60 min in the presence of [ 35 S]-methionine using the rabbit reticulocyte lysate system (Promega). The protein products were separated on a 10% Laemmli gel. The sequence of the cDNA clone was identical to sequences found in the two genomic fragments confirming that the cDNA was derived from Lc.
- the transcription unit was found to span approximately 7 kb with introns at positions 228-229, 387-388, 648-649, 745-746, 760-761, 817-818, 1566-1567, and 1996-1997. All introns contained the consensus splice junction sequence (5' GT— — AG 3'). Primer extension was used to determine the start of transcription. A 20-base oligonucleotide was hybridized to poly(A) + RNA isolated from plants with and without Lc and extended with reverse transcriptase. Two major bands were observed which were used to define nucleotide positions 1 and 3. An RNase protection experiment confirmed this as the start of transcription. The 5' end of the Lc cDNA starts 20 bp from the transcription start site.
- the cDNA sequence contains a 610 amino acid open reading frame beginning with an AUG at nucleotide position 236 and ending with a stop codon at nucleotide position 2066.
- the plasmid pPHl443 is a pUCl ⁇ plasmid containing an enhanced 35S promoter spanning nucleotides - 421 to +2 of Cauliflower Mosaic Virus with the region from - 421 to - 90 duplicated in tandem, a 79 bp Hindlll Sa l fragment from pJHlOl spanning the 5' leader sequence of Tobacco Mosaic Virus, a 579 bp fragment spanning the first intron from maize Adhl-S, a 2415 bp Xbal fragment spanning the Lc cDNA, and a 281 bp fragment spanning the polyadenylation site from the nopaline synthase gene in pTiT37.
- control plasmid pPHl459 contained identical expression signals, but an 1870 bp fragment from pRAJ275 spanning the beta-D-glucuronidase (GUS) coding sequence which was inserted in place of the Lc cDNA.
- GUS beta-D-glucuronidase
- EXAMPLE 2 PLANT CELL TRANS ORMATI N Mature dry seed of W22 Al A2 Bzl Bz2 Cl C2 r-g:Stadler B-b pi was obtained from Pioneer Hi-Bred International, Johnston, Iowa. Kernels were surface sterilized for 20 min in 20% Clorox/0.1% Tween-20, washed three times in sterile distilled water and allowed to imbibe for 14-18 hrs in distilled water at room temperature. After removing the pericarp, embryos were dissected out and germinated on MS medium solidified with 0.5% Gel-Rite. The remainder of the kernel was split into halves which were placed with the exposed aleurone layer upper most on MS plates containing 0.25 M sorbitol.
- Tissues were usually incubated at 30°C with an 18 hr/6 hr light-dark regimen. Half-kernels were bombarded the following day, whereas germinated seedlings were bombarded 36-48 hrs after plating. In most experiments, 5 ug each of pF ⁇ l459 and/or pPHl443 DNA was precipitated onto 4.375 mg of gold particles (Engelhard A1570 Flakeless) essentially as described in the patent application of Tomes, U.S. Serial No. 351,075, the disclosures of which are hereby incorporated herein by reference. Approximately 10 7 particles in a total volume of 1 uL were delivered using a particle gun as described by Sanford, et al.
- Anthocyanin accumulation was first detectable at 14-18 hrs after bombardment in aleurone cells and some epidermal cells (e.g., scutellar node). In other tissues (e.g., epidermal cells of root, leaf, coleoptile, tassel, etc.), pigmentation often took 36-48 hrs to develop. In most cells, the red color was stable for several weeks following bombardment. Tissues were stained for GUS within 48 hrs following bombardment essentially as described by Jefferson et al., (1987) EMBO J. , 6, 3901-3907, except that the staining solution contained 1% DMSO.
- R locus gene expression in plant tissues is conditioned by the Pi locus.
- anthocyanin biosynthesis is light-dependent in all tissues except for the aleurone layer.
- Pigmentation in the aleurone layer requires Cl, which is functionally equivalent to Pi.
- Cl Pi and Cl pi aleurones and seedling tissues which had been incubated in either the light or the dark were bombarded with pPHl443
- aleurone pigmentation resulting from the introduction of pPHl443 was independent of either Pi or light
- seedling pigmentation required one or the other of these factors.
- This characteristic provides the ability to distinguish between stably and transiently transformed cells by incubating the cells in the dark for several days post- bombardment and then returning them to growth in the light. Only cells which have been stably transformed will then become pigmented.
- pigmentation was seen in the epidermal layer of the coleoptile, mesocotyl, scutellar node, coleorhiza and both primary and adventitious roots.
- pigmentation was frequently observed in the trichomes and marginal hairs of young leaves and tassel glumes, as well as in epidermal and sub-epidermal cells. Red cells were also seen at lower frequency in the inner and outer layers of immature pericarp, immature tassels and anther locules and both culm and husk tissues. Surprisingly, pigmented cells were never observed in either immature or mature endosperm.
- Cell-autonomous expression can be visualized in almost all tissues of the plant without having to disturb the integrity of the plant. This is extremely useful for developmental studies of maize and other plants and for obtaining stably transformed plants.
- By introducing the gene into meristematic cells pigmented sectors of tissues can be followed during subsequent development. Stably transformed sectors which give rise to germ line tissues can yield transformed plants in the following generation.
- This invention also provides materials and methods for the creation of new ornamental plants in which selected cells or tissues, or all cells or tissues, produce and accumulate anthocyanin pigmentation.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Nutrition Science (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US38773989A | 1989-08-01 | 1989-08-01 | |
US387,739 | 1989-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991002059A1 true WO1991002059A1 (fr) | 1991-02-21 |
Family
ID=23531192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1990/004281 WO1991002059A1 (fr) | 1989-08-01 | 1990-07-31 | Activateurs transcriptionnels de biosynthese d'anthocyanine utilises comme marqueurs visuels pour la transformation de plantes |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0462231A4 (fr) |
AU (1) | AU6287390A (fr) |
WO (1) | WO1991002059A1 (fr) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993014211A1 (fr) * | 1992-01-09 | 1993-07-22 | John Innes Foundation | Regulation des genes des plantes |
WO1995034634A3 (fr) * | 1994-06-06 | 1996-01-11 | Plant Genetic Systems Nv | Utilisation de genes de l'anthocyanine pour la conservation de plantes males steriles |
WO1997014807A1 (fr) * | 1995-10-16 | 1997-04-24 | Seminis Vegetable Seeds, Inc. | Procede pour selectionner visuellement des cellules ou des tissus vegetaux transgeniques grace a des pigments carotenoides |
WO1998006862A1 (fr) * | 1996-08-09 | 1998-02-19 | Calgene Llc | Procedes de fabrication de composes carotenoides et d'huiles speciales a partir de graines de plantes |
WO1999060129A1 (fr) * | 1998-05-18 | 1999-11-25 | Dekalb Genetics Corporation | Methodes et compositions pour identification de transgenes |
US6008437A (en) * | 1995-06-06 | 1999-12-28 | Plant Genetic Systems | Use of anthocyanin genes to maintain male sterile plants |
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
US6429356B1 (en) | 1996-08-09 | 2002-08-06 | Calgene Llc | Methods for producing carotenoid compounds, and specialty oils in plant seeds |
WO2002039809A3 (fr) * | 2000-11-17 | 2002-09-19 | Ca Minister Agriculture & Food | Regulation de l'expression de flavonoides dans l'alfalfa par utilisation de genes de regulation du mais |
US6653530B1 (en) | 1998-02-13 | 2003-11-25 | Calgene Llc | Methods for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant seeds |
US6720488B2 (en) | 1991-10-04 | 2004-04-13 | Syngenta Investment Corporation | Transgenic maize seed and method for controlling insect pests |
US6841717B2 (en) | 2000-08-07 | 2005-01-11 | Monsanto Technology, L.L.C. | Methyl-D-erythritol phosphate pathway genes |
US6872815B1 (en) | 2000-10-14 | 2005-03-29 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7034203B1 (en) | 1998-01-26 | 2006-04-25 | Unilever Patent Holdings B.V. | Methods and composition for modulating flavonols content |
US7067647B2 (en) | 1999-04-15 | 2006-06-27 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US7112717B2 (en) | 2002-03-19 | 2006-09-26 | Monsanto Technology Llc | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof |
US7161061B2 (en) | 2001-05-09 | 2007-01-09 | Monsanto Technology Llc | Metabolite transporters |
US7230165B2 (en) | 2002-08-05 | 2007-06-12 | Monsanto Technology Llc | Tocopherol biosynthesis related genes and uses thereof |
US7238855B2 (en) | 2001-05-09 | 2007-07-03 | Monsanto Technology Llc | TyrA genes and uses thereof |
US7244877B2 (en) | 2001-08-17 | 2007-07-17 | Monsanto Technology Llc | Methyltransferase from cotton and uses thereof |
US7262339B2 (en) | 2001-10-25 | 2007-08-28 | Monsanto Technology Llc | Tocopherol methyltransferase tMT2 and uses thereof |
JP2010029196A (ja) * | 1997-03-27 | 2010-02-12 | Advanced Technologies (Cambridge) Ltd | 遺伝子発現の特異性に関する改良 |
WO2012030714A2 (fr) | 2010-08-30 | 2012-03-08 | Agrigenetics, Inc. | Plateforme de marquage d'activation pour maïs et population marquée résultante et plantes |
US11034969B2 (en) * | 2017-12-22 | 2021-06-15 | Altria Client Services Llc | Plant comprising recombinant polynucleotides encoding a pigment regulatory transcription factor with a tissue-preferred promoter |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300310A (en) * | 1980-07-28 | 1981-11-17 | The Board Of Regents Of The University Of Nebraska | Identification and sorting of plant heterokaryons |
US4649109A (en) * | 1984-02-16 | 1987-03-10 | Brandeis University | Methods for isolating mutant microorganisms from parental populations |
US4771002A (en) * | 1984-02-24 | 1988-09-13 | Lubrizol Genetics, Inc. | Transcription in plants and bacteria |
US4833080A (en) * | 1985-12-12 | 1989-05-23 | President And Fellows Of Harvard College | Regulation of eucaryotic gene expression |
-
1990
- 1990-07-31 WO PCT/US1990/004281 patent/WO1991002059A1/fr not_active Application Discontinuation
- 1990-07-31 EP EP19900912716 patent/EP0462231A4/en not_active Withdrawn
- 1990-07-31 AU AU62873/90A patent/AU6287390A/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4300310A (en) * | 1980-07-28 | 1981-11-17 | The Board Of Regents Of The University Of Nebraska | Identification and sorting of plant heterokaryons |
US4649109A (en) * | 1984-02-16 | 1987-03-10 | Brandeis University | Methods for isolating mutant microorganisms from parental populations |
US4771002A (en) * | 1984-02-24 | 1988-09-13 | Lubrizol Genetics, Inc. | Transcription in plants and bacteria |
US4833080A (en) * | 1985-12-12 | 1989-05-23 | President And Fellows Of Harvard College | Regulation of eucaryotic gene expression |
Non-Patent Citations (8)
Title |
---|
Chromosome Structure and Function; GUSTAFSON et al. (eds) Issued 1988; Plenum Press (New York, USA); DELLAPORTE et al.; "Molecular Cloning Of The Maize R-nj Allele By Transposon Tagging With Ac", pages 263-282. (See entire document). * |
Nature; Volume 330 Issued 17 December 1987; (London, England); MEYER et al.; "A new petunia flower colour generated by transformation of a mutant with a maize gene", pages 677-678. (See entire document). * |
Nucleic Acids Research, Volume 17, Issued October 1989, (Oxford, England), PERRAT et al., "Nucleotide sequence of the maize R-S gene", page 8003. See entire document. * |
Physiologia Plantarum; Volume 68; Issued 1986; (London, England); PERANI et al.; "Gene transfer methods for crop improvement: Introduction of foreign DNA into plants", pages 566-570. See entire document. * |
Proceedings of the National Academy of Sciences USA; Volume 85; Issued June 1988; KLEIN et al.; "Transfer of foreign genes into intact maize cells with high-velocity microprojectiles"; pages 4305-4309. (See entire document). * |
Proceedings of the National Academy of Sciences USA; Volume 86, Issued September 1989; LUDWIG et al; "Lc, a member of the maize R gene family responsible for tissuespecific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region"; pages 7092-7096. (See entire document). * |
Science; Volume 247; Issued 26 January 1990; LUDWIG et al.; "A regulatory gene as a novel visible marker for maize transformation", pages 449-450. See entire document. * |
The EMBO Journal, Volume 6, No. 12, Issued 1987, (Oxford England) PAZ-ARES et al., "The regulatory cl locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators", pages 3553-3558. (See entire document). * |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6403865B1 (en) | 1990-08-24 | 2002-06-11 | Syngenta Investment Corp. | Method of producing transgenic maize using direct transformation of commercially important genotypes |
US6720488B2 (en) | 1991-10-04 | 2004-04-13 | Syngenta Investment Corporation | Transgenic maize seed and method for controlling insect pests |
WO1993014211A1 (fr) * | 1992-01-09 | 1993-07-22 | John Innes Foundation | Regulation des genes des plantes |
AU671272B2 (en) * | 1992-01-09 | 1996-08-22 | John Innes Foundation | Regulation of plant genes |
AU698942B2 (en) * | 1994-06-06 | 1998-11-12 | Plant Genetic Systems N.V. | Use of anthocyanin genes to maintain male sterile plants |
US5880331A (en) * | 1994-06-06 | 1999-03-09 | Plant Genetic Systems, N.V. | Use of anthocyanin genes to maintain male sterile plants |
WO1995034634A3 (fr) * | 1994-06-06 | 1996-01-11 | Plant Genetic Systems Nv | Utilisation de genes de l'anthocyanine pour la conservation de plantes males steriles |
US6008437A (en) * | 1995-06-06 | 1999-12-28 | Plant Genetic Systems | Use of anthocyanin genes to maintain male sterile plants |
WO1997014807A1 (fr) * | 1995-10-16 | 1997-04-24 | Seminis Vegetable Seeds, Inc. | Procede pour selectionner visuellement des cellules ou des tissus vegetaux transgeniques grace a des pigments carotenoides |
US6972351B2 (en) | 1996-08-09 | 2005-12-06 | Calgene Llc | Methods for producing carotenoid compounds and specialty oils in plant seeds |
WO1998006862A1 (fr) * | 1996-08-09 | 1998-02-19 | Calgene Llc | Procedes de fabrication de composes carotenoides et d'huiles speciales a partir de graines de plantes |
US6429356B1 (en) | 1996-08-09 | 2002-08-06 | Calgene Llc | Methods for producing carotenoid compounds, and specialty oils in plant seeds |
JP2010029196A (ja) * | 1997-03-27 | 2010-02-12 | Advanced Technologies (Cambridge) Ltd | 遺伝子発現の特異性に関する改良 |
US7034203B1 (en) | 1998-01-26 | 2006-04-25 | Unilever Patent Holdings B.V. | Methods and composition for modulating flavonols content |
US6653530B1 (en) | 1998-02-13 | 2003-11-25 | Calgene Llc | Methods for producing carotenoid compounds, tocopherol compounds, and specialty oils in plant seeds |
US6307123B1 (en) | 1998-05-18 | 2001-10-23 | Dekalb Genetics Corporation | Methods and compositions for transgene identification |
WO1999060129A1 (fr) * | 1998-05-18 | 1999-11-25 | Dekalb Genetics Corporation | Methodes et compositions pour identification de transgenes |
US7265207B2 (en) | 1999-04-15 | 2007-09-04 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7067647B2 (en) | 1999-04-15 | 2006-06-27 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US7141718B2 (en) | 1999-04-15 | 2006-11-28 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US7335815B2 (en) | 1999-04-15 | 2008-02-26 | Calgene Llc | Nucleic acid sequences to proteins involved in isoprenoid synthesis |
US6841717B2 (en) | 2000-08-07 | 2005-01-11 | Monsanto Technology, L.L.C. | Methyl-D-erythritol phosphate pathway genes |
US7405343B2 (en) | 2000-08-07 | 2008-07-29 | Monsanto Technology Llc | Methyl-D-erythritol phosphate pathway genes |
US7420101B2 (en) | 2000-10-14 | 2008-09-02 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US6872815B1 (en) | 2000-10-14 | 2005-03-29 | Calgene Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
US8362324B2 (en) | 2000-10-14 | 2013-01-29 | Monsanto Technology Llc | Nucleic acid sequences to proteins involved in tocopherol synthesis |
WO2002039809A3 (fr) * | 2000-11-17 | 2002-09-19 | Ca Minister Agriculture & Food | Regulation de l'expression de flavonoides dans l'alfalfa par utilisation de genes de regulation du mais |
US7521600B2 (en) | 2000-11-17 | 2009-04-21 | Agriculture And Agri - Food Canada | Regulation of flavonoid expression in alfalfa using maize regulatory genes |
US7238855B2 (en) | 2001-05-09 | 2007-07-03 | Monsanto Technology Llc | TyrA genes and uses thereof |
US7161061B2 (en) | 2001-05-09 | 2007-01-09 | Monsanto Technology Llc | Metabolite transporters |
US7553952B2 (en) | 2001-08-17 | 2009-06-30 | Monsanto Technology Llc | Gamma tocopherol methyltransferase coding sequence identified in Cuphea and uses thereof |
US7595382B2 (en) | 2001-08-17 | 2009-09-29 | Monsanto Technology Llc | Gamma tocopherol methyltransferase coding sequences from Brassica and uses thereof |
US7605244B2 (en) | 2001-08-17 | 2009-10-20 | Monsanto Technology Llc | Gamma tocopherol methyltransferase coding sequence from Brassica and uses thereof |
US7244877B2 (en) | 2001-08-17 | 2007-07-17 | Monsanto Technology Llc | Methyltransferase from cotton and uses thereof |
US7262339B2 (en) | 2001-10-25 | 2007-08-28 | Monsanto Technology Llc | Tocopherol methyltransferase tMT2 and uses thereof |
US7112717B2 (en) | 2002-03-19 | 2006-09-26 | Monsanto Technology Llc | Homogentisate prenyl transferase gene (HPT2) from arabidopsis and uses thereof |
US7230165B2 (en) | 2002-08-05 | 2007-06-12 | Monsanto Technology Llc | Tocopherol biosynthesis related genes and uses thereof |
WO2012030714A2 (fr) | 2010-08-30 | 2012-03-08 | Agrigenetics, Inc. | Plateforme de marquage d'activation pour maïs et population marquée résultante et plantes |
US8912393B2 (en) | 2010-08-30 | 2014-12-16 | Dow Agrosciences, Llc. | Activation tagging platform for maize, and resultant tagged populations and plants |
US9896692B2 (en) | 2010-08-30 | 2018-02-20 | Dow Agrosciences Llc | Sugarcane bacilliform viral enhancer-based activation tagging platform for maize, and resultant tagged populations and plants |
US11034969B2 (en) * | 2017-12-22 | 2021-06-15 | Altria Client Services Llc | Plant comprising recombinant polynucleotides encoding a pigment regulatory transcription factor with a tissue-preferred promoter |
Also Published As
Publication number | Publication date |
---|---|
AU6287390A (en) | 1991-03-11 |
EP0462231A4 (en) | 1992-05-13 |
EP0462231A1 (fr) | 1991-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1991002059A1 (fr) | Activateurs transcriptionnels de biosynthese d'anthocyanine utilises comme marqueurs visuels pour la transformation de plantes | |
US5034323A (en) | Genetic engineering of novel plant phenotypes | |
Kobayashi et al. | Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis | |
Goldsbrough et al. | Lc as a non‐destructive visual reporter and transposition excision marker gone for tomato | |
US5955361A (en) | P gene promoter constructs for floral-tissue preferred gene expression | |
CA2367408A1 (fr) | Procede de reproduction d'un trait genetique | |
WO1998022593A9 (fr) | Constructions promotrices du gene p pour expression preferentielle d'un gene de tissu floral | |
Li et al. | Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter | |
US6787687B1 (en) | Rin gene compositions and methods for use thereof | |
CA2626304C (fr) | Cereales a dormance modifiee | |
EA001039B1 (ru) | Способ интеграции экзогенной днк в геном растительной клетки и способ получения фертильного трансгенного растения с интегрированной в геном экзогенной днк | |
AU715535B2 (en) | Plant glutathione S-transferase promoters | |
US6063988A (en) | DNA sequences encoding stilbene synthases and their use | |
WO1994010831A1 (fr) | Induction du nanisme et d'une floraison precoce a l'aide des proteines abondantes d'embryogenese tardive (aet) du groupe 3 | |
US6762347B1 (en) | NOR gene compositions and methods for use thereof | |
WO2001014561A1 (fr) | Compositions de gene nor et leurs procedes d'utilisation | |
US6177614B1 (en) | Control of floral induction in plants and uses therefor | |
CA2214500A1 (fr) | Regulation de l'induction de la floraison chez les plantes et ses utilisations | |
AU741854B2 (en) | Control of floral induction in plants and uses therefor | |
KR100432533B1 (ko) | 식물의 형질을 변화시키는 전사 인자의 유전자를 포함하는 무성번식 식물 | |
WO2001004315A2 (fr) | Compositions de genes rin et leurs procedes d'utilisation | |
Rahim | ASSOCIATION OF THE EXPRESSION LEVELS OF TRANSCRIPTION FACTORS WITH THE PHENOTYPES AND GENOTYPES OF PEACH FRUITS THAT DIFFER IN THEIR QUALITATIVE CHARACTERISTICS | |
SMIRNOFF | STEPHEN G. HUGHES, JOHN A. BRYANT | |
AU8150801A (en) | Control of floral induction in plants and uses therefor | |
MXPA97006959A (en) | Control of floral induction in plants, and supply of my |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |
|
COP | Corrected version of pamphlet |
Free format text: PAGES 1/3-3/3,DRAWINGS,REPLACED BY NEW PAGES 1/5-5/5;DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1990912716 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1990912716 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1990912716 Country of ref document: EP |