WO1990010795A1 - Hydraulic driving unit for working machine - Google Patents
Hydraulic driving unit for working machine Download PDFInfo
- Publication number
- WO1990010795A1 WO1990010795A1 PCT/JP1990/000325 JP9000325W WO9010795A1 WO 1990010795 A1 WO1990010795 A1 WO 1990010795A1 JP 9000325 W JP9000325 W JP 9000325W WO 9010795 A1 WO9010795 A1 WO 9010795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- hydraulic
- valve
- hydraulic drive
- pump
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 70
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 9
- 239000003921 oil Substances 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 7
- 239000010720 hydraulic oil Substances 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract 2
- 238000000034 method Methods 0.000 description 16
- 238000006073 displacement reaction Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000009412 basement excavation Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2225—Control of flow rate; Load sensing arrangements using pressure-compensating valves
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/161—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
- F15B11/165—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/2053—Type of pump
- F15B2211/20546—Type of pump variable capacity
- F15B2211/20553—Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/205—Systems with pumps
- F15B2211/20576—Systems with pumps with multiple pumps
- F15B2211/20584—Combinations of pumps with high and low capacity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/25—Pressure control functions
- F15B2211/253—Pressure margin control, e.g. pump pressure in relation to load pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30505—Non-return valves, i.e. check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/305—Directional control characterised by the type of valves
- F15B2211/30525—Directional control valves, e.g. 4/3-directional control valve
- F15B2211/3053—In combination with a pressure compensating valve
- F15B2211/30535—In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/31—Directional control characterised by the positions of the valve element
- F15B2211/3105—Neutral or centre positions
- F15B2211/3111—Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/32—Directional control characterised by the type of actuation
- F15B2211/329—Directional control characterised by the type of actuation actuated by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/30—Directional control
- F15B2211/35—Directional control combined with flow control
- F15B2211/351—Flow control by regulating means in feed line, i.e. meter-in control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50509—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
- F15B2211/50518—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
- F15B2211/50527—Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/605—Load sensing circuits
- F15B2211/6051—Load sensing circuits having valve means between output member and the load sensing circuit
- F15B2211/6054—Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/63—Electronic controllers
- F15B2211/6303—Electronic controllers using input signals
- F15B2211/6346—Electronic controllers using input signals representing a state of input means, e.g. joystick position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/60—Circuit components or control therefor
- F15B2211/635—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
- F15B2211/6355—Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7051—Linear output members
- F15B2211/7053—Double-acting output members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/705—Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
- F15B2211/7058—Rotary output members
Definitions
- the present invention relates to a hydraulic drive device for a working machine such as a hydraulic shovel or a hydraulic crane, and more particularly to a hydraulic drive device for a working machine having a pressure compensating means for maintaining a differential pressure across a flow control valve at a specified value.
- a typical example is a hydraulic shovel.
- the hydraulic shovel is composed of a lower traveling structure for moving the hydraulic shovel, an upper revolving superstructure rotatably mounted on the lower traveling structure, and a boom, an arm, and a bucket. It consists of a front mechanism.
- Various equipment such as a cab, a prime mover, and a hydraulic pump are mounted on the upper revolving superstructure, and a front mechanism is installed.
- the hydraulic drive device used in this type of working machine controls the pump discharge amount so that the pump discharge pressure becomes higher than the load pressure of the hydraulic actuator by a certain value.
- a load sensing system that discharges only the flow rate from a hydraulic pump.
- This load sensing system typically includes, as described in, for example, Japanese Patent Application Laid-Open No. 61-117606, a discharge pressure of a hydraulic pump and a plurality of pressures extracted by a detection pipe.
- the pump is operated in response to the maximum load pressure of the factory and the pump control switching valve for controlling the supply and discharge of the pressure oil, and the drive is controlled by the pressure oil controlled by the switching valve.
- the pump is equipped with an operating cylinder that changes the displacement of the hydraulic pump.
- the switching valve is provided with a spring that biases the switching valve in a direction opposite to the pressure difference between the pump discharge pressure and the maximum load pressure. During this period, when the maximum load pressure rises, the switching valve operates to drive the operating cylinder and increase the displacement of the hydraulic pump, thereby increasing the pump discharge flow rate. Increase the pump discharge pressure. As a result, the pump discharge pressure is controlled to be higher than the maximum load pressure by a specified value determined by the spring.
- a pressure compensating valve ′ is generally placed upstream of the flow control valve. This allows the differential pressure across the flow control valve to be reduced by the pressure compensation valve. It is kept at the specified value determined by the spring. By arranging the pressure compensation valve in this way and maintaining the differential pressure across the flow control valve at a specified value, multiple actuators can be operated simultaneously. When the actuator is driven, the differential pressure across the flow control valve for all the actuators is maintained at the specified value, so that flow control can be performed accurately regardless of the load pressure fluctuation, and the desired drive speed can be achieved. It is possible to carry out stable combined driving of factories overnight.
- the pump discharge pressure and the maximum load pressure are opposed to each other.
- a loading means is provided, and the specified value is set based on the pressure difference between the two.
- the pump discharge pressure and the maximum load pressure are maintained at specified values determined by the spring of the switching valve.
- the specified value can be set also by the differential pressure between the pump discharge pressure and the maximum load pressure, and stable combined driving can be performed as described above.
- the differential pressure is used instead of the spring, the hydraulic pump saturates, and when the discharge flow rate becomes insufficient with respect to the required flow rate, the differential pressure between the pump discharge pressure and the maximum load pressure decreases.
- the differential pressure across all the flow control valves is uniformly maintained at a value smaller than the specified value.
- the pump discharge flow rate is insufficient, it is possible to prevent a large flow rate from being supplied preferentially to the factory on the low load side, and the pump discharge flow rate at a ratio corresponding to the required flow rate ratio Are diverted and multiple The driving speed ratio of Yue is controlled appropriately. Therefore, even when the hydraulic pump is saturated, stable combined driving of the actuator is possible.
- a bucket is formed by driving a swing motor to swing a swing body when filling a concrete pipe in a groove. Press the concrete pipe with the tip of the pipe and adjust the angle position of the concrete pipe-this is the work.
- the speed control of the rotating motor is not important, and it is desirable that the turning lever can be used to control the force to slightly move the concrete pipe.
- Another example in which force control is desired is a work in which a certain object is pressed against the ground or a fixed part with a work member such as a bucket during work and is held.
- the load sensing system causes a phenomenon similar to the case where the work member is directly pressed against the fixed part, the load pressure rises to the relief pressure, and a large force is generated. There is a risk of damaging the object. Therefore, such work is not possible.
- Such a problem occurs not only in the hydraulic shovel but also in various other working machines.
- An object of the present invention is to provide a hydraulic drive device for a working machine that employs a load sensing system and enables force control. Disclosure of the invention
- the present invention provides a hydraulic pump, at least one hydraulic actuator driven by hydraulic oil discharged from the hydraulic pump, and an operation amount of an operation means.
- a flow control valve that is driven and controls the flow of pressure oil supplied to the actuator from the hydraulic pump; a detection conduit for extracting the load pressure of the actuator; and a connection to the detection conduit.
- a pressure compensating means for maintaining a differential pressure between a pressure on the upstream side of the flow control valve and a load pressure of the actuator at a predetermined value.
- a pressure limiting means provided for the step and for limiting the load pressure of the above-mentioned actuating unit extracted to the detection pipe means to a value determined according to the operation amount of the operation means.
- the pressure limiting means is connected between a throttle installed in the detection conduit means, a downstream side of the throttle and a tank, and has a pressure set according to an operation amount of the operation means. And a variable valve that prevents the pressure downstream of the throttle from exceeding its set pressure.
- the pressure limiting unit may be configured to include a variable pressure reducing unit installed in the detection conduit unit and configured to reduce the load pressure to a value determined according to an operation amount of the operation unit.
- said variable The pressure means is a variable pressure reducing valve that changes a set pressure according to an operation amount of the operation means and reduces the load pressure to the set pressure.
- the variable pressure reducing means is provided in the detection pipe means, and the first variable throttle which changes the opening degree in accordance with the operation amount of the operating means; A second variable throttle connected between the first and second variable apertures, the first and second variable apertures cooperating with each other to change the opening in accordance with the operation amount of the operation means.
- the pressure on the downstream side may be reduced to a value determined according to the operation amount of the operation means.
- the pressure compensating means operates in response to the discharge pressure of the hydraulic pump and the limited load pressure, and maintains a pressure difference between the two at a specified value.
- Pump control means for controlling the pump discharge pressure is included.
- the pump control means controls the discharge flow rate of the hydraulic pump so as to maintain the specified value, and as a result, controls the pump discharge pressure.
- the pump control means may be an unload valve that is connected to the discharge pipe of the hydraulic pump and directly controls the pump discharge pressure.
- the pressure compensating means is connected to the upstream side of the flow control valve, and operates in response to the inlet pressure of the flow control valve and the limited load pressure, and maintains a differential pressure between the two at a specified value. It may be a pressure compensating valve that controls the inlet pressure of the flow control valve so as to be maintained.
- the operating means generates a pilot pressure proportional to the operation amount, and drives the flow control valve with the pilot pressure.
- the force limiting means is means for extracting the pilot pressure; and- the pressure limiting means is operated based on the extracted pilot pressure, and the load pressure is a value determined according to the operation amount of the operating means. Means for restricting the following.
- the operating means may be a means for generating an electric signal proportional to the operation amount.
- the pressure limiting means may be configured to operate the operation means based on the detection value based on the detected value. It includes means for calculating a determined value and outputting a corresponding electric signal, and means for operating based on the electric signal and for limiting the load pressure to the calculated value or less.
- the apparatus further comprises means for selecting the operation of the pressure limiting means.
- FIG. 1 is a schematic diagram of a hydraulic drive device according to a first embodiment of the present invention.
- FIG. 2 is a circuit diagram showing details of the pump factory.
- FIG. 3 is a schematic diagram of another pressure driving device according to a second embodiment of the present invention.
- FIG. 4 is a schematic diagram of a hydraulic drive device according to a third embodiment of the present invention.
- FIG. 5 is a diagram showing the relationship between the primary pressure and the secondary pressure of the variable pressure reducing valve.
- FIG. 6 is a schematic diagram of a hydraulic drive device according to a fourth embodiment of the present invention.
- FIG. 7 is a flowchart showing a processing procedure of the control device.
- FIG. 8 is a schematic diagram of a hydraulic drive device according to a fifth embodiment of the present invention.
- FIG. 9 is a flowchart showing a processing procedure of the control device.
- FIG. 10 is a schematic diagram of a hydraulic drive device according to a sixth embodiment of the present invention.
- FIG. 11 is a schematic view of a hydraulic drive device according to a seventh embodiment of the present invention.
- FIG. 12 is a schematic view ′ of a pump control means of a hydraulic drive device according to an eighth embodiment of the present invention.
- FIG. 13 is a schematic diagram of a hydraulic drive device according to a ninth embodiment of the present invention.
- FIG. 14 is a characteristic diagram showing a relationship between the opening degree and the pilot pressure of the first and second variable throttles.
- reference numeral 1 denotes a variable displacement hydraulic pump
- a hydraulic pump 1 has a displacement displacement mechanism (hereinafter, represented by a swash plate) 1a, and a tilt amount of the swash plate 1a ( The displacement is controlled by a load-sensing pop-regule overnight.
- the hydraulic pump 1 is connected to a swing motor 3 for driving the upper swing body of the hydraulic shovel and a boom cylinder 13 for driving the boom, and constitutes a hydraulic drive device.
- the drive of the swing motor 3 is controlled by a flow control valve 4, and a pressure compensating valve 5 is installed upstream of the flow control valve 4.
- the main circuit of the swing motor 3 is provided with relief valves 6a and 6b, which regulate the maximum load pressure of the swing motor 3 '.
- the drive of the boom cylinder 13 is controlled by a flow control valve 14, a pressure compensation valve 15 is installed upstream of the flow control valve 14, and the main control of the boom cylinder 13 is performed.
- the circuit is provided with relief valves 16a and 16b.
- Check valves 11, 18 are provided between the flow control valves 4, 14 and the pressure compensating valves 5, 15 to prevent backflow of pressure oil from the swing motor 3 and the boom cylinder 13, respectively. Power ⁇ installed.
- the flow control valve 4 has driving units 4 x and 4 y connected to the pilot lines 4 pl and 4 p2, and the pilot lines 4 pi and 4 p2 are operating devices of the swing motor 3. 4 Connected to a.
- the operating device 4a has an operating lever 4b and pilot valves 4c and 4d. When the operating lever 4b is operated, the pilot valves 4c and 4d are operated according to the operating direction. Either of them is activated, and a pilot pressure corresponding to the manipulated variable is generated, and the pilot pressure is applied to the drive unit 4 X or the flow control valve 4 via the pipe 4 pi or 4 p2.
- the flow control valve 4 is set to the opening corresponding to the manipulated variable
- the pilot line 14 pi, 14 ⁇ Sections 14x, 14y are connected, and pilot lines 14pl, 14 ⁇ > 2 are booms composed of operating levers 14b and pilot valves 14c, 14d. It is connected to the operating device 14a of the cylinder 12.
- the detection lines 7a and 17 for extracting the load pressure of the swing motor 3 and the boom cylinder 13 are connected to the flow control valves 4 and i4, respectively, and the load extracted to the detection line 7a is connected.
- the pressure is output to the detection line 7 via the pressure limiting section 20, and the pressure and the load extracted to the detection line 17 are output.
- the higher of the pressures is selected by the shuttle valve 8 and output to the detection line 9.
- the pressure relief valves 5 and 15 are respectively connected to the drive units 5 x and 15 x on one side, and the swing motors extracted to the detection lines 7 a and 17 via the lines 5 a and 15 a, respectively. 3 and the load pressure of the boom cylinder 13 (pressure on the outlet side of the flow control valves 4 and 14) are applied, and the lines 5b and 15b are connected to the drive units 5y and 15y on the other side. The pressure on the inlet side of the flow control valves 4 and 14 is applied via the valve. Further, springs 5c and 15c are provided on the side of the pressure compensation valves 5 and 15 where the load pressure is applied.
- the pressure compensating valves 5 and 15 respectively maintain the differential pressure across the flow control valves 4 and 14 at the specified value determined by the springs 5c and 15c.
- the pump regulator 2 has an operating cylinder 2a that is connected to the swash plate 1a of the hydraulic pump 1 and drives the swash plate 1a.
- the rod-side chamber of the cylinder 2a is connected to the discharge pipe 1b of the hydraulic pump 1 via a pipe 2b, and the bottom chamber is connected to the pipe 2b via two switching valves 2c and 2d. It is possible to selectively communicate with tank 10.
- the first switching valve 2c is a switching valve for load sensing control, and the pump discharge pressure is applied to the driving section 2e on one side from the pipe line 2b, and the driving section 2f on the other side.
- the pressure selected by the shuttle valve 8 via line 9 is applied. Have been.
- a spring 2 g is installed on the drive unit 2 f side of the switching valve 2 c. Assuming that the pressure selected by the shuttle valve 8 is the load pressure of the swing motor 3, when the load pressure increases, the switching valve 2c is driven to the left in the figure, and the switching valve 2c is actuated.
- the bottom side chamber of the cylinder 2a is communicated with the tank 10 so that the operating cylinder 2a is driven in the contraction direction, and the tilt amount of the swash plate 1a is increased.
- the discharge flow rate of the hydraulic pump 1 increases, and the pump discharge pressure increases.
- the switching valve 2c is returned to the right in the figure, and when the differential pressure between the pump discharge pressure and the load pressure reaches the specified value determined by the spring 2g, the switching valve 2c stops. Then, stop the operation of the operation cylinder 2a.
- the switching valve 2c is driven to the right in the figure, and the switching valve 2c connects the bottom side chamber of the operating cylinder 2a to the line 2b.
- the operation cylinder 2a is driven in the extension direction by the pressure receiving area difference between the bottom chamber and the mouth chamber, and reduces the amount of tilt of the swash plate 1a.
- the discharge flow rate of the hydraulic pump 1 decreases, and the pump discharge pressure decreases.
- the switching valve 2 ⁇ can return to the left side in the figure, and when the differential pressure between the pump discharge pressure and the load pressure reaches the specified value determined by the spring 2g, the switching valve 2c is reset. Stop and stop the operation of the operation cylinder 2a.
- the pump discharge pressure is higher than the load pressure of the swing motor 3 by the spring 2 g. It is controlled to increase by the specified value.
- the second switching valve 2d is a switching valve that performs the horsepower limiting control, and is configured as a servo valve that feeds back the tilt position of the swash plate la.
- the pump discharge flow rate is controlled so that the maximum possible discharge flow rate of the hydraulic pump 1 decreases as the discharge pressure increases.
- the pressure limiting section 20 is installed in the throttle 20a provided in the detection pipe 7a and in the pipe 21 connecting the downstream side of the throttle 20a to the tank 10.
- a variable relief valve 2Ob The variable relief valve 2 Ob has a spring 20c and a drive unit 20d as means for setting the relief pressure.
- a switching valve 22 that selectively opens and closes the pipeline 21 and selects a work mode is installed downstream of the variable relief valve 20 b in the pipeline 21. The normal operation mode is selected when the switching valve 22 is in the closed position, and the force control mode is selected when the switching valve 22 is in the open position.
- the pipelines 23a and 23b are separated from the pilot pipelines 4pl and 4p2, and the pipeline transmitted to any one of these pipelines 2'3a and 23b ⁇ .
- the cut pressure is extracted by the shuttle valve 24 and transmitted to the pipeline 25.
- the pipeline 25 is connected to the drive section 20d of the variable relief valve 20b, and the pilot pressure extracted by the shuttle valve 24 is used to drive the drive section 20d.
- the variable relief valve 20b changes the pilot pressure generated by the operating device 4a, that is, the set pressure in accordance with the operation amount of the operating lever 4b, and the pressure corresponding to this changes.
- the switching valve 22 is in the open position, the pressure downstream of the throttle 20a should not exceed the set pressure. That is, the load pressure extracted in the detection line 7a is limited to a value determined according to the operation amount of the operation lever 4b, and this limited load pressure is reduced via the detection line 7b.
- the torque is transmitted to the torque valve 8.
- the operator switches the switching valve 22 to the closed position, and disconnects the communication between the variable relief valve 20b and the tank 10 in advance.
- the variable relief valve 2Ob does not function, the load pressure of the turning motor 3 extracted in the detection line 7a always appears in the detection line 7b. Therefore, the operation in this case is the same as the operation of the conventional load sensing system without the pressure limiter 20.
- the speed control is performed according to the operation amount of the operation lever 4b.
- the pilot pressure corresponding to one of the pilot lines 4pl and 4p2, for example, the pilot port pressure 4pi is applied to the pilot port line 4pi.
- the quantity control valve 4 is switched to the position on the left side of the figure at the opening corresponding to the operation amount of the operation lever 4 b, and the pressure oil of the hydraulic pump 1 turns through the pressure compensation valve 5 and the variable throttle of the flow control valve 4
- the power is supplied from the main conduit on the left side of the motor 3 to the swing motor 3, and the swing motor 3 starts to swing in one direction.
- the spring 5c of the pressure compensating valve 5 normally controls the differential pressure across the flow control valve 4 by the pump regulator 2 as described above.
- the pressure compensating valve 5 is almost fully opened because it is set so as to substantially match the differential pressure between the pump discharge pressure and the load pressure. That is, the pressure compensating valve 5 does not function when the swing motor 3 is driven alone.
- the independent drive of the bumper cylinder 13 also operates according to this.
- the differential pressure between the pump discharge pressure and the load pressure of the boom cylinder 13 on the low load pressure side becomes larger than the above specified value. Therefore, if no precautions are taken, the discharge flow from the hydraulic pump 1 is preferentially supplied to the low load pressure side boom cylinder 13 and to the high load pressure side swing motor 3 The flow rate is severely restricted, and the driving of the swing motor 3 becomes difficult.
- the pressure compensating valve 15 functions to ensure that the swing motor 3 is supplied with a flow rate corresponding to the operation amount of the operation lever 4a. That is, the pressure compensating valve 15 is throttled by the increase of the pump discharge pressure, and operates so as to maintain the differential pressure across the flow control valve 14 at a specified value determined by the spring 15c.
- the operating lever 4b for turning is operated, for example, When a pilot pressure corresponding to the operation amount is introduced into the cut line 4pi, the flow control valve 4 is switched to the position on the left side in the figure. At the same time, the pilot pressure is introduced into the drive unit 20d of the variable relief valve 2Ob via the line 23a, the shuttle valve 24, and the line 25, and is controlled by the variable relay.
- the set pressure of the leaf valve 20b is changed from a value determined only by the spring 20c to a value determined by the spring pressure 20c and the pilot pressure. This set pressure changes according to the magnitude of the pilot pressure.The higher the pilot pressure, the higher the set pressure, and the lower the pilot pressure, the lower the set pressure. . After all, if the operation amount of the operation lever 4b is large, the set pressure is large, and if the operation amount is small, the set pressure is small.
- the swing motor 3 is in a stopped state and the operation amount of the operation lever 4b described above is small, the pilot pressure extracted into the pilot pipe line 25 becomes low.
- the set pressure of the variable relief valve 2 Ob becomes a small value.
- pressurized oil is supplied to the swing motor 3 by switching the flow control valve 4 described above, and since the swing body has a large inertial load, the load pressure of the swing motor 3 is released as described above.
- the above-mentioned set pressure of the variable relief valve 20b is much higher than the relief pressure of the relief valve 6a. Since it is small, negative pressure higher than the set pressure of the variable relief valve 2Ob is set in the detection line 7a.
- Loading pressure is about to appear.
- This load pressure is guided to the variable relief valve 20b through the throttle 20a, and the variable relief valve 20b tans a part of the pressure oil downstream of the throttle 20a.
- This pressure is introduced into the drive 2f of the switching valve 2c of the pump regulator 1 via the shut-off valve 8 and the detection line 10, so that the pump discharge pressure is reduced to this limited low pressure direction.
- the pump discharge pressure is a lower pressure obtained by adding the specified value to the set pressure of the variable relief valve 2 Ob. This pressure is constant as long as the operation amount of the operation lever 4b is constant.
- the pump discharge pressure is controlled to a low and constant pressure.
- the rise in the load pressure of the swing motor 3 to the relief pressure of the relief valve 6a is suppressed, and the load pressure is varied.
- the pressure is almost equal to the 'set pressure' above the 2'Ob 'valve.
- the swing motor 3 is driven with a small force in accordance with the operation amount of the operation lever 4 b, a and this upper revolving body of the oil ⁇ Shi Yoberu also gradually To drive with a small force. That is, sudden acceleration of the upper revolving unit is prevented. Is done.
- the set pressure of the variable relief valve 20b is changed according to the operation amount of the operation lever 4b, and the pressure downstream of the throttle 20a is set to the set pressure.
- the positive load of the swing motor 3 extracted in the detection line 7a is limited to a value determined according to the operation amount of the operation lever 14b, and the load sensing system By controlling the load pressure of the swing motor 3 according to the amount of operation of the operation lever 4b, the force control of the swing motor 3 can be performed.
- the swing motor is driven to rotate the revolving body, thereby pushing the concrete pipe at the tip of the baguette.
- the operation lever and the amount of operation can be reduced, and the concrete pipe can be pushed little by little with a small force. Therefore, the concrete pipe can be prevented from being damaged, and the angle position of the concrete pipe can be finely adjusted.
- the rotation of the upper when a certain object is pressed against the ground or a fixed part with a work member such as a bucket and is held, the pressing force can be controlled according to the operation amount of the operation lever. An appropriate pressing force is selected according to the characteristics of the object, and the object can be pressed and held without being damaged.
- the turning acceleration can be controlled in accordance with the operation amount of the operation lever, the operation amount of the operation lever can be reduced. This enables a gentle acceleration of the turn, and provides excellent operability for the turn. Also, since the acceleration pressure can be reduced, the durability of various hydraulic equipment and piping can be improved.
- force control is performed using a pressure compensating valve.
- the drive unit 5X of the pressure compensating valve 5A is connected to the test line 7b via the line 5d, and the drive unit 5X is connected to the detection line 7a.
- the load pressure limited by the pressure limiting section 20 is applied instead of the load pressure of the swing motor 3 extracted at the time.
- Other configurations are the same as those of the first embodiment.
- the operation when the switching valve 22 is in the closed position for selecting the normal operation mode is the same as that in the first embodiment.
- the operation other than the pressure compensation valve 5A is the same as that of the first embodiment.
- the pressure compensating valve 5A operates so that the differential pressure between the pressure on the inlet side of the flow control valve 4 and the pressure of the detection pipe 7b is maintained at a specified value determined by the spring 5c. That is, the pressure on the inlet side of the flow control valve 4 is controlled to be a pressure obtained by adding a prescribed value determined by the spring 5c to the pressure of the detection pipe 7b.
- the pressure of the detection line 7b has a low constant value according to the operation amount of the operation lever 4b (see FIG.
- the present embodiment is effective when the force control of the swing motor 3 is necessary in a combined operation of simultaneously driving the swing motor 3 and the boom cylinder 13.
- the pump In the second stage, the restricted pressure in the detection line 7b and the higher pressure selected by the shuttle valve 8 out of the load pressure in the boom cylinder 13 in the detection line 17 are used.
- the pressure compensating valve 5A functions as described above to limit a rise in pressure on the inlet side of the flow control valve 4 and execute the force control of the swing motor 3. be able to.
- the limited load pressure generated by the pressure limiting section 20 is introduced into the pressure compensating valve instead of the conventional load pressure.
- a third embodiment of the present invention will be described with reference to FIGS.
- a configuration different from that of the above-described embodiment is adopted for the pressure limiting means.
- the hydraulic drive device of this embodiment is driven by a hydraulic pump 31 and an E oil discharged from the hydraulic pump 31: “Guyueda”.
- 3 2 the left and right traveling motors 33, 3 4, and the flow control valves 35, 3, which control the flow of the hydraulic oil supplied from the hydraulic pump 31 to these actuators 32, 33, 34. 6, 3 7 are provided.
- Detecting lines 39, 40, 41 for extracting the load pressure of the actuators 32, 33, 34 are connected to the flow control valves 35, 36, 37, respectively.
- Lines 39 and 40 are connected to another detection line 43 via a shuttle valve 42, and the detection lines 41 and 43 are further connected via a shuttle valve 44. It is communicated to another detection line 45, and the detection line 45 and the load pressure detection line 46 related to other factories (not shown) are connected to the detection line 48 via the shuttle valve 47. Have been contacted.
- the hydraulic pump 31 is a variable displacement type mechanism, that is, a variable displacement type having a swash plate 31 a, and the displacement amount (displacement volume) of the swash plate 31 is a load sensing type pump regulator 3. Controlled by 8.
- the pump rig 38 is connected to the swash plate 31 a of the hydraulic pump 31, and drives the actuator 38 a to drive the swash plate 3 la and the drive 38 a of this actuator. And a switching valve 38b to be controlled.
- the factory 38a has pistons 38 with different pressure receiving areas at both ends, a first chamber 38d where the piston end with a large pressure receiving area is located, and a piston with a small pressure receiving area.
- the first chamber 38d is connected to the switching valve 38b via a line 38f, and the switching valve 38b is connected to the second chamber 3d8e. It is connected to the discharge line 3 lb of the hydraulic pump 31 via lines 38 g and 38 h and to the tank 49 via line 38 i.
- the first chamber 38 d can be selectively communicated with the discharge pipe 31 b of the secondary pressure pump 31 and the tank 48 by the switching valve 38 b.
- the second chamber 38e is always in communication with the discharge pipe 31b of the hydraulic pump 31 via the pipe 38h.
- the switching valve 38 b is provided with two opposing driving sections 38 j and 3-8 k, and one of the driving sections 38 j is loaded with the pump discharge pressure from the pipe 38 m and the other is driven.
- the pressure of the detection line 48 described above is applied to the section 38k.
- a spring 38 ⁇ is provided on the drive section 38 k side of the switching valve 38 b.
- the configuration of the pump regulator 38 by the combination of the actuator 38a and the switching valve 38b is limited to the horsepower limitation of the pump regulator 2 shown in Fig. 2 according to the first embodiment. Substantially the same as the configuration except for the second switching valve 2 d for control, and the pump discharge pressure is higher than the pressure appearing in the detection line 48 by the specified value determined by the spring 38 n Thus, the discharge flow rate of the hydraulic pump 31 is controlled.
- Flow control valve '' 35, 36, 3 T Pilot operation method driven by pilot pressure similar to the one in Pipes 50a and 50b are branched from pilot pipes 35a and 35b connected to pipes, and pipes 50a and 50b are connected via shuttle valve 51.
- the line 52 has been contacted. With this configuration, the pilot pressure transmitted to one of the pipelines 50 a and 50 b is extracted by the shuttle valve 51, and is transmitted to the pipeline 52.
- a variable pressure reducing valve 53 is installed in the detection pipe 39 related to the flow control valve 35.
- This pressure reducing valve 53 reduces the load pressure extracted to the detection line -39 as the primary pressure and outputs a secondary pressure, similar to a general pressure reducing valve.
- a spring 53b as one of means for setting the value of the secondary pressure on the other side.
- a driving unit 53 is further provided as another means for setting the value of the secondary pressure. Pilot pressure transmitted to pipeline 52 is applied to c.
- variable pressure reducing valve 53 configured as described above has characteristics as shown in FIG. That is, when the pilot pressure is low, the primary pressure P 1 (the load pressure extracted in the detection pipe 39) is reduced to a relatively small secondary pressure P 2, and the pilot port pressure is reduced. As the pressure increases, the secondary pressure P 2, which is reduced accordingly, is increased. In this way, the variable pressure reducing valve 53 changes the set pressure in accordance with the pilot pressure, and in response to this, reduces the load pressure of the actuator 32 extracted to the detection line 39, As a result, it is extracted to the detection line 39.
- the applied load pressure is limited to a value determined according to the operation amount of an operation lever (not shown) related to the hydraulic motor 32 as in the first embodiment.
- the operation of the present embodiment configured as described above is as follows. If the operating lever (not shown) related to the hydraulic motor 32 is operated with a small operation amount to drive the revolving structure (not shown), and the flow control valve 35 is switched, a small pilot generated according to the small operation amount The pressure is extracted by the shuttle valve 51 and supplied to the drive unit 53 c of the variable pressure reducing valve 53 via the line 52. Accordingly, assuming that the load pressure of the hydraulic motor 32 extracted in the detection pipe 39 at this time, that is, the primary pressure of the variable pressure reducing valve 53, this primary pressure P la is As shown in Fig.
- the secondary pressure P2a is reduced to a relatively small secondary pressure P2a, and this secondary pressure P2a is reduced via the shuttle valves 42, 44, 47 and the detection line 48. It is provided to the drive 38k of the switching valve 38b.
- the swash plate 3 la of the hydraulic pump 3 1 has a spring 3 8 n higher than the pressure at which the pump discharge pressure appears in the detection pipe 48, that is, the secondary pressure P 2 a of the variable pressure reducing valve 53. Is controlled so that the displacement becomes higher by the specified value, and the secondary pressure P 2 a of the variable pressure reducing valve 53 is set lower according to the above operation amount.
- the pump discharge pressure is controlled to a relatively low constant value by adding the prescribed value determined by the spring 38n to the constant value.
- the load pressure also becomes low, and the hydraulic motor 32 responds to the operation amount of the operation lever similarly to the first embodiment. It is driven with a small force, and the upper swing body of the hydraulic shovel is also gradually driven with a small force.
- the driving of the variable pressure reducing valve 53 also increases, and the driving of the variable pressure reducing valve 53 increases as compared to the same primary pressure P la.
- a large secondary pressure P 2 b is taken out, and this large secondary pressure P 2 is applied to the drive section 38 k of the switching valve 38 b.
- the swash plate 31a of the hydraulic pump 31 is displaced (pushed) so that the pump discharge pressure becomes higher than the secondary pressure P by a specified value determined by the spring 38n. Is controlled, and the pump discharge pressure is controlled to a pressure obtained by adding a specified value determined by a spring 38n to the secondary pressure Pb.
- the hydraulic motor 32 is driven with a larger force than the above-described case according to the operation amount of the operation lever, and the upper turning table is driven with a faster acceleration.
- the force control of the hydraulic motor 32 can be performed in the same manner as in the first embodiment, and the same effect as in the first embodiment can be obtained.
- FIGS. A fourth embodiment of the present invention will be described with reference to FIGS.
- members equivalent to those shown in Fig. 4 The same reference numerals are given.
- the pressure limiting means the pressure limiting means
- an electromagnetically operated variable pressure reducing valve 53 A is installed in the detection line 39, and this variable pressure reducing valve 53 A is used in place of the drive unit 53 c in FIG. It has an electromagnetic drive unit 53d.
- an electric operation lever 60 is provided as an operation means of the hydraulic motor 32, and the electric operation lever 60 is provided with an input section 61a, an output section 61b, and a storage section 61c.
- a control unit 6 1 having an operation unit 6 1 d.
- the control unit 6 1 is connected to the electro-hydraulic converter 6 2 and the drive unit 5 3 d of the pressure reducing valve 53 A described above. I have.
- the electro-hydraulic converter 62 generates a pilot pressure for driving the flow control valve 35.
- Other configurations are substantially the same as those of the third embodiment shown in FIG.
- the procedure S1 shown in FIG. As shown by, the manipulated variable X is read into the computing unit 61 d via the input unit 61 a of the control device 61. ? In JT, the procedure proceeds to step S2, where the relationship between the manipulated variable X and the command signal I for the solenoid valve 53 3 stored in the storage unit 61c is read, and the operation read in step S1. The command signal I corresponding to the quantity X is calculated.
- the manipulated variable X and command signal The relation of signal I is such that the command signal I increases in proportion to the manipulated variable X, and the command signal I takes the maximum value during a full stroke.
- the procedure proceeds to step S3, where the command signal I obtained in step S2 is output to the driving section 53d of the pressure reducing valve 53A, and the pressure reducing valve 53A is driven.
- a command signal to the flow control valve 35 corresponding to the operation amount X of the electric operation lever 60 is calculated, and is output from the output unit 6 1 b of the control device 61 to the electro-hydraulic converter 62.
- the electro-hydraulic converter 62 generates a pilot pressure corresponding to the manipulated variable X based on the command signal, and the pilot pressure is supplied to the drive unit of the flow control valve 35, and the flow rate is controlled.
- the control valve 35 is switched.
- FIGS. 4 and 6 A fifth embodiment of the present invention will be described with reference to FIGS.
- members that are the same as the members shown in FIGS. 4 and 6 are given the same reference numerals.
- the pressure reducing valve is installed at a different position.
- a hydraulic drive device includes a hydraulic cylinder 3 that provides a boom cylinder, an arm cylinder, and a bucket cylinder as an actuator.
- a variable pressure reducing valve 53B having an electromagnetic drive section 53b is installed in a detection pipe 45 from which a maximum load pressure of 34A is extracted.
- the electric control levers 60 a, 60 b, and 60 c are connected to a control device 61 A, and the control device 61 A has electric pressure conversion devices 2 a, 62 b, 62 c and The drive section 53d of the variable pressure reducing valve 53B is connected.
- the electro-hydraulic converters 62a, 62b, 62c are for generating pilot pressure for driving the flow control valves 35, 36, 37.
- hydraulic shovels There is a selection switch 63 that is turned on during the horizontal pulling operation that moves the tip of the bucket parallel to the ground, and is turned off during normal excavation work. Other configurations are substantially the same as those of the fourth embodiment shown in FIG.
- the operation amount of the operation lever for the boom is relatively small, and the load pressure of the boom cylinder becomes the highest. And is known. Therefore, in the fifth embodiment, when performing the horizontal pulling operation, the selection switch 63 is turned ON, and the following control is performed.
- step S11 it is determined whether the selection switch 63 is ON or OFF. Now, since the selection switch 63 is ON, the process proceeds to step S12, and the operation element y is changed to the operation amounts xa, b, xc of the electric operation levers 60a, 60b, 60c.
- the operation amount Xa of the electric operation lever 60a corresponding to the flow control valve 35 which controls the drive of the hydraulic cylinder 32A, which is a boom cylinder for driving the boom is used as a calculation element y And then go to step S13.
- the information is stored in the storage unit 6 1c in advance.
- the relationship between the operation element y and the command signal I to the pressure reducing valve 53B is read out, and the operation element y set in step S12, that is, the operation amount X of the electric operation lever 60a is read.
- Command signal I corresponding to a is produced.
- the relationship between the calculation element y and the command signal I to the pressure reducing valve 53B is such that the command signal I increases in proportion to the calculation element y, and the value of the calculation element y reaches the maximum value during a full stroke. The relationship is taken. Then, the procedure proceeds to step S14, and the command signal I obtained in step S13 is output from the output unit 6 1b of the control device 61A to the drive unit of the pressure reducing valve 53B, and the pressure reducing valve 53 A is driven.
- command signals corresponding to the operation amounts xa, Xb, ⁇ c of the electric operation levers 60a, 60b, 60c are transmitted from the output unit 45 of the control device 61A to the electrohydraulic conversion device 62. a, 6
- the maximum value of the load pressure generated by driving 34 A that is, The load pressure of the boom cylinder 32 A is guided as the primary pressure of the variable pressure reducing valve 53 B via the line 45, and is reduced by the pressure reducing valve 53 A, and the reduced secondary pressure is switched. It is provided to the drive 38k of the valve 38b.
- the discharge pressure of the hydraulic pump 31 is controlled to a pressure corresponding to the operation amount of the electric operation lever 60a for the boom, and the load pressure of the boom cylinder is correspondingly adjusted. It is controlled to a value corresponding to the operation amount of 0a.
- the load pressure of the boom cylinder is not always the highest during normal excavation work with a hydraulic shovel, and the load pressure of the arm cylinder / bucket cylinder may increase.
- the selection switch 63 is set to 0FF, and the following control is performed.
- step S10 After reading the operation amounts xa, xb, and xc of the electric operation levers 60a, 60b, and 60c related to the excavation work in step S10, the process proceeds to step S11 in FIG. Since the determination is not satisfied, proceed to step S15.
- step S15 a process is performed in which the operation element y is set to the maximum value of the manipulated variables Xa, Xb, xc, that is, ma (a, xb, xc).
- step S13 the command signal I corresponding to the operation element y corresponding to the maximum value of the manipulated variables xa, b, xc is calculated in the same manner as described above, and then the process proceeds to the step S14.
- the finger determined in step S13 The command signal I is output from the output unit 6 lb of the control device 61A to the drive unit 53d of the pressure reducing valve 53B, and the pressure reducing valve 53B is driven.
- the discharge pressure of the hydraulic pump 31 is increased by the maximum value of the manipulated variables xa, xb, xc of the electric operation levers-60a, 60b, 60c.
- the maximum value of the load pressure of the pump cylinder, arm cylinder, and bucket cylinder is controlled correspondingly.
- the selection switch 63 is selected to be 0 N and the horizontal pulling operation is intended. At this time, the load pressure on the boom cylinder, which is usually the largest in this horizontal pulling operation, is reduced according to the operation amount of the boom operating lever, which is relatively small.
- the boom can be driven with a small force when starting the operation, and the fine operability is improved.
- the selection switch 63 is set to 0FF and the excavation work is intended, the load pressure of the boom cylinder, the arm cylinder, and the bracket cylinder, which are the largest in this excavation work, is set. Since either of them is reduced according to the largest operation amount of the operation lever, the reduction of the load pressure is minimized, and it is possible to perform a powerful excavation work with a small decrease in work efficiency.
- FIG. 8 A sixth embodiment of the present invention will be described with reference to FIG. In the figure, members that are the same as the members shown in FIG. 8 are given the same reference numerals. In the present embodiment, force control can be performed for all factories.
- all of the detection lines 39, 40, and 41 for extracting the load pressure of the hydraulic cylinders 32A, 33A, and 34A are provided with electromagnetically operated variable pressure reducing valves 53. C, 53D and 53E are completely installed.
- the control device 6 IB receives the command of the pressure reducing valve according to the procedure shown in FIG. 7 based on each of the operation amounts xa, xb, xc of the electric operation levers 60 a, 60 b, 60 c. The signal is calculated and output.
- the selection switch 63 shown in FIG. 8 is not provided. Other configurations are the same as those of the fifth embodiment.
- the load pressure is limited according to the operation amount of the electric operation lever for each of the hydraulic cylinders having different load pressures and the main ring characteristics, and the force control is performed. As a result, more accurate force control can be realized.
- a seventh embodiment of the present invention will be described with reference to FIG. In the drawing, members equivalent to those shown in FIG. 4 are denoted by the same reference numerals. In this embodiment, the concept of the second embodiment is introduced into the third embodiment shown in FIG.
- pressure compensation valves 71, 72, 73 are installed upstream of the flow control valves 35, 36, 37.
- the pressure compensating valves 72 and 73 are common, and the outlet pressures of the flow control valves 36 and 37 are connected to the opposing drive units 72 x, 72 y and 73 x, 73 y.
- the corresponding load pressure and the inlet pressure are applied, and the differential pressure before and after each flow control valve 36, 37 is maintained at the specified value determined by the springs 72a, 73a. I have.
- the drive unit 71 X is loaded with the secondary pressure reduced by the variable pressure reducing valve 53, and the drive unit TTy is loaded with the inlet pressure of the flow control valve 35, The differential pressure between the two is maintained at a specified value determined by the spring 71a.
- Other configurations are the same as those of the third embodiment shown in FIG.
- the configuration of this embodiment configured as described above is a pressure limiting method.
- the configuration of the stage is substantially the same as that of the second embodiment shown in FIG. 3 except that the configuration of the third embodiment shown in FIG. 4 is adopted.
- the same effect can be obtained. That is, in the combined operation of simultaneously driving the hydraulic motors 32, 33, and 34, the load pressure of the actuator other than the hydraulic motor 32 increases, and the force control by the pump regulator 38 cannot be performed. Even if the pressure control valve 35 is not operated, the pressure increase on the inlet side of the flow control valve 35 is limited by the operation of the pressure compensating valve 71. Therefore, the force control of the hydraulic motor 32 can be performed without any support during the combined operation.
- FIG. 12 shows an eighth embodiment of the present invention, in which a variable displacement hydraulic pump is displaced as pressure means for maintaining a differential pressure between a pump discharge pressure and a load pressure at a specified value.
- a variable displacement hydraulic pump is displaced as pressure means for maintaining a differential pressure between a pump discharge pressure and a load pressure at a specified value.
- an end valve that directly controls the pump ft output pressure is used.
- reference numeral 80 denotes a fixed displacement hydraulic pump, and a discharge line 81 of the hydraulic pump 80 is connected to a tank 83 via an unload valve 82.
- the unload valve 82 has opposing drive units 82 XL, 82 y and a spring 82 a for setting the unload pressure, and the drive unit 82 X is pumped through a line 84.
- the discharge pressure is applied, and the restricted load pressure is led to the drive section 82y via the detection pipe 9 or 48 of the above-described embodiment.
- the load valve 82 With the known function of the load valve 82, the pump discharge pressure is controlled to be higher than the limited load pressure appearing in the detection line 9 or 48 by a specified value determined by the spring 82a. Therefore, a load sensing system can be configured in the same manner as in the previous embodiment, and the same effect can be obtained.
- FIG. 13 to FIG. 15 show a ninth embodiment of the present invention, in which a variable throttle is used instead of a relief valve or a pressure reducing valve that directly controls the pressure as the pressure limiting means. It was what was.
- a first variable throttle 90 is installed in a load pressure detection line 39 related to the hydraulic motor 32, and a downstream neck and a tank of the first variable beam 9 ⁇ are provided.
- a second variable throttle 91 is installed between the first variable throttle 49 and the downstream side of the first variable throttle 90 to the shuttle valve 42.
- the pilot pressure extracted to the pipeline 52 is led to the first and second variable throttles 90 and 91, respectively, and the The opening is changed according to the pilot pressure.
- the relationship between the pilot pressure and the opening is as shown in Fig. 14.
- the opening is minimum when the pilot pressure is zero. Therefore, the opening degree increases as the pilot pressure increases.
- the second variable throttle 91 on the contrary, the pilot pressure becomes zero. At this time, the opening is the dog, and the opening decreases as the pie mouth pressure increases.
- the first variable aperture 90 may be a fixed aperture. Other configurations are the same as those of the third embodiment shown in FIG.
- the first and second variable throttles 90 and 91 cooperate to pyrolyze the pressure downstream of the first variable throttle 90. Since the pressure drops to a value determined according to the operation amount of the operation lever corresponding to the set pressure, the pressure is reduced according to the operation amount of the operation lever as in the case of using a variable relief valve or a variable pressure reducing valve.
- the load pressure can be limited, and the same effect as in the above embodiment can be obtained.
- the pressure limiting means for limiting the load pressure of the actuator extracted in the detection conduit means to a value determined according to the operation amount of the operation means or less.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Operation Control Of Excavators (AREA)
Abstract
This invention relates to a hydraulic driving unit for a working machine, which is provided with hydraulic pump (1); at least one hydraulic actuator (3) driven by hydraulic fluid discharged from the hydraulic pump; a flow rate control valve (4) driven according to the degree of operation of an operating means (4a) to control the flow of the hydraulic fluid fed from the hydraulic pump to the actuator; detection pipings (7a, 7b) for picking up the load pressure in the actuator; and a pressure compensating means (2 or 5) connected to the detection pipings and keeping the difference between the pressure on the upstream side of the flow rate control valve and the load pressure of the actuator on a specified level. This hydraulic driving unit is further equipped with a pressure limiting means (20) disposed with respect to the detection pipings (7a, 7b) to limit the load pressure of the actuator picked up by the detection pipings below a value to be determined according to the degree of operation of the operating means (4a).
Description
明 細 書 作業機械の油圧駆動装置 技術分野 Description Hydraulic drive for work machines Technical field
本発明は油圧シ ョ ベルや油圧ク レー ン等の作業機械 の油圧駆動装置に係わり、 特に、 流量制御弁の前後差 圧を規定値に保持する圧力補償手段を備えた作業機械 の油圧駆動装置に関する。 背景技術 The present invention relates to a hydraulic drive device for a working machine such as a hydraulic shovel or a hydraulic crane, and more particularly to a hydraulic drive device for a working machine having a pressure compensating means for maintaining a differential pressure across a flow control valve at a specified value. About. Background art
作業機械には所期の作業を実施するのに必要な複数 の作業部材を備えたものがある。 その典型的な例と し て油圧シ ョベルが挙げられる。 油圧シ ョベルは、 油圧 シ ョ ベルを移動させるための下部走行体、 この下部走 行体上に旋回可能に載置された上部旋回体、 およびブ ーム、 アーム、 バケ ツ トよ り成るフ ロ ン ト機構で構成 されている。 上部旋回体には、 運転室、 原動機、 油圧 ポンプ等の種々の設備が装架され、 かつフロン ト機構 が取付けられている。 Some work machines are equipped with multiple working members necessary to perform the intended work. A typical example is a hydraulic shovel. The hydraulic shovel is composed of a lower traveling structure for moving the hydraulic shovel, an upper revolving superstructure rotatably mounted on the lower traveling structure, and a boom, an arm, and a bucket. It consists of a front mechanism. Various equipment such as a cab, a prime mover, and a hydraulic pump are mounted on the upper revolving superstructure, and a front mechanism is installed.
と ころで、 この種の作業機械に用い られる油圧駆動 装置に、 ポンプ吐出圧力が油圧ァクチユエ一夕の負荷 圧力よ り も一定値だけ高く なるよ う にポンプ吐出量を 制御する こ とによ り、 ァクチユエ一夕の駆動に必要な
流量だけを油圧ポンプから吐出させる ロー ドセンシン グシステム と称される システムがある。 このロー ドセ ンシ ングシステムは、 典型的には、 例えば特開昭 6 0 一 1 1 7 0 6号公報に記載のよ う に、 油圧ポンプの吐 出圧力と検出管路で抽出された複数のァクチユエ一夕 の最高負荷圧力とに応答して作動し、 圧油の供給およ び排出を制御するポンプ制御用の切換弁と、 この切換 弁により制御された圧油により駆動を制御され、 油圧 ポンプの押しのけ容積を変化させる作動シ リ ンダとを 有するポンプレギユ レ一夕を備えている。 切換弁には ポンプ吐出圧力と最高負荷圧力との差圧に対向する方 向に切換弁を付勢するばねが設けられている。 このポ ンプレギユ レ一夕において、 最高負荷圧力が上昇する と切換弁が作動して作動シリ ンダを駆動し、 油圧ボン プの押しのけ容積を増加させる こ とによ ってポンプ吐 出流量を増加させ、 ポンプ吐出圧力を増加させる。 こ れによ り ポンプ吐出圧力は最高負荷圧力よ り もばねに よって定ま る規定値だけ高く なるよう制御される。 In this regard, the hydraulic drive device used in this type of working machine controls the pump discharge amount so that the pump discharge pressure becomes higher than the load pressure of the hydraulic actuator by a certain value. , Necessary for driving There is a system called a load sensing system that discharges only the flow rate from a hydraulic pump. This load sensing system typically includes, as described in, for example, Japanese Patent Application Laid-Open No. 61-117606, a discharge pressure of a hydraulic pump and a plurality of pressures extracted by a detection pipe. The pump is operated in response to the maximum load pressure of the factory and the pump control switching valve for controlling the supply and discharge of the pressure oil, and the drive is controlled by the pressure oil controlled by the switching valve. The pump is equipped with an operating cylinder that changes the displacement of the hydraulic pump. The switching valve is provided with a spring that biases the switching valve in a direction opposite to the pressure difference between the pump discharge pressure and the maximum load pressure. During this period, when the maximum load pressure rises, the switching valve operates to drive the operating cylinder and increase the displacement of the hydraulic pump, thereby increasing the pump discharge flow rate. Increase the pump discharge pressure. As a result, the pump discharge pressure is controlled to be higher than the maximum load pressure by a specified value determined by the spring.
また、 ロ ー ドセ ン シ ングシステムでは、 流量制御弁 の上流俯に圧方補償弁'を配置する が一般^であ り、 これによ り流量制御弁の前後差圧が圧力捕償弁のばね によって定ま る規定値に保持される。 このよ う に圧力 捕償弁を配置して、 流量制御弁の前後差圧を規定値に 保持する こ とにより、 複数のァクチユエ一夕を同時に
駆動したときには、 その全てのァクチユエ一夕に係わ る流量制御弁の前後差圧が規定値に保持されるので、 負荷圧力の変動に係わらず流量制御が正確に行え、 所 望の駆動速度で安定したァクチユエ一夕の複合駆動を 実施する こ とが可能となる。 In load sensing systems, a pressure compensating valve ′ is generally placed upstream of the flow control valve. This allows the differential pressure across the flow control valve to be reduced by the pressure compensation valve. It is kept at the specified value determined by the spring. By arranging the pressure compensation valve in this way and maintaining the differential pressure across the flow control valve at a specified value, multiple actuators can be operated simultaneously. When the actuator is driven, the differential pressure across the flow control valve for all the actuators is maintained at the specified value, so that flow control can be performed accurately regardless of the load pressure fluctuation, and the desired drive speed can be achieved. It is possible to carry out stable combined driving of factories overnight.
また、 特開昭 6 0 - 1 1 7 0 6号公報に記載の口— ドセ ン シ ングシステムにおいては、 圧力補償弁のばね の代わり に、 ポンプ吐出圧力と最大負荷圧力とを対向 して負荷する手段を設け、 両者の差圧によ り上記規定 値を設定するよ う に している。 ポ ンプ吐出圧力と最大 負荷圧力とは上述したように切換弁のばねによつて定 ま る規定値に保持されている。 これによ り ポンプ吐出 圧力と最大負荷圧力との差圧によっても規定値を設定 する こ とができ、 上述と同様に安定したァクチユエ一 夕の複合駆動が可能となる。 また、 ばねに代えて当該 差圧を用いた場合は、 油圧ポンプが飽和 し、 要求流量 に対して吐出流量が不足したと きに、 ポンプ吐出圧力 と最大負荷圧力との差圧が低下し、 この低下した同じ 差圧が全ての圧力捕償弁に負荷されるので、 全ての流 量制御弁の前後差圧が一律に規定値よ り も小きな値に 保持される。 その結果、 ポンプ吐出流量の不足時にお いて、 低負荷側のァクチユエ一夕に優先的に多く の流 量が供給される こ とが回避され、 要求流量の比率に応 じた比率でポンプ吐出流量が分流され、 複数のァクチ
ユエ一夕の駆動速度比が適切に制御される。 このため、 油圧ポンプの飽和時においても、 安定したァクチユエ 一夕の複合駆動が可能となる。 Also, in the mouth sensing system described in Japanese Patent Application Laid-Open No. 60-117706, instead of the spring of the pressure compensating valve, the pump discharge pressure and the maximum load pressure are opposed to each other. A loading means is provided, and the specified value is set based on the pressure difference between the two. As described above, the pump discharge pressure and the maximum load pressure are maintained at specified values determined by the spring of the switching valve. As a result, the specified value can be set also by the differential pressure between the pump discharge pressure and the maximum load pressure, and stable combined driving can be performed as described above. When the differential pressure is used instead of the spring, the hydraulic pump saturates, and when the discharge flow rate becomes insufficient with respect to the required flow rate, the differential pressure between the pump discharge pressure and the maximum load pressure decreases. Since the reduced differential pressure is applied to all the pressure compensating valves, the differential pressure across all the flow control valves is uniformly maintained at a value smaller than the specified value. As a result, even when the pump discharge flow rate is insufficient, it is possible to prevent a large flow rate from being supplied preferentially to the factory on the low load side, and the pump discharge flow rate at a ratio corresponding to the required flow rate ratio Are diverted and multiple The driving speed ratio of Yue is controlled appropriately. Therefore, even when the hydraulic pump is saturated, stable combined driving of the actuator is possible.
しかしながら、 上述した従来の油圧駆動装置には以 下のような問題点がある。 However, the conventional hydraulic drive described above has the following problems.
一般に、 作業機械にあっては、 作業対象に加える力 の強弱を制御する こ とが必要となる作業がある。 例え ば、 作業機械と して油圧シ ョベルを例にとる と、 コ ン ク リ ー ト管を溝に埋める と きに、 旋回モータを駆動し て旋回体を旋回させる こ とによ りバケツ トの先端でコ ンク リ ー ト管を押し、 コ ンク リ ー ト管の角度位置を謌 整する-作業がこれに当たる。 このよう な作業では、 旋 回モータの速度制御は重要でな く 、 旋回用の操作レバ 一によつてコ ンク リ ー ト管をわずかに動かす力制御が 行える こ とが望ま しい。 In general, for work machines, there are tasks that require controlling the amount of force applied to the work object. For example, taking a hydraulic shovel as an example of a work machine, a bucket is formed by driving a swing motor to swing a swing body when filling a concrete pipe in a groove. Press the concrete pipe with the tip of the pipe and adjust the angle position of the concrete pipe-this is the work. In such work, the speed control of the rotating motor is not important, and it is desirable that the turning lever can be used to control the force to slightly move the concrete pipe.
ロ ー ドセ ンシ ングシステムを採用 しない従来の油圧 回路では、 オープンセンタ型の流量制御弁を用い、 こ れを制御して圧油排出側の絞り量を調節する こ とによ り ポンプ吐出圧力を制御し、 力制御を実施していた。 しかしながら、 ロー ドセンシングシステムでば、 流量 制御弁がどのよ うな位置にあってもポンプ吐出圧力は 負荷圧力よ り も規定値だけ高く なるよ う に制御される ので、 負荷圧力によってポンプ吐出圧力も一義的に定 ま り、 操作レバーによる力制御はできなかった。 これ
を上記作業の例で述べる と、 旋回モータが駆動する旋 回体は慣性が極めて大きいので、 起動時における旋回 モータの負荷圧力は回路に設置された リ リ ーフ弁の設 定圧力まで上昇し、 この圧力で旋回体を駆動するので 大きな旋回力が発生し、 こ の旋回力でコ ンク リ ー ト管 の移動がなされるので、 押圧力が強すぎてコ ンク リ ー ト管を損傷する恐れがある。 また、 上記のよ う に大き な旋回力が発生するので旋回体は急加速され、 わずか な角度の旋回は困難であ り、 上記作業の場合、 コ ン ク リ ー ト管のわずかな移動は困難である。 In conventional hydraulic circuits that do not employ a load sensing system, an open center type flow control valve is used, and this is controlled to adjust the throttle amount on the pressurized oil discharge side. And force control was implemented. However, in the load sensing system, the pump discharge pressure is controlled to be higher than the load pressure by a specified value regardless of the position of the flow control valve. Specifically, it was not possible to control the force with the operating lever. this In the above work example, since the rotating body driven by the swing motor has extremely large inertia, the load pressure of the swing motor at startup increases to the set pressure of the relief valve installed in the circuit. When the revolving superstructure is driven by this pressure, a large revolving force is generated, and the concrete tube is moved by the revolving force, so that the pressing force is too strong and the concrete tube is damaged. There is fear. In addition, the revolving superstructure is rapidly accelerated due to the large revolving force generated as described above, making it difficult to revolve at a slight angle. Have difficulty.
力制御が望ま しい他の例と して、 作業中に、 ある物 体をバケ ツ ト等の作業部材で地面や固定部に押し付け、 保持してお く 作業がある。 この作業の場合、 ロー ドセ ン シ ングシステムにおいては、 作業部材を直接固定部 に押し付けたのと同様に現象が生じ、 負荷圧力は リ リ ーフ圧力まで上昇し、 大きな力が発生して当該物体を 損傷してしま う恐れがある。 したがって、 このよ う な 作業は不可能である。 このよ うな問題は、 油圧シ ョべ ルだけでな く 、 他の種々の作業機械においても生じる 問題である。 Another example in which force control is desired is a work in which a certain object is pressed against the ground or a fixed part with a work member such as a bucket during work and is held. In the case of this work, the load sensing system causes a phenomenon similar to the case where the work member is directly pressed against the fixed part, the load pressure rises to the relief pressure, and a large force is generated. There is a risk of damaging the object. Therefore, such work is not possible. Such a problem occurs not only in the hydraulic shovel but also in various other working machines.
本発明の目的は、 ロ ー ドセ ン シ ングシステムを採用 しかつ力制御を可能とする作業機械の油圧駆動装置を 提供する こ とである。
発明の開示 An object of the present invention is to provide a hydraulic drive device for a working machine that employs a load sensing system and enables force control. Disclosure of the invention
上記目的を達成するため、 本発明は、 油圧ポンプと、 前記油圧ポンプから吐出される圧油によ り駆動される 少な く と も 1つの油圧ァクチユエ一夕 と、 操作手段の 操作量に応じて駆動され、 前記油圧ポンプからァクチ ユエ一夕に供給される圧油の流れを制御する流量制御 弁と、 前記ァクチユエ一夕の負荷圧力を抽出する検出 管路手段と、 前記検出管路手段に接続され、 前記流量 制御弁の上流側の圧力と前記ァクチユエ一夕の負荷圧 力との差圧を規定値に保持する圧力補償手段とを備え た作業機械の油圧駆動装置において、 前記検出管路手 段に関して設けられ、 該検出管路手段に抽出ざれた前 記ァクチユエ一夕の負荷圧力を前記操作手段の操作量 に応じて決まる値以下に制限する圧力制限手段を有す る ものである。 In order to achieve the above object, the present invention provides a hydraulic pump, at least one hydraulic actuator driven by hydraulic oil discharged from the hydraulic pump, and an operation amount of an operation means. A flow control valve that is driven and controls the flow of pressure oil supplied to the actuator from the hydraulic pump; a detection conduit for extracting the load pressure of the actuator; and a connection to the detection conduit. And a pressure compensating means for maintaining a differential pressure between a pressure on the upstream side of the flow control valve and a load pressure of the actuator at a predetermined value. And a pressure limiting means provided for the step and for limiting the load pressure of the above-mentioned actuating unit extracted to the detection pipe means to a value determined according to the operation amount of the operation means.
好ま し く は、 前記圧力制限手段は、 前記検出管路手 段に設置された絞り と、 前記絞り の下流側とタ ンク と の間に接続され、 前記操作手段の操作量に応じて設定 圧力を変化させ、 前記絞りの下流側の圧力がその設定 圧力を越えないよう にする可変ひ 一フ'弁どを含む。 Preferably, the pressure limiting means is connected between a throttle installed in the detection conduit means, a downstream side of the throttle and a tank, and has a pressure set according to an operation amount of the operation means. And a variable valve that prevents the pressure downstream of the throttle from exceeding its set pressure.
代わり に、 前記圧力制限手段は、 前記検出管路手段 に設置され、 前記負荷圧力を前記操作手段の操作量に 応じて決ま る値まで減圧する可変減圧手段を含む構成 であってもよい。 この場合、 好ま し く は、 前記可変減
圧手段は前記操作手段の操作量に応じて設定圧力を変 化させ、 前記負荷圧力をその設定圧力まで減圧する可 変減圧弁である。 代わり に、 前記可変減圧手段は前記 検出管路手段に設置され、 前記操作手段の操作量に応 じて開度を変化させる第 1 の可変絞り と、 この第 1 の 可変絞り の下流側とタ ンク の間に接続され、 前記操作 手段の操作量に応じて開度を変化させる第 2 の可変絞 り とを含み、 第 1および第 2 の可変絞りが共働して第 1 の可変絞りの下流側の圧力を前記操作手段の操作量 に応じて決ま る値まで圧力降下させる ものであっても よい。 Alternatively, the pressure limiting unit may be configured to include a variable pressure reducing unit installed in the detection conduit unit and configured to reduce the load pressure to a value determined according to an operation amount of the operation unit. In this case, preferably, said variable The pressure means is a variable pressure reducing valve that changes a set pressure according to an operation amount of the operation means and reduces the load pressure to the set pressure. Instead, the variable pressure reducing means is provided in the detection pipe means, and the first variable throttle which changes the opening degree in accordance with the operation amount of the operating means; A second variable throttle connected between the first and second variable apertures, the first and second variable apertures cooperating with each other to change the opening in accordance with the operation amount of the operation means. The pressure on the downstream side may be reduced to a value determined according to the operation amount of the operation means.
また、 好ま し く は、 前記圧力捕償手段は、 前記油圧 ポ ンプの吐出圧力と前記制限された負荷圧力とに応答 して作動し、 両者の差圧が規定値に保持されるよ う ポ ンプ吐出圧力を制御するポ ンプ制御手段を含む。 この 場合、 好ま し く は、 前記ポンプ制御手段は前記規定値 を保持するよ う前記油圧ポンプの吐出流量を制御し、 その結果と してポンプ吐出圧力を制御するポンプレギ ユ レ一夕である。 代わ り に、 前記ボンプ制撖手段ほ前 記油圧ボンプの吐出管路に揍続され、 ポンプ吐出圧力 を直接制御するアンロ ー ド弁であってもよい。 Preferably, the pressure compensating means operates in response to the discharge pressure of the hydraulic pump and the limited load pressure, and maintains a pressure difference between the two at a specified value. Pump control means for controlling the pump discharge pressure is included. In this case, preferably, the pump control means controls the discharge flow rate of the hydraulic pump so as to maintain the specified value, and as a result, controls the pump discharge pressure. Alternatively, the pump control means may be an unload valve that is connected to the discharge pipe of the hydraulic pump and directly controls the pump discharge pressure.
前記圧力補償手段は前記流量制御弁の上流側に接続 され、 前記流量制御弁の入口圧力と前記制限された負 荷圧力とに応答して作動し、 両者の差圧が規定値に保
持されるよう前記流量制御弁の入口圧力を制御する圧 力補償弁であつてもよい。 The pressure compensating means is connected to the upstream side of the flow control valve, and operates in response to the inlet pressure of the flow control valve and the limited load pressure, and maintains a differential pressure between the two at a specified value. It may be a pressure compensating valve that controls the inlet pressure of the flow control valve so as to be maintained.
さ らに好ま し く は、 前記操作手段は前記操作量に比 例したパィ ロ ッ ト圧力を発生し、 このパイ ロ ッ ト圧力 によ り前記流量制御弁を駆動する手段であり、 前記圧 力制限手段は、 前記パイ ロ ッ ト圧力を抽出する手段と、 - この抽出されたパイ ロ ッ ト圧力に基づいて作動し、 前 記負荷圧力を前記操作手段の操作量に応じて決ま る値 以下に制限する手段とを含む。 More preferably, the operating means generates a pilot pressure proportional to the operation amount, and drives the flow control valve with the pilot pressure. The force limiting means is means for extracting the pilot pressure; and- the pressure limiting means is operated based on the extracted pilot pressure, and the load pressure is a value determined according to the operation amount of the operating means. Means for restricting the following.
代わり に、 前記操作手段は前記操作量に比例した電 気信号を発生する手段であってもよく 、 この場合、 前 記圧力制限手段は、 前記検出値に基づき前記操作手段 の操作量に応じて決ま る値を演算し、 対応する電気信 号を出力する手段と、 前記電気信号に基づき作動し、 前記負荷圧力を前記演算値以下に制限する手段とを含 む。 Alternatively, the operating means may be a means for generating an electric signal proportional to the operation amount. In this case, the pressure limiting means may be configured to operate the operation means based on the detection value based on the detected value. It includes means for calculating a determined value and outputting a corresponding electric signal, and means for operating based on the electric signal and for limiting the load pressure to the calculated value or less.
また、 好ま し く は、 前記圧力制限手段を作動を選択 する手段をさ らに備えている。 図面の簡韋な肅明 Preferably, the apparatus further comprises means for selecting the operation of the pressure limiting means. Simple suimei of drawing
第 1 図は本発明の第 1の実施例による油圧駆動装置 の概略図である。 FIG. 1 is a schematic diagram of a hydraulic drive device according to a first embodiment of the present invention.
第 2図はポンプァクチユエ一夕の詳細を示す回路図 である。
第 3図は本発明の第 2の実施例による他圧駆動装置 の概略図である。 FIG. 2 is a circuit diagram showing details of the pump factory. FIG. 3 is a schematic diagram of another pressure driving device according to a second embodiment of the present invention.
第 4図は本発明の第 3 の実施例による油圧駆動装置 の概略図である。 FIG. 4 is a schematic diagram of a hydraulic drive device according to a third embodiment of the present invention.
第 5図は可変減圧弁の一次圧力と二次圧力との関係 を示す図である。 FIG. 5 is a diagram showing the relationship between the primary pressure and the secondary pressure of the variable pressure reducing valve.
第 6図は本発明の第 4の実施例による油圧駆動装置 の概略図である。 FIG. 6 is a schematic diagram of a hydraulic drive device according to a fourth embodiment of the present invention.
第 7図は制御装置の処理手順を示すフ ローチ ヤ一 ト である。 FIG. 7 is a flowchart showing a processing procedure of the control device.
第 8図は本発明の第 5の実施例による油圧駆動装置 の概略図である。 FIG. 8 is a schematic diagram of a hydraulic drive device according to a fifth embodiment of the present invention.
第 9図は制御装置の処理手順を示すフローチヤ一 ト である。 FIG. 9 is a flowchart showing a processing procedure of the control device.
第 1 0 図は本発明の第 6 の実施例による油圧駆動装 置の概略図である。 FIG. 10 is a schematic diagram of a hydraulic drive device according to a sixth embodiment of the present invention.
第 1 1 図は本発明の第 7 の実施例による油圧駆動装 置の概略図である。 FIG. 11 is a schematic view of a hydraulic drive device according to a seventh embodiment of the present invention.
第 1 2図は本発明の第 8 の実施例による油圧駆動装 置のポンプ制御手段の概略図'である。 FIG. 12 is a schematic view ′ of a pump control means of a hydraulic drive device according to an eighth embodiment of the present invention.
第 1 3図は本発明の第 9 の実施例による油圧駆動装 置の概略図である。 FIG. 13 is a schematic diagram of a hydraulic drive device according to a ninth embodiment of the present invention.
第 1 4図は第 1 および第 2の可変絞り のパイ ロ ッ ト 圧力に対する開度の関係を示す特性図である。
発明を実施するための最良の形態 FIG. 14 is a characteristic diagram showing a relationship between the opening degree and the pilot pressure of the first and second variable throttles. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適実施例を作業機械と して油圧シ ョベルを例にと り、 図面を用いて説明する。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings, taking a hydraulic shovel as an example of a working machine.
第 1 の実施例 First embodiment
まず、 本発明の第 1 の実施例を第 1 図および第 2図 によ り説明する。 First, a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
構成 Constitution
第 1図において、 1 は可変容量型の油圧ポンプであ り、 油圧ポンプ 1 は押しのけ容積可変機構 (以下、 斜 板で代表される) 1 aを有し、 斜板 1 a の傾転量 (押 しのけ容積) はロー ドセ ンシング型のポ ンプレギユ レ 一夕 2 によ り制御される。 油圧ポンプ 1 には油圧シ ョ ベルの上部旋回体を駆動する旋回モータ 3 およびブー ムを駆動するブームシ リ ンダ 1 3が接続され、 油圧駆 動装置を構成している。 In FIG. 1, reference numeral 1 denotes a variable displacement hydraulic pump, and a hydraulic pump 1 has a displacement displacement mechanism (hereinafter, represented by a swash plate) 1a, and a tilt amount of the swash plate 1a ( The displacement is controlled by a load-sensing pop-regule overnight. The hydraulic pump 1 is connected to a swing motor 3 for driving the upper swing body of the hydraulic shovel and a boom cylinder 13 for driving the boom, and constitutes a hydraulic drive device.
旋回モータ 3 の駆動は流量制御弁 4 によ り制御され、 流量制御弁 4の上流側には圧力補償弁 5が設置されて いる。 旋回モータ 3 の主回路には リ リ ーフ弁 6 a , 6 bが設けられ、 旋回モータ 3'の最高負荷'圧方を規定し ている。 同様に、 ブームシ リ ンダ 1 3の駆動は流量制 御弁 1 4 によ り制御され、 流量制御弁 1 4 の上流側に は圧力捕償弁 1 5が設置され、 ブームシ リ ンダ 1 3 の 主回路には リ リ ーフ弁 1 6 a, 1 6 bが設けられてい
る。 流量制御弁 4, 1 4 と圧力捕償弁 5, 1 5の間に はそれぞれ旋回モータ 3およびブームシ リ ンダ 1 3か らの圧油の逆流を防止するための逆止弁 1 1 , 1 8力《 設置されている。 The drive of the swing motor 3 is controlled by a flow control valve 4, and a pressure compensating valve 5 is installed upstream of the flow control valve 4. The main circuit of the swing motor 3 is provided with relief valves 6a and 6b, which regulate the maximum load pressure of the swing motor 3 '. Similarly, the drive of the boom cylinder 13 is controlled by a flow control valve 14, a pressure compensation valve 15 is installed upstream of the flow control valve 14, and the main control of the boom cylinder 13 is performed. The circuit is provided with relief valves 16a and 16b. You. Check valves 11, 18 are provided between the flow control valves 4, 14 and the pressure compensating valves 5, 15 to prevent backflow of pressure oil from the swing motor 3 and the boom cylinder 13, respectively. Power << installed.
流量制御弁 4 はパイ ロ ッ ト管路 4 pl, 4 p2に接続さ れた駆動部 4 x, 4 yを有し、 パイ ロ ッ ト管路 4 pi, 4 p2は旋回モータ 3の操作装置 4 aに接続されている。 操作装置 4 aは操作レバー 4 b とパイ ロ ッ ト弁 4 c, 4 dを有し、 操作レバー 4 bが操作される とその操作 方向に応じてパイ ロ ッ ト弁 4 c , 4 dのいずれか一方 が作動し、 その操作量に応じたパイ ロッ ト圧力が発生 し、 そのパイ ロ ッ ト圧„力が管路 4 piまたは 4 p2を介し て流量制御弁 4の駆動部 4 Xまたは 4 y に導入され、 流量制御弁 4を操作量に対応した開度に設定する。 流 量制御弁 1 4に関しても同様であ り、 パイ ロ ッ ト管路 1 4 pi, 1 4 ρΠこ駆動部 1 4 x, 1 4 yが接続され、 パイ ロ ッ ト管路 1 4 pl, 1 4 ί>2は操作レバー 1 4 bお よびパイ ロ ッ ト弁 1 4 c, 1 4 dからなるブーム シ リ ンダ 1 2の操作装置 1 4 aに接続ざれている。 The flow control valve 4 has driving units 4 x and 4 y connected to the pilot lines 4 pl and 4 p2, and the pilot lines 4 pi and 4 p2 are operating devices of the swing motor 3. 4 Connected to a. The operating device 4a has an operating lever 4b and pilot valves 4c and 4d. When the operating lever 4b is operated, the pilot valves 4c and 4d are operated according to the operating direction. Either of them is activated, and a pilot pressure corresponding to the manipulated variable is generated, and the pilot pressure is applied to the drive unit 4 X or the flow control valve 4 via the pipe 4 pi or 4 p2. Introduced at 4 y, the flow control valve 4 is set to the opening corresponding to the manipulated variable The same applies to the flow control valve 14, and the pilot line 14 pi, 14 ρΠ Sections 14x, 14y are connected, and pilot lines 14pl, 14ί> 2 are booms composed of operating levers 14b and pilot valves 14c, 14d. It is connected to the operating device 14a of the cylinder 12.
流量制賓弁 4, i 4には、 それぞれ、 旋回モータ 3 およびブームシ リ ンダ 1 3の負荷圧力を抽出する検出 管路 7 a , 1 7が接続され、 検出管路 7 aに抽出され た負荷圧力は圧力制限部 2 0を介して検出管路 7 わ に 出力され、 この圧力と検出管路 1 7に抽出された負荷
圧力のうちの高い方の圧力がシャ トル弁 8 により選択 され、 検出管路 9 に出力される。 The detection lines 7a and 17 for extracting the load pressure of the swing motor 3 and the boom cylinder 13 are connected to the flow control valves 4 and i4, respectively, and the load extracted to the detection line 7a is connected. The pressure is output to the detection line 7 via the pressure limiting section 20, and the pressure and the load extracted to the detection line 17 are output. The higher of the pressures is selected by the shuttle valve 8 and output to the detection line 9.
圧力捕償弁 5, 1 5 は、 それぞれ、 一方の側の駆動 部 5 x , 1 5 xに管路 5 a , 1 5 a を介して検出管路 7 a , 1 7 に抽出された旋回モータ 3 およびブームシ リ ンダ 1 3 の負荷圧力 (流量制御弁 4, 1 4の出側の 圧力) が負荷され、 他方の側の駆動部 5 y, 1 5 y に 管路 5 b, 1 5 bを介して流量制御弁 4 , 1 4の入側 の圧力が負荷されている。 また、 圧力捕償弁 5 , 1 5 の負荷圧力が負荷される側にはばね 5 c, 1 5 c が設 置されている。 これによ り圧力捕償弁 5, 1 5 は、 そ れぞれ、 流量制御弁 4 , 1 4の前後差圧をばね 5 c, 1 5 c によ り定ま る規定値に保持するよ う制御する。 ポンプレギユ レ一夕 2 は、 第 2図に示すよ う に、 油 圧ポンプ 1 の斜板 1 a に連結され、 斜板 1 a を駆動す る作動シ リ ンダ 2 a を有し、 作動シ リ ンダ 2 aのロ ッ ド側室は管路 2 bを介して油圧ポンプ 1 の吐出管路 1 b に接続され、 ボ トム側室は 2つの切換弁 2 c, 2 d を介して管路 2 b とタ ンク 1 0 に選択的に連通可能と なつている。 The pressure relief valves 5 and 15 are respectively connected to the drive units 5 x and 15 x on one side, and the swing motors extracted to the detection lines 7 a and 17 via the lines 5 a and 15 a, respectively. 3 and the load pressure of the boom cylinder 13 (pressure on the outlet side of the flow control valves 4 and 14) are applied, and the lines 5b and 15b are connected to the drive units 5y and 15y on the other side. The pressure on the inlet side of the flow control valves 4 and 14 is applied via the valve. Further, springs 5c and 15c are provided on the side of the pressure compensation valves 5 and 15 where the load pressure is applied. As a result, the pressure compensating valves 5 and 15 respectively maintain the differential pressure across the flow control valves 4 and 14 at the specified value determined by the springs 5c and 15c. Control. As shown in FIG. 2, the pump regulator 2 has an operating cylinder 2a that is connected to the swash plate 1a of the hydraulic pump 1 and drives the swash plate 1a. The rod-side chamber of the cylinder 2a is connected to the discharge pipe 1b of the hydraulic pump 1 via a pipe 2b, and the bottom chamber is connected to the pipe 2b via two switching valves 2c and 2d. It is possible to selectively communicate with tank 10.
第 1 の切換弁 2 c はロー ドセンシング制御用の切換 弁であり、 一方の側の駆動部 2 e に管路 2 b よ り ボン プ吐出圧力が負荷され、 他方の側の駆動部 2 f に検出 管路 9 を介してシャ トル弁 8で選択された圧力が負荷
されている。 また、 切換弁 2 cの駆動部 2 f の側には ばね 2 gが設置されている。 シャ ト ル弁 8で選択され た圧力が旋回モータ 3 の負荷圧力である と した場合、 その負荷圧力が上昇する と切換弁 2 c が図示左方に駆 動され、 切換弁 2 c は作動シ リ ンダ 2 a のボ トム側室 をタ ンク 1 0 に連絡し、 これによ り作動シ リ ンダ 2 a は収縮方向に駆動され、 斜板 1 a の傾転量を増加させ る。 その結果、 油圧ポ ンプ 1 の吐出流量は増加し、 ポ ンプ吐出圧力が上昇する。 ポンプ吐出圧力が上昇する と切換弁 2 c は図示右方に戻され、 ポ ンプ吐出圧力と 負荷圧力との差圧がばね 2 gによって定ま る規定値に 達する と切換弁 2 c は停止し、 作動シ リ ンダ 2 a の駆 動を停止する。 逆に、 負荷圧力が減少する と切換弁 2 c は図示右方に駆動され、 切換弁 2 c は作動シ リ ンダ 2 a のボ ト ム側室を管路 2 b に連絡し、 これによ り作 動シ リ ンダ 2 a はボ トム側室と 口 ッ ド側室との受圧面 積差によ り伸長方向に駆動され、 斜板 1 a の傾転量を 減少させる。 その結果、 油圧ポンプ 1 の吐出流量は減 少し、 ポンプ吐出圧力が低下する。 ポンプ吐出圧力が 低下する と切換弁 2 σは図示左方に戻きれ、 ポンプ吐 出圧力と負荷圧力との差圧がばね 2 gによって定ま る 規定値に達した時点で切換弁 2 c は停止し、 作動シ リ ンダ 2 a の駆動を停止する。 これによ り ポンプ吐出圧 力は旋回モータ 3 の負荷圧力よ り もばね 2 g によって
定ま る規定値だけ高く なるよう制御される。 The first switching valve 2c is a switching valve for load sensing control, and the pump discharge pressure is applied to the driving section 2e on one side from the pipe line 2b, and the driving section 2f on the other side. The pressure selected by the shuttle valve 8 via line 9 is applied. Have been. In addition, a spring 2 g is installed on the drive unit 2 f side of the switching valve 2 c. Assuming that the pressure selected by the shuttle valve 8 is the load pressure of the swing motor 3, when the load pressure increases, the switching valve 2c is driven to the left in the figure, and the switching valve 2c is actuated. The bottom side chamber of the cylinder 2a is communicated with the tank 10 so that the operating cylinder 2a is driven in the contraction direction, and the tilt amount of the swash plate 1a is increased. As a result, the discharge flow rate of the hydraulic pump 1 increases, and the pump discharge pressure increases. When the pump discharge pressure increases, the switching valve 2c is returned to the right in the figure, and when the differential pressure between the pump discharge pressure and the load pressure reaches the specified value determined by the spring 2g, the switching valve 2c stops. Then, stop the operation of the operation cylinder 2a. Conversely, when the load pressure decreases, the switching valve 2c is driven to the right in the figure, and the switching valve 2c connects the bottom side chamber of the operating cylinder 2a to the line 2b. The operation cylinder 2a is driven in the extension direction by the pressure receiving area difference between the bottom chamber and the mouth chamber, and reduces the amount of tilt of the swash plate 1a. As a result, the discharge flow rate of the hydraulic pump 1 decreases, and the pump discharge pressure decreases. When the pump discharge pressure decreases, the switching valve 2σ can return to the left side in the figure, and when the differential pressure between the pump discharge pressure and the load pressure reaches the specified value determined by the spring 2g, the switching valve 2c is reset. Stop and stop the operation of the operation cylinder 2a. As a result, the pump discharge pressure is higher than the load pressure of the swing motor 3 by the spring 2 g. It is controlled to increase by the specified value.
第 2の切換弁 2 dは馬力制限制御を行う切換弁であ り、 斜板 l aの傾転位置をフ ィ ー ドバッ クするサーボ 弁と して構成されている。 これにより、 ポンプ吐出圧 力が上昇し所定値を越える と、 吐出圧力の上昇に した がい油圧ポンプ 1の最大可能吐出流量が減少するよ う にポ ンプ吐出流量が制御される。 The second switching valve 2d is a switching valve that performs the horsepower limiting control, and is configured as a servo valve that feeds back the tilt position of the swash plate la. Thus, when the pump discharge pressure increases and exceeds a predetermined value, the pump discharge flow rate is controlled so that the maximum possible discharge flow rate of the hydraulic pump 1 decreases as the discharge pressure increases.
第 1図に戻り、 圧力制限部 2 0 は検出管路 7 aに設 置された絞り 2 0 a と、 絞り 2 0 aの下流側をタ ンク 1 0 に連絡する管路 2 1 に設置された可変リ リ ーフ弁 2 O b とで構成されている。 可変リ リ ーフ弁 2 O bは、 リ リ ーフ圧力を設定する手段と してばね 2 0 c と駆動 部 2 0 d とを有している。 管路 2 1において可変リ リ ーフ弁 2 0 bの下流側には管路 2 1を選択的に開閉し、 作業モー ドを選択する切換弁 2 2が設置されている。 切換弁 2 2が閉位置にある と きには普通作業モー ドが 選択され、 開位置にある と きには力制御モー ドが選択 される。 Returning to Fig. 1, the pressure limiting section 20 is installed in the throttle 20a provided in the detection pipe 7a and in the pipe 21 connecting the downstream side of the throttle 20a to the tank 10. And a variable relief valve 2Ob. The variable relief valve 2 Ob has a spring 20c and a drive unit 20d as means for setting the relief pressure. A switching valve 22 that selectively opens and closes the pipeline 21 and selects a work mode is installed downstream of the variable relief valve 20 b in the pipeline 21. The normal operation mode is selected when the switching valve 22 is in the closed position, and the force control mode is selected when the switching valve 22 is in the open position.
パイ ロ ッ ト管路 4 pl, 4 p2からは管路 2 3 a, 2 3 bが分 ¾し、 これら管-路 2' 3 a, 2 3 b ø すれか一 方に伝達されたパイ ロ ッ ト圧力がシャ トル弁 2 4によ り抽出され、 管路 2 5に伝達される。 管路 2 5 は可変 リ リ ーフ弁 2 0 bの駆動部 2 0 dに接続され、 シ ャ ト ル弁 2 4で抽出されたパイ ロ ッ ト圧力が駆動部 2 0 d
に負荷される。 これによ り可変リ リーフ弁 2 0 b は操 作装置 4 aで発生したパイ ロ ッ ト圧力、 即ち、 操作レ バー 4 bの操作量に応じて設定圧力を変化させ、 これ に対応して切換弁 2 2が開位置にある と きには絞り 2 0 a の下流側の圧力がその設定圧力を越えないよ う に する。 即ち、 検出管路 7 a で抽出された負荷圧力は操 作レバー 4 bの操作量に応じて決ま る値以下に制限さ れ、 この制限された負荷圧力が検出管路 7 bを介して シャ トル弁 8 に伝達される。 The pipelines 23a and 23b are separated from the pilot pipelines 4pl and 4p2, and the pipeline transmitted to any one of these pipelines 2'3a and 23bø. The cut pressure is extracted by the shuttle valve 24 and transmitted to the pipeline 25. The pipeline 25 is connected to the drive section 20d of the variable relief valve 20b, and the pilot pressure extracted by the shuttle valve 24 is used to drive the drive section 20d. To be loaded. As a result, the variable relief valve 20b changes the pilot pressure generated by the operating device 4a, that is, the set pressure in accordance with the operation amount of the operating lever 4b, and the pressure corresponding to this changes. When the switching valve 22 is in the open position, the pressure downstream of the throttle 20a should not exceed the set pressure. That is, the load pressure extracted in the detection line 7a is limited to a value determined according to the operation amount of the operation lever 4b, and this limited load pressure is reduced via the detection line 7b. The torque is transmitted to the torque valve 8.
動作 motion
次に、 以上のよう に構成した本実施例の動作を説呀 Next, the operation of the present embodiment configured as described above will be described.
"5 る o "5 o
通常作業時においては、 オペレータ は切換弁 2 2 を 閉位置に切り換え、 可変リ リ ーフ弁 2 0 b とタ ンク 1 0 との連絡を遮断しておく 。 この状態では、 可変リ リ ーフ弁 2 O b は機能しないので、 検出管路 7 b には常 に検出管路 7 aで抽出された旋回モー夕 3の負荷圧力 が現れる。 したがって、 この場合の動作は、 圧力制限 部 2 0のない従来のロー ドセンシングシステムと同じ 動作となり、 旋回モータ 3の単独駆動に際して操作レ バー 4 b の操作量に応じた速度制御が行われる。 During normal operation, the operator switches the switching valve 22 to the closed position, and disconnects the communication between the variable relief valve 20b and the tank 10 in advance. In this state, since the variable relief valve 2Ob does not function, the load pressure of the turning motor 3 extracted in the detection line 7a always appears in the detection line 7b. Therefore, the operation in this case is the same as the operation of the conventional load sensing system without the pressure limiter 20. When the swing motor 3 is driven independently, the speed control is performed according to the operation amount of the operation lever 4b.
即ち、 オペレータが操作レバー 4 b を操作する と、 これに対応してパイ ロ ッ ト管路 4 p l, 4 p 2の一方、 例 えばパイ 口 ッ ト管路 4 p iにパイ 口 ッ ト圧力が生じ、 流
量制御弁 4 は操作レバー 4 bの操作量に応じた開度で 図示左側の位置に切換えられ、 油圧ポンプ 1 の圧油は 圧力捕償弁 5 および流量制御弁 4の可変絞りを経て、 旋回モータ 3の図示左側の主管路から旋回モータ 3 に 供給され、 旋回モータ 3 は一方向に旋回し始める。 こ の場合、 上部旋回体の慣性は極めて大きいので、 旋回 起動時には旋回モータ 3 に供給されるべき圧油の大部 分がリ リ ーフ弁 6 a を介してタ ンク 1 0 に排出され、 かつ検出管路 7 a に現れる負荷圧力は リ リ ーフ弁 6 a の設定圧力となる。 この負荷圧力は絞り 2 0 a、 検出 管路 7 b、 シャ トル弁 8および検出管路 9を介してポ ンプレギユ レ一夕 2 の切換弁 2 c の駆動部 2 ί に導入 され、 上述したよう に斜板 1 a の傾転量を増大させ、 ポンプ吐出圧力は旋回モータ 3 の負荷圧力よ り もばね 2 g によって定まる規定値だけ高く なるよ う制御され る。 なお、 このとき旋回モータ 3 の負荷圧力が高圧で あるので、 馬力制限制御を行う切換弁 2 dによ り斜板 1 a の傾転量の増大は制限される。 That is, when the operator operates the operating lever 4b, the pilot pressure corresponding to one of the pilot lines 4pl and 4p2, for example, the pilot port pressure 4pi, is applied to the pilot port line 4pi. Arise and flow The quantity control valve 4 is switched to the position on the left side of the figure at the opening corresponding to the operation amount of the operation lever 4 b, and the pressure oil of the hydraulic pump 1 turns through the pressure compensation valve 5 and the variable throttle of the flow control valve 4 The power is supplied from the main conduit on the left side of the motor 3 to the swing motor 3, and the swing motor 3 starts to swing in one direction. In this case, since the inertia of the upper revolving superstructure is extremely large, most of the pressure oil to be supplied to the revolving motor 3 at the time of the revolving start is discharged to the tank 10 via the relief valve 6a. And the load pressure appearing in the detection line 7a becomes the set pressure of the relief valve 6a. This load pressure is introduced into the drive unit 2 の of the switching valve 2 c of the pop-regulator 2 via the throttle 20 a, the detection line 7 b, the shuttle valve 8 and the detection line 9, as described above. Then, the tilting amount of the swash plate 1a is increased, and the pump discharge pressure is controlled to be higher than the load pressure of the swing motor 3 by a specified value determined by the spring 2g. At this time, since the load pressure of the swing motor 3 is high, the increase in the amount of tilt of the swash plate 1a is limited by the switching valve 2d that performs the horsepower limiting control.
このよ う に して旋回モータ 3が徐々 に加速されてゆ く と、 ひ ひ一フ弁 6 aから リ リ ーフ'き'れる前量もこれ に応じて徐々に減少してゆき、 旋回モータ 3 が流量制 御弁 4 の開度に応じた回転速度近辺に到達した後は、 その負荷圧力は急速に減少して リ リ ーフ弁 6 a の設定 圧よ り遥かに低い値となる。 このとき も、 ポンプレギ
ユ レータ 2 はこの低い負荷圧力に応じて、 油圧ポンプ 1 の吐出圧力とその負荷圧力との差圧がばね 2 g によ つて定ま る規定値に保持されるよ う に吐出流量を制御 す O In this way, when the swing motor 3 is gradually accelerated, the amount before the relief is released from the first valve 6a is gradually reduced accordingly, and the swing is turned. After the motor 3 reaches the rotation speed corresponding to the opening of the flow control valve 4, its load pressure decreases rapidly and becomes much lower than the set pressure of the relief valve 6a. . Also at this time, pump leggi In response to this low load pressure, the user 2 controls the discharge flow rate so that the differential pressure between the discharge pressure of the hydraulic pump 1 and the load pressure is maintained at a specified value determined by the spring 2 g. O
以上の旋回モータ 3 の単独駆動にあって、 圧力捕償 弁 5 のばね 5 c は通常、 流量制御弁 4の前後差圧が上 - 述のよ う にポンプレギユ レ一夕 2 によ り制御されたポ ンプ吐出圧力と負荷圧力との差圧にほぼ一致するよ う に設定されるので、 圧力補償弁 5 はほぼ全開状態にあ る。 すなわち、 圧力補償弁 5 は旋回モータ 3 の単独駆 動にあっては機能しない。 In the above-described independent drive of the swing motor 3, the spring 5c of the pressure compensating valve 5 normally controls the differential pressure across the flow control valve 4 by the pump regulator 2 as described above. The pressure compensating valve 5 is almost fully opened because it is set so as to substantially match the differential pressure between the pump discharge pressure and the load pressure. That is, the pressure compensating valve 5 does not function when the swing motor 3 is driven alone.
プ一ムシ リ ンダ 1 3 の単独駆動も これに準じた動作 となる。 The independent drive of the bumper cylinder 13 also operates according to this.
旋回モータ 3 とブームシ リ ンダ 1 3 を同時に駆動さ せる複合操作の場合は、 操作レバ一 4 b, 1 4 b を同 時に操作する と、 それらの操作量に応じた開度で流量 制御弁 4, 1 4が開き、 旋回モータ 3 およびブーム シ リ ンダ 1 3 に圧油が供給され、 これによ り旋回モー夕 3 およびブームシ リ ンダ 1 3が同時に駆動される。 旋 回モータ 3 およびブ一ムシ リ ンダ I 3の負荷圧力の う ちの高い方の負荷圧力、 例えば旋回モータ 3 の負荷圧 力はシ ャ ト ル弁 8 によ り選択され、 検出管路 9 に出力 される。 この負荷圧力はポ ンプレギユ レ一夕 2の切換 弁 2 c の駆動部 2 g に導入され、 単独駆動の場合と同
様にその負荷圧力とポンプ吐出圧力との差圧が規定値 に保持されるよう油圧ポンプ 1 の吐出流量が制御され な ο In the case of a combined operation in which the swing motor 3 and the boom cylinder 13 are simultaneously driven, operating the operation levers 4b and 14b simultaneously will cause the flow control valve 4 to open at an opening corresponding to the operation amount. , 14 open, and pressurized oil is supplied to the swing motor 3 and the boom cylinder 13, whereby the swing motor 3 and the boom cylinder 13 are simultaneously driven. The higher of the load pressures of the swing motor 3 and the bloom cylinder I 3, for example, the load pressure of the swing motor 3 is selected by the shut-off valve 8 and is connected to the detection line 9. Is output. This load pressure is introduced into the drive section 2 g of the switching valve 2 c of the pump regule 2 and is the same as in the case of single drive. Similarly, the discharge flow rate of the hydraulic pump 1 is not controlled so that the differential pressure between the load pressure and the pump discharge pressure is maintained at a specified value.
このよ う に制御される結果、 ポンプ吐出圧力と低負 荷圧力側であるブームシ リ ンダ 1 3の負荷圧力との差 圧は上記規定値よ り大き く なる。 したがって、 何等の 手当てをも講じなければ、 油圧ポンプ 1 からの吐出流 量はこの低負荷圧力側のブームシ リ ンダ 1 3 に優先的 に供給され、 高負荷圧力側の旋回モータ 3 に供給され る流量が著し く 制限され、 旋回モータ 3 の駆動が困難 になる。 このよ うな状況に対し、 圧力補償弁 1 5が機 能し、 旋回モータ 3 にも確実に操作レバー 4 aの操作 量に対応した流量が供給されるよ う にする。 即ち、 圧 力補償弁 1 5 はポンプ吐出圧力の上昇によ り絞られ、 流量制御弁 1 4の前後差圧をばね 1 5 c によ って定ま る規定値の保持するよ う に動作し、 これによ り流量制 御弁 4, 1 5の前後差圧がほぼ等し く なる。 その結果、 旋回モータ 3およびブームシ リ ンダ 1 3への供給流量 は操作レバー 4 b, 1 4 bの操作量に応じた流量に制 御され、 滑な複合撩作'が可能とな'る"。 As a result of this control, the differential pressure between the pump discharge pressure and the load pressure of the boom cylinder 13 on the low load pressure side becomes larger than the above specified value. Therefore, if no precautions are taken, the discharge flow from the hydraulic pump 1 is preferentially supplied to the low load pressure side boom cylinder 13 and to the high load pressure side swing motor 3 The flow rate is severely restricted, and the driving of the swing motor 3 becomes difficult. In such a situation, the pressure compensating valve 15 functions to ensure that the swing motor 3 is supplied with a flow rate corresponding to the operation amount of the operation lever 4a. That is, the pressure compensating valve 15 is throttled by the increase of the pump discharge pressure, and operates so as to maintain the differential pressure across the flow control valve 14 at a specified value determined by the spring 15c. As a result, the differential pressure across the flow control valves 4 and 15 becomes almost equal. As a result, the supply flow rate to the swing motor 3 and the boom cylinder 13 is controlled to a flow rate corresponding to the operation amount of the operation levers 4b and 14b, and a "smooth compounding" can be achieved. .
次に、 力制御を行う場合は切換弁 2 2を開位置に切 り換えて力制御モー ドを選択する。 これによ り以下の よ う に力制御が行われる。 Next, when performing force control, the switching valve 22 is switched to the open position to select the force control mode. As a result, force control is performed as follows.
旋回用の操作レバー 4 bが操作され、 例えばパィ 口
ッ ト管路 4 p iにその操作量に応じたパイ ロッ ト圧力が 導入される と、 流量制御弁 4が図示左側の位置に切換 えられる。 同時に、 当該パイ ロ ッ ト圧力は管路 2 3 a、 シャ トル弁 2 4、 管路 2 5 を介して可変リ リ ーフ弁 2 O bの駆動部 2 0 d に導入され、 可変リ リ ーフ弁 2 0 bの設定圧力をばね 2 0 c のみにより定ま る値からば ね 2 0 c とパイ ロ ッ ト圧力とによ り定ま る値に変化さ せる。 この設定圧力は、 パイ ロ ッ ト圧力の大きさ に応 じて変化し、 パイ ロ ッ ト圧力が大きければ設定圧力は 大き く な り、 パイ ロ ッ ト圧力が小さければ設定圧力は 小さ く なる。 結局、 操作レバー 4 b の操作量が大きけ れば設定圧力は大き く、 操作量が小さければ設定圧力 は小さ く なる。 The operating lever 4b for turning is operated, for example, When a pilot pressure corresponding to the operation amount is introduced into the cut line 4pi, the flow control valve 4 is switched to the position on the left side in the figure. At the same time, the pilot pressure is introduced into the drive unit 20d of the variable relief valve 2Ob via the line 23a, the shuttle valve 24, and the line 25, and is controlled by the variable relay. The set pressure of the leaf valve 20b is changed from a value determined only by the spring 20c to a value determined by the spring pressure 20c and the pilot pressure. This set pressure changes according to the magnitude of the pilot pressure.The higher the pilot pressure, the higher the set pressure, and the lower the pilot pressure, the lower the set pressure. . After all, if the operation amount of the operation lever 4b is large, the set pressure is large, and if the operation amount is small, the set pressure is small.
今、 旋回モータ 3 が停止状態にあ り、 上述の操作レ ノ — 4 b の操作量が僅かである とする と、 パイ ロ ッ ト 管路 2 5 に抽出されるパイ ロ ッ ト圧力に低く 、 可変リ リ ーフ弁 2 O b の設定圧力は小さな値となる。 一方、 旋回モータ 3 には上述の流量制御弁 4の切換えにより 圧油が供給され、 旋回体が大きな慣性負荷である こと から、 前述したよ う に旋回モ一タ 3 の負荷圧力は リ リ ーフ弁 6 a の リ リ ーフ圧力まで上昇しよ う と し、 可変 リ リ ーフ弁 2 0 b の上述した設定圧力は リ リ ーフ弁 6 a の リ リ ーフ圧力よ り遥かに小さいので、 検出管路 7 a には可変リ リ ーフ弁 2 O b の設定圧力よ り も高い負
荷圧力が現れよう とする。 この負荷圧力は絞り 2 0 a を介して可変リ リ ーフ弁 2 O b に導かれ、 可変リ リ ー フ弁 2 0 b は絞り 2 0 a の下流側の圧油の一部をタ ン ク 1 0 に逃がし、 絞り 2 0 a の下流側の圧力を可変リ リ ーフ弁の設定圧力まで減少させる。 即ち、 検出管路 7 aで抽出された負荷圧力は操作レバー 4 b の操作量 に応.じて決まる値以下に制限され、 検出管路 7 b には この制限された低い圧力が導かれる。 この圧力はシャ トル弁 8 および検出管路 1 0を介してポンプレギユ レ 一夕 2 の切換弁 2 c の駆動部 2 f に導入され、 その結 果、 ポンプ吐出圧力はこの制限された低い圧方より も ばね 2 g によって定ま る規定値だけ高く なるように制 御され、 ポンプ吐出圧力は可変リ リ ーフ弁 2 O bの設 定圧力に当該規定値を加えた低い圧力となる。 この圧 力は、 操作レバー 4 bの操作量が一定である限り一定 の 。 Now, assuming that the swing motor 3 is in a stopped state and the operation amount of the operation lever 4b described above is small, the pilot pressure extracted into the pilot pipe line 25 becomes low. However, the set pressure of the variable relief valve 2 Ob becomes a small value. On the other hand, pressurized oil is supplied to the swing motor 3 by switching the flow control valve 4 described above, and since the swing body has a large inertial load, the load pressure of the swing motor 3 is released as described above. Attempting to increase to the relief pressure of the relief valve 6a, the above-mentioned set pressure of the variable relief valve 20b is much higher than the relief pressure of the relief valve 6a. Since it is small, negative pressure higher than the set pressure of the variable relief valve 2Ob is set in the detection line 7a. Loading pressure is about to appear. This load pressure is guided to the variable relief valve 20b through the throttle 20a, and the variable relief valve 20b tans a part of the pressure oil downstream of the throttle 20a. Relieve the pressure at 10 and reduce the pressure downstream of the throttle 20a to the set pressure of the variable relief valve. That is, the load pressure extracted in the detection line 7a is limited to a value determined according to the operation amount of the operation lever 4b, and the limited low pressure is guided to the detection line 7b. This pressure is introduced into the drive 2f of the switching valve 2c of the pump regulator 1 via the shut-off valve 8 and the detection line 10, so that the pump discharge pressure is reduced to this limited low pressure direction. Is controlled to be higher than the specified value determined by the spring 2 g, and the pump discharge pressure is a lower pressure obtained by adding the specified value to the set pressure of the variable relief valve 2 Ob. This pressure is constant as long as the operation amount of the operation lever 4b is constant.
このよ う にポンプ吐出圧力が低い一定の圧力に制御 される結果、 旋回モータ 3の負荷圧力の リ リ ーフ弁 6 aの リ リ ーフ圧力までの上昇は抑制され、 負荷圧力は 可変リ び一 7弁 2' O b'の '上 でた設定圧'力にほぼ等し い低い圧力となる。 これにより、 旋回モータ 3 は操作 レバー 4 b の操作量に応じた小さい力で駆動され、 油 圧シ ョベルの上部旋回体も小さな力でじわじわと駆動 される こ と となる。 即ち、 上部旋回体の急加速が防止
される。 As a result, the pump discharge pressure is controlled to a low and constant pressure. As a result, the rise in the load pressure of the swing motor 3 to the relief pressure of the relief valve 6a is suppressed, and the load pressure is varied. The pressure is almost equal to the 'set pressure' above the 2'Ob 'valve. Thus, the swing motor 3 is driven with a small force in accordance with the operation amount of the operation lever 4 b, a and this upper revolving body of the oil圧Shi Yoberu also gradually To drive with a small force. That is, sudden acceleration of the upper revolving unit is prevented. Is done.
この状態から、 さ らに旋回レバーの操作量を増大さ せる と、 これに応じて可変リ リ ーフ弁 2 O bの設定圧 力が大き く なり、 検出管路 7 b にはこの増大した設定 圧力が現れる。 このため、 油圧ポ ンプ 1 の吐出圧力も 増大し、 旋回モータ 3 も増大した力で駆動される。 In this state, when the operation amount of the swing lever is further increased, the set pressure of the variable relief valve 2Ob is correspondingly increased, and the increased pressure is applied to the detection line 7b. Set pressure appears. For this reason, the discharge pressure of the hydraulic pump 1 also increases, and the swing motor 3 is also driven by the increased force.
効果 Effect
このよ う に、 本実施例では、 可変リ リ ーフ弁 2 0 b の設定圧力を操作レバー 4 b の操作量に応じて変化さ せ、 絞り 2 0 a の下流側の圧力がこの設定圧力を越え ないよ う に したので、 検出管路 7 a に抽出された旋回 モータ 3 の負荷正力が操作レバ一 4 bの操作量に応じ て決ま る値以下に制限され、 ロー ドセ ンシ ングシステ ムを採用 しかつ操作レバー 4 b の操作量に応じて旋回 モータ 3 の負荷圧力を制御し、 旋回モータ 3 の力制御 を行な う こ とができ る。 As described above, in this embodiment, the set pressure of the variable relief valve 20b is changed according to the operation amount of the operation lever 4b, and the pressure downstream of the throttle 20a is set to the set pressure. The positive load of the swing motor 3 extracted in the detection line 7a is limited to a value determined according to the operation amount of the operation lever 14b, and the load sensing system By controlling the load pressure of the swing motor 3 according to the amount of operation of the operation lever 4b, the force control of the swing motor 3 can be performed.
したがって、 例えば、 コ ンク リ ー ト管を溝に埋める と きに、 旋回モータを駆動して旋回体を旋回させる こ とによ りバゲ ッ トの先端でコ ンク リ ー ト管を押し、 コ ンク リ ー ト管の角度位置を謌整する作業を行う場合、 操作レバ、一の操作量を小さ く してコ ンク リ ー ト管を小 さな力で少しづつ押すこ とができ るので、 コ ンク リ 一 ト管の損傷が防止でき、 かつコ ンク リ ー ト管の角度位 置の微調整が可能となる。 また、 上部旋回体の回転に
よ り ある物体をバケ ツ ト等の作業部材で地面や固定部 に押し付け、 保持しておく 作業を行う とき、 操作レバ 一の操作量に応じてその押し付け力を制御する こ とが できるので、 当該物体の特性に応じて適切な押し付け 力を選択し、 その物体を損傷する こ とな く 押し付け、 保持する こ とが可能となる。 Therefore, for example, when filling the concrete pipe in the groove, the swing motor is driven to rotate the revolving body, thereby pushing the concrete pipe at the tip of the baguette. When performing work to adjust the angular position of the concrete pipe, the operation lever and the amount of operation can be reduced, and the concrete pipe can be pushed little by little with a small force. Therefore, the concrete pipe can be prevented from being damaged, and the angle position of the concrete pipe can be finely adjusted. In addition, the rotation of the upper Furthermore, when a certain object is pressed against the ground or a fixed part with a work member such as a bucket and is held, the pressing force can be controlled according to the operation amount of the operation lever. An appropriate pressing force is selected according to the characteristics of the object, and the object can be pressed and held without being damaged.
さ らに、 フ ロ ン トア ツ タチメ ン トの向きを変える通 常の旋回作業においても、 操作レバーの操作量に応じ て旋回加速度を制御でき るので、 操作レバーの操作量 を小さ く する こ とによ り旋回の緩加速が可能とな り、 旋回に対する優れた操作性が得られる。 また、 加速圧 を小さ-く できるので各種油圧機器や配管の耐久性の向 上が期待できる。 Furthermore, even in a normal turning operation in which the direction of the front attachment is changed, since the turning acceleration can be controlled in accordance with the operation amount of the operation lever, the operation amount of the operation lever can be reduced. This enables a gentle acceleration of the turn, and provides excellent operability for the turn. Also, since the acceleration pressure can be reduced, the durability of various hydraulic equipment and piping can be improved.
第 2 の実施例 Second embodiment
本発明の第 2 の実施例を第 3図によ り説明する。 図 中、 第 1 図に示す部分と同一部分には同一符号を付し ている。 本実施例は、 力制御を圧力補償弁を利用 して 行う ものである。 A second embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those shown in FIG. 1 are denoted by the same reference numerals. In the present embodiment, force control is performed using a pressure compensating valve.
第 2図において、 圧力補償弁 5 Aの駆動部 5 X は管 路 5 dを介じて検 管路 7 b に接続され、 ぞの'結杲、 駆動部 5 Xには検出管路 7 a に抽出された旋回モータ 3の負荷圧力でな く 圧力制限部 2 0 によ り制限された 負荷圧力が負荷されている。 他の構成は第 1 の実施例 と同じである。
本実 例において、 切換弁 2 2が普通作業モー ドを 選択する閉位置にある ときの動作は第 1 の実施例と同 じである。 切換弁 2 2が力制御モー ドを選択する開位 置にある とき、 圧力捕償弁 5 A以外の動作は第 1 の実 施例と同じである。 切換弁 2 2が開位置にある と き、 圧力捕償弁 5 Aの駆動部 5 Xには管路 5 dを介して検 出管路 7 b 内の圧力制限部 2 0で制限された負荷圧力 が導入される。 このため圧力補償弁 5 Aは、 流量制御 弁 4の入側の圧力と検出管路 7 bの圧力との差圧がば ね 5 c によ り定まる規定値に保持されるよう動作する。 即ち、 流量制御弁 4の入側の圧力は検出管路 7 bの圧 力にばね 5 c によつて定ま る規定値を加えた圧力にな るよう に制御される。 こ こで、 検出管路 7 b の圧力は 可変リ リ ーフ弁 2 0 bの作用によ り操作レバー 4 b (第 1図参照) の操作量に応じた低い一定値となって いる。 したがって、 流量制御弁 4の入側の圧力も低い —定の圧力に制御される。 このよ う に流量制御弁 4の 入側の圧力が低い一定の圧力に制御される結果、 旋回 モータ 3 の負荷圧力も低下し、 操作レバーの操作量に 応じた力制御を行なケことができる。 In FIG. 2, the drive unit 5X of the pressure compensating valve 5A is connected to the test line 7b via the line 5d, and the drive unit 5X is connected to the detection line 7a. The load pressure limited by the pressure limiting section 20 is applied instead of the load pressure of the swing motor 3 extracted at the time. Other configurations are the same as those of the first embodiment. In this embodiment, the operation when the switching valve 22 is in the closed position for selecting the normal operation mode is the same as that in the first embodiment. When the switching valve 22 is in the open position for selecting the force control mode, the operation other than the pressure compensation valve 5A is the same as that of the first embodiment. When the switching valve 22 is in the open position, the load limited by the pressure limiting section 20 in the detection pipe 7 b is connected to the driving section 5 X of the pressure compensation valve 5 A via the pipe 5 d. Pressure is introduced. For this reason, the pressure compensating valve 5A operates so that the differential pressure between the pressure on the inlet side of the flow control valve 4 and the pressure of the detection pipe 7b is maintained at a specified value determined by the spring 5c. That is, the pressure on the inlet side of the flow control valve 4 is controlled to be a pressure obtained by adding a prescribed value determined by the spring 5c to the pressure of the detection pipe 7b. Here, the pressure of the detection line 7b has a low constant value according to the operation amount of the operation lever 4b (see FIG. 1) due to the action of the variable relief valve 20b. Therefore, the pressure on the inlet side of the flow control valve 4 is also low—controlled to a constant pressure. As a result, the pressure on the inlet side of the flow control valve 4 is controlled to a low, constant pressure. it can.
本実施例は、 旋回モー夕 3 とブーム シ リ ンダ 1 3 を 同時に駆動する複合操作において、 旋回モータ 3 の力 制御が必要である と きに有効である。 旋回モータ 3 と ブームシ リ ンダ 1 3 を同時に駆動した際、 ポンプレギ
ュ レー夕 2 には、 検出管路 7 bの制限された圧方と検 出管路 1 7のブームシ リ ンダ 1 3の負荷圧力のうちシ ャ トル弁 8 で選択された高い方の圧力が導入されるが、 ブームシ リ ンダ 1 3の負荷圧力の方が高圧である場合、 第 1 の実施例では力制御ができな く なる。 本実施例で は、 この様な場合、 圧力捕償弁 5 Aが上述したよ う に 機能して流量制御弁 4の入側の圧力の上昇を制限し、 旋回モータ 3の力制御を実行する こ とができる。 The present embodiment is effective when the force control of the swing motor 3 is necessary in a combined operation of simultaneously driving the swing motor 3 and the boom cylinder 13. When the swing motor 3 and the boom cylinder 13 are driven at the same time, the pump In the second stage, the restricted pressure in the detection line 7b and the higher pressure selected by the shuttle valve 8 out of the load pressure in the boom cylinder 13 in the detection line 17 are used. However, if the load pressure of the boom cylinder 13 is higher, the force control becomes impossible in the first embodiment. In this embodiment, in such a case, the pressure compensating valve 5A functions as described above to limit a rise in pressure on the inlet side of the flow control valve 4 and execute the force control of the swing motor 3. be able to.
このよ う に、 本実施例では、 圧力制限部 2 0 によ り 生成された制限された負荷圧力を圧力補償弁に従来の 負荷圧力に代えて導入するよ う に したので、 第 1の実 施例の効果に加え、 複合操作時にも支承な く 旋回モー 夕の力制御を行なう こ とができる。 As described above, in the present embodiment, the limited load pressure generated by the pressure limiting section 20 is introduced into the pressure compensating valve instead of the conventional load pressure. In addition to the effects of the embodiment, it is possible to control the power of the turning motor without any support during compound operation.
第 3の実施例 Third embodiment
本発明の第 3 の実施例を第 4図及び第 5図によ り説 明する。 本実施例は、 圧力制限手段に上述の実施例と 異なる構成を採用 したものである。 A third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a configuration different from that of the above-described embodiment is adopted for the pressure limiting means.
第 3図において、 本実施例の油圧駆動装置は、 油圧 ポンプ 3 1 と、 この油圧ポンプ 3 1から吐出される E 油によつて駆動ざれる : Γグヂユエ一ダ'、 何えば旋 モ 一夕 3 2 および左右走行モータ 3 3, 3 4 と、 油圧ポ ンプ 3 1 からこれらのァクチユエ一夕 3 2 , 3 3, 3 4 に供給される圧油の流れを制御する流量制御弁 3 5 , 3 6, 3 7 とを備えている。
流量制御弁 3 5 , 3 6 , 3 7 にはそれぞれァクチュ エー夕 3 2, 3 3 , 3 4の負荷圧力を抽出するための 検出管路 3 9, 4 0 , 4 1が接続され、 検出管路 3 9, 4 0 はシ ャ トル弁 4 2 を介して別の検出管路 4 3 に連 絡され、 検出管路 4 1 と検出管路 4 3 はシャ ト ル弁 4 4を介して更に別の検出管路 4 5 に連絡され、 検出管 路 4 5 と図示しない他のァクチユエ一夕に係わる負荷 圧力の検出管路 4 6 とはシャ トル弁 4 7 を介して検出 管路 4 8 に連絡されている。 In FIG. 3, the hydraulic drive device of this embodiment is driven by a hydraulic pump 31 and an E oil discharged from the hydraulic pump 31: “Guyueda”. 3 2, the left and right traveling motors 33, 3 4, and the flow control valves 35, 3, which control the flow of the hydraulic oil supplied from the hydraulic pump 31 to these actuators 32, 33, 34. 6, 3 7 are provided. Detecting lines 39, 40, 41 for extracting the load pressure of the actuators 32, 33, 34 are connected to the flow control valves 35, 36, 37, respectively. Lines 39 and 40 are connected to another detection line 43 via a shuttle valve 42, and the detection lines 41 and 43 are further connected via a shuttle valve 44. It is communicated to another detection line 45, and the detection line 45 and the load pressure detection line 46 related to other factories (not shown) are connected to the detection line 48 via the shuttle valve 47. Have been contacted.
油圧ポ ンプ 3 1 は押しのけ容積可変機構、 即ち、 斜 板 3 1 a を有する可変容量型であり、 斜板 3 1 の傾転 量 (押しのけ容積) はロー ドセ ンシング型のポンプレ ギユ レータ 3 8で制御される。 ポ ンプレギユ レ一夕 3 8 は、 油圧ポンプ 3 1 の斜板 3 1 a に連結され、 斜板 3 l a を駆動するァクチユエ一夕 3 8 a と、 このァク チユエ一夕 3 8 aの駆動を制御する切換弁 3 8 b とを 有している。 ァクチユエ一夕 3 8 a は両端の受圧面積 が異なる ピス ト ン 3 8 じ と、 受圧面積の大きい ピス ト ン端部が位置する第 1 の室 3 8 d と、 受圧面積の小さ い ピス ト ン端部が位置する第 2の室' 3' 8 e とから な り、 第 1 の室 3 8 d は管路 3 8 f を介して切換弁 3 8 b に 接続され、 切換弁 3 8 b は管路 3 8 g , 3 8 hを介し て油圧ポ ンプ 3 1 の吐出管路 3 l b に、 また管路 3 8 i を介してタ ンク 4 9 に接続されている。 この構成に
よ り、 第 1 の室 3 8 dは切換弁 3 8 b によ り故圧ポン プ 3 1 の吐出管路 3 1 b とタ ンク 4 8 とに選択的に連 通可能になっている。 また、 第 2の室 3 8 e は管路 3 8 hを介して油圧ポンプ 3 1の吐出管路 3 1 b に常時 連通している。 The hydraulic pump 31 is a variable displacement type mechanism, that is, a variable displacement type having a swash plate 31 a, and the displacement amount (displacement volume) of the swash plate 31 is a load sensing type pump regulator 3. Controlled by 8. The pump rig 38 is connected to the swash plate 31 a of the hydraulic pump 31, and drives the actuator 38 a to drive the swash plate 3 la and the drive 38 a of this actuator. And a switching valve 38b to be controlled. The factory 38a has pistons 38 with different pressure receiving areas at both ends, a first chamber 38d where the piston end with a large pressure receiving area is located, and a piston with a small pressure receiving area. The first chamber 38d is connected to the switching valve 38b via a line 38f, and the switching valve 38b is connected to the second chamber 3d8e. It is connected to the discharge line 3 lb of the hydraulic pump 31 via lines 38 g and 38 h and to the tank 49 via line 38 i. In this configuration Thus, the first chamber 38 d can be selectively communicated with the discharge pipe 31 b of the secondary pressure pump 31 and the tank 48 by the switching valve 38 b. Further, the second chamber 38e is always in communication with the discharge pipe 31b of the hydraulic pump 31 via the pipe 38h.
切換弁 3 8 b には対向する 2つの駆動部 3 8 j , 3 - 8 kが設けられ、 一方の駆動部 3 8 j に管路 3 8 mよ り ポンプ吐出圧力が負荷され、 他方の駆動部 3 8 k に は上述の検出管路 4 8 の圧力が負荷されている。 また、 切換弁 3 8 bの駆動部 3 8 kの側にはばね 3 8 ηが設 置されている。 The switching valve 38 b is provided with two opposing driving sections 38 j and 3-8 k, and one of the driving sections 38 j is loaded with the pump discharge pressure from the pipe 38 m and the other is driven. The pressure of the detection line 48 described above is applied to the section 38k. Further, a spring 38 η is provided on the drive section 38 k side of the switching valve 38 b.
以上のァクチユエ一夕 3 8 a と切換弁 3 8 b との組 み合わせによるポンプレギユ レ一夕 3 8 の構成は、 第 1 の実施例に係わる第 2図に示すポンプレギユ レ一夕 2の馬力制限制御用の第 2 の切換弁 2 dを除いた構成 と実質的に同じであり、 ポンプ吐出圧力が検出管路 4 8 に現れる圧力よ り もばね 3 8 nによって定ま る規定 値だけ高く なるよ う に油圧ポンプ 3 1 の吐出流量を制 御する。 The configuration of the pump regulator 38 by the combination of the actuator 38a and the switching valve 38b is limited to the horsepower limitation of the pump regulator 2 shown in Fig. 2 according to the first embodiment. Substantially the same as the configuration except for the second switching valve 2 d for control, and the pump discharge pressure is higher than the pressure appearing in the detection line 48 by the specified value determined by the spring 38 n Thus, the discharge flow rate of the hydraulic pump 31 is controlled.
流量制 弁'' 3 5 , 3 6 , 3 Tほ第 施柯と 様 にパイ ロ ッ ト圧力によ り駆動されるパイ ロ ッ ト操作方 式であ り、 流量制御弁 3 5の駆動部に接続されるパイ ロ ッ ト管路 3 5 a , 3 5 bからは管路 5 0 a, 5 0 b が分岐し、 管路 5 0 a , 5 0 b はシャ トル弁 5 1 を介
して管路 5 2に連絡している。 この構成により、 管路 5 0 a , 5 0 bのいずれか一方に伝達されたパイ ロ ヅ ト圧力がシャ トル弁 5 1 により抽出され、 管路 5 2 に ' 伝達される。 Flow control valve '' 35, 36, 3 T Pilot operation method driven by pilot pressure, similar to the one in Pipes 50a and 50b are branched from pilot pipes 35a and 35b connected to pipes, and pipes 50a and 50b are connected via shuttle valve 51. The line 52 has been contacted. With this configuration, the pilot pressure transmitted to one of the pipelines 50 a and 50 b is extracted by the shuttle valve 51, and is transmitted to the pipeline 52.
流量制御弁 3 5 に係わる検出管路 3 9 には可変減圧 弁 5 3が設置されている。 この減圧弁 5 3 は検出管路 - 3 9 に抽出された負荷圧力を一次圧力と してこれを減 圧し、 二次圧力を出力する もので、 一般の減圧弁と同 様に、 一方の側に二次圧力が負荷される駆動部 5 3 a を有し、 他方の側にその二次圧力の値を設定する手段 の 1つと してばね 5 3 bを有している。 そして、 この 減圧弁 5 3のばね 5 3 bが位置する側には、. 二次圧力 の値を設定する他の手段と してさ らに駆動部 5 3 が 設置され、 この駆動部 5 3 c に管路 5 2 に伝達された パイ ロ ッ ト圧力が負荷される。 A variable pressure reducing valve 53 is installed in the detection pipe 39 related to the flow control valve 35. This pressure reducing valve 53 reduces the load pressure extracted to the detection line -39 as the primary pressure and outputs a secondary pressure, similar to a general pressure reducing valve. And a spring 53b as one of means for setting the value of the secondary pressure on the other side. On the side of the pressure reducing valve 53 where the spring 53b is located, a driving unit 53 is further provided as another means for setting the value of the secondary pressure. Pilot pressure transmitted to pipeline 52 is applied to c.
このよ う に構成した可変減圧弁 5 3 は第 2図に示す よ うな特性を有する。 即ち、 パイ ロ ッ ト圧力が低いと きには一次圧力 P 1 (検出管路 3 9で抽出された負荷 圧力) を比較的小さな二次圧力 P 2 に減圧し、 パイ 口 ッ ト圧方が高く なる と、 それに応じで減圧する二次圧 力 P 2 を高く する。 このよ う に可変減圧弁 5 3 はパイ ロ ッ ト圧力に応じて設定圧力を変化させ、 これに対応 して検出管路 3 9 に抽出されたァクチユエ一夕 3 2 の 負荷圧力を減圧し、 これによ り検出管路 3 9 に抽出さ
れた負荷圧力は、 第 1の実施例と同様に油圧モータ 3 2 に係わる図示しない操作レバーの操作量に応じて決 ま る値以下に制限される。 The variable pressure reducing valve 53 configured as described above has characteristics as shown in FIG. That is, when the pilot pressure is low, the primary pressure P 1 (the load pressure extracted in the detection pipe 39) is reduced to a relatively small secondary pressure P 2, and the pilot port pressure is reduced. As the pressure increases, the secondary pressure P 2, which is reduced accordingly, is increased. In this way, the variable pressure reducing valve 53 changes the set pressure in accordance with the pilot pressure, and in response to this, reduces the load pressure of the actuator 32 extracted to the detection line 39, As a result, it is extracted to the detection line 39. The applied load pressure is limited to a value determined according to the operation amount of an operation lever (not shown) related to the hydraulic motor 32 as in the first embodiment.
このよ う に構成した本実施例の動作は次のようであ る。 仮に図示しない旋回体を駆動すべく 油圧モータ 3 2 に係わる図示しない操作レバーを小さな操作量で操 作し、 流量制御弁 3 5を切換える と、 その小さな操作 量に応じて発生した小さなパイ ロ ッ ト圧力がシャ トル 弁 5 1 によ り抽出され、 管路 5 2を介して可変減圧弁 5 3 の駆動部 5 3 c に与えられる。 これによ り、 この と きの検出管路 3 9 に抽出された油圧モータ 3 2の負 荷圧力、 即ち、 可変減圧弁 5 3 の一次圧力を とす る と、 この一次圧力 P l aは、 第 2図に示すよ う に比較 的小さな 2次圧力 P 2 aに減じ られ、 この 2次圧 P 2 aが シャ トル弁 4 2, 4 4, 4 7 および検出管路 4 8を介 して切換弁 3 8 bの駆動部 3 8 k に与えられる。 これ によ り油圧ポンプ 3 1 の斜板 3 l a は、 ポンプ吐出圧 力が検出管路 4 8 に現れる圧力、 即ち、 可変減圧弁 5 3の二次圧力 P 2 aよ り もばね 3 8 nによって定ま る規 定値だけ高く なるよう に'傾転量 C W Vのけ'容積') が制 御され、 可変減圧弁 5 3の二次圧力 P 2 aが上記操作量 に応じて定ま る低い一定値である こ とから、 ポンプ吐 出圧力はその一定値にばね 3 8 n によって定ま る規定 値を加えた同様に比較的低い一定値に制御される。
このよ う にポンプ吐出圧力が低い一定の圧力に制御 される結果、 負荷圧力も低い圧力とな り、 第 1 の実施 例と同様に油圧モータ 3 2 は操作レバ一の操作量に応 じた小さい力で駆動され、 油圧シ ョ ベルの上部旋回体 も小さな力でじわじわと駆動される。 The operation of the present embodiment configured as described above is as follows. If the operating lever (not shown) related to the hydraulic motor 32 is operated with a small operation amount to drive the revolving structure (not shown), and the flow control valve 35 is switched, a small pilot generated according to the small operation amount The pressure is extracted by the shuttle valve 51 and supplied to the drive unit 53 c of the variable pressure reducing valve 53 via the line 52. Accordingly, assuming that the load pressure of the hydraulic motor 32 extracted in the detection pipe 39 at this time, that is, the primary pressure of the variable pressure reducing valve 53, this primary pressure P la is As shown in Fig. 2, the secondary pressure P2a is reduced to a relatively small secondary pressure P2a, and this secondary pressure P2a is reduced via the shuttle valves 42, 44, 47 and the detection line 48. It is provided to the drive 38k of the switching valve 38b. As a result, the swash plate 3 la of the hydraulic pump 3 1 has a spring 3 8 n higher than the pressure at which the pump discharge pressure appears in the detection pipe 48, that is, the secondary pressure P 2 a of the variable pressure reducing valve 53. Is controlled so that the displacement becomes higher by the specified value, and the secondary pressure P 2 a of the variable pressure reducing valve 53 is set lower according to the above operation amount. Since it is a constant value, the pump discharge pressure is controlled to a relatively low constant value by adding the prescribed value determined by the spring 38n to the constant value. As a result of controlling the pump discharge pressure to a low and constant pressure in this manner, the load pressure also becomes low, and the hydraulic motor 32 responds to the operation amount of the operation lever similarly to the first embodiment. It is driven with a small force, and the upper swing body of the hydraulic shovel is also gradually driven with a small force.
操作レバーの操作量が大き く な り、 これに伴ってパ イ ロ ッ ト圧力が大き く なる と、 可変減圧弁 5 3 の駆動 も大き く なつて、 同じ一次圧力 P l aに対してよ り大き な 2次圧力 P 2 bが取出され、 この大きな 2次圧力 P 2 が切換弁 3 8 bの駆動部 3 8 k に与えられる。 これに よ り油圧ポンプ 3 1 の斜板 3 1 a は、 ポンプ吐出圧力 が二次圧力 P より もばね 3 8 nに-よつて定ま る規定 値だけ高く なるよう に傾転量 (押 しのけ容積) が制御 され、 ポ ンプ吐出圧力はその二次圧力 P b にばね 3 8 n によっ て定ま る規定値を加えた圧力に制御される。 その結果、 油圧モータ 3 2 は操作レバ一の操作量に応 じた、 上述の場合よ り は大きな力で駆動され、 上部旋 回台はよ り速い加速度で駆動される。 When the operation amount of the operation lever increases and the pilot pressure increases accordingly, the driving of the variable pressure reducing valve 53 also increases, and the driving of the variable pressure reducing valve 53 increases as compared to the same primary pressure P la. A large secondary pressure P 2 b is taken out, and this large secondary pressure P 2 is applied to the drive section 38 k of the switching valve 38 b. As a result, the swash plate 31a of the hydraulic pump 31 is displaced (pushed) so that the pump discharge pressure becomes higher than the secondary pressure P by a specified value determined by the spring 38n. Is controlled, and the pump discharge pressure is controlled to a pressure obtained by adding a specified value determined by a spring 38n to the secondary pressure Pb. As a result, the hydraulic motor 32 is driven with a larger force than the above-described case according to the operation amount of the operation lever, and the upper turning table is driven with a faster acceleration.
したがって、 本実施例においても第 1 の実施例と同 様に油圧モータ 3 2の力制御が可能で'あ り、 第 1 の実 施例と同様の効果を得る こ とができる。 Therefore, also in the present embodiment, the force control of the hydraulic motor 32 can be performed in the same manner as in the first embodiment, and the same effect as in the first embodiment can be obtained.
第 4 の実施例 Fourth embodiment
本発明の第 4の実施例を第 6図および第 7図によ り 説明する。 図中、 第 4図に示す部材と同等の部材には
同じ符号を付している。 本実施例は、 圧力制限手段のA fourth embodiment of the present invention will be described with reference to FIGS. In the figure, members equivalent to those shown in Fig. 4 The same reference numerals are given. In this embodiment, the pressure limiting means
—部に電子制御を採用 したものである。 —Electronic control is adopted in the section.
第 4図において、 検出管路 3 9 には電磁操作式の可 変減圧弁 5 3 Aを設置してあ り、 この可変減圧弁 5 3 Aは第 4図の駆動部 5 3 c に代えて電磁式の駆動部 5 3 dを備えている。 また、 油圧モータ 3 2 の操作手段 と して電気操作レバー 6 0が設けられており、 こ の電 気操作レバー 6 0 は入力部 6 1 a、 出力部 6 1 b、 記 憶部 6 1 c、 および演算部 6 1 dを有する制御装置 6 1 に接続してあ り、 この制御装置 6 1 に電気油圧変換 装置 6 2 および上述の減圧弁 5 3 Aの駆動部 5 3 dを 接続している。 電気油圧変換装置 6 2 は流量制御弁 3 5 を駆動するためのパイ ロ ッ ト圧力を発生するための ものである。 その他の構成は第 4図に示す第 3 の実施 例と実質的に同じである。 In FIG. 4, an electromagnetically operated variable pressure reducing valve 53 A is installed in the detection line 39, and this variable pressure reducing valve 53 A is used in place of the drive unit 53 c in FIG. It has an electromagnetic drive unit 53d. Further, an electric operation lever 60 is provided as an operation means of the hydraulic motor 32, and the electric operation lever 60 is provided with an input section 61a, an output section 61b, and a storage section 61c. , And a control unit 6 1 having an operation unit 6 1 d. The control unit 6 1 is connected to the electro-hydraulic converter 6 2 and the drive unit 5 3 d of the pressure reducing valve 53 A described above. I have. The electro-hydraulic converter 62 generates a pilot pressure for driving the flow control valve 35. Other configurations are substantially the same as those of the third embodiment shown in FIG.
このよ う に構成した本実施例にあっては、 旋回体を ゆつ く り旋回させる こ とを意図して電気操作レバー 6 0をわずかに操作した場合には、 第 7図の手順 S 1 で 示すよう に、 制御装置 6 1 の入力部 6 1 aを介して演 算部 6 1 dにその操作量 Xが読み込まれる'。 ? JTいで手 順 S 2 に移り、 記憶部 6 1 c に予め記憶されている操 作量 X と電磁弁 5 3 Άに対する指令信号 I の関係が読 み出され、 手順 S 1 で読み込まれた操作量 Xに対応す る指令信号 I が演算される。 こ こで操作量 X と指令信
号 I の関係は、 操作量 Xに比例的に指令信号 I が増加 し、 フルス ト ローク時に指令信号 I が最大の値をとる 関係となっている。 次いで手順 S 3 に移り、 手順 S 2 で求められた指令信号 I が減圧弁 5 3 Aの駆動部 5 3 dに出力され、 減圧弁 5 3 Aが駆動される。 同時に、 電気操作レバー 6 0 の操作量 Xに対応する流量制御弁 3 5への指令信号が演算され、 制御装置 6 1 の出力部 6 1 bから電気油圧変換装置 6 2 に出力される。 電気 油圧変換装置 6 2では、 その指令信号に基づき操作量 Xに相応するパイ ロ ッ ト圧力を発生し、 このパイ ロ ッ ト圧力が流量制御弁 3 5の駆動部に与えられ、 流量-制 御弁 3 5が切換えられる。 In the present embodiment having such a configuration, when the electric operation lever 60 is slightly operated with the intention of slowly turning the revolving body, the procedure S1 shown in FIG. As shown by, the manipulated variable X is read into the computing unit 61 d via the input unit 61 a of the control device 61. ? In JT, the procedure proceeds to step S2, where the relationship between the manipulated variable X and the command signal I for the solenoid valve 53 3 stored in the storage unit 61c is read, and the operation read in step S1. The command signal I corresponding to the quantity X is calculated. Here, the manipulated variable X and command signal The relation of signal I is such that the command signal I increases in proportion to the manipulated variable X, and the command signal I takes the maximum value during a full stroke. Next, the procedure proceeds to step S3, where the command signal I obtained in step S2 is output to the driving section 53d of the pressure reducing valve 53A, and the pressure reducing valve 53A is driven. At the same time, a command signal to the flow control valve 35 corresponding to the operation amount X of the electric operation lever 60 is calculated, and is output from the output unit 6 1 b of the control device 61 to the electro-hydraulic converter 62. The electro-hydraulic converter 62 generates a pilot pressure corresponding to the manipulated variable X based on the command signal, and the pilot pressure is supplied to the drive unit of the flow control valve 35, and the flow rate is controlled. The control valve 35 is switched.
そ して、 油圧ポンプ 3 1から供給される吐出流量に よる油圧モータ 3 2 の駆動に伴って生じる負荷圧力が 検出管路 3 9 に可変減圧弁 5 3 Aの一次圧力と して導 かれ、 減圧弁 5 3 Aによ り減圧された二次圧力が前述 した第 3 の実施例におけるのと同様に切換弁 3 8 bの 駆動部 3 8 k に与え られる。 Then, the load pressure generated by driving the hydraulic motor 32 by the discharge flow rate supplied from the hydraulic pump 31 is guided to the detection pipe 39 as the primary pressure of the variable pressure reducing valve 53 A, The secondary pressure reduced by the pressure reducing valve 53A is supplied to the drive section 38k of the switching valve 38b in the same manner as in the third embodiment described above.
このよ う に構成した本実施例にあっても、 電気操作 レバー 6 0の操作量 Xが小さい場合は弒圧弁 5 3 Aに 与えられる指令信号 I の値は小さ く 、 したがって第 3 の実施例と同様に減圧弁 5 3 Aによって減じ られた二 次圧力は比較的小さ く 、 この二次圧力による制御によ り油圧ポンプ 3 1 の吐出圧力は比較的小さ く なる。 し
たがって、 油圧モータ 3 2 を電気操作レバー 6 0の操 作量 Xに応じた小さい力で駆動し、 旋回体を小さな力 で駆動する こ とが可能となる。 Even in the present embodiment configured as described above, when the operation amount X of the electric operation lever 60 is small, the value of the command signal I given to the low pressure valve 53 A is small, and accordingly, the third embodiment Similarly to the above, the secondary pressure reduced by the pressure reducing valve 53 A is relatively small, and the discharge pressure of the hydraulic pump 31 becomes relatively small by the control using this secondary pressure. I Accordingly, it is possible to drive the hydraulic motor 32 with a small force according to the operation amount X of the electric operation lever 60, and to drive the revolving superstructure with a small force.
第 5 の実施例 Fifth embodiment
本発明の第 5 の実施例を第 8図および第 9 図により 説明する。 図中、 第 4図および第 6図に示す部材と同 等の部材には同じ符号を付している。 本実施例は、 減 圧弁を異なる位置に設置したものである。 A fifth embodiment of the present invention will be described with reference to FIGS. In the drawings, members that are the same as the members shown in FIGS. 4 and 6 are given the same reference numerals. In this embodiment, the pressure reducing valve is installed at a different position.
第 8図において、 本実施例の油圧駆動装置は、 ァク チユエ一夕 と してブームシ リ ンダ、 アームシ リ ンダ、 バケツ ト シ リ ンダをそれぞれ提供する油圧シ リ ンダ 3 In FIG. 8, a hydraulic drive device according to the present embodiment includes a hydraulic cylinder 3 that provides a boom cylinder, an arm cylinder, and a bucket cylinder as an actuator.
2 A, -3 3 A, 3 4 Aと、 これら油圧シ リ ンダの操作 手段と してそれぞれ操作量 X a, X b , x c の電気信 号を出力する電気操作レバー 6 0 a, 6 0 b , 6 0 c とを有している。 また、 油圧シ リ ンダ 3 2 A , 3 3 A,2 A, −33 A, 34 A, and electric control levers 60 a, 60 that output electric signals of the operation amounts Xa, Xb, xc as operation means of these hydraulic cylinders, respectively. b, 60 c. Hydraulic cylinders 32 A, 33 A,
3 4 Aの最大負荷圧力が抽出される検出管路 4 5 に電 磁式の駆動部 5 3 bを有する可変減圧弁 5 3 Bが設置 されている。 電気操作レバー 6 0 a , 6 0 b, 6 0 c は制御装置 6 1 Aに接続してあり、 この制御装置 6 1 Aに電気钳圧変換装曾 2 a , 6 2 b , 6 2 c および 可変減圧弁 5 3 Bの駆動部 5 3 dを接続している。 電 気油圧変換装置 6 2 a, 6 2 b , 6 2 c は流量制御弁 3 5, 3 6 , 3 7を駆動するためのパイ ロ ッ ト圧力を 発生するためのものである。 さ らに、 油圧シ ョベルの
バケ ツ トの先端を地面に平行に移動させる水平引き作 業に際して O Nされ、 通常の掘削作業に際して 0 F F される選択スィ ッチ 6 3を設けてある。 他の構成は第 6図に示す第 4の実施例と実質的に同じである。 A variable pressure reducing valve 53B having an electromagnetic drive section 53b is installed in a detection pipe 45 from which a maximum load pressure of 34A is extracted. The electric control levers 60 a, 60 b, and 60 c are connected to a control device 61 A, and the control device 61 A has electric pressure conversion devices 2 a, 62 b, 62 c and The drive section 53d of the variable pressure reducing valve 53B is connected. The electro-hydraulic converters 62a, 62b, 62c are for generating pilot pressure for driving the flow control valves 35, 36, 37. In addition, hydraulic shovels There is a selection switch 63 that is turned on during the horizontal pulling operation that moves the tip of the bucket parallel to the ground, and is turned off during normal excavation work. Other configurations are substantially the same as those of the fourth embodiment shown in FIG.
一般に油圧ショベルにおいて、 ブーム、 アーム等を 同時に操作し水平引き作業を行な う場合には、 ブーム 用操作レバーの操作量は比較的小さ く 、 ブーム シ リ ン ダの負荷圧力が最も高く なる こ とが知られている。 そ こで、 こ の第 5の実施例では、 水平引き作業を行う塲 合は選択スィ ッ チ 6 3を O Nし、 以下のよ うな制御を 行う。 Generally, in a hydraulic excavator, when the boom, arm, etc. are operated simultaneously to perform horizontal pulling work, the operation amount of the operation lever for the boom is relatively small, and the load pressure of the boom cylinder becomes the highest. And is known. Therefore, in the fifth embodiment, when performing the horizontal pulling operation, the selection switch 63 is turned ON, and the following control is performed.
水平引き作業に際して電気操作レバー 6 0 a, 6 0 b, 6 O cを操作する と、 第 9図の手順 S I 0に示す よ う に制御装置 6 1 Aの入力部 6 1 aを介して演算部 6 1 dに該当する操作量 x a, x b, x cが読み込ま れる。 次いで、 手順 S 1 1 に移り、 選択スィ ッチ 6 3 が O Nか O F Fか判断される。 今、 この選択スィ ッ チ 6 3 は O Nである こ とから手順 S 1 2 に移り、 演算要 素 yを電気操作レバー 6 0 a, 6 0 b , 6 0 cの操作 量 x a, b , x cの う ち、 ブームを駆動するプーム シ リ ンダである油圧シ リ ンダ 3 2 Aの駆動を制御する 流量制御弁 3 5に対応する電気操作レバー 6 0 aの操 作量 X aを演算要素 yに設定し、 次いで手順 S 1 3に 移る。 この手順 S 1 3では記憶部 6 1 cに予め記憶さ
れている演算要素 y と減圧弁 5 3 Bへの指令信号 I と の関係が読み出され、 手順 S 1 2で設定された演算要 素 y、 即ち、 電気操作レバー 6 0 aの操作量 X aに対 応する指令信号 Iが演出される。 こ こで、 演算要素 y と減圧弁 5 3 Bへの指令信号 I との関係は、 演算要素 yに比例的に指令信号 Iが増加し、 フルス ト ローク時 に演算要素 yが最大の値をとる関係になっている。 次 いで手順 S 1 4に移り、 手順 S 1 3で求められた指令 信号 Iが制御装置 6 1 Aの出力部 6 1 bから減圧弁 5 3 Bの駆動部に出力され、 この減圧弁 5 3 Aが駆動さ れ 。 When the electric operation levers 60a, 60b, and 6Oc are operated during the horizontal pulling operation, the operation is performed via the input unit 61a of the controller 61A as shown in the procedure SI0 in FIG. The manipulated variables xa, xb, xc corresponding to the part 61d are read. Next, the procedure proceeds to step S11, where it is determined whether the selection switch 63 is ON or OFF. Now, since the selection switch 63 is ON, the process proceeds to step S12, and the operation element y is changed to the operation amounts xa, b, xc of the electric operation levers 60a, 60b, 60c. Among them, the operation amount Xa of the electric operation lever 60a corresponding to the flow control valve 35 which controls the drive of the hydraulic cylinder 32A, which is a boom cylinder for driving the boom, is used as a calculation element y And then go to step S13. In this step S13, the information is stored in the storage unit 6 1c in advance. The relationship between the operation element y and the command signal I to the pressure reducing valve 53B is read out, and the operation element y set in step S12, that is, the operation amount X of the electric operation lever 60a is read. Command signal I corresponding to a is produced. Here, the relationship between the calculation element y and the command signal I to the pressure reducing valve 53B is such that the command signal I increases in proportion to the calculation element y, and the value of the calculation element y reaches the maximum value during a full stroke. The relationship is taken. Then, the procedure proceeds to step S14, and the command signal I obtained in step S13 is output from the output unit 6 1b of the control device 61A to the drive unit of the pressure reducing valve 53B, and the pressure reducing valve 53 A is driven.
一方、 電気操作レバー 6 0 a, 6 0 b , 6 0 cの操 作量 x a, X b , χ c に対応する指令信号が制御装置 6 1 Aの出力部 4 5から電気油圧変換装置 6 2 a, 6 On the other hand, command signals corresponding to the operation amounts xa, Xb, χc of the electric operation levers 60a, 60b, 60c are transmitted from the output unit 45 of the control device 61A to the electrohydraulic conversion device 62. a, 6
2 b , 6 2 cに出力され、 これらの電気油圧変換装置 6 2 a , 6 2 b , 6 2 cで発生したパイ ロ ッ ト圧力、 即ち、 操作量 x a, X b , x c に相応するパイ ロ ッ ト 圧力が各流量制御弁 3 5, 3 6 , 3 7の駆動部に与え られ、 これらの流量制御弁 3 5 , 3 6 , 3 7が切換え られる。 これによ り、 甜圧ボンプ 3: Γから供耠ざれる 圧油によ り油圧シ リ ンダ 3 2 A , 3 3 A, 3 4 Aが駆 動され、 水平引き作業が実施される。 そ して、 油圧ポ ンプ 3 1から供給される油圧シ リ ンダ 3 2 A, 3 3 A,2b, 62c, and the pilot pressure generated by these electro-hydraulic converters 62a, 62b, 62c, that is, the pilot pressure corresponding to the manipulated variables xa, Xb, xc. The lot pressure is applied to the drive units of the flow control valves 35, 36, and 37, and these flow control valves 35, 36, and 37 are switched. As a result, the hydraulic cylinders 32 A, 33 A, and 34 A are driven by the pressurized oil supplied from the beet press pump 3, and the horizontal pulling operation is performed. Then, the hydraulic cylinders 32 A, 33 A, supplied from the hydraulic pump 31 are provided.
3 4 Aの駆動に伴って生じる負荷圧力の最大値、 即ち、
ブームシ リ ンダ 3 2 Aの負荷圧力が管路 4 5を介して 可変減圧弁 5 3 Bの一次圧力と して導かれ、 減圧弁 5 3 Aで減圧され、 その減圧された二次圧力が切換弁 3 8 bの駆動部 3 8 kに与えられる。 これによ り、 油圧 ポンプ 3 1の吐出圧力はブーム用の電気操作レバー 6 0 aの操作量に応じた圧力に制御され、 ブームシ リ ン ダの負荷圧力も これに対応して電気操作レバー 6 0 a の操作量に応じた値に制御される。 The maximum value of the load pressure generated by driving 34 A, that is, The load pressure of the boom cylinder 32 A is guided as the primary pressure of the variable pressure reducing valve 53 B via the line 45, and is reduced by the pressure reducing valve 53 A, and the reduced secondary pressure is switched. It is provided to the drive 38k of the valve 38b. As a result, the discharge pressure of the hydraulic pump 31 is controlled to a pressure corresponding to the operation amount of the electric operation lever 60a for the boom, and the load pressure of the boom cylinder is correspondingly adjusted. It is controlled to a value corresponding to the operation amount of 0a.
また、 一般に油圧シ ョベルにおいて通常の掘削作業 の場合にはブームシ リ ンダの負荷圧力が最も高く なる とは限らず、 アームシ リ ンダゃバケツ ト シ リ ンダの負 荷圧力が高く なる こともある。 そこで、 この第 5の実 施例では、 掘削作業を行う場合には選択スィ ツ チ 6 3 を 0 F Fに して、 次によ うな制御を行う。 In general, the load pressure of the boom cylinder is not always the highest during normal excavation work with a hydraulic shovel, and the load pressure of the arm cylinder / bucket cylinder may increase. Thus, in the fifth embodiment, when excavation work is performed, the selection switch 63 is set to 0FF, and the following control is performed.
まず、 手順 S 1 0で掘削作業に関連するする電気操 作レバー 6 0 a , 6 0 b , 6 0 cの操作量 x a, x b , x cを読み込んだ後、 第 8図の手順 S 1 1の判別が満 足されないので、 手順 S 1 5に移る。 この手順 S 1 5 では、 演算要素 yを操作量 X a, X b , x cのう ちの 最大値、 即ち、 m a ( a , x b , x c ) とする処 理をおこな う。 次いで上述した手順 S 1 3に移り、 上 述と同様に操作量 x a , b , x cのう ちの最大値に 対応する演算要素 yに相応する指令信号 I が演算され、 次いで手順 S 1 4に移り、 手順 S 1 3で求め られた指
令信号 I が制御装置 6 1 Aの出力部 6 l bから減圧弁 5 3 Bの駆動部 5 3 dに出力され、 この減圧弁 5 3 B が駆動される。 First, after reading the operation amounts xa, xb, and xc of the electric operation levers 60a, 60b, and 60c related to the excavation work in step S10, the process proceeds to step S11 in FIG. Since the determination is not satisfied, proceed to step S15. In this step S15, a process is performed in which the operation element y is set to the maximum value of the manipulated variables Xa, Xb, xc, that is, ma (a, xb, xc). Then, the process proceeds to the above-described step S13, and the command signal I corresponding to the operation element y corresponding to the maximum value of the manipulated variables xa, b, xc is calculated in the same manner as described above, and then the process proceeds to the step S14. The finger determined in step S13 The command signal I is output from the output unit 6 lb of the control device 61A to the drive unit 53d of the pressure reducing valve 53B, and the pressure reducing valve 53B is driven.
—方、 電気操作レバー 6 0 a , 6 0 b , 6 0 cの操 作量 x a, x b , x cに対応して電気油圧変換装置 6 —Electro-hydraulic converter 6 corresponding to the operation amounts xa, xb, xc of the electric control levers 60a, 60b, 60c
2 a , 6 2 b , 6 2 cにノ、0ィ ロ ッ ト圧力が発生し、 こ - れらのパイ ロ ッ ト圧力に応じて流量制御弁 3 5, 3 6 ,2 a, 62 b, and 62 c generate zero and zero pilot pressures, and according to these pilot pressures, the flow control valves 35 , 36,
3 7が切換えられ、 油圧ポンプ 3 1から供給される圧 油によ り該当する油圧シ リ ンダ 3 2 A, 3 3 A, 3 4 Aが駆動し、 掘削作業が実施される。 そ して、 油圧ポ ンプ 3 1から供給される吐出流量による油圧シリ ンダ 3 2 A, 3 3 A, 3 4 Aの駆動に伴って生じる負荷圧 力の最大値、 即ち、 ブームシ リ ンダ、 アームシ リ ンダ、 バケ ツ ト シ リ ンダの負荷圧力の う ちの最も大きい圧力 が管路 4 5を介して減圧弁 5 3 Bの一次圧力と して導 かれ、 減圧弁 5 3 Bで減圧され、 その減じ られた二次 圧力が切換弁 3 8 bの駆動部 3 8 kに与えられる。 こ れによ り、 油圧ポンプ 3 1の吐出圧力は電気操作レバ - 6 0 a , 6 0 b , 6 0 cの操作量 x a, x b, x c のうちの最大値'に じだ圧方に'制御ぎれ、 プ'一ムシ リ ンダ、 アームシ リ ンダ、 バケツ ト シ リ ンダの負荷圧力 の最大値がこれに対応して制御される。 37 is switched, and the corresponding hydraulic cylinders 32 A, 33 A, 34 A are driven by the hydraulic oil supplied from the hydraulic pump 31, and the excavation work is performed. Then, the maximum value of the load pressure generated by driving the hydraulic cylinders 32 A, 33 A, 34 A by the discharge flow rate supplied from the hydraulic pump 31, that is, the boom cylinder, the arm cylinder The largest of the load pressures of the cylinder and the bucket cylinder is introduced as the primary pressure of the pressure reducing valve 53B via the pipe 45, and is reduced by the pressure reducing valve 53B. The reduced secondary pressure is applied to the drive 38k of the switching valve 38b. As a result, the discharge pressure of the hydraulic pump 31 is increased by the maximum value of the manipulated variables xa, xb, xc of the electric operation levers-60a, 60b, 60c. Under control, the maximum value of the load pressure of the pump cylinder, arm cylinder, and bucket cylinder is controlled correspondingly.
このよう に構成した本実施例にあっては、 選択スィ ツチ 6 3が 0 Nに選択されて水平引き作業が意図され
たと きは、 この水平引き作業で通常最も大き く なるブ 一ムシ リ ンダの負荷圧力が比較的小さいブーム用操作 レバーの操作量に応じて減じ られるので、 水平引き作In the present embodiment configured as described above, the selection switch 63 is selected to be 0 N and the horizontal pulling operation is intended. At this time, the load pressure on the boom cylinder, which is usually the largest in this horizontal pulling operation, is reduced according to the operation amount of the boom operating lever, which is relatively small.
' 業の起動時に小さな力でブームを駆動する こ とができ、 微操作性が向上する。 また、 選択スィ ッ チ 6 3が 0 F F に選択され、 掘削作業が意図されたと きには、 この 掘削作業で最も大き く なる ブームシ リ ンダ、 アームシ リ ンダ、 ブラケ ッ ト シ リ ンダの負荷圧力のいずれかが 操作レバーの最も大きな操作量に応じて減じ られるの で、 負荷圧力の減少が最少に止どめ られ、 力強い、 作 業効率の低下の少ない掘削作業を行う こ とができる。 '' The boom can be driven with a small force when starting the operation, and the fine operability is improved. In addition, when the selection switch 63 is set to 0FF and the excavation work is intended, the load pressure of the boom cylinder, the arm cylinder, and the bracket cylinder, which are the largest in this excavation work, is set. Since either of them is reduced according to the largest operation amount of the operation lever, the reduction of the load pressure is minimized, and it is possible to perform a powerful excavation work with a small decrease in work efficiency.
第 6の実施例 Sixth embodiment
本発明の第 6 の実施例を第 1 0図によ り説明する。 図中、 第 8 図に示す部材と同等の部材には同じ符号を 付している。 本実施例は、 全てのァク チユエ一夕に対 して力制御を行えるよ う に したものである。 A sixth embodiment of the present invention will be described with reference to FIG. In the figure, members that are the same as the members shown in FIG. 8 are given the same reference numerals. In the present embodiment, force control can be performed for all factories.
第 1 0 図において、 油圧シ リ ンダ 3 2 A, 3 3 A , 3 4 Aの負荷圧力を抽出する検出管路 3 9, 4 0, 4 1 の全てに電磁操作式の可変減圧弁 5 3 C, 5 3 D , 5 3 Eが設置きれている。 また、 制御装置 6 I Bでは、 電気操作レバー 6 0 a, 6 0 b , 6 0 c の操作量 x a, x b, x c の各々に基づき、 第 7図に示す手順によ り 対応する減圧弁の指令信号が演算され、 出力される。 第 8図に示す選択スィ ッチ 6 3 は設けられていない。
その他の構成は第 5の実施例と同じである。 In FIG. 10, all of the detection lines 39, 40, and 41 for extracting the load pressure of the hydraulic cylinders 32A, 33A, and 34A are provided with electromagnetically operated variable pressure reducing valves 53. C, 53D and 53E are completely installed. Further, the control device 6 IB receives the command of the pressure reducing valve according to the procedure shown in FIG. 7 based on each of the operation amounts xa, xb, xc of the electric operation levers 60 a, 60 b, 60 c. The signal is calculated and output. The selection switch 63 shown in FIG. 8 is not provided. Other configurations are the same as those of the fifth embodiment.
このよ う に構成した本実施例では、 負荷圧力、 メ ー 夕 リ ング特性の異なる各油圧シ リ ンダ毎に電気操作レ バーの操作量に応じて負荷圧力を制限し、 力制御を実 施できるので、 よ り高精度な力制御を実現できる。 In this embodiment configured as described above, the load pressure is limited according to the operation amount of the electric operation lever for each of the hydraulic cylinders having different load pressures and the main ring characteristics, and the force control is performed. As a result, more accurate force control can be realized.
第 7の実施例 Seventh embodiment
本発明の第 7 の実施例を第 1 1 図によ り説明する。 図中、 第 4図に示す部材と同等の部材には同じ符号を 付している。 本実施例は第 4図に示す第 3の実施例に 第 2 の実施例の概念を導入したものである。 A seventh embodiment of the present invention will be described with reference to FIG. In the drawing, members equivalent to those shown in FIG. 4 are denoted by the same reference numerals. In this embodiment, the concept of the second embodiment is introduced into the third embodiment shown in FIG.
即ち、 第 1 1 図において、 流量制御弁 3 5, 3 6, 3 7 の上流側には圧力捕償弁 7 1, 7 2 , 7 3が設置 されている。 圧力補償弁 7 2, 7 3 は一般的なもので あ り、 対向する駆動部 7 2 x, 7 2 yおよび 7 3 x, 7 3 y に流量制御弁 3 6 , 3 7の出側圧力 (対応する ァクチユエ一夕の負荷圧力) および入側圧力が負荷さ れ、 各流量制御弁 3 6 , 3 7の前後差圧をばね 7 2 a , 7 3 a によって定ま る規定値に保持している。 圧力捕 償弁 7 1 は、 駆動部 7 1 Xに可変減圧弁 5 3で減圧さ れた二次圧方が負荷され、 駆動部 T T y に流量制御弁 3 5 の入側圧力が負荷され、 両者の差圧をばね 7 1 a によって定ま る規定値に保持している。 他の構成は第 4図に示す第 3の実施例と同じである。 That is, in FIG. 11, pressure compensation valves 71, 72, 73 are installed upstream of the flow control valves 35, 36, 37. The pressure compensating valves 72 and 73 are common, and the outlet pressures of the flow control valves 36 and 37 are connected to the opposing drive units 72 x, 72 y and 73 x, 73 y. The corresponding load pressure and the inlet pressure are applied, and the differential pressure before and after each flow control valve 36, 37 is maintained at the specified value determined by the springs 72a, 73a. I have. In the pressure compensating valve 71, the drive unit 71 X is loaded with the secondary pressure reduced by the variable pressure reducing valve 53, and the drive unit TTy is loaded with the inlet pressure of the flow control valve 35, The differential pressure between the two is maintained at a specified value determined by the spring 71a. Other configurations are the same as those of the third embodiment shown in FIG.
このよ う に構成した本実施例の構成は、 圧力制限手
段の構成が第 4図に示す第 3の実施例のものを採用し ている点を除いて第 3図に示す第 2の実施例と実質的 に同じであ り、 したがって第 2 の実施例と同様の効果 を得る こ とができる。 即ち、 油圧モータ 3 2, 3 3, 3 4を同時 こ駆動する複合操作に際して、 油圧モータ 3 2以外のァクチユエ一夕の負荷圧力が大き く な り、 ポンプレギユレ一夕 3 8 による力制御が行えな く な つ たと しても、 圧力補償弁 7 1の作動によ り流量制御弁 3 5 の入側の圧力の上昇を制限される。 したがって、 複合操作時にも支承な く油圧モータ 3 2 の力制御を行 なう こ とができる。 The configuration of this embodiment configured as described above is a pressure limiting method. The configuration of the stage is substantially the same as that of the second embodiment shown in FIG. 3 except that the configuration of the third embodiment shown in FIG. 4 is adopted. The same effect can be obtained. That is, in the combined operation of simultaneously driving the hydraulic motors 32, 33, and 34, the load pressure of the actuator other than the hydraulic motor 32 increases, and the force control by the pump regulator 38 cannot be performed. Even if the pressure control valve 35 is not operated, the pressure increase on the inlet side of the flow control valve 35 is limited by the operation of the pressure compensating valve 71. Therefore, the force control of the hydraulic motor 32 can be performed without any support during the combined operation.
その他の実施例 Other embodiments
本発明のさ らに他の実施例を第 1 2図〜第 1 5 図に よ り説明する。 Still another embodiment of the present invention will be described with reference to FIGS. 12 to 15.
第 1 2図は本発明の第 8の実施例を示すもので、 ポ ンプ吐出圧力と負荷圧力との差圧を規定値に保持する 圧力手段と して、 可変容量型の油圧ポ ンプの押しのけ 容積を制御し、 油圧ポ ンプの吐出流量および吐出圧力 を制御する上述のポ ンプレギユ レータの代わり に、 ポ ンプ ft出圧方を直接制御するアン — ド弁を用いたも のである。 FIG. 12 shows an eighth embodiment of the present invention, in which a variable displacement hydraulic pump is displaced as pressure means for maintaining a differential pressure between a pump discharge pressure and a load pressure at a specified value. Instead of the above-described pump regulator that controls the volume and controls the discharge flow rate and the discharge pressure of the hydraulic pump, an end valve that directly controls the pump ft output pressure is used.
即ち、 第 1 2図において、 8 0 は固定容量型の油圧 ポンプであ り、 油圧ポンプ 8 0の吐出管路 8 1 はア ン ロー ド弁 8 2を介してタ ンク 8 3 に接続されている。
ア ンロー ド弁 8 2 は対向する駆動部 8 2 XL, 8 2 y と ア ンロー ド圧力を設定するばね 8 2 a とを有し、 駆動 部 8 2 X には管路 8 4を介してポンプ吐出圧力が負荷 され、 駆動部 8 2 y には上述した実施例の検出管路 9 または 4 8 を介して制限された負荷圧力が導かれてい このよ う に構成した本実施例においても、 ア ンロー ド弁 8 2 の公知の機能により、 ポンプ吐出圧力は検出 管路 9 または 4 8 に現れる制限された負荷圧力よ り も ばね 8 2 a によって定ま る規定値だけ高く なるよう に 制御されるので、 先の実施例と同様にロー ドセン シン グシステムを構成する こ とができ、 同様の効果を得る こ とができ る。 That is, in FIG. 12, reference numeral 80 denotes a fixed displacement hydraulic pump, and a discharge line 81 of the hydraulic pump 80 is connected to a tank 83 via an unload valve 82. I have. The unload valve 82 has opposing drive units 82 XL, 82 y and a spring 82 a for setting the unload pressure, and the drive unit 82 X is pumped through a line 84. The discharge pressure is applied, and the restricted load pressure is led to the drive section 82y via the detection pipe 9 or 48 of the above-described embodiment. With the known function of the load valve 82, the pump discharge pressure is controlled to be higher than the limited load pressure appearing in the detection line 9 or 48 by a specified value determined by the spring 82a. Therefore, a load sensing system can be configured in the same manner as in the previous embodiment, and the same effect can be obtained.
第 1 3 図〜第 1 5図は本発明の第 9 の実施例を示す もので、 圧力制限手段と して圧力を直接する リ リ ーフ 弁または減圧弁を使用する代わり に可変絞り を用いた ものである。 FIG. 13 to FIG. 15 show a ninth embodiment of the present invention, in which a variable throttle is used instead of a relief valve or a pressure reducing valve that directly controls the pressure as the pressure limiting means. It was what was.
即ち、 第 1 3図において、 油圧モータ 3 2 に係わる 負荷圧力の検出管路 3 9に第 1 の可変絞り 9 0が設置 され、 こ の第 1 の可変^り 9 σの下流首とタ ンク 4 9 との間に第 2の可変絞り 9 1が設置され、 第 1 の可変 絞り 9 0 のその下流側をシャ トル弁 4 2 に接続してい る。 第 1 および第 2 の可変絞り 9 0, 9 1 にはそれぞ れ管路 5 2 に抽出されたパイ ロ ッ ト圧力が導かれ、 パ
イ ロ ッ ト圧力に応じて開度を変化させるよ う になって いる。 そのパイ ロ ッ ト圧力と開度との関係は第 1 4図 に示すよ うであ り、 第 1 の可変絞り 9 0 においては、 パイ ロ ッ ト圧力が零のと きに開度は最小であ り、 パイ ロ ッ ト圧力が増加するに したがって開度が大き く なる 関係となっており、 第 2 の可変絞り 9 1 においては、 これとは逆に、 パイ ロ ッ ト圧力が零の と きに開度が最 犬で、 パイ 口 ッ ト圧力が増加するに したがつて開度が 減少する関係となっている。 なお、 第 1 の可変絞り 9 0 は固定絞りであってもよい。 その他の構成は第 4図 に示す第 3 の実施例と同じである。 That is, in FIG. 13, a first variable throttle 90 is installed in a load pressure detection line 39 related to the hydraulic motor 32, and a downstream neck and a tank of the first variable beam 9σ are provided. A second variable throttle 91 is installed between the first variable throttle 49 and the downstream side of the first variable throttle 90 to the shuttle valve 42. The pilot pressure extracted to the pipeline 52 is led to the first and second variable throttles 90 and 91, respectively, and the The opening is changed according to the pilot pressure. The relationship between the pilot pressure and the opening is as shown in Fig. 14.In the first variable throttle 90, the opening is minimum when the pilot pressure is zero. Therefore, the opening degree increases as the pilot pressure increases.In the second variable throttle 91, on the contrary, the pilot pressure becomes zero. At this time, the opening is the dog, and the opening decreases as the pie mouth pressure increases. Note that the first variable aperture 90 may be a fixed aperture. Other configurations are the same as those of the third embodiment shown in FIG.
圧力制限手段をこのよ う に構成した本実施例におい ても、 第 1 および第 2の可変絞り 9 0 , 9 1 が共働し て第 1 の可変絞り 9 0 の下流側の圧力をパイ ロ ッ ト圧 力に対応する操作レバーの操作量に応じて決ま る値ま で圧力降下させるので、 可変リ リ ーフ弁または可変減 圧弁を用いた場合と同様に操作レバーの操作量に応じ て負荷圧力を制限でき、 上述の実施例と同様の効果を 得る こ とができる。 産業上の利用可能性 Also in the present embodiment in which the pressure limiting means is configured as described above, the first and second variable throttles 90 and 91 cooperate to pyrolyze the pressure downstream of the first variable throttle 90. Since the pressure drops to a value determined according to the operation amount of the operation lever corresponding to the set pressure, the pressure is reduced according to the operation amount of the operation lever as in the case of using a variable relief valve or a variable pressure reducing valve. The load pressure can be limited, and the same effect as in the above embodiment can be obtained. Industrial applicability
以上述べたよ う に、 本発明によれば、 検出管路手段 に抽出されたァクチユエ一夕の負荷圧力を操作手段の 操作量に応じて決ま る値以下に制限する圧力制限手段
を設けたので、 ロ ー ドセ ン シングシステムを採用 しか つ力の制御を実施する こ とができ、 操作性が著し く 向 上する。
As described above, according to the present invention, the pressure limiting means for limiting the load pressure of the actuator extracted in the detection conduit means to a value determined according to the operation amount of the operation means or less. As a result, the load sensing system can be used and force control can be performed, and operability is significantly improved.
Claims
1. 油圧ポンプ (1) と、 前記油圧ポンプから吐出さ れる圧油により駆動される少な く と も 1つの油圧ァク チユエ一夕 (3) と、 操作手段 (4a)の操作量に応じて駆 動され、 前記油圧ポンプからァク チユエ一夕に供給さ れる圧油の流れを制御する流量制御弁 (4) と、 前記ァ クチユエ一夕の負荷圧力を抽出する検出管路手段 (7 a, n) と、 前記検出管路手段に接続され、 前記流量制御 弁の上流側の圧力と前記ァクチユエータの負荷圧力と の差圧を規定値に保持する圧力捕償手段(2または 5)と を備えた作業機械の油圧駆動装置において、 1. According to the amount of operation of the hydraulic pump (1), at least one hydraulic actuator (3) driven by the hydraulic oil discharged from the hydraulic pump, and the operating means (4a) A flow control valve (4) that is driven to control the flow of pressurized oil supplied from the hydraulic pump to the actuator, and a detection line means (7a) that extracts the load pressure of the actuator. , n), and pressure compensating means (2 or 5) connected to the detection pipe means and maintaining a differential pressure between a pressure upstream of the flow control valve and a load pressure of the actuator at a specified value. In the hydraulic drive of the working machine equipped with
前記検出管路手段 a, ?b) に関して設けられ、 該検 出管路手段に抽出された前記ァクチユエ一夕 (3) の負 荷圧力を前記操作手段 (4 a)の操作量に応じて決ま る値 以下に制限する圧力制限手段 (20)を有する こ とを特徴 とする油圧駆動装置。 The load pressure of the actuator (3) extracted with respect to the detection pipe means is determined according to the amount of operation of the operation means (4a). A hydraulic drive device characterized by having a pressure limiting means (20) for limiting the pressure to not more than a predetermined value.
2. 請求の範囲第 1項記載の作業機械の油圧駆動装 置において、 前記圧力制限手段 (20)は、 前記検出管路 手段 ( )に設置された'絞り (20a) と、 前記絞り の下流 側とタ ンク (10)との間に接続され、 前記操作手段 U a) の操作量に応じて設定圧力を変化させ、 前記絞り の下 流側の圧力がその設定圧力を越えないよ う にする可変 リ リ ーフ弁 (20b) とを含むこ とを特徴とする油圧駆動
2. The hydraulic drive device for a working machine according to claim 1, wherein the pressure limiting means (20) includes a throttle (20a) installed in the detection conduit means (), and a downstream of the throttle. Between the pressure side and the tank (10), and the set pressure is changed according to the operation amount of the operation means Ua) so that the pressure on the downstream side of the throttle does not exceed the set pressure. Hydraulic drive characterized by including a variable relief valve (20b)
3. 請求の範囲第 1項記載の作業機械の油圧駆動装 置において、 前記圧力制限手段は、 前記検出管路手段 (39)に設置され、 前記負荷圧力を前記操作手段の操作 量に応じて決ま る値まで減圧する可変減圧手段(53;53 A;53B;53C-53E)) を含むこ とを特徴とする油圧駆動装 o 3. The hydraulic drive device for a working machine according to claim 1, wherein the pressure limiting means is provided in the detection pipe means (39), and the load pressure is controlled according to an operation amount of the operation means. A hydraulic drive unit characterized by including a variable pressure reducing means (53; 53 A; 53B; 53C-53E)) for reducing the pressure to a predetermined value.
4. 請求の範囲第 3項記載の作業機械の油圧駆動装 置において、 前記可変減圧手段は前記操作手段の操作 量に応じて設定圧力を変化させ、 前記負荷圧力をその 設定圧力まで減圧する可変減圧弁 (53)である こ とを特 徴とする油圧駆動装置。 4. The hydraulic drive device for a working machine according to claim 3, wherein the variable pressure reducing means changes a set pressure according to an operation amount of the operation means, and reduces the load pressure to the set pressure. A hydraulic drive device characterized by a pressure reducing valve (53).
5. 請求の範囲第 3項記載の作業機械の油圧駆動装 置において、 前記可変減圧手段は前記検出管路手段 (3 9)に設置され、 前記操作手段の操作量に応じて開度を 変化させる第 1の可変絞り (90)と、 この第 1の可変絞 りの下流側とタ ンク (49)の間に接続され、 前記操作手 段の操作量に応じて開度を変化させる第 2の可変絞り (91)とを含み、 第 1および第 2の可変絞りが共働して 第 ίの可変絞 の下流側の圧方を前記操作手段の擦作 量に応じて決ま る値まで圧力降下させる こ とを特徴と する油圧駆動装置。 5. The hydraulic drive device for a working machine according to claim 3, wherein the variable pressure reducing means is provided in the detection pipe means (39), and changes an opening degree according to an operation amount of the operating means. A first variable throttle (90) to be connected, and a second variable throttle connected between the downstream side of the first variable throttle and the tank (49) and changing an opening in accordance with the operation amount of the operation means. The first and second variable throttles cooperate to adjust the pressure on the downstream side of the second variable throttle to a value determined according to the amount of friction of the operating means. Hydraulic drive device characterized by lowering.
6. 請求の範囲第 1項記載の作業機械の油圧駆動装 置において、 前記圧力捕償手段は、 前記油圧ポンプ(1
; 31 ; 80) の吐出圧力と前記制限された負荷圧力とに応 答して作動し、 両者の差圧が規定値に保持されるよ う ポンプ吐出圧力を制御するポンプ制御手段(2 ; 38 ; 82) ' を含むこ とを特徴とする油圧駆動装置。 6. The hydraulic drive device for a working machine according to claim 1, wherein said pressure compensation means comprises: Pump control means (2; 38) that operates in response to the discharge pressure of (31; 80) and the limited load pressure, and controls the pump discharge pressure so that the pressure difference between the two is maintained at a specified value. ; 82) '.
7. 請求の範囲第 6項記載の作業機械の油圧駆動装 置において、 前記ポンプ制御手段(1 ; Π)は前記規定値 - を保持するよ う前記油圧ポ ンプの吐出流量を制御し、 その結果と してポンプ吐出圧力を制御するポ ンプレギ ユ レ一夕 (2 ; 38)である こ とを特徴とする油圧駆動装置。 7. The hydraulic drive device for a working machine according to claim 6, wherein the pump control means (1; Π) controls a discharge flow rate of the hydraulic pump so as to maintain the specified value-. A hydraulic drive device characterized by the fact that the pump pressure is controlled as a result (2; 38).
8. 請求の範囲第 6項記載の作業機械の油圧駆動装 置において、 前記ボンプ制御手段は前記油圧ボンプ (8 0)の吐出管路 (81)に接続され、 ポンプ吐出圧力を直接 制御するア ンロー ド弁 ( )である こ とを特徴とする油 圧駆動装置。 8. The hydraulic drive device for a working machine according to claim 6, wherein the pump control means is connected to a discharge line (81) of the hydraulic pump (80), and directly controls a pump discharge pressure. A hydraulic drive device characterized by being a load valve ().
9. 請求の範囲第 1項記載の作業機械の油圧駆動装 置において、 前記圧力捕償手段は前記流量制御弁 U ; 3 5)の上流側に接続され、 前記流量制御弁の入口圧力と 前記制限された負荷圧力とに応答して作動し、 両者の 差圧が規定値に保持されるよ う前記流量制御弁の入口 圧力を制御する圧方捕償^ (5Α;?1) を含むこ とを特徴 とする油圧駆動装置。 9. The hydraulic drive device for a working machine according to claim 1, wherein the pressure compensation means is connected to an upstream side of the flow control valve U; 35); It operates in response to the limited load pressure and includes a pressure relief device (5Α;? 1) that controls the inlet pressure of the flow control valve so that the differential pressure between the two is maintained at a specified value. And a hydraulic drive device.
1 0. 請求の範囲第 1項記載の作業機械の油圧駆動 装置において、 前記操作手段は前記操作量に比例した パイ ロ ッ ト圧力を発生し、 このパイ ロ ッ ト圧力によ り
前記流量制御弁(4 ;35)を駆動する手段(4 a)であり、 前 記圧力制限手段は、 前記パイ ロ ッ ト圧力を抽出する手 段(24, 25;51, 52) と、 この抽出されたパイ ロッ ト圧力 に基づいて作動し、 前記負荷圧力を前記操作手段の操 作量に応じて決ま る値以下に制限する手段(20b ;53 ;90 , 91)とを含むこ とを特徴とする油圧駆動装置。 10. The hydraulic drive system for a working machine according to claim 1, wherein the operating means generates a pilot pressure proportional to the operation amount, and the pilot pressure is generated by the pilot pressure. Means (4a) for driving the flow control valve (4; 35), wherein the pressure limiting means comprises means (24, 25; 51, 52) for extracting the pilot pressure; Means (20b; 53; 90, 91) for operating based on the extracted pilot pressure and for limiting the load pressure to a value determined according to the operation amount of the operating means. Features hydraulic drive.
1 1. 請求の範囲第 1項記載の作業機械の油圧駆動 装置において、 前記操作手段は前記走査量に比例した 電気信号を発生する手段であ り (6Q; a)、 前記圧力制 限手段は、 前記検出値に基づき前記操作手段の操作量 に応じて決まる値を演算し、 対応する電気信号を出力 する手段 (61;61A;UB)と、 前記電気信号に基づき作動 し、 前記負荷圧力を前記演算値以下に制限する手段(5 3A;53B;53c) とを含むこ とを特徴とする油圧駆動装置。 1 1. The hydraulic drive device for a working machine according to claim 1, wherein the operation means is a means for generating an electric signal proportional to the scanning amount (6Q; a), and the pressure limiting means is A means (61; 61A; UB) for calculating a value determined according to the operation amount of the operating means based on the detected value, and outputting a corresponding electric signal; Means (53A; 53B; 53c) for limiting the calculated value to the calculated value or less.
1 2. 請求の範囲第 1項記載の作業機械の油圧駆動 装置において、 前記圧力制限手段の作動を選択する手 段(22)をさ らに有する こ とを特徵とする油圧駆動装置。
12. The hydraulic drive device for a working machine according to claim 1, further comprising means (22) for selecting operation of the pressure limiting means.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5794089 | 1989-03-13 | ||
JP1/57940 | 1989-03-13 | ||
JP1/320541 | 1989-12-12 | ||
JP32054189 | 1989-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1990010795A1 true WO1990010795A1 (en) | 1990-09-20 |
Family
ID=26399029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1990/000325 WO1990010795A1 (en) | 1989-03-13 | 1990-03-13 | Hydraulic driving unit for working machine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO1990010795A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0597109A4 (en) * | 1992-03-09 | 1994-08-24 | Hitachi Construction Machinery | Hydraulically driving system. |
WO2000052340A1 (en) * | 1999-03-04 | 2000-09-08 | Hitachi Construction Machinery Co., Ltd. | Hydraulic circuit device |
WO2008116515A1 (en) * | 2007-03-27 | 2008-10-02 | Hydac Filtertechnik Gmbh | Valve arrangement |
JP2009534596A (en) * | 2006-04-21 | 2009-09-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Hydraulic control device |
US8499552B2 (en) | 2007-06-26 | 2013-08-06 | Robert Bosch Gmbh | Method and hydraulic control system for supplying pressure medium to at least one hydraulic consumer |
US8671824B2 (en) | 2007-06-26 | 2014-03-18 | Robert Bosch Gmbh | Hydraulic control system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813202A (en) * | 1981-07-14 | 1983-01-25 | Daikin Ind Ltd | Flow control device with pressure compensation |
-
1990
- 1990-03-13 WO PCT/JP1990/000325 patent/WO1990010795A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5813202A (en) * | 1981-07-14 | 1983-01-25 | Daikin Ind Ltd | Flow control device with pressure compensation |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0597109A4 (en) * | 1992-03-09 | 1994-08-24 | Hitachi Construction Machinery | Hydraulically driving system. |
US5394697A (en) * | 1992-03-09 | 1995-03-07 | Hitachi Construction Machinery Co., Ltd. | Hydraulic drive system |
WO2000052340A1 (en) * | 1999-03-04 | 2000-09-08 | Hitachi Construction Machinery Co., Ltd. | Hydraulic circuit device |
US6438952B1 (en) | 1999-03-04 | 2002-08-27 | Hitachi Construction Machinery Co., Ltd. | Hydraulic circuit device |
JP2009534596A (en) * | 2006-04-21 | 2009-09-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Hydraulic control device |
US8281583B2 (en) | 2006-04-21 | 2012-10-09 | Robert Bosch Gmbh | Hydraulic control assembly |
WO2008116515A1 (en) * | 2007-03-27 | 2008-10-02 | Hydac Filtertechnik Gmbh | Valve arrangement |
US8479636B2 (en) | 2007-03-27 | 2013-07-09 | Hydac Filtertechnik Gmbh | Valve arrangement |
US8499552B2 (en) | 2007-06-26 | 2013-08-06 | Robert Bosch Gmbh | Method and hydraulic control system for supplying pressure medium to at least one hydraulic consumer |
US8671824B2 (en) | 2007-06-26 | 2014-03-18 | Robert Bosch Gmbh | Hydraulic control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3434514B2 (en) | Hydraulic drive of hydraulic working machine | |
JP3139767B2 (en) | Hydraulic drive of hydraulic working machine | |
JP3139769B2 (en) | Hydraulic regeneration device | |
WO1990011413A1 (en) | Hydraulic drive unit for civil engineering and construction machinery | |
JP7297596B2 (en) | Hydraulic system for construction machinery | |
US5398507A (en) | Hydraulic circuit system | |
JP7324655B2 (en) | Hydraulic system for construction machinery | |
JP3643193B2 (en) | Hydraulic motor control device | |
WO1990009528A1 (en) | Hydraulic circuit for working machines | |
WO1990010795A1 (en) | Hydraulic driving unit for working machine | |
JP2786941B2 (en) | Hydraulic drive for work machines | |
JP3081968B2 (en) | Cutoff cancellation mechanism in load sensing system | |
JP7152968B2 (en) | hydraulic excavator drive system | |
JPH068641B2 (en) | Hydraulic circuit | |
JPH09210005A (en) | Hydraulic drive for construction machinery | |
GB2601859A (en) | Hydraulic control system and method for a bucket shake operation in a work machine with a hydraulic pump and unloader valve | |
JP4028090B2 (en) | Hydraulic controller for work machine | |
WO2021206002A1 (en) | Hydraulic system for construction machine | |
JPH08199631A (en) | Hydraulic control equipment for construction machinery | |
US11512449B2 (en) | Hydraulic control system and method for a bucket shake operation in a work machine with a hydraulic pump and unloader valve | |
JP3175992B2 (en) | Control device for hydraulic drive machine | |
JP3241062B2 (en) | Work machine pump flow control device | |
JPH07139509A (en) | Hydraulic drive system for hydraulic work machine | |
JP2685870B2 (en) | Hydraulic circuit of work machine | |
JP3064520B2 (en) | Working oil amount switching control device for hydraulic excavator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE |